
WormTerminator: An Effective Containment of Unknown
and Polymorphic Fast Spreading Worms

Songqing Chen1, Xinyuan Wang2, Lei Liu1, Xinwen Zhang2, and Zhao Zhang3

1Department of Computer Science
George Mason University

Fairfax, VA 22030

{sqchen,lliu3}@cs.gmu.edu

2Department of Information and
Software Engineering

George Mason University
Fairfax, VA 22030

{xwangc,xzhang6}@gmu.edu

3Department of Electrical and
Computer Engineering
Iowa State University

Ames, IA 50011

zzhang@iastate.edu

ABSTRACT
The fast spreading worm is becoming one of the most se-
rious threats to today’s networked information systems. A
fast spreading worm could infect hundreds of thousands of
hosts within a few minutes. In order to stop a fast spreading
worm, we need the capability to detect and contain worms
automatically in real-time. While signature based worm de-
tection and containment are effective in detecting and con-
taining known worms, they are inherently ineffective against
previously unknown worms and polymorphic worms. Exist-
ing traffic anomaly pattern based approaches have the po-
tential to detect and/or contain previously unknown and
polymorphic worms, but they either impose too much con-
straint on normal traffic or allow too much infectious worm
traffic to go out to the Internet before an unknown or poly-
morphic worm can be detected.

In this paper, we present WormTerminator, which can
detect and completely contain, at least in theory, almost all
fast spreading worms in real-time while blocking virtually
no normal traffic. WormTerminator detects and contains
the fast spreading worm based on its defining characteristic
– a fast spreading worm will start to infect others as soon
as it successfully infects one host. WormTerminator also ex-
ploits the observation that a fast spreading worm keeps ex-
ploiting the same set of vulnerabilities when infecting new
machines. To prove the concept, we have implemented a
prototype of WormTerminator and have examined its effec-
tiveness against the real Internet worm Linux/Slapper.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Invasive Software (e.g., viruses, worms, Trojan horses);
C.2.5 [Computer Communication Networks]: Local
and Wide Area Networks—Internet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’06, December 3–5, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-580-0/06/0012 ...$5.00.

General Terms
Security, Design, Experimentation

Keywords
WormTerminator, Zero-day Worms, Polymorphic Worms,
Virtual Machine, Worm Containment

1. INTRODUCTION
The fast spreading worm (abbreviated as fast worm here-

after) is becoming one of the most serious threats to today’s
networked information systems that we are depending on
daily. Unlike all other threats, such as virus, intrusions, and
spyware, fast worms could automatically propagate them-
selves over the network to infect hundreds of thousands of
hosts without user interactions and do great harm in a short
time. For example, Slammer, whose size is only 376 bytes,
has been observed to probe 4000 hosts per second on av-
erage and infected about 75,000 vulnerable hosts running
Microsoft SQL in about 10 minutes [21]. Although Code
Red I is slower, it doubled the infected population with 37
minutes or so and infected 360,000 Microsoft IIS servers.

What makes it really challenging to defend against a fast
worm is its extremely fast propagation speed. In order to
defend against a fast spreading worm, we need the capability
to effectively detect and contain the worm automatically in
real-time. To effectively contain a fast worm, we have to cut
off its propagation link at the earliest possible time.

Existing worm containment strategies can be broadly clas-
sified into two categories: signature based and traffic pat-
tern based. Signature based approaches [4, 14, 17, 18, 30,
31] are efficient and effective in detecting and containing
known worms, but they are inherently ineffective against
unknown worms and polymorphic worms [23]. Traffic pat-
tern based approaches [25, 28, 36, 37] do not rely on the
worm signature, but rather on the pattern of worm traffic.
Since worm propagation does have very distinctive patterns,
traffic pattern based approaches could potentially detect and
contain previously unknown worms and polymorphic worms.
However, traffic pattern based approaches can only detect
and contain a worm after the worm has started its propaga-
tion. Existing traffic pattern based approaches (such as new
connection limiting [37] or unique/failed connection number
counting [25, 28]) either impose too much constraint on nor-

173

mal traffic or allow too much infectious worm traffic to go
out. The former would greatly degrade the service quality
provided by the protected machine, while the latter could
lead to failure in containing fast worms, given the exponen-
tial nature of worm propagation [32].

Ideally, we want to be able to detect and contain all
fast worms, whether or not they are previously unknown,
whether or not they are polymorphic, and allow all the nor-
mal traffic at the same time. This requires the capability to
accurately detect and contain any fast worm before it really
propagates to other Internet hosts. In order to detect and
contain previously unknown or polymorphic fast worms, we
cannot rely on worm signatures. However, traffic pattern
based approaches need to observe worm propagation traffic
for some time before they can determine whether or not the
outgoing traffic is worm propagation. In other words, to
completely contain the propagation of any unknown worm,
we need to detect its propagation. To detect the propaga-
tion of the unknown worm, we need to see the propagation
of the worm. The key issue here is how to detect the prop-
agation of any unknown worm before it propagates to and
infects other Internet hosts.

In this paper, we present WormTerminator, which can
detect and completely contain almost all fast spreading
worms in real-time while blocking virtually no normal traf-
fic. WormTerminator detects and contains fast worms based
on their defining characteristic - a fast spreading worm will
start to infect other hosts as soon as it successfully infects
one host. Therefore WormTerminator could detect, at least
in theory, all fast spreading worms. Unlike all previous
worm detection and containment approaches, WormTermi-
nator is able to detect the propagation of previously un-
known or polymorphic fast worms before they can infect
any other host. This is achieved by transparently divert-
ing all outgoing traffic to a cloned virtual machine within
the same host where WormTerminator resides. To the ini-
tiator of the traffic, the virtual machine appears to be the
destination. WormTerminator exploits the observation that
a worm keeps exploiting the same set of vulnerabilities as
coded when infecting a new host. Therefore, if a worm has
successfully infected the current host, it will successfully in-
fect, after being diverted to, the virtual machine that has
the exactly same vulnerabilities as the current host. Once
the fast worm infects the virtual machine, the virtual ma-
chine will exhibit worm behaviors and start to infect other
hosts. By monitoring the traffic pattern of the virtual ma-
chine for a specified period of time, WormTerminator is able
to determine whether or not the diverted traffic is fast worm
traffic without risking infecting other hosts. If the diverted
traffic does not exhibit worm propagation behaviors, it will
be forwarded to its real destination. In this case, the vir-
tual machine acts as a transparent proxy between the traffic
source and its original destination.

