
Beyond Kernel-level Integrity Measurement:
Enabling Remote Attestation for the Android

Platform

Mohammad Nauman1, Sohail Khan2, Xinwen Zhang3 and Jean-Pierre Seifert4

1 Department of Computer Science, University of Peshawar, Pakistan
recluze@gmail.com

2 School of Electrical Engineering and Computer Science, NUST, Pakistan
sohail.khan@seecs.edu.pk

3 Samsung Information Systems America, San José, USA
xinwen.z@samsung.com

4 Technische Universität Berlin & Deutsche Telekom Laboratories
jean-pierre.seifert@telekom.de

Abstract. Increasing adoption of smartphones in recent times has be-
gun to attract more and more malware writers towards these devices.
Among the most prominent and widely adopted open source software
stacks for smartphones is Android that comes with a strong security
infrastructure for mobile devices. However, as with any remote plat-
form, a service provider or device owner needs assurance that the de-
vice is in a trustworthy state before releasing sensitive information to
it. Trusted Computing provides a mechanism of establishing such an as-
surance. Through remote attestation, tc allows a service provider or a
device owner to determine whether the device is in a trusted state before
releasing protected data to or storing private information on the phone.
However, existing remote attestation techniques cannot be deployed on
Android due to the unique, vm-based architecture of the software stack.
In this paper, we present an attestation mechanism tailored specifically
for Android that can measure the integrity of a device at two levels of
granularity. Our approach allows a challenger to verify the integrity of
Android not only at the operating system level but also that of code
executing on top of the vm. We present the implementation details of
our architecture and show through evaluation that our architecture is
feasible both in terms of time complexity and battery consumption.

1 Introduction

Mobile devices are becoming more powerful and are offering new functionalities
that go well beyond the traditional use of cell phones such as making and receiv-
ing calls. More and more services are being deployed on these devices leading
them to their use as a pc on the go. However, this rapid growth in smartphone
usage and their evolving capabilities have made this technology more vulnerable

to today’s sophisticated malware and viruses. PandaLabs [1] has identified appli-
cations downloaded from the Internet as one of the main causes of propagation
of malware on mobile phones.

According to Gartner Research [2], smartphones sales and usage has increased
by 12.7% in the first quarter of 2009. One of the driving reasons of this growth
is the introduction of open source platforms for mobile devices. With this new
open source revolution in mind, most of the industry leaders are coming to-
gether to establish different foundations. For instance, Symbian [3], the leading
operating system for smartphones with the highest market share, was acquired
by Nokia who established an open source Symbian Foundation and promised to
donate Symbian’s source to the open source community. However, in this arena,
Android [4] is the most prominent and leading open source platform which has
succeeded in attracting a large number of individuals and organizations. In fact,
Android os share in terms of web requests had already surpassed that of Win-
dows Mobile by June 2009 [5]. The growing popularity of Android is attracting
more and more enterprises to deploy their custom applications for Android and
to allow employees to download data for viewing or editing on their smartphones.
On the other hand, the open source nature of Android is also attracting more
and more malware writers. Hence, the growing security problems of smartphones
are becoming a real concern for users. Service providers need assurance that if
sensitive data is released to a smartphone, it will not be compromised due to
the presence of a malware on the phone. Similarly, users save highly sensitive
information such as their contacts and personal messages on the phone. In case
of Android (and other gps-enabled devices), the phone also has access to real-
time information about the owner’s location. A compromised device can lead to
severe financial losses or even social threats.

To alleviate these problems, there is a need for the creation of a mechanism
that can securely establish the trustworthiness of an Android-based device, pro-
viding remote parties assurance that the data released to the phone will not
be compromised. The traditional approach towards solving this problem is by
signing applications as being trustworthy. This approach is followed by many
Symbian- and j2me-based software stacks. A trusted application can perform all
tasks, whereas an untrusted application is either sandboxed or severely restricted
from accessing any sensitive resource. However, there are several problems with
this approach in the context of Android. First, Android does not distinguish
applications as being trusted or untrusted – all applications are created equal.
Secondly, the open source nature of Android means that Android’s infrastructure
can be changed arbitrarily, thus making any security infrastructure unreliable.
Finally, it has been shown in the past [6] that an assurance of trustworthiness of
a device cannot be provided through the use of software-based solutions alone.
Software is inherently mutable and can be modified to report inaccurate infor-
mation about the hosting device. To solve this problem, Trusted Computing [7]
provides the mechanism of remote attestation that allows a challenger to estab-
lish the trustworthiness of a remote target platform. Existing remote attestation
techniques mainly aim to measure all the executables loaded on a platform and

reporting them to the challenger during attestation. The challenger can then ver-
ify, using the reported measurements, whether any of the applications loaded on
the platform were malicious. However, these techniques fail to cater to the unique
architecture of Android because of the presence of a Virtual Machine (vm) that
is responsible for executing all code. As far as the integrity measurement entity
is concerned, the vm is just another executable. Even if the vm is known to be
benign, there is no assurance that the code it loads for execution will behave
as expected. Note that it has been shown that user-space code (including that
executed by a vm) can also lead to severe vulnerabilities in a system [8,9,10].

In this paper, we present an efficient integrity measurement mechanism aimed
specifically at Android that allows integrity verification of code loaded on top of
the vm as well as that running on the operating system level.

Contributions: Our contributions in this paper are as follows:

1. We design an integrity measurement architecture which ensures that all the
executable code loaded on Android is measured,

2. We provide two alternative solutions for the deployment of our integrity
measurement mechanism, which cater to different real-world use cases, and

3. We describe the details of implementation of both alternatives and provide
evaluation results to show that the technique is highly feasible both in terms
of time taken for integrity measurement and battery overhead caused by it.

