
A General Obligation Model and Continuity-Enhanced
Policy Enforcement Engine for Usage Control

Basel Katt
University of Innsbruck

Innsbruck, Austria
basel.katt@uibk.ac.at

Xinwen Zhang
Samsung Information Systems
America, San Jose, CA, USA
xinwen.z@samsung.com

Ruth Breu
University of Innsbruck

Innsbruck, Austria
ruth.breu@uibk.ac.at

Michael Hafner
University of Innsbruck

Innsbruck, Austria
m.hafner@uibk.ac.at

Jean-Pierre Seifert
Samsung Information Systems
America, San Jose, CA, USA
j.seifert@samsung.com

ABSTRACT
The usage control model (UCON) has been proposed to aug-
ment traditional access control models by integrating au-
thorizations, obligations, and conditions and providing the
properties of decision continuity and attribute mutability.
Several recent work have applied UCON to support secu-
rity requirements in different computing environments such
as resource sharing in collaborative computing systems and
data control in remote platforms. In this paper we iden-
tify two individual but interrelated problems of the origi-
nal UCON model and recent implementations: oversimpli-
fying the concept of usage session of the model, and the lack
of comprehensive ongoing enforcement mechanism of imple-
mentations. We extend the core UCON model with con-
tinuous usage sessions thus extensively augment the expres-
siveness of obligations in UCON, and then propose a gen-
eral, continuity-enhanced and configurable usage control en-
forcement engine. Finally we explain how our approach can
satisfy flexible security requirements with an implemented
prototype for a healthcare information system.

Categories and Subject Descriptors
H.1 [Models and Principles]: General; D.2.11 [Software
Engineering]: Software Architectures—Domain-specific ar-
chitecture

General Terms
Security, Design

1. INTRODUCTION
Access control mechanisms aim to restrict access to sensi-

tive resources (objects) from users and processes (subjects).
Traditional enforcement of access control rules applies in-
stantly on access requests, and after an access is granted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’08, June 11–12, 2008, Estes Park, Colorado, USA.
Copyright 2008 ACM 978-1-60558-129-3/08/06 ...$5.00.

there is no control on the resource. The growing involve-
ment of information technologies in all sectors of human life
like eHealth, eGovernance, eCommerce, and others, results
in a dramatic increase of data flow between different actors
in distributed environments, where the processing of data is
carried out on clients as well as on servers. Consequently,
new requirements have risen going beyond traditional access
control mechanisms. They demand the control of resources
after an access has been granted.

To overcome the shortcomings of traditional access con-
trol mechanisms, a usage control (UCON) concept has been
introduced with the unique properties of decision continuity
and attribute mutability. These features satisfy the secu-
rity requirements of many contemporary information sys-
tems. Different approaches have been proposed to describe
the UCON model formally. UCONABC family model con-
sists of the following core models: Authorization (A), oBli-
gation (B) and Condition (C), with sub-models representing
whether an access decision is made before (pre-) or during
(on-) a usage session. This leads to the following UCON
sub-models: authorization core models preA and onA, obli-
gation core models preB and onB, and condition core models
preC and onC [14, 15, 22].

In our work we investigate usage and access control re-
quirements in healthcare systems. Based on some practical
studies in the eHealth domain [10, 25] and studies that deal
with authorization [3] and privacy [27] issues in eHealth sys-
tems, we summarize some example security requirements in
this domain:

• Only authorized actors with recognized certificates are
allowed to retrieve patient records. Access rights are
based on the roles of the actors. For example, pharma-
cists are allowed only to access the part of the health-
care record containing prescriptions.

• 4-eyes principle: the presence of a patient should be
checked during the access session to the record [26].

• Retention time: a patient record should be saved in
the doctor’s machine for a maximum one month.

• Patient consent: after the end of a treating session,
the retrieved document should be stored in the local
machine of the doctor in case the patient approves it;
otherwise it should be deleted from the system.

123

• In case the patient is not present before the normal
termination of a treating session, the document must
be deleted and an abnormal session notification should
be reported to the service provider.

These requirements show clearly the importance of us-
age control: the whole usage of a patient’s record should
be controlled and multiple authorization checks are needed
during this usage. However, from the last two requirements
we conclude that some decisions and actions must be taken
and executed after each usage session. Such actions are not
supported in the current UCON model as it only consists of
(pre-) and (on-) core models. To meet these new require-
ments the current UCON model and its policy specification
have to be extended. First, the family of UCONABC core
models are extended by adding post obligations. We ar-
gue that only obligations should be checked after the usage
session while (post-) authorizations and conditions are not
needed. Second, the sequence of system states that are used
to define the context of a resource usage control are ex-
tended. Ongoing obligation trigger actions are illustrated
with the ongoing-check state.