To prove the concept of WormTerminator, we have im-
plemented a prototype in Linux and have examined its ef-
fectiveness against real Internet worm Linux/Slapper. Our
empirical results confirm that WormTerminator is able to
completely contain fast worm propagation while allowing
virtually all normal traffic in real-time. The major perfor-
mance cost of WormTerminator is a one-time delay to the
start of each outgoing normal connection for worm detec-
tion. By utilizing cache techniques, on average WormTer-
minator will delay no more than 6% normal outgoing traffic.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly illustrates the need of effective worm con-
tainment schemes. Section 3 overviews the WormTermina-
tor design. Section 4 discusses several design issues and
our solutions. Section 5 describes our prototype imple-
mentation. Section 6 presents our experimental results on
Linux/Slapper. Section 7 reviews related work. Finally, sec-
tion 8 makes concluding remarks with future work.

2. EPIDEMIC MODEL OF FAST WORM
PROPAGATION

Staniford et al proposed the random constant scan (RCS)
worm propagation model. Given an initial compromise rate
of K, along time t, the RCS model determines that the pro-
portion of those vulnerable machines that have been com-
promised (denoted as α) is

α =
eK(t−T)

1 + eK(t−T)
, (1)

where T is a constant of integration that fixes the time po-
sition of the incident. The RCS model has been validated
by the empirical propagation data of Slammer [20] with an
initial compromise rate K = 6.7 per minute and T = 1808.7
second.

It is easy to see that even if the compromise rate K is
reduced to 0.67 per minute, the time needed to compromise
the vast majority of vulnerable hosts only increases about 15
minutes. This means that we have to keep the compromise
rate K to a very low value in order to gain the time to
react to the spreading of a fast worm. This is particularly
challenging for those fast worms who scan with a hit-list
(e.g., Warhol or flash worms [33]), which could make the
compromise rate very close to the probe rate.

This indicates that simply throttling the worm probe traf-
fic is neither effective in containing the worm nor acceptable
to normal Internet applications. The dilemma here is how to
block the worm traffic as much as possible while keeping the
hosts open for normal network traffic. Ideally, we want to be
able to contain all the fast worm traffic and allow all normal
traffic at the same time. In the rest of paper, we show that
it is possible to block all the probing traffic of previously
unknown, polymorphic fast worms while allowing virtually
all non-worm traffic at the same time.

3. OVERVIEW OF WORMTERMINATOR
DESIGN

3.1 Design Goal and Principles
To completely contain fast worms, WormTerminator must

examine and restrict outgoing traffic from the very begin-
ning, i.e., the first exploit of a fast worm should be detected
and stopped.

The main design goal of WormTerminator is to completely
contain any known or unknown fast worm while allowing all
non-worm traffic. In other words, we strive to detect and
stop the first exploit from any fast spreading worm without
blocking any non-worm traffic. To achieve such a design
goal, we create a virtual machine that has cloned the op-
erating system and server applications running on the host
machine. This would allow us to detect the propagation of
almost all fast worms before they can infect any other host

174

on the Internet. In addition, the virtual machine serves as
a transparent proxy to all non-worm traffic.

The virtual machine clones the host operating system and
server applications running on the host and is supposed to
be started automatically by the host when it starts. The
communication between the virtual machine and the host
machine as well as other hosts on the Internet is controlled
by the virtual machine monitor (VMM). In general, there
are two types of VMM structures, depending on the relative
positions of the VMM and the hardware [16]. Type I VMM
always has the VMM running on the hardware, while Type
II always has the VMM running on the host OS. WormTer-
minator can work with both types of VMM structures as
long as the VMM is relatively well protected such that the
infection of the host does not quickly compromise the VMM.

The principles underlying the WormTerminator design are
as follows:

• A worm always exploits the same set of vulner-
abilities as coded. Every worm is coded to exploit a
certain set of vulnerabilities. Since the virtual machine
is a clone of the host, it has the same vulnerabilities
as the host. Therefore, if a worm has successfully ex-
ploited some vulnerabilities and has infected the cur-
rent host, it is able to infect the virtual machine.

• A fast worm always tries to propagate itself and
infect others as soon as it has infected the cur-
rent host. This propagation behavior is the defin-
ing characteristics of fast worms, which makes the
worm propagation traffic very distinct from other traf-
fic. This unique traffic pattern is how we determine if
any particular traffic is worm propagation traffic.

Based on these principles, WormTerminator does the fol-
lowing on any outgoing traffic from the host on which it
resides:

• Transparently divert any outgoing traffic to the virtual
machine for checking (worm detection);

• Monitor the traffic pattern of the virtual machine to
determine if the diverted traffic is worm propagation;

• Forward the diverted traffic to its original destination
once it is determined as non-worm traffic. The virtual
machine starts to act as a transparent proxy for the
original outgoing traffic;

• Drop any diverted traffic that has been determined
to be worm propagation, take actions and report as
appropriate.

By transparently diverting the outgoing traffic to the vir-
tual machine, we are able to monitor any worm propaga-
tion behavior without risking infecting other hosts on the
Internet. To the sender of the outgoing traffic, the virtual
machine appears as the original destination. Therefore, if a
fast worm is trying to propagate from the current host, its
propagation traffic will reach the virtual machine no matter
what destination it was trying to reach. Upon arriving at the
virtual machine, the worm traffic will soon infect the virtual
machine 1 and the virtual machine exhibits worm behaviors
1Unless the worm is able to determine if the host at which it
arrives is a virtual machine and stops infection on a virtual
machine. This case can be mitigated by instrumenting the
physical host to appear as a virtual machine.

quickly. Therefore, the propagation of any fast worm will be
detected and stopped at the virtual machine. On the other
hand, normal traffic does not exhibit worm propagation be-
havior, thus it will be forwarded to the original destination
eventually.