Outline: The rest of the paper is organized as follows: Section 2 provides
real-world use cases for motivating the need for integrity measurement and gives
a brief summary of the background on Android and Trusted Computing. In
Section 3, we provide the details of our architecture covering the two alternative
solutions in 3.2 and 3.3. Section 4 outlines the verification mechanism. Detailed
evaluation results are presented in Section 5. Sections 6 and 7 reflect upon pros
and cons of our technique and the conclusions drawn respectively.

2 Background

2.1 Motivating Examples

We motivate the need for the measurement of integrity of an Android-based
smartphone through the use of two real-world use cases. The first use case is
similar to those presented as a motivation for remote attestation in the pc world,
whereas the second is more relevant to the personal nature of a smartphone.

Use case #1: Consider an organization that provides its employee – Alice
– with a g1 handset running several applications that she might require for
carrying out her job responsibilities. The employer, being the owner of the device,
allows Alice to install applications that she might need for her daily use. However,
since the organization releases sensitive information to Alice’s mobile, it wants
to ensure that the integrity of Android is intact and that there is no malicious
software or application running on the mobile device.

Use case #2: Emma, on the other hand, is a self-employed it consultant
who has bought her own smartphone running Android. Knowing that a smart-
phone in general [11,12] and Android in particular [10,9] is much more likely to
be affected by a virus threat, she decides to take preventive measures against
such attacks. While the smartphone is better than her old cell phone, it is still
dependent on a battery source, and if Emma were to run a dedicated antivirus
software on the device, its battery would drain a lot sooner than she would like.
Therefore, she decides to use remote attestation as a virtual antivirus. She re-
motely attests the integrity of her smartphone periodically and after she installs
a new application. This ensures that her mobile device is not running any mali-
cious software while still keeping it free of a battery-hungry antivirus software.

2.2 Android Architecture

Android is an emerging open source platform for mobile devices like smartphones
and netbooks. It is not just an operating system but provides a complete software
stack including a middleware and some built in applications. Android architec-
ture is composed of different layers, with the Linux kernel layer at the bottom.
This layer provides various hardware drivers and acts as a hardware abstraction
layer. It is also responsible for memory and power management functionalities
of Android. The Android native libraries written in C and C++ sit above the
kernel layer. These libraries provide some core functionalities. For example, the
Surface Manager libraries are responsible for composing graphics onto the screen,
sgl and OpenGL enable graphics processing capabilities, webkit provides html
rendering and SQLite is used for data storage purposes.

Next is the Android runtime layer which is composed of two principle com-
ponents namely Dalvik Virtual Machine and Android core libraries. Android
runtime is specifically designed as an optimized environment to meet the re-
quirements of running on an embedded system i.e., limited battery life, cpu
speed and memory. Dalvik virtual machine executes its own bytecode repre-
sented by dex files. The second component of Android runtime is the collection
of class libraries written in Java programming language, which contains all of
the collection classes and i/o utilities.

Class loaders: Android framework and applications are represented by
classes composed of dex code. One or more class loaders are used to load these
classes from a repository. These class loaders are called when the runtime system
requires a particular class to be loaded. All of the class loaders are systematized
in a hierarchical form where all requests to child class loaders are first delegated
to the parent class loader. The child class loader only tries to handle a request
when the parent class loader cannot handle it.

Android comes with several concrete implementations of the abstract class –
ClassLoader [13] – which implement the necessary infrastructure required by all
of the class loaders. Of these, the PathClassLoader will be of particular impor-
tance to us.

2.3 Trusted Computing and Remote Attestation

Defining the concept and semantics of trust in computing platforms has been a
long-standing objective of computer science research. Trusted Computing Group
(tcg) has come up with a widely accepted definition of trust: “trust is the ex-
pectation that a device will behave in an expected manner for a specific pur-
pose” [14]. In the proposed trust model of tcg, each device is equipped with a
hardware root-of-trust – an immutable security chip associated with the platform
– that is capable of vouching for the integrity of the platform. In pc clients, this
chip is called the Trusted Platform Module (tpm) and the process of establish-
ing the integrity of the platform is termed as remote attestation. By providing
evidences of the hardware and software configurations of a platform to an au-
thorized remote party, remote attestation allows the remote party to establish
trust on a tpm-enabled platform. When a pc boots, control is first passed on
to the tpm, which measures the bios before executing it. The bios measures
each op code before passing control to it. Finally, the bootloader is measured
before control is passed to it. Specifically, the measurement is the hash of the
software executable in question. At each measurement, the hash is saved in the
shielded memory locations – Platform Configuration Registers (pcr) – of the
tpm through a special operation called pcr_extend.

Integrity Measurement Architecture (ima) [15] extends the tcg’s chain of
trust from the bootloader to within the Linux kernel and individual applications
loaded by the kernel. However, since ima places hooks in the Linux kernel, it is in-
capable of measuring any executables that are loaded by an application without
the intervention of the kernel. For instance, these files can be scripts belonging
to a scripting language of the application or language-specific bytecode such as
Ruby files or Java classes. Another limitation faced by ima is that it measures all
the executables loaded on a platform. This might lead to privacy and scalabil-
ity issues in remote attestation. To alleviate the latter problem, Policy-Reduced
Integrity Measurement Architecture (prima) [16] uses selinux [17] policies to
verify only those executables that can interact with the target application. The
selinux policies are used to select only those executables from where information
can flow to the target application. In this way, only a subset of the loaded exe-
cutables needs to be measured. However, prima also fails to study the internals
of the target application.