Our extension is based on the principle that a security
model should support as many enforceable security poli-
cies as possible. By augmenting UCON core models with
post-obligations, we can enforce recently proposed obliga-
tion policies in literature [17, 12, 4, 6, 5, 7]. We claim that
these policies can be supported by UCON in multi-usage-
session environments. For example, the obligation requiring
that a user has to pay an amount of money after getting a
service is regarded as a post-obligation in UCON. We ar-
gue that these obligations are not enforceable with original
core UCON models which focus on a single usage session.
We consider the scenario that the user has further service
access requests after the current usage session, which is the
natural and typical usage pattern in real world. Thus, the
obligation can be enforced, e.g., by providing different qual-
ity of service to the user if the obligation is not satisfied. In
the above eHealth usage scenarios, typically the client (e.g.,
a doctor) needs to access patients’ records frequently, (e.g.,
everyday); therefore the obligations can be enforced. On the
other side, we believe that authorizations and conditions are
single-session oriented naturally, which means that pre- and
ongoing authorizations and conditions are expressive enough
to specify most (if not all) usage control policies.

As aforementioned, UCON has the novel features of deci-
sion continuity and attribute mutability. At the same time
it can support many traditional access control policies in
one model. However, not much work has been done to fully
utilize UCON properties in a practical framework. The fun-
damental problem is that UCON enforcement mechanism
lacks a general ongoing and post decision checking and en-
forcement engine. This drawback keeps UCON far away
from practical and real systems. To cope with this prob-
lem, our second novel contribution in this work, is to in-
troduce a comprehensive usage control enforcement engine.
The corresponding enforcement engine is configurable using
a proposed enforcement-focused usage control policy specifi-
cation. A proof-of-concept prototype of the engine is imple-
mented and tested for an eHealth application scenario. This
implementation is based on XACML that has established it-
self as a de-facto mature standard for access control. Doing
so the well standardized and implemented XACML access
control policy and enforcement architecture are utilized.

We develop our work by following the recently proposed
PEI security engineering framework [23]. In a security sys-
tem, PEI distinguishes the problems of what the security
requirements and how these requirements can be satisfied
or enforced with different model layers. Particularly, in the
policy model layer, we augment UCON core models with
post-obligation considerations and extend the state transi-
tion of UCON (cf. Section 4); in the enforcement model
layer, we distinguish two main functional modules to handle
attributes and actions in a UCON system (cf. Section 5);
finally, in the implementation model layer, we consider differ-
ent implementation variants and develop our strategy based
on standardized XACML policy specification and enforce-
ment engine (cf. Section 6).

Outline: Background and related work are present in
Section 2. We discuss our model extensions in Section 4.
Regarding the enforcement model, we introduce a general
continuity-enhanced usage control enforcement framework
in Section 5. In Section 6 we propose the implementation
model and discuss our proof-of-concept prototype and show
how it leverages the capabilities of our enforcement model.
We conclude this paper and present our ongoing work in
Section 7.

2. RELATED WORK

2.1 UCONABC Model
Park et al. [15, 14, 16] systematically treat the usage

control concept and develop a comprehensive model. The
introduced UCONABC model integrates Authorization (A),
oBligation (B) and Condition (C) components in usage con-
trol decisions. Because of its session-based nature it has
two remarkable features that distinguish it from the tra-
ditional access control models: decision continuity and at-
tribute mutability. Given that, the model is divided into
three core models: (1) Authorizations, where the access de-
cision is made based on the requesting subject’s and tar-
get object’s attributes. (2) Obligations, in which the ful-
fillment of some actions by specific subjects on specific ob-
jects (the obligation’s subjects and objects may differ from
the authorization’s pair) should be checked. (3) Conditions,
where environmental information (also called environment
attributes) are checked. To introduce the two main features
in the model, it is further classified according to decision
continuity and attribute mutability. With respect to the
continuity factor, it can be distinguished between decisions
made before an access has been started (pre-) or the deci-
sions that are taken during the access session (on-). While
considering the mutability factor, update actions are intro-
duced before, during, or after an access session. Our policy
model is based on the proposed UCON model by Park et al.
with the extensions in core model to include decisions that
are made after an access session, i.e. post- sub models and
augment the expressiveness of obligation to include system
based obligations. Furthermore, we investigate obligations
in more details and introduce general obligation model.