By examining the defining characteristics of worm propa-
gation traffic in a carefully instrumented virtual machine, we
are able to detect the propagation of fast worms at the very
beginning and prevent the worm from infecting any other
host on the Internet. At the same time, normal outgoing
traffic is almost never blocked.

Compared with signature based worm detection and con-
tainment, WormTerminator is able to detect and completely
contain previously unknown worms and polymorphic worms.
Compared with existing traffic pattern based worm contain-
ment techniques, WormTerminator does not block any non-
worm traffic, and completely blocks the infectious traffic
from fast worms.

3.2 WormTerminator Architecture and Flow
of Control

splitter

detector

Service

(1)

(5)

(6)
SA1 Service’

(2) (3)
VMHost OS VMM

diverter controller

(7)

(4)

Figure 1: WormTerminator Architecture and Flow
of Control

Figure 1 shows the architecture of WormTerminator and
the typical flow of control for outgoing traffic. There are
four major components in WormTerminator:

• diverter: it resides in the host OS, and is responsible
for intercepting any application communication and
sending it to the virtual machine through the VMM,
pretending that the virtual machine is the destination.

• detector: it is located in the VMM. Once the VMM
finds there is traffic to the virtual machine, it creates
the environment, by setting up the IP of the virtual
machine the same as the traffic destination, and open-
ing corresponding ports if necessary. After preparation
is done, the traffic is forwarded to the virtual machine,
and the detector closely watches network behaviors of
the virtual machine. If the forwarded traffic triggers
any worm-like behavior, the detector will generate an
alarm and report it to the controller. Otherwise, the
detector will report the forwarded traffic as normal to
the controller.

• controller: it logically resides in the VMM. Once it
receives the report from the detector, the controller
will either forward the normal traffic to its original
destination or drop the worm traffic and raise an alarm
to the user.

• splitter: it is running inside the virtual machine to
duplicate the original request (packet). One request

175

copy is sent to the local service for worm detection, and
the other is kept in the local buffer in case it is normal
traffic and should be sent to the real destination.

The four components collaborate with each other to
achieve our design goal. As shown in figure 1, the server ap-
plication SA1 needs to access an Internet service (indicated
by the dashed line). However, the outgoing connection is not
established directly, as would happen in a normal host. In-
stead, the diverter intercepts the outgoing packet and diverts
it to the virtual machine through the VMM. Upon receiv-
ing the outgoing packet, the splitter at the virtual machine
duplicates the request packet in its buffer before forwarding
the request packet to the appropriate service running in the
virtual machine. The detector monitors the network behav-
ior of the virtual machine, determines whether the diverted
request packet belongs to the worm propagation and reports
the result to the controller in the VMM. The controller will
forward any normal outgoing request packet to the origi-
nal destination, and drop the worm propagation packet and
report to the user.

4. DESIGN ISSUES AND SOLUTIONS
In this section, we discuss several important design issues

and present our solutions.

4.1 How does WormTerminator detect the
worm?

To stop the fast worm spreading, the worm must be de-
tected at the earliest possible time. How to determine
whether the traffic is worm propagation is one critical design
issue. In principle, WormTerminator detects the worm by
checking if the network traffic of the virtual machine has any
worm propagation pattern. One simple criterion for detect-
ing worm propagation pattern is timing correlation between
incoming and outgoing traffic. The rationales behind using
the timing correlation are the following: 1) fast worms strive
to propagate to and infect as many other hosts as possible in
the shortest possible time; 2) fast worms are usually small in
size. Therefore, the volume of worm infecting traffic is small.
After the fast worm traffic successfully infects a host, the in-
fected host will start trying to infect other hosts in a short
time. For example, we have observed that a Linux host will
start sending out infectious traffic within 10 seconds after it
is infected by Linux/Slapper worm.

Table 1: Trend of Worm Size
Name Size Year
Nimda 60 KB 2001
Code Red 4KB 2001
Slammer 376 bytes 2003

WormTerminator uses two time thresholds for detecting
the propagation of fast worms. Ttime is the maximum time
interval between the time when the virtual machine receives
the fast worm traffic and the time when the virtual machine
starts to send out infectious traffic. Tsize is the time needed
to transfer the whole worm. As shown in Table 1, worms
are getting smaller. Initially, we set Tsize to be T100KB , the
time needed to transfer 100KB data since almost all fast
worms are less than 100KB.

To detect if any traffic diverted to the virtual machine
is worm traffic, the detector monitors network activities of
the virtual machine. If the virtual machine receives some
continuous traffic whose transmission time is less than Tsize,
and starts to send similar traffic to other hosts within time
Ttime, the diverted traffic is considered worm traffic. Here
we do not count any traffic from the virtual machine to its
host machine, and we only consider outgoing traffic from the
virtual machine to other hosts on the Internet.

But how shall we determine Ttime? This is critical for
WormTerminator to quickly detect worms. It also affects
how long an application needs to wait for worm detection.
Ideally, Ttime should be the time needed for a worm to com-
plete its infection procedure. Clearly, different worms could
take different time durations to complete such a procedure.
Thus, there may not exist a fixed upper bound good for
all. However, as Figure 2 shows, if both Host-A and Host-B
have the same set of vulnerabilities that a worm exploits,
the time interval I1, for the worm to enter Host-A to the
time Host-A becomes a source and starts to infect others,
should be close to I2, the time interval on Host-B for such
a procedure, without considering the physical configuration
differences between Host-A and Host-B. In the WormTer-
minator design, clearly, Host-A is the host, while Host-B is
its virtual machine. Thus, if we can measure I1, we can
have a good estimate of I2 and thus we can set up Ttime

accordingly.
Unfortunately, it is not easy to measure I1. The diffi-

culty lies in that on Host-A, there could be several multiple
concurrent inbound network flows, although we are only in-
terested in the one related to the flow to Host-B. Since nor-
mally worms exploit the vulnerability of a running process,
from there a worm process is forked or the running process
is hijacked, we thus can analyze the process information to
determine which incoming flow is related to a particular out-
going flow. If the worm process is forked, through tracing
its parent process we can get the information about when
the parent starts the last communication. This informa-
tion can be used to determine when the suspicious traffic
enters Host-A, and thus I1. If the process is hijacked, the
related information can be directly extracted from the cur-
rently running process. However, applying process tracing
to determine I1 also needs to pay attention to the following
exceptions. If the outgoing traffic to the virtual machine
is not related to any incoming traffic to Host-A, e.g., it is
caused by a user on Host-A, we assume that under this situ-
ation, the interval, I1, is infinity. Considering that network
level activities have timing constraints from the transport
level, e.g., the network connection timeout, we also need to
have a maximum threshold, MAX TIMEOUT, for the waiting
time. This MAX TIMEOUT is OS dependent.