Note that none of the existing remote attestation techniques [18,19,20,21]
have been demonstrated to be both detailed enough to measure the internals
of an application independently of the kernel, while still being general enough
to be applicable on a system as complex as Android. Below, we describe a new
remote attestation technique that can cater to this problem by delving into the
inner workings of Dalvik and the application framework.

3 System Architecture

In Section 2.1, we presented two real-world use cases for motivating the creation
of an integrity measurement system on Android devices. In this section, we

Emma’s ComputerAlice’s Employer

Attestation
Daemon

TPMε Hash Engine

Signature Engine

PCR 10. PCR 13

PathClassLoader

Native Class Loader

 App 1 App 2 App 3 ... App n

Trusted Logger

Validation
Database

7C78205BA2495A43606878D12E223EAB62AB6186 Landroid/webkit/WebView;
5B815A95A33A6A9DDF8FA79A927006CB36440B61 Landroid/webkit/WebView$ExtendedZoomControls;
D8F77FC4F8A2477A191CA38F53A01189F6DA383C Landroid/webkit/WebView$FocusNode;
BF92577D2FB78E8AA010EBE85B2D6D6B74F6652A Landroid/webkit/WebView$PrivateHandler;
22B44E81CC5DFDBE63794D521DA22B6CBC5610A1 Landroid/webkit/WebViewCore;
87EAF1DE0EA251CFB16BD4CFE649DB28BA9BEFE4 Landroid/webkit/WebViewCore$EventHub;
A3884D27329CF5513059E1F1C96556A48737EDE9 Landroid/webkit/WebViewCore$EventHub$1;
...

Internet

Android Framework

Dalvik Virtual Machine

Classes
2

3

4

5

6

7

8

9

10

1

9

10

4

31

Fig. 1: Android Integrity Measurement Architecture

present an architecture that provides two levels of granularity, each catering to
one of the use cases presented. Figure 1 shows the high-level architecture of our
approach.

The attestation challenge begins at Alice’s employer’s system (or Emma’s pc
– depending on the scenario). The challenge is sent to the Attestation Daemon
running on the Android device. On the device, one of the two integrity measure-
ment systems must be in place: (1) Application-level attestation or (2) Class-level
attestation. In either case, the measuring entity reports the measurements to a
trusted logger that maintains an integrity measurement log and extends a pcr
with the hashes of these measurements. When an attestation challenge is re-
ceived, the attestation daemon reads the log and requests a quote over the pcr
in which the measurements have been recorded by the logger. Both of these trust
tokens – measurement log and pcr quote – are returned to the challenger as the
attestation response. The challenger can then verify the trustworthiness of the
platform based on these measurements using a validation system.

Both application-level attestation and class-level attestation require the pres-
ence of a root-of-trust. The chain of trust must be extended from this root-of-trust
to the Dalvik vm and then to the measuring entities within the virtual machine.
For this purpose, we need: (1) an implementation of a tpm (cf. Section 2), either
hardware or software; (2) a device driver library for communicating with the
tpm and; (3) a Trusted Software Stack (tss) for providing high-level apis for
accessing the low-level functionality of the tpm. Below, we first briefly describe
the creation of a minimal subset of the tpm and the tss that is required for our
implementation since a hardware tpm does not exist for mobile phones.

3.1 Chain-of-Trust

For the establishment of a chain of trust, there are two requirements:

1. A root-of-trust that acts as an anchor for the chain. It must be immutable
and, according to [6], hardware-based. The tcg has defined a specification
for a hardware root-of-trust – called Mobile Trusted Module (mtm) [22] –

specifically aimed at mobile platforms. To date, no agreed-upon and widely
deployed implementation of the mtm exists. We have therefore abstracted
away the details of the mtm implementation and built our approach on top of
the tcg specification. This allows us to decouple our integrity measurement
architecture from any specific prototype implementation and assures forward
compatibility by complying with the standards. It should also be noted that
since a hardware root-of-trust is currently not available, our implementation
cannot, as yet, be deployed in production environments. However, the suc-
cessful standardization of the mtm and its wide acceptance by the scientific
community leaves little doubt that mtm hardware will be made available in
the very near future.

2. The second requirement for a chain of trust is making all links in the chain
integrity-aware. The bios, bootloader and the operating system all need to
be modified so that they measure the integrity of every loaded executable
before passing control on to it.

Below, we take a look at how we have addressed the aforementioned problems.

Emulating the Trusted Platform Module One of the most important as-
pects of our architecture is the presence of a root-of-trust that can securely
save the hashes of the measurements and report them to the challenger in a
trustworthy manner. The absence of a hardware tpm mandates the creation of
a minimal implementation of a software emulator that can act as a prototype
until a hardware root-of-trust becomes available. Software emulators of both
tpm [23] and mtm [24] already exist. An implementation of mtm has also been
proposed recently [25]. However, we decided not to use either of these. The reason
is that they are complex softwares that aim to implement the whole tpm/mtm
specifications. We, on the other hand, need only protected storage (i.e. pcrs)
and the pcr quote operation. Implementing the complete specifications not only
gives rise to complexity in the software but also taxes the limited resources of
the phone device. We have therefore created a simplified mini tpm emulator
(tpmε) that provides only these two functionalities and is optimized for use on
a mobile device to consume as little computational cycles and battery power as
possible.

We implement tpmε as part of the kernel instead of as a module so that it can
measure all the modules loaded by the kernel. tpmε uses facilities provided by the
Linux kernel code for auxiliary operations, such as random number generation.

Each of the entities performing measurements needs to communicate with
tpmε. The communication aspects of each of these entities are discussed in their
relevant sections below.