Zhang et al. [29] have defined a formal model and pol-
icy specification for UCONABC based on an extension of
the Temporal Logic of Actions (TLA). Figure 1 shows the
system’s state transition of a single usage [29], which distin-
guishes actions done by the system (tryaccess and endaccess)
and actions done by a subject (the others).

The following states have been defined in original UCON

124

Figure 1: Traditional UCON state transition dia-
gram.

in a usage process: initial, requesting, accessing, denied,
revoked and end. Initial state means that access request
is not generated; requesting state indicates that the access
has been generated and is waiting for the system’s usage
decision; denied state refers to the state where the system
has denied access; the accessing state means that the system
has permitted access and the subject is accessing the object
immediately after; the termination of the access done either
when the system revokes the access after it has been granted
in requesting state or it is ended normally by the user.

We identify one problem of this state transition, shown in
Figure 1, related to ongoing decision checks. UCON sup-
ports decision continuity, which means that during a usage
session multiple ongoing checks can occur. However this
state transition diagram does not show the ongoing checks
and the ongoing transitions. Hence, the state transition is
extended by adding one state and showing the ongoing trig-
ger actions (cf. Section 4). The extended state transition is
used in designing our enforcement framework.

2.2 Obligations and Enforcement Framework
Pretschner et al. [17, 18] deal with distributed usage con-

trol policies, i.e. the loss of control over a data item af-
ter giving it away. Their work distinguishes “observation
based enforcement” vs. “enforcement by direct control over
the service provider action” by using compensating actions.
Their work maps to the post obligations in our model. How-
ever, they do not consider usage sessions and related aspects.
The policy proposed is at abstract level and no practical ap-
proach to leverage the enforcement engine is discussed.

Hilty et al. [12, 11] deal with usage control requirements
with respect to obligations and conditions. Two kinds of
obligations are defined: usage restrictions and action re-
quirements. They express mandatory actions that must be
executed either unconditionally or after a specified usage
has been performed. From the policy model point of view,
conditions and usage restrictions can be mapped to UCON
core models of obligations, authorizations, and conditions
together. Furthermore, action requirements can be covered
in our extended UCON model by adding post obligations.
They argue that their policy language can be mapped to
DRM (Digital Right Management) policies. However they
do not provide a configurable enforcement engine that uti-
lizes their policy language apart from DRM systems.

Irwin et al. [13] define formal model of obligation, and

distinguish secure and insecure system states based on the
concept of accountability. The paper does not mention how
to check obligation fulfillment, rather it deals with the for-
mal specification and analysis of obligations and explains
the complexity of checking accountability properties. The
formal model is similar to our obligation model. We assume
that the obligation’s subject is the only entity responsible
for the fulfillment of an obligation without any further obli-
gation interferences. Additionally, we propose a comprehen-
sive enforcement model for the obligation-extended UCON,
and test it on a prototypical enforcement engine.

Gama et al. [8, 9] worked with an obligation enforcement
engine. In the first paper they developed Heimdall as an
enforcement platform for obligations using an obligation-
enabled policy language xSPL, an extension of SPL [19].
In the second the authors showed the feasibility of their en-
gine by integrating Heimdall with practical grid platform
for resource usage management. In this paper reevaluation
mechanism was added by extending xSPL. Comparing to
our approach, additionally to supporting obligations in the
context of a usage session and realted aspects of compensat-
ing actions and re-evaluation , we propose a new concept of
obligation PDP. We believe that some kind of untrusted obli-
gations need a fulfillment check upon receiving the obliga-
tion event. For example, the obligation that a user provides
her valid email address requires that the enforcement system
checks the validity of the address upon receiving it. Further-
more, tracing and recording a sequence of history events re-
lated to a specific usage of a resource is better achieved by
state machine based engine.

Various other obligation concepts have been introduced in
literature. In the Ponder policy language [7], an obligation
is more like a duty that a subject has to perform. This obli-
gation is not directly required by an access control purpose.
Bettini et al. [6, 5] introduce the concept of provisions that
should be done before an access is granted, and obligations
that must be done after an access has been granted. These
can be regarded as pre-obligations and post-obligations in
UCON, respectively. However, they also do not propose an
enforcement engine to support their policies.