Consider the fact that the performance of a virtual ma-
chine is always slower than its original host. Denoting such
slowness with a slowdown SD, we should turn I2 = SD×I1.
This leads to the final criteria, Ttime, used in WormTermi-
nator for worm detection if the transmission takes a time
less than Tsize:

I2 = SD × I1,

Ttime = min(I2, MAX TIMEOUT)

176

Host−A Host−B

TimeI I 21

Figure 2: Detecting Worm Propagation Based On Timing Correlation. As shown in the figure, we denote
as I1 the interval between the time when the worm traffic gets into Host-A to the time when Host-A starts
to send worm traffic to new hosts. If Host-B has the same set of vulnerabilities as A and is exploited by
Host-A, without considering the physical speed and other configuration differences, it is expected that such
an infection procedure should take a similar time duration, denoted as I2 in this figure, on Host-B.

4.2 How does WormTerminator distinguish
worm traffic from benign traffic with
worm-like traffic pattern?

By definition, a fast spreading worm will start to infect
others as soon as it successfully infects one host and thus
will always be contained by WormTerminator. However, a
few normal network applications may exhibit a similar traffic
pattern as that of a fast worm, and special care is needed to
differentiate such traffic from the worm traffic.

• Email Relay: To facilitate email transfer across the
Internet, some SMTP servers function as relay in that
they will forward the received email to the next SMTP
server after adding some tracing information to the for-
warded email. From outsider’s point of view, this traf-
fic pattern is similar to worm propagation. However,
a normal email relay differs from worm propagation in
three aspects. First, during the email relay, the SMTP
server is not the final destination of the email. This
is in contrast to the worm propagation where the in-
fected host who is trying to infect others was indeed
the destination of the infectious traffic that infected it.
Second, normal email relay requires very little process-
ing and it usually does not trigger noticeable system-
wide actions. On the other hand, when a worm infects
a host, it usually triggers noticeable system actions
such creating a new process, reading or writing files,
opening a new socket. Third, SMTP relay traffic al-
ways use port 25 while most fast spreading worms use
other port numbers. Therefore, normal email relay
traffic can be effectively differentiated from fast worm
traffic. When a worm is propagated through email, it
targets the email destination rather than the email re-
lay hosts. In this case, WormTerminator could detect
and contain the fast worm at the destination host of
the malicious email.

• P2P Search: In some P2P applications like Gnutella,
users frequently flood their queries. Normally a query
receiver would pass the query to its neighbors if appli-
cable (e.g., based on TTL). If the query receiver does
not have the requested document, the traffic pattern
of the receiver is similar to worm propagation. How-
ever, two features of P2P queries make them different
from worm propagation. First, the size of P2P query
is normally of tens of bytes while an unfragmented

worm packet is unlikely to be less than 100 bytes. Sec-
ond, a P2P query receiver only passes the query to its
neighbors. In P2P networks, the neighbor information
is always stored on the receiver when these neighbors
joins the system, and such information is kept updated
through some keepalive messages. Thus it is possible
to distinguish P2P query flooding traffic by checking
the packet size and keeping track of IP addresses of
recent communications.

• P2P Downloading: Besides queries in P2P applica-
tions, some P2P downloading also exhibits a similar
traffic pattern to that of worm propagation. For ex-
ample, in BitTorrent-like systems, after a peer finishes
downloading a file piece, it may simultaneously upload
the file piece to several other peers. This traffic pattern
is similar to that of worm propagation. The fundamen-
tal difference between the P2P downloading and worm
traffic is that P2P downloading traffic normally follows
a request-response model while worm traffic is almost
always un-solicited. Therefore, we can differentiate the
P2P downloading traffic from worm propagation traffic
by checking if the current host is communicating with
a host that has recently contacted the current host.

4.3 How does WormTerminator reduce the
impact to normal applications?

In WormTerminator, in principle, all outgoing traffic is
diverted to the virtual machine for checking (unless they
are the applications mentioned above with a worm-like traf-
fic pattern that are handled separately), which inevitably
affects the original applications. Such impacts are in two
folds. The first is transparency. That is, such traffic diver-
sion should be made as transparent as possible to applica-
tions running on the host. The second is the performance.
That is, the delay for worm detection to normal applications
should be minimized. We discuss solutions to deal with them
in detail as follows.

In terms of application transparency, while many appli-
cations (e.g., a browser) have built-in support for proxy, we
cannot directly use it for diverting outgoing traffic. This is
because the proxy is not the termination point, but a relay
point. Since a worm is designed to infect the targeted host
via an exploit on a particular application, it will not infect
any proxy who merely relays the traffic to its ultimate desti-
nation. Therefore, we have to make sure the outgoing traffic

177

terminates at the virtual machine in order to let any worm
traffic be able to infect the virtual machine. To achieve this,
we can either change the destination IP address of the out-
going traffic to that of the virtual machine or dynamically
set the IP address of the virtual machine to be the desti-
nation IP address of the outgoing traffic. Given that the
outgoing traffic may have some built-in integrity check on
the IP header (i.e. IPsec AH header), changing the destina-
tion IP address of outgoing traffic may not always feasible.
Therefore, dynamically setting the IP address of the virtual
machine is a better way to deceive worm traffic.