Establishing the Chain-of-Trust In pc world, the first link in the chain of
trust is the bios. However, in the case of mobile and embedded devices, there is
no bios. Device initialization is performed by the bootloader instead. Therefore,
the chain of trust in our architecture begins with the bootloader. Moreover, as

discussed earlier, no hardware root-of-trust is available on the Android device
and consequently, there is no protected storage available for storing the hashes
measured before the kernel. Therefore, as yet, the bootloader has to remain
outside the chain of trust in our architecture.5

The chain begins at the kernel level with our tpmε loaded as part of the
kernel. Since tpmε is a part of the kernel itself, it can be used to securely save the
hashes of loaded executables. Integrity measurement is performed by Integrity
Measurement Architecture that we have ported to the Android kernel. We have
tried to keep the changes to ima at a minimum so as to ensure backward and
forward compatibility with ima code that has now been incorporated in the
Linux kernel. However, since our architecture uses tpmε and not a hardware
tpm, we have had to make some changes regarding the communication of the
integrity measurement code with the tpm. Other than the aspects concerning
the communication with tpm, we have not modified any functionality of ima. It
therefore measures all executables loaded on the Android platform by the Linux
operating system. This includes the Android vm as well as any libraries (such
as libdvm.so, libandroid-runtime.so and libandroid-system.so). This ensures
that all the executables loaded outside the Dalvik virtual machine as well as the
native code of Dalvik itself gets measured and stored in the Stored Measurement
Log (sml) (cf. Section 2.3).

Similarly, the semantics of sml are also unmodified. This is because we opt
not to interleave the Linux executable hashes with the Dalvik executable hashes
but keep the two logs separate. The aggregate up to the point of the Dalvik load
is stored in the Android Measurement Log (aml).

Once the chain of trust up to the Dalvik virtual machine is established, we
provide two alternatives for measurement of code that is loaded on top of the vm.
These two alternatives form the core part of our contribution and are discussed
at length in the following sections.

3.2 Application-Level Attestation

For coarse-grained attestation of the Android Software Stack that can cater to
the requirements of Use case #1 (cf. Section 2.1), we have implemented a binary
attestation mechanism that can measure all loaded applications. Recall that in
the first use case, the employer is only interested in finding out if any malicious
application is executing on Alice’s phone.

In Android, applications are distributed as .apk files that can be downloaded
or copied onto the phone and installed through the PackageInstaller activity.
These package files contain the AndroidManifest.xml file (that defines the permis-
sions requested by the application), resource files and the .dex files that consist
of the actual application code. All .apk files are stored in the /system/app folder
in the Android filesystem. Whenever the user starts an application that isn’t
already loaded, Android looks up the class required for loading that application

5 We discuss the implications of this aspect in Section 6.

and calls the PathClassLoader. The name of the required class is passed to the
class loader that loads the class file from the .apk file of that application.

We have inserted an integrity measurement hook in the findClass() function
of the PathClassLoader that ensures that whenever an application gets loaded,
the complete apk file corresponding to the application is measured and an entry
is made to the aml. The hash of the apk is extended in pcr-11 to ensure that
the log can be trusted at verification time. The implementation of the sha-1
hashing mechanism is based on the MessageDigest algorithm provided by the
Java Cryptography Extensions (jce).

For communicating with tpmε, the measurement function requires an im-
plementation of the Trusted Software Stack (tss). As with the tpm and mtm
emulators, we have opted not to use any of the existing tss implementations
due to performance concerns. For this coarse-grained measurement, we have im-
plemented a minimal implementation of the tss specifications – called tssε –
that allows only two operations: (1) pcr extend – allowing the measurement
function to communicate the measured hash to the tpmε and (2) pcr quote –
that allows trustworthy reporting of the pcr values to the challenger. Since the
measurement functions operate below the Android application framework layer
i.e. in the Java library layer (cf. Section 2.2), tssε is implemented as a Java
class (edu.android.aim.TssE) that exposes two functions for the aforementioned
operations – pcrExtend() takes a hash and a pcr number as input for extending
the pcr and quote takes a collection of pcrs, a nonce, an aik label and the asso-
ciated authorization secrets as input and returns the quote performed by tpmε
over the pcr values and nonce using the aik associated with the label. Each pcr
extend operation must be matched by an entry made in the aml. This is also
implemented as a class in the Java libraries (edu.android.aim.TrustedLogger)
that exposes two operations – (1) logEvent() that creates a new entry in the
aml with the provided entry description and hash and; (2) retrieveLog() that
returns the complete aml. The aml is stored in the filesystem in an unprotected
space (systemdir/aml_measurements) since its correctness can be ensured through
the measurements in the protected storage of tpmε.

This coarse-grained approach has several advantages in the context of a mo-
bile platform. Firstly, it only requires the measurement of apk files of applica-
tions that are loaded. For a typical smartphone user, this number is usually quite
small. This ensures that the computational requirements for integrity measure-
ment are keep to a minimum. Moreover, the aml is fairly small and thus aids
in keeping the communication overhead to a minimum. Likewise, the battery
consumption during calculation of hashes is also fairly small. In Section 5, we
discuss the performance issues associated with this approach.

The major drawback of attestation at this level of granularity is that it is
not complete! It does not measure the system classes which form an essential
part of Android’s trusted computing base. Ignoring these classes removes the
possibility of ensuring that, for example, the Android permission mechanism
will be enforced by the mobile device – which in turn reduces the level of trust
that can be placed in the correct enforcement of the security mechanisms that

are expected by the challenging party. To alleviate this drawback, we have im-
plemented a finer-granular integrity measurement approach as defined in the
following section.