With regard to UCON model, Zhang et al. [28] use XACML
as a policy language and extend the XACML policy enforce-
ment architecture with some extra components like “Usage
Monitor” to monitor the updates of subject, object, and
environment attributes. This framework lacks obligations
handling, does not consider updates for denied and revoked
states, and finally, does not distinguish between constraints
applied in different states.

3. MOTIVATING EXAMPLE
In order to illustrate some of our framework’s functional-

ity, we take an application scenario from the medical domain
(cf. the main requirements illustrated in Section 1). In this
scenario, a patient’s electronic health record (EHR) is stored
and managed by a distributed Hospital Information System
(HIS). Different actors are trying to get access to this record
(or part of it), such as insurance companies, general practi-
tioners, pharmacists, research institutes and others. Let us
take the general practitioner (GP) as an example. In this
scenario the usage requirement of our specific healthcare sys-
tem states that patient attendance should be checked at the
beginning and during a treatment (according to the 4-eyes
principle). At the end of the treatment session, the patient

125

admission should be given before the GP saves the patient’s
record permanently; i.e. the patient has accepted to trust
this GP for future treatments, or the record must be deleted.
This is because of the fact that the record should only be
stored by trusted and personal GP of the patient. In more
details the work flow is as follows:

1. First, the doctor should have installed a document
reader with UCON enforcement mechanisms.

2. While the patient is visiting the doctor for treatment,
the doctor requests the document from the HIS (or its
web portal).

3. At the HIS’s side (service provider), the doctor is au-
thenticated and authorized to access to the document,
for example, based on his role in the system.

4. Upon authorization, the required document is released
with the corresponding UCON policy in one encrypted
package.

5. At the doctor’s system, the document and the UCON
policy are verified (for integrity), decrypted, and stored
temporarily.

6. The UCON policy includes the usage requirements men-
tioned before. When the doctor tries to use the docu-
ment, the policy is enforced by the enforcement mecha-
nism that we are proposing in this work. This occurs in
such a way that: (1) The “4-eyes principle” is checked
before and during the usage session; (2) The document
must be stored in the doctor’s machine under the con-
sent of the patient at the end of the treating session,
otherwise the document must be deleted.

Note that we only describe here one instance of the work
flow scheme. Variants exist in many implementation aspects
such as object and policy distribution, integrity verification,
and so on. For example, a UCON policy can be defined
based on the type of healthcare records (e.g., according to
different diseases), such that individual records and policies
are distributed separately, and a doctor only needs to down-
load a single copy of the same type of records.

Privacy is another example requirement applicable to us-
age control policies: each patient presents her/his prefer-
ences in privacy policy. Such preferences can include the
retention time, the location, or the purpose of the usage [27].

4. OBLIGATION MODEL AND UCON EX-
TENSIONS

As aforementioned, the main drawback of the original
UCON model is the inability to handle actions after the
usage of the resources in a specific session 1. In this section
we deal with this problem to enable the model to handle
this requirement by introducing post-obligations in UCON.
Instead of simply introducing a postB core model, we con-
sider how to specify obligations (including pre- and ongoing

1The original UCON core models can enforce update ac-
tions after a single usage session– post-updates, which are
system actions–performed by systems [29]. This is different
from post-obligations that we discuss in this paper, which
include actions that must be performed by subjects and were
regarded as non-enforceable in original UCON model.

obligations in UCON) in a general and formalized way. We
then extend the original UCON state transition scheme by
exploring more detailed obligation trigger actions.

4.1 Obligation Model
An obligation in UCON is a predicate that utilizes some

functions to check whether a certain activity has been ful-
filled or not. For example, before downloading a white paper
of a company, a user is required to give her/his valid email
address and accept the privacy terms and conditions of the
company. The obligation subject in this case is the same sub-
ject that tries to access the object. In general, an obligation
subject can be any other subject, even the security system
itself, e.g., the reference monitor and supporting components
of a system. For example, watching an online video requires
that streaming video data is stored in a temporary folder,
and is required to be deleted after being watched. This obli-
gation should be performed by the system (e.g., the media
player or DRM agent that enforces usage policies) on the
video data (obligation object). The current UCON model
includes two obligation core models, namely preB and onB,
where the first is the one applied before the access and the
second during the access. In this paper, we generalize the
requirement of obligations, which include actions that must
be performed by a subject or the system and the fulfillment
can be checked after the access.

Taking the mentioned healthcare scenario into considera-
tion, the client software should delete the record in the re-
voked state or store the record in the end state when the pa-
tient gives her/his permission, where the deleting and stor-
ing of the record are considered obligations that should be
done and the “fulfillment” should be checked by the system
after the end of the session.