After setting the IP address of the virtual machine to be
the destination IP address of the outgoing traffic, the vir-
tual machine appears to be the destination of the outgoing
traffic. After the diverted traffic terminates at the virtual
machine, the detector decides whether the diverted traffic
is worm traffic by monitoring the virtual machine’s network
activities for a specified period of time. If the diverted traf-
fic is worm traffic, it will be blocked. Otherwise, it needs to
be relayed to the real destination. For connectionless traf-
fic such as UDP, we can simply forward the packets (saved
by the splitter) from the virtual machine to its destination.
For connection oriented traffic such as TCP, there is state
information maintained at both sides of the communicat-
ing parties. To the sender on the host machine, the virtual
machine is the destination. In this case, we can not sim-
ply forward the TCP packet to its destination. Instead, the
virtual machine needs to reestablish a connection to the des-
tination and starts to function as a relay or proxy between
the sender in the host machine and the receiver on the real
destination. The packets saved by the splitter are used for
generating appropriate application level requests to be sent
to the destination. In this sense, the virtual machine func-
tions as an application aware proxy.

While we can make the operation of WormTerminator
as transparent as possible to most applications on the host
machine, there will be some extra overhead introduced by
WormTerminator. To be specific, outgoing connections will
be delayed when they are diverted to the virtual machine
for checking. Several ways are possible to reduce the overall
performance impact.

First, if some configurable number of UDP packets from
some flow have passed checking, we can directly route the
rest UDP packets of the same flow without diverting them
to the virtual machine. This would decrease the average
performance overhead of WormTerminator.

Another way to improve the performance of WormTer-
minator is to use a cache2 to store such examined connec-
tions, and associate an expiration time with each cache en-
try. Before the expiration time, packets of recently examined
connection will not be diverted to the virtual machine, but
routed to its destination directly. For those connections that
are not in the cache or have expired, the first configurable
number of packets will be diverted to the virtual machine
for checking. If they pass the checking, the connection will
be put into the cache with an expiration time. Since nor-
mally client accesses show great temporal localities and spa-
tial localities, this caching strategy can amortize the worm
detection overhead over multiple repetitive connections.

These performance improvements represent some trade-
off between security and performance. Depending on the

2This cache can be combined with the cache used to address
the worm-like benign traffic.

performance and security requirements, users of WormTer-
minator may choose to 1) divert all outgoing traffic to the
virtual machine for checking; or 2) cache individual con-
nection and only divert those packets that are not part of
cached connections; or 3) cache all connections to a particu-
lar destination to which some connection has recently passed
checking.

On the other hand, there is also a technology trend to
put multiple, and possibly multithreaded, processor cores
onto a single processor chip so as to fully utilize the avail-
able transistors and to tolerate very long memory latency.
Most desktop/server processors today have more two pro-
cessors cores; for example, Intel Pentium D and Core Duo
2, AMD Athlon Dual-core, IBM Power4 and Power5 [13],
among many others. An extreme example is the Sun Nia-
gara processor [24], which has eight 64-bit UltraSparc cores
and each core can execute up to four threads, supporting
32 threads in total. Not all the time the applications may
be able to fully utilize those cores and hardware thread con-
texts. On those processors, WormTerminator will be able to
utilize idle cores or thread contexts, increasing the processor
utilization and having less impact on the performance of the
host system.

5. IMPLEMENTATION
To prove the concept of WormTerminator, we have im-

plemented a prototype. To test with the Internet worm
Linux/Slapper which attacks Apache servers, we have im-
plemented the HTTP/HTTPS support in our prototype. In
principle, WormTerminator could work with any application
protocol if appropriate protocol support is added.

connection
 tracker

User
Mode
Linux

VMMpcap

controller
detector &

/proc

squid 2.4

ipchains/iptables

request
diverter

Linux OS

splitter

Figure 3: WormTerminator Prototype Implementa-
tion

Figure 3 shows the modularized implementation. Our im-
plemented components are shown in shadow. The host OS
is RedHat 7.3, running Linux kernel 2.4.18. The virtual
machine we use is User-Mode-Linux [9]. As implied by the
name, User-Mode-Linux itself runs as an application process
in the host OS. The disk storage for User-Mode Linux is con-
tained entirely inside a single file on the host machine, called
the root filesystem for User-Mode-Linux. It provides several
approaches to supporting virtual machine communications
with the host physical machine and the world outside.

As shown in this figure, there are four major parts in our
prototype implementation.

• connection tracker: who traces the incoming and out-

178

going connection flows to and from the host. The pur-
pose of such a component is to determine I1 and thus
set up I2. It is implemented as a kernel module on the
/proc filesystem of the host machine.

• request diverter: who captures and diverts all client
requests to User-Mode-Linux. It is implemented as a
kernel module hooked to ipchains/iptables on the
host machine.

• splitter: who duplicates and stores application level
requests from the traffic diverted to the virtual ma-
chine. It is implemented based on Squid 2.4STABLE1
(with cache function disabled) and runs inside of User-
Mode-Linux.

• detector and controller: they are implemented in
one daemon to monitor the traffic and make the
examination decision with the help of the pcap li-
brary, ipchains/iptables, and the VMM. A host
TUN/TAP device is used for User-Mode-Linux com-
munications [9].

We have also ported our prototype implementation to Fe-
doral Core 2 with kernel 2.6.5. We are in the process of
adding more protocol support to our Linux prototype, and
we plan to implement WormTerminator on Windows plat-
forms.

6. EVALUATIONS
In this section, we empirically evaluate WormTerminator

and seek to answer the following questions: 1) how effective
the is WormTerminator in containing real worm propaga-
tion traffic mingled with normal traffic? and 2) what is the
impact to normal applications? Due to page limit, we omit
the overhead measurement of WormTerminator.

6.1 Linux/Slapper Test
Linux/Slapper [1] is a family of worms exploiting the vul-

nerability of an OpenSSL buffer overflow in the libssl li-
brary, which further enables Distributed Denial of Service
(DDoS) attacks [3]. It is different from many existing worms
since it targets the buffer overflow in the heap.