3.3 Class-Level Attestation

To cater to fine-grained requirements of attestation for the Android platform, we
go a step beyond just measuring the applications that are loaded on the device
and propose a solution that provides completeness in integrity measurement.
This level of attestation can measure all executables loaded on top of the Dalvik
vm and can thus cater to the requirements of Use case #2.

Class-level attestation aims to measure all executables (i.e. classes) loaded
on top of the Dalvik vm. While this approach is similar to ima in essence, it
differs significantly in the semantics of measurement. Moreover, since the loading
mechanism of Dalvik is, at its core, different from that of the Linux kernel, our
binary integrity measurement has major differences in what and how it measures.

As mentioned in Section 2.2, there are two ways in which classes may
be loaded into Dalvik. The mechanism mentioned earlier is that which uses
ClassLoaders executing on top of the vm itself. These class loaders are them-
selves classes and thus need to be loaded too. Moreover, there are several classes
that are ‘system classes’ and are required for the proper functioning of Java code
(e.g. java.lang.Object). These classes cannot be loaded by Java-based class load-
ers and have to be loaded by the native code in the vm itself. Another issue with
ClassLoaders is their unrestrictive nature. Applications are allowed to write their
own class loaders to load classes from arbitrary sources. For example, an appli-
cation may write a class loader that reads from a byte stream to load a class.
This is substantially unlike the Linux/ima scenario in which all executables are
loaded from the filesystem. It is therefore possible in Linux to measure an exe-
cutable before it is loaded. In case of Dalvik (or any Java-based vm), this is not
always possible due to the potentiality of arbitrary class loaders. It is for this
reason that the semantics of our binary attestation are that we measure a class
after it is loaded but before it can be executed.

In Dalvik, the code responsible for calling class loaders is present in
three major files – Class.c, InternalNative.c and JNI.c The two broad cat-
egories of classes in Dalvik are system classes and (what we informally term
as) standard classes. These are loaded by dvmFindSystemClassNoInit() and
dvmFindClassFromLoaderNoInit() respectively. Both of these functions are present
in Class.c and are called from a single point – dvmFindClassNoInit(). The ‘no-
init’ functions are responsible for loading classes (either directly or by calling
a class loader) without initializing them. By placing the integrity measurement
hooks in dvmFindClassNoInit(), we ensure that (1) the measurement is complete
i.e. all the classes that are loaded get measured and (2) that classes are measured
immediately after they are loaded and before they can be executed.

After a class is loaded, it is returned to Dalvik in a structure that encapsulates
the methods, fields, loader details and other information about the class. This is

pD
vm

D
ex

de
sc

ri
pt

or

cl
as

sl
oa

de
r

su
pe

r

di
re

ct
M

et
ho

ds
 [1

]
... di

re
ct

M
et

ho
ds

 [n
]

sf
ie

ld
s

vi
rt

ua
lM

et
ho

ds
 [1

]
... vi

rt
ua

lM
et

ho
ds

 [n
]

ifi
el

ds

number of directMethods

na
m

e
in

sS
iz

e
ou

ts
Si

ze
re

gi
st

er
sS

iz
e

in
sn

s
[1

] ...
in

sn
s

[n
]

na
tiv

eF
un

c

number of insns

number of virtualMethods

Fig. 2: Subset of a Class Structure for Hash

a highly complex structure and includes pointers to many internal structures rep-
resenting detailed information about the class. Including all this information in
the hash of the class would cause severe performance bottlenecks without adding
much to the utility of measurement. In our integrity measurement mechanism,
we include only those parts of this structure that may influence the dynamic
behavior of the class. We define these parts in three categories:

1. Meta-information: This information does not directly influence the exe-
cution of a class but is helpful in unique identification of the class. Included
in this category are the descriptor i.e. fully qualified name of a class, the
source dex filename, the class loader and parent class etc.

2. Passive entities: These are static portions of the class that, while non-
executable, may affect the execution of the class. Passive entities include
static and instance fields, method names and instruction and register size
etc.

3. Executable code: This is the most important aspect of the measurement
and includes the instructions present in the method bodies of a class. Note
that, since inner (and anonymous) classes are measured separately, their
methods and instructions will be included in their respective measurements
and can thus be verified.

Figure 2 shows the precise structure over which the hash is calculated during
class-level integrity measurement and Figure 3 shows the integrity measurement
log. Each class is represented in the log by its descriptor and is preceded by
the hash of the structure described above. Note that since this fine-grained level
of integrity measurement computes the hash of all loaded classes, it may cause
some performance hit but as we discuss in Section 5.2, the performance hit is
minimal and with some performance enhancement can be successfully deployed
in production settings.

Note that the tssε solution proposed in Section 3.2 cannot be utilized at
this level of attestation as it operates above the vm level, whereas measurement

133A57C0CB942D5F74376BD6A89A3DD98EAB4886 vmaggregate
...
4FC88626E94A631D9FF4BD7C39C57F6EA8847C3F Landroid/widget/AbsListView;
FC060385A2B800175CE68D96AFC4A49E965A8E8F Landroid/widget/AbsListView$CheckForLongPress;
59517950D7280DC0CB4517B40E812D9E2B1BAFB2 Landroid/widget/AbsListView$SavedState$1;
69CEB9E9ED1398EFFF0C2C0705C7D45506481BA1 Landroid/widget/AbsoluteLayout;
457F0C258A8B76B4C03C3A89B1B7BAC8E306ECA1 Landroid/widget/AbsoluteLayout$LayoutParams;
8E84D83A9BFE50BDC7F41714769AB48CE55E208D Landroid/widget/AdapterView;
AE8BB8B2E8585395EB697DC8403C3EC1E2BFF7ED Lcom/android/internal/telephony/Phone;
5CB11877BF82DA663722AFBF19CB3DE2DBC03F3B Lcom/android/internal/telephony/Phone$State;
. . .