In general the purpose of post obligations is twofold: First,
it can be used to execute obligation actions that are related
to the current usage despite it has no affect on the decision
making of the current usage. However these actions are
required to be executed and a notification of the fulfillment
of these action can be send to the service provider of the
data owner (e.g., storing the patient’s record after normal
ending of a treatment session). Secondly, it can affect future
usage sessions, which can be done, for example, by sending a
request to the usage control policy repository to change the
UCON policy related to this subject when trying to access
this object or any other objects in the future.

We consider an obligation from four points of view: (1)
Who must perform the action; (2) What the obligation must
be applied to; (3) When it should be performed; and (4) For
how long it should be carried out.

• Who means which entity is obligated to fulfill the ac-
tion. Here we distinguish system-performed obliga-
tions and subject-performed obligations. This distinc-
tion is important because of the fact that typically a
security enforcement system is trusted while we do not
have any influence on other subjects. Doing so we are
augmenting the expressiveness of obligations in origi-
nal UCON, where updates are considered as the only
actions that must be done by the system.

• What refers to the obligation object. Here we can dis-
tinguish objects that the system controls and objects
that are out of the control of the system. Control-
lable objects are those that are within a target system’s

126

domain, while non-controllable objects are outside the
system’s domain. For example, deleting a file that is
controlled by the system differs from deleting a file that
is stored in a remote file server. In the latter case we
should commit additional actions to ensure that the
file server is up, the file exists, the network connec-
tion is working, and the file is really deleted after the
obligation action.

In conjunction with the aforementioned subject/system
distinction, we can conclude the following obligation
classifications: system obligations on controllable ob-
jects, system obligations on non-controllable objects and
subject obligations. We argue that the first obligation
type does not need fulfillment check, as it is done by
a trusted system on controllable objects. However the
second and third types need fulfillment check, either
because the object is not controllable or the subject is
not trusted. Updates can be classified as system obli-
gations on controllable objects, in case the updated ob-
jects are controllable. Hence, updates are considered
in the original UCON model as actions rather than
a predicate because they do not need further check.
Nevertheless, it has been mentioned that when a tar-
get object is not available, e.g., because of network
problem or storage problem, the update process should
be monitored without capturing these aspects in the
model [29]. In our approach we are dealing with this is-
sue systematically by this classification. Therefore we
are considering the updates as a special type of system
obligations, either on controllable or non-controllable
objects.

• When means whether the obligation should be fulfilled:
before a usage control session is finished (e.g., before
the access or during the access) or after the session is
ended. It is important to distinguish between obliga-
tions after the usage session and obligation before the
session is finished. This is crucial because after the us-
age session is finished, the result of the obligation can
not affect any more the usage decisions, while it does
before the access is granted or during the usage. Note
that the post obligation can affect the usage decisions
of future sessions.

• Durability means that the obligation should be fulfilled
within specific period of time. For example, a user
must pay his fee within one month, and whenever he
pays he can get access to offered services. In this case
the fulfillment should be checked continuously to start
the service. In some cases there is a need for instant
fulfillment check. For example, when a user must give
his valid email address before requesting the white pa-
per of a company, the system should check the validity
of the email instantly after the request is generated and
before the user is given the access. Similar aspects are
also mentioned by Hilty et al. [11].

Based on these considerations, we define an obligation as a
tuple of OBL = (OBS, OBO, OBA, WHEN, DURATION),
where OBS is the obligation subject or system, OBO is
the obligation object (e.g., healthcare record), OBA is the
action that has to be performed (e.g., delete), WHEN =
pre|on|post|, and DURATION is the time point or pe-
riod to check the fulfillment of the obligation. The con-

cept of fulfillment check and compensating actions associ-
ated with each obligation will be discussed in the implemen-
tation model.

4.2 State Transition of UCON
Figure 1 shows the original UCON state transition schema,

in which pre-decision components (preA, preB, preC or any
combination of them) are evaluated at the requesting state.
Once the access request is granted, the system comes to the
accessing state, in which the subject is accessing the object.
From the accessing state the system moves either into end
state when the users ends the session, or revoked state when
policy rules are violated during the session. We argue that
the original UCON does not show the actions that trigger an
ongoing decision check during the usage session. The state
in which the system is checking the policy rules during the
session, analogy to the requesting state, is not mentioned as
well. That means, the accessing state and the state where
the ongoing policy rules are checked are merged in one state
called accessing, and the trigger action that triggers the re-
evaluation of attributes is hidden.