Slapper targets vulnerable Apache Web server 1.3 on
Linux operating systems, including RedHat, SuSe, Mandrake,
Slackware, and Debian. According to Symantec DeepSight
Threat Management System, more than 3500 computers
were infected [2].

The basic procedure that Slapper uses is as follows. When
a worm instance is active, it scans class-B networks, look-
ing for Apache servers by attempting to connect to port
80. After determining the server is vulnerable, it tries
to send the exploit code to the SSL service via port 443.
Upon an successful exploit, Slapper encodes its source code
(.bugtraq.c) and sends to the victim and stores as a hidden
file (.uubugtraq) under /tmp. There, it uu-decodes the file,
compiles, and executes the binary, with the sender’s address
as an input parameter.

The exploit procedure of Slapper is more complicated than
many existing fast worms. A successful exploit uses buffer
overflow twice, and takes 1+20+2 requests. The first one
is used to get the Apache server version information. The
next 20 are used to force Apache to use up possible exist-
ing processes. Then two HTTPS requests are launched to

exploit the vulnerability and inject the shell code, upload
itself, compile and execute the binary.

Compared to worms that we have listed in Table 1, the
size of Slapper is also large3. The original source code is
67655 bytes, and the uu-encoded source code is propagated
between vulnerable hosts, which is 93461 bytes.

To test whether this worm can be successfully contained
by WormTerminator, we set up our environment as follows.
The host runs RedHat 7.3, with Apache 1.3.23, mod ssl

2.8.6, and OpenSSL 0.9.6. The kernel is 2.4.18. User-
Mode-Linux has the same configurations. The machine is
running with a 2.4 GHz CPU and 1 GB physical memory.

Two other machines are set up in the same local network
with the same configurations, connected through a 10/100
M hub. One is acting as the Slapper original source with
127.0.0.1 as the input parameter, and the other is the trigger
with the IP address of the first as the input parameter. We
slightly change the source code so that the worm starts to
exploit the network segment where the host resides without
waiting to exploit other non-related network addresses first
as originally coded.

For the effectiveness experiments, the MAX TIMEOUT
is set as 2 minutes, default by TCP. The other important
parameter is SD, which is critical depending on the per-
formance slowdown of the virtual machine. Thoroughly
studying the performance slowdown of any virtual machine
is not the focus of this study. However, a previous study [16]
has reported that compiling Linux 2.4.18 kernel inside UM-
Linux [5] takes 18 times as long as compiling it on a Linux
host operating system. Considering that there is few net-
work activities involved in kernel compiling and User-Mode-
Linux is faster than UMLinux, we setup SD for our User-
Mode-Linux with 18 too. In our experiments, currently Tsize

is T100KB .
We run the experiments 10 times, and each time

WormTerminator successfully captured Slapper at the
worm’s first exploit. Table 2 shows our measurement re-
sults with the average and the standard deviation. The
small standard deviation indicates the consistency of mea-
surement results. A successful infection only takes about
10 seconds between physical machines. To verify this, we
also instruct the worm source code directly and get very
close results. It takes about 1.5 minutes to make the detec-
tion decision, which implies a slowdown of User-Mode-Linux
around 10. The code transmission time differences indicate
that the network transmission speed is only roughly half of
the physical link. We will further evaluate this overhead in
the next subsection.

Table 2: Slapper: infection and code transmission
time (second)

I1 I2

infection code Xfer infection code Xfer
average 9.3456 3.0654 91.8893 6.9773
std dev 0.4666 0.0120 1.2896 0.1103

From the experimental results, we can see if the perfor-
mance of User-Mode-Linux is better with a smaller slow-
down, the detection time could be further reduced.

3Slapper first appeared in 2002.

179

Table 3: Web sites used to test false positive and
false negative

Protocol Web Site Activities
HTTP www.cnn.com Browsing
HTTP www.usatoday.com Browsing
HTTP www.acm.org Browsing
HTTPS gmail.com Email access
HTTPS www.discovercard.com E-transactions

To study whether we can detect worms in a mix of traf-
fic, i.e., false positives and false negatives, we perform the
following two sets of experiments. In the first set, with a nor-
mal Mozilla browser (version 0.9.9), a few Web sites as listed
in Table 3 are accessed repetitively from the host machine
to test if WormTerminator would falsely take any traffic as
worm traffic. In all the experiments, the Squid cache func-
tion is disabled. In the period of our experiments of 1 hour,
no false positive is found. In the second set of experiments,
while these Web sites are accessed, Slapper is activated. In
all cases, WormTerminator successfully detects the worm
traffic at its first exploit.

The inadequacy of these tests is that we only have one
real Linux worm. We are working to get more Linux worm
source codes and plan to test when more worms are available
and active together.

6.2 Impact on Normal Applications
With a cache in WormTerminator, some client traffic

could avoid being examined and thus do not suffer the long
delay. To enable this function, the examined connections
must be saved in the cache.

As mentioned above, there could be different levels of
cache. The object for caching could be the connection (des-
tination host and port), or could be the host alone. For
HTTP/HTTPS requests, we can even cache the client re-
quest.

For different levels of caches, different sizes of cache space
are required. To study how many client requests would be
affected with a what size of the cache, we run a simple sim-
ulator to analyze six client Web browser logs collected in a
lab environment for about 4 months. Table 4 briefly sum-
marizes some statistics of client access logs.

Table 4: Client Log Statistics
#requests #requests #connections

(unique) (unique)
client1 8318 2130 362
client2 12852 2724 455
client3 8921 1843 289
client4 7809 2074 337
client5 24793 5789 1119
client6 8457 2179 381

First, we consider to use cache to cache client requests.
Following the idea of Squid, caching of one request demands
a memory size of 128 bits after applying MD5 to the URL.
With the field of expiration time, each request cache entry is
20 bytes. Note that in our simulations, the expiration time
is not used and the replacement is purely based on LRU.

Figure 4 shows the performance of the request cache when
the cache size increases. The figure shows that when the
cached objects are requests, a size of 64 cache entries (equiv-
alent to 1.25-KB memory size) is good enough to achieve
near optimal performance. A 1.25-KB memory is a trivial
cost for modern computers. However, with a request cache,
roughly 28% of requests have to be examined, and thus suf-
fer a long delay due to worm detection in WormTerminator.