Fig. 3: ASCII representation of the Android Measurement Log: Capturing the
hash of the class and the class descriptor

in this fine-grained approach is being done at the vm level. For this level of
integrity measurement, we have implemented tssς in the Dalvik vm itself. tssς
only performs one operation i.e. saving an entry in the aml. The aml is stored
in the same location as in the application-level attestation. It does not provide
a function for reading the aml because that functionality is required only at
the application level of the Android framework and can be taken care of by the
tssε’s retrieveLog(() function. The details of this retrieval operation follow.

4 Verification

Once the attestation tokens i.e. pcr quote and measurement logs are received
at the challenger side, they need to be verified to establish the trustworthiness
of the remote platform. The first step in the procedure is to validate the digital
signature on the quote structure to verify that a genuine tpm vouches for the
measurement logs. This is a simple procedure and requires only the knowledge of
the aik (cf. Section 2.3) which can be provided by a PrivacyCA [26]. Afterwards,
the integrity of each loaded executable reported in the measurement log is verified
individually. The Android Market [27] is by far the largest and most reliable
source of applications. The basic verification mechanism involves creation of a
database of known-good and known-bad hashes of executables retrieved from
the Android Market. For instance, currently our database includes information
about our own versions of the Intent Fuzzer and Intent Sniffer tools [10] that
may be used to maliciously monitor and/or modify the operation of Android’s
intent model. If the hash associated with one of these tools is found in the
aml reported by the target device, the challenger may conclude that the device
is compromised and take preventive measures. Note that the placing of each
application in known-good or known-bad categories is currently manual. For
more robust and scalable results, this sorting requires some automation; either in
the form of collaborative reporting from the users of the applications or through
behavioral analysis of the different applications. A formal mechanism for this
procedure is currently under investigation.

5 Evaluation

In the context of mobile devices, computational complexity and battery con-
sumption are two essential factors that need to be considered when making any
changes to the software stack on these devices. We have evaluated both these as-
pects for the two options of attestation presented in this paper. As a test system,
we have taken the Android cupcake branch, operating on the htc g1 handset.
Evaluation of the two levels of attestation is presented below.

5.1 Application-level Attestation

In general, application-level attestation imposes little overhead on both the com-
putational capabilities and battery consumption of Android.

Time: The average time for measurement of an application on our testbed
was 1631ms. This is a rather large number but note that we cache the results
of measurement and only measure an application on subsequent loads if it has
changed. This caching, coupled with the facts that mobiles are ‘always-on’ and
application apks are unlikely to change frequently, makes the average time fairly
acceptable. Moreover, since the largest portion of this time is taken by the hash-
ing algorithm, a faster Java implementation of this function may significantly
improve this time.

Log size: Since this coarse-grained attestation only reports the hashes of
loaded applications, the log size is extremely small and is dependent only on the
number of applications executed on the target device. The size L in bytes of the
reported log is given as:

L = nLh +
n∑
i=1

(Lai
) + Lq + Ls

where n is the number of applications loaded, Lh is the size of the applica-
tion’s hash, Lai

is the length of ith application name, Lq is the size of the data
structure representing the pcr quote signed by tpmε (cf. Section 2.3) and Ls is
the size of ima’s sml.

In our evaluation, Lh and Lq were constants (i.e. 20 bytes and 64 bytes)
respectively, the average number of applications loaded on the device was 28,
the average length of the application name was 11.2 bytes and the size of the
sml was 4998 bytes. The total size of the log for application-level attestation
was therefore:

L = (20 + 11.2)× 28 + 64 + 4998 = 5935.6

which is less than 6kb of data per attestation request for application-level
attestation.

Power: Measurement of battery consumption on Android is difficult due to
the fact that the battery charge level reported by the Android hardware is at a
very coarse grained level. Using software for measurement of battery consump-
tion during hash calculation simply yields ‘no change’ in battery level. However,
note that since the attestation techniques only use the cpu and do not tinker

with parameters of radio communication, the battery overhead caused by in-
tegrity measurement is directly proportional to the time taken. Therefore, using
the same arguments as those for time consumption, we can conclude that the
battery consumption overhead caused by our integrity measurement mechanism
is also bearable.

5.2 Class-level Attestation

Class-level attestation is performed at a finer-grained level and thus might be
expected to have slightly larger overhead in terms of both time and battery.

Time: Figure 4 shows the evaluation results of the time taken for performing
this level of integrity measurement. As can be seen, using native C/C++ code
for calculating sha-1 has improved performance by three orders of magnitude.
The average time for integrity measurement of a class is 583 µs. Integrity mea-
surement of a few classes took more than a second but these were only around
1% of all the classes measured. Moreover, similar to application-level attesta-
tion, caching has been employed for class-level attestation to ensure that after
a class has been measured, it is not re-measured on subsequent loads unless it
has changed. Moreover, taking only a subset of the structure of the class (cf.
Section 3.3) also increases the performance of attestation.

Log size: The length of the log at this fine-grained level of attestation was
rather large. The average number of loaded classes during our tests was 1941
and the average length of class names was 35.67. Using the same method of
calculation as for application-level attestation, the log size was:

L = (20 + 35.67)× 1941 + 64 + 4998 = 113117.47

The log size of around 110kb is not completely insignificant for the a mobile
device. However, since we do not require real-time results, attestation can be
carried out when the device is connected to the enterprise server or pc through
a high-speed connection such as WiFi, thus reducing the time taken for trans-
mission of the log.