To further decrease this ratio and improve the client per-
formance, we also consider to cache the connection. One
connection cache entry includes destination IP, port, and
expiration time, which requires 10 bytes.

Figure 5 shows the connection cache performance with a
LRU cache replacement policy. As the figure indicates, a
cache with 8 units (equivalent to 80 bytes) is good enough
to approximately achieve optimal performance. Thus, if a
connection cache is used, the cost is very trivial, and less
than 6% of client requests suffer the long delay caused by
the worm detection processing in WormTerminator. Our
examination of a host cache gives similar results as the con-
nection cache, because Web servers normally use fixed ports.

The cache performance is largely determined by client ac-
cess locality. The above experiments are just case studies
to demonstrate that different levels of caches can mitigate
the impact of WormTerminator on normal applications. A
more sophisticated cache can apply some advanced replace-
ment policy and consider expiration time. We leave that for
our future work.

7. RELATED WORK
Internet worm defense has been a long term problem.

Both passive defending approaches and active defending ap-
proaches have been extensively studied. Passive approaches
basically restrict incoming traffic, e.g., through firewalls,
while active approaches restrict outgoing traffic. Compared
with passive approaches, with which worm traffic still flows
on the Internet, active approaches can limit worm traffic to
the Internet and thus mitigate the worm traffic disturbance
to the Internet. In addition, passive approaches, such as
firewalls, are always vulnerable to evasion opportunities [34].
Whether an active or a passive approach is taken, the worm
must be detected in the first place. The worm detection
strategies currently used basically fall into two categories.

The first is signature based. Generating a content-based
signature is a traditional approach. As the worm spreads
very fast today, automatic systems have been proposed to
generate worm signatures [14, 17, 31]. Since application
messages may be scattered over multiple packets, fast sig-
nature extraction algorithms have been proposed in Early-
Bird [30] and Autograph [14]. However, it is difficult for such
an approach to detect unknown worms or fast worms that
spread extremely fast and leave no time for human-mediated
response. The polymorphic worms or encrypted worms fur-
ther challenge its capability. Compared with Polygraph [23],
Hamsa [18] is shown to be able to improve the speed, ac-
curacy, and attack resilience of fast signature generation
for zero-day polymorphic worms. It has been shown that
Polygraph is vulnerable to deliberate noise injection [26].
Shield [35], instead of directly dealing with worms, generates
vulnerability based filters to prevent possible vulnerability
exploits. Similar to the fact that not all users are willing
to patch their systems in time due to various reasons, users
may not get these filters on in time. In addition, if the

180

4 16 64 256 1024
20

25

30

35

40

45

50

55

60

Request Cache Size (unit)

E
xa

m
in

ed
 C

lie
nt

 R
eq

ue
st

 (
%

)

client1
client2
client3
client4
client5
client6

Figure 4: Request Cache Effect: the por-
tion of client requests that is affected.
Note the x-axis is in log scale.

2 4 8 16
0

5

10

15

20

Connection Cache Size (unit)

E
xa

m
in

ed
 C

lie
nt

 R
eq

ue
st

 (
%

) client1
client2
client3
client4
client5
client6

Figure 5: Connection Cache Effect: the por-
tion of client requests that is affected. Note
the x-axis is in log scale.

attack targets some vulnerability that has not been discov-
ered before, Shield is not capable of generating such filters.
A recent work [4] has focused on the automatic vulnerability
signature generation with a single sample exploit, which is
of much higher quality than exploit-based signatures.

Without relying on worm content, the second approach
is based on the observation or analysis of network traffic.
If some abnormal traffic pattern is found, the reaction sys-
tem is triggered to take actions, such as blocking connec-
tions to some ports or limiting the rate of outgoing connec-
tions. Since worms scan as many vulnerable hosts as pos-
sible, Snort [28] monitors the connection rate to unique IP
addresses. Because random scanning is likely to be rejected
with a high probability, Bro [25] monitors the failed connec-
tion numbers while the failed connection rate is collected
in work [36]. For reliable detection, traffic normalizers [11,
29] or protocol scrubbers [19] have been proposed to protect
the forwarding path by eliminating potential ambiguities be-
fore the traffic is seen by the monitor. Work [37] proposes
a heuristic strategy that limits the rate of connections to
new hosts, e.g., to allow one new connection in a second.
The system proposed in [36] targets one scan per minute
of compromised hosts. More broadly, some other attack
detection and signature extraction rely on the honeypots
that cover dark or unused IP addresses, such as Backscat-
ter [22], honeyd [27], honeyComb [17], and HoneyStat [8].
Any unsolicited outgoing traffic from the honeypots reveals
the occurrence of attacks.

Recently, a number of works have been based on virtual
machine technology to deal with various security problems,
including intrusion detection [6, 10], vulnerability valida-
tion [7, 12]. Notably work [15] has examined security issue
of the virtual machine itself.

While there are a number works utilizing the virtual ma-
chine technology to catch worms and study worm behavior,
our work is the first, to the best of our knowledge, to leverage
a virtual machine to contain the propagation of fast worms.

8. CONCLUSION
Detecting and containing fast spreading worms in real-

time are very challenging, especially for those previously un-

known or polymorphic worms. The key contribution of this
paper is that we have demonstrated that it is indeed possi-
ble to detect and contain almost all unknown, polymorphic
worms in real-time while allowing virtually all normal traffic
to go out.

Our worm detection and containment are based on the
defining characteristic of fast worms. By leveraging the vir-
tual machine technology, we are able to detect the prop-
agation of any fast worm before it can infect any other
host on the Internet. This would allow us to almost com-
pletely contain almost all fast worms no matter whether
they are unknown, polymorphic or not. We have validated
our WormTerminator concept by implementing a prototype
in Linux, and have examined its effectiveness against real
Internet worm Linux/Slapper. Our real-time experiments
confirm that our WormTerminator is able to contain fast
worms without blocking normal traffic. We are currently
optimizing the performance of WormTerminator.

Acknowledgment
We would like to thank Bill Bynum and the anonymous re-
viewers for their helpful comments. The work is partially
supported by NSF grants CNS-0509061, CNS-0524286,
CCF-0541366, and CNS-0621631.

9. REFERENCES
[1] http://www.symantec.com/avcenter/venc/data/

linux.slapper.worm.html.

[2] http://www.symantec.com/index.htm.

[3] An analysis of the slapper worm exploit.
http://www.symantec.com/avcenter/reference/

analysis.slapper.worm.pdf.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and
S. Jha. Towards automatic generation of
vulnerability-based signatures. In Proceedings of IEEE
Symposium on Security and Privacy,
Berkeley/Oakland, CA, May 2006.

[5] K. Buchacker and V. Sieh. Framework for testing the
fault-tolerance of systems including os and network
aspects. In Proceeding s of the IEEE Symposium on

181

High Assurance System Engineering (HASE), pages
95–105, October 2001.

[6] P. Chen and B. Boble. When virtual is better than
real. In Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS), pages 133–138, May 2001.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante:
End-to-end containment of internet worms. In
Proceedings of SOSP, Brighton, United Kingdom,
October 2005.

[8] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard,
J. Levine, and H. Owen. Honeystat: Local worm
detection using honeypots. In Proceedings of RAID,
2004.

[9] J. Dike. A user-mode port of the linux kernel. In
Proceedings of the Linux Showcase and Conference,
October 2000.

[10] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen.
Revirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Proceedings of
the Symposium on Operating Systems Design and
Implementation, pages 211–224, December 2002.

[11] M. Handley, V. Paxson, and C. Kreibich. Network
intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In Proceedings of
USENIX security Symposium, August 2001.

[12] A. Joshi, S. King, G. Dunlap, and P. Chen. Detecting
past and present intrusion through
vulnerability-specific predicates. In Proceedings of
SOSP, Brighton, United Kingdom, October 2005.

[13] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler.
IBM Power5 chip: A dual-core multithreaded
processor. IEEE Micro, 24(2):40–47, March/April
2004.

[14] H. Kim and B. Karp. Autograph: Toward automated
distributed worm signature detection. In Proceedings
of USENIX Security, San Diego, CA, August 2004.

[15] S. King, P. Chen, Y. Wang, C. Verbowski, H. Wang,
and J. Lorch. Subvirt: Implementing malware with
virtual machines. In Proceedings of IEEE symposium
on security and privacy, Berkeley/Oakland, CA, May
2006.

[16] S. King, G. Dunlap, and P. Chen. Operating system
support for virtual machines. In Proceedings of the
Annual USENIX Technical Conference, June 2003.

[17] C. Kreibich and J. Crowcroft. Honeycomb - creating
intrusion detection signatures using honeypots. In
Proceedings of HotNets, Boston, MA, November 2003.

[18] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez.
Hamsa: Fast signature generation for zero-day
polymorphic worms with provable attack resilience. In
Proceedings of IEEE Symposium on Security and
Privacy, Berkeley/Oakland, CA, May 2006.

[19] G. Malan, D. Watson, and F. Jahanian. Transport
and application protocol scrubbing. In Proceedings of
IEEE INFOCOM, 2001.

[20] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. The spread of the
sapphire/slammer worm.
http://www.caida.org/publications/papers/2003/

sapphire/sapphire.html.

[21] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. Inside the slammer
worm. In Proceedings of IEEE Security and Privacy,
volume 1, July 2003.

[22] D. Moore, C. Shannon, and Jeffery Brown. Code-red:
a case study on the spread and victims of an internet
worm. In Proceedings of the second Internet
Measurement Workshop, November 2002.

[23] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymorphic
worms. In Proceedings of IEEE Symposium on
Security and Privacy, Oakland, CA, May 2005.

[24] K. Aingaran P. Kongetira and K. Olukotun. Niagara:
A 32-way multithreaded Sparc processor. IEEE Micro,
25(2), 2005.

[25] V. Paxson. Bro: a system for detecting network
intruders in real time. In Computer Networks,
volume 31, December 1999.

[26] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and
M. Sharif. Misleading worm signature generators using
deliberate noise injection. In Proceedings of IEEE
symposium on security and privacy,
Berkeley/Oakland, CA, May 2006.

[27] N. Provos. A virtual honeypot framework. Technical
report, University of Michigan, October 2003.

[28] M. Roesch. Snort: Lightweight intrusion detection for
networks. In Proceedings of Conference on System
Administration, November 1999.

[29] U. Shenkar and V. Paxson. Active mapping: Resisting
nids evasion without altering traffic. In Proceedings of
IEEE Symposium on Security and Privacy, May 2003.

[30] S. Singh, C. Estan, G. Varghese, and S. Savage. The
earlybird system for real-time detection of unknown
worms. Technical report, University of California, San
Diego, August 2003.

[31] S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated worm fingerprinting. In Proceedings of
OSDI, San Francisco, CA, December 2004.

[32] S. Staniford. Containment of scanning worms in
enterprise networks. In Journal of Computer Security,
2004.

[33] S. Staniford, V. Paxson, and N. Weaver. How to 0wn
the internet in your spare time. In Proceedings of
USENIX Security, San Francisco, CA, August 2002.

[34] t. Ptacek and T. Newsham. Insertion, evasion, and
denial of service: Eluding network intrusion detection.
http://www.insecure.org/stf/secnet-ids/

secnet-ids.html, January 1998.

[35] H. Wang, C. Guo, D. Simon, and A. Zugenmaier.
Shield: Vulnerability-driven network filters for
preventing known vulnerability exploits. In
Proceedings of ACM SIGCOMM, Portland, OR,
August 2004.

[36] N. Weaver, B. Staniford, and V. Paxson. Very fast
containment of scanning worms. In Proceedings of
USENIX Security, San Diego, CA, August 2004.

[37] M. Williamnson. Throttling viruses: Restricting
propagation to defeat mobile malicious code. In
Proceedings of Annual Computer Security Applications
Conference, Las Vegas, NV, December 2002.

182