Power: Similar to application-level attestation, battery consumption over-
head of this finer granular integrity measurement is also directly proportional
to the time taken. Moreover, since the time taken by class-level attestation is

0

200

400

600

800

1000

1200

1400

Ti
m
e
Ta
ke
n
(m

s)

Classes Loaded

Fig. 4: Class-level Attestation Results

quite small, battery consumption is also much more acceptable than that for
application-level attestation.

6 Discussion

In this paper, we have presented the first attempt at measuring the integrity of
the Android platform using the concepts of Trusted Computing. The two levels
of granularity presented in the paper both have their pros and cons as discussed
earlier. However, there are a few issues that inhibit the deployment of either
of the techniques in production environments just yet. First of all, there is the
lack of a hardware root-of-trust. A hardware tpm or mtm does not exist for
any mobile device. We currently use an emulator for the demonstration of our
technique and rely on the assumption that it is only a matter of time before
an mtm becomes available for mobile devices. Note that we have designed the
architecture in such a way that our technique would be able to use an mtm
directly without any change to its working. We envision the deployment of our
attestation technique probably as a separate trusted sub-system [28] that acts on
behalf of either the service provider or the local owner of the device to provide
attestation responses.

Another issue is the completeness of our approach. At the time of writing
of this paper and the development of the new remote attestation technique for
Android, dex classes were the only bytecode loaded and executed on Android.
Since then, scripting support has been added to the framework and has thus
led to another level of executable code in the form of scripts (such as Ruby
and Python code) that we do not currently measure. This forms a vital part
of our future work to ensure that these executables can also be measured dur-
ing integrity measurement. Android has recently allowed the execution of native
C/C++ code through its Native Device Kit (ndk) [29]. Our architecture auto-
matically ensures that this native code gets measured since we base our work on
ima that is responsible for measuring all native code.

Finally, we discuss the issue of time of measurement, time of use race con-
ditions [15] that was a major concern in the original ima technique. The issue
is that when reading from a filesystem, the file may change after it is measured
but before it gets loaded for execution. Since we measure classes or applications
only after they are loaded and not from the filesystem, our architecture does not
suffer from this drawback.

7 Conclusion and Future Work

The personal and ubiquitous nature of mobile phones poses serious security con-
cerns regarding data that is stored on these devices. Measuring the integrity of
a smartphone can ensure that sensitive information accessible to applications
running on the device will not be compromised. Android is among today’s most
popular smartphone platforms. It is backed by a vast majority of industry lead-
ers and is made available as open source, thus leading to wide adoption of this

software stack. In this paper, we have proposed the design and implementation
of an integrity measurement mechanism aimed specifically at the unique archi-
tecture of Android’s software stack. We have described our architecture at two
levels of granularity catering to different real world use cases. We have shown
our architecture to be efficient both in terms of time complexity and battery
consumption – two critical factors for any architecture targeting mobile devices.

One of the more important usages of our attestation technique, that we
can foresee, is for ensuring ‘copy protection’ of paid applications for Android
phone. Paid applications that are not allowed to be moved from one device to
another are protected by the Android system. However, due to the presence
of ‘rooted’ phone devices, it is possible for a malicious user to bypass copy
protection [30]. Using our attestation technique before releasing a copy-protected
application may provide assurance to Android Market that the target device is
in a trusted state and will thus enforce copy protection as expected. Formalizing
the semantics and procedure of this mechanism forms part of our future work.

References

1. PandaLabs: PandaLabs Q1 2008 report. http://pandalabs.pandasecurity.com/
blogs/images/PandaLabs/2008/04/01/Quarterly_Report_PandaLabs_Q1_2008.

pdf (2008)

2. Gartner Research

3. Symbian Foundation

4. Google: Android Home Page (2009) Available at: http://www.android.com.

5. AdMob Mobile Metrics: June 2009 Mobile Metrics Report Available at: http:

//metrics.admob.com/2009/07/june-2009-mobile-metrics-report/.

6. Pearson, S.: Trusted Computing Platforms: TCPA Technology in Context. Prentice
Hall PTR, Upper Saddle River, NJ, USA (2002)

7. TCG: Trusted Computing Group (2010) http://www.trustedcomputinggroup.

org/.

8. Zovi, D.A.D.: Advanced Mac OS X Rootkits. In: Black Hat Technical Security Con-
ference USA. (2009) Available at: https://www.blackhat.com/html/bh-usa-09/
bh-usa-09-archives.html.

9. Miller, C., Mulliner, C.: Fuzzing the Phone in your Phone. In: Black Hat Technical
Security Conference USA. (2009) Available at: https://www.blackhat.com/html/
bh-usa-09/bh-usa-09-archives.html.

10. Burns, J.: Exploratory Android Surgery. In: Black Hat Technical Security Con-
ference USA. (2009) Available at: https://www.blackhat.com/html/bh-usa-09/
bh-usa-09-archives.html.

11. Lemos, R.: Worm Ready to Wriggle into Smart Phones.
Available at: http://www.zdnet.com.au/news/security/soa/

Worm-ready-to-wriggle-into-smart-phones/0,130061744,139150536,00.htm

(2004)

12. Evers, J.: Russian Phone Trojan Tries to Ring Up Charges –
Zdnet Australia. http://www.zdnet.com.au/news/security/soa/

Russian-phone-Trojan-tries-to-ring-up-charges/0,130061744,139240795,

00.htm (2006)

http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2008/04/01/Quarterly_Report_PandaLabs_Q1_2008.pdf
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2008/04/01/Quarterly_Report_PandaLabs_Q1_2008.pdf
http://pandalabs.pandasecurity.com/blogs/images/PandaLabs/2008/04/01/Quarterly_Report_PandaLabs_Q1_2008.pdf
http://www.android.com
http://metrics.admob.com/2009/07/june-2009-mobile-metrics-report/
http://metrics.admob.com/2009/07/june-2009-mobile-metrics-report/
http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html
http://www.zdnet.com.au/news/security/soa/Worm-ready-to-wriggle-into-smart-phones/0,130061744,139150536,00.htm
http://www.zdnet.com.au/news/security/soa/Worm-ready-to-wriggle-into-smart-phones/0,130061744,139150536,00.htm
http://www.zdnet.com.au/news/security/soa/Russian-phone-Trojan-tries-to-ring-up-charges/0,130061744,139240795,00.htm
http://www.zdnet.com.au/news/security/soa/Russian-phone-Trojan-tries-to-ring-up-charges/0,130061744,139240795,00.htm
http://www.zdnet.com.au/news/security/soa/Russian-phone-Trojan-tries-to-ring-up-charges/0,130061744,139240795,00.htm

13. Google: Android Abstract ClassLoader (2009) Available at: http://developer.
android.com/reference/java/lang/ClassLoader.html.

14. TCG: TCG Specification Architecture Overview v1.2, page 11-12. Technical report,
Trusted Computing Group (April 2004)

15. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a
TCG-based Integrity Measurement Architecture. In: SSYM’04: Proceedings of the
13th conference on USENIX Security Symposium, Berkeley, CA, USA, USENIX
Association (2004)

16. Jaeger, T., Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Measurement
Architecture. In: SACMAT ’06: Proceedings of the eleventh ACM Symposium on
Access Control Models and Technologies, New York, NY, USA, ACM Press (2006)
19–28

17. NSA: Security-Enhanced Linux (SELinux) (2009) Available at: http://www.nsa.
gov/selinux/.

18. Loscocco, P.A., Wilson, P.W., Pendergrass, J.A., McDonell, C.D.: Linux Kernel
Integrity Measurement Using Contextual Inspection. In: STC ’07: Proceedings of
the 2007 ACM Workshop on Scalable Trusted Computing, New York, NY, USA,
ACM (2007) 21–29

19. Lyle, J.: Trustable Remote Verification of Web Services. In: Trusted Computing:
Second International Conference on Trusted Computing, Trust 2009 Oxford, UK,
April 6-8, 2009 Proceedings, Springer London, Limited (2009) 153

20. Gu, L., Ding, X., Deng, R., Xie, B., Mei, H.: Remote Attestation on Program
Execution. In: STC ’08: Proceedings of the 2008 ACM Workshop on Scalable
Trusted Computing, New York, NY, USA, ACM (2008)

21. Nauman, M., Alam, M., Ali, T., Zhang, X.: Remote Attestation of Attribute
Updates and Information Flows in a UCON System. In: Trust’09: Proceedings of
the Second International Conference on Technical and Socio-Economic Aspects of
Trusted Computing, Springer (2009) 63–80

22. Mobile Phone Work Group Mobile Trusted Module Overview Document:
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_

group_mobile_trusted_module_overview_document.
23. Strasser, M., Stamer, H., Molina, J.: Software-based TPM Emulator Available at:

http://tpm-emulator.berlios.de/.
24. Ekberg, J., Kylaanpaa, M.: Mobile Trusted Module (MTM)–An Introduction

(2007)
25. Ekberg, J.E., Bugiel, S.: Trust in a small package: minimized mrtm software

implementation for mobile secure environments. In: STC ’09: Proceedings of the
2009 ACM workshop on Scalable trusted computing, New York, NY, USA, ACM
(2009) 9–18

26. IAIK: About IAIK/OpenTC PrivacyCA (2010) Available at: http://

trustedjava.sourceforge.net/index.php?item=pca/about.
27. Google: Android Market (2009) Available at: http://www.android.com/market.

html.
28. Schmidt, A., Kuntze, N., Kasper, M.: On the deployment of Mobile Trusted Mod-

ules. Arxiv preprint arXiv:0712.2113 (2007)
29. Android 1.5 NDK, Release 1. Available at: http://developer.android.com/sdk/

ndk/1.5_r1/index.html
30. Oberheide, J.: A Look at a Modern Mobile Security Model: Google’s Android

Platform. In: Annual CanSecWest Applied Security Conference. (Slides available
at: http://jon.oberheide.org/research/. March 2009)

http://developer.android.com/reference/java/lang/ClassLoader.html
http://developer.android.com/reference/java/lang/ClassLoader.html
http://www.nsa.gov/selinux/
http://www.nsa.gov/selinux/
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_module_overview_document
http://www.trustedcomputinggroup.org/resources/mobile_phone_work_group_mobile_trusted_module_overview_document
http://tpm-emulator.berlios.de/
http://trustedjava.sourceforge.net/index.php?item=pca/about
http://trustedjava.sourceforge.net/index.php?item=pca/about
http://www.android.com/market.html
http://www.android.com/market.html
http://developer.android.com/sdk/ndk/1.5_r1/index.html
http://developer.android.com/sdk/ndk/1.5_r1/index.html
http://jon.oberheide.org/research/

	Beyond Kernel-level Integrity Measurement: Enabling Remote Attestation for the Android Platform
	 Mohammad Nauman, Sohail Khan, Xinwen Zhang and Jean-Pierre Seifert