To express these subtle but critical state transitions in
UCON, we divide the accessing state in original UCON
into two states, namely accessing and ongoingCheck, respec-
tively. A trigger action transits the system state from ac-
cessing to ongingCheck.

Figure 2: Expanded UCON state transitions.

Figure 2 shows our extended UCON state transition scheme.
Comparing to the state transitions shown in Figure 1, we
omit in our new state transition diagram the update ac-
tions/transitions: We consider updates as system obliga-
tions (as discussed before). That means, the needed updates
are stated in the obligation rules of the corresponding state.
When the object of the update obligation is controllable,
there is no need for fulfillment check. This case maps to the
original update actions in [14, 29].

Secondly, one new state, ongoingCheck state, and two
transitions, ongoingRequest and ongoingPermit, are added
in our new scheme. When the subject is exercising the ac-
cess to the resource, the system is in the accessing state.
Any changes or updates of subject, object, or environment
attributes trigger ongoingRequest transition and the system
moves to the ongoingCheck state. In this state the decision
(onA, onB, onC or any combination of them) is made and
the new set of attributes should be evaluated. Accordingly,
either the system revokes the usage, i.e., revokAccess transi-
tion, or it continuously grants the access to the subject, i.e.,
the ongoingPermit transition, and the system goes back to

127

the accessing state. Note that any updates occur in the
onglingCheck state will have no direct effect on the current
evaluation. The new updates will be checked in accessing or
revoked states later.

5. ENFORCEMENT MODEL
In PEI framework, the enforcement models focuses on the

system architecture and functional modules to illustrate how
the policy model can be achieved, not being restricted to a
particular system. In this section we present a comprehen-
sive usage control enforcement model with the corresponding
meta-model. The proposed architecture of a configurable en-
forcement engine considers all UCON core models and the
extensions proposed in our work.

Conceptually, an enforcement model includes decision and
enforcement functionalities [1]. However, the session na-
ture and decision continuity feature of usage control policy
model require additional components. Furthermore, obliga-
tion handling is not considered in the existing access control
enforcement [1] as it is not part of the traditional access con-
trol models. Given that, we are introducing a usage control
specific enforcement model.

5.1 Usage Control Enforcement Model
Figure 3 shows our enforcement model consisting of three

main components: enforcement point (EP), decision point
(DP) and session management point (SMP).

Figure 3: Usage control enforcement model.

The DP is responsible for making required decisions dur-
ing a usage control session. Introducing obligations into the
model requires a new decision-making component, i.e., a
component that decides whether an obligation is fulfilled
or not. Hereby, the DP in our enforcement model consists
of the following two sub-modules:

• Attribute decision function (ADF) handles the attribute-
based access decision during a usage session. Attributes
can be either subject, object or environment attributes.
The decision needed information provides the DP with
required information about the subject, object, and
environment.

• Obligation decision function (ODF) makes the decision
whether a specific obligation has been fulfilled. Ac-
cording to our classification of obligations mentioned
in Section 4, we have three types of obligations: system
obligations on controllable objects, system obligation on
non-controllable objects, and subject obligations. It is
argued that the first type of obligations does not need
fulfillment check. for the other types, the DP checks

the fulfillment of an obligation by transforming it into
an ordered sequence of system actions, which should be
defined for all obligations. We consider these aspects
in designing the ODF component in our implementa-
tion model (cf. Section 6.2).

The SMP is the element that manages individual usage
sessions. This includes requesting required decision(s) from
suitable modules in each state during the usage session.

When a usage request is received, the EP forwards it to
the SMP. The SMP sends corresponding pre-decision re-
quests to the DP. In case a negative decision is received,
the SMP sends a denied response to the EP and requests
post-obligation actions from the ODF (including post up-
dates), otherwise it sends a permit response to the EP. In
the accessing state, the SMP monitors related subject, ob-
ject, and environment attributes, as well as any further ac-
tions requested by the subject (e.g., an end request from
the subject to end the usage session). Upon receiving such
trigger actions, the SMP requests ongoing decision checks.
According to the decision received, the SMP either revokes
the ongoing access by sending a revoke response to the EP,
or keeps permitting the access. If the action is an endaccess
action from the subject, the SMP sends an end response to
the EP to stop the access. In revoking or ending a session,
the SMP requests the post-obligation fulfillment check with
the corresponding obligation rules.

As aforementioned, updates are considered as special type
of system obligations. Hence, the pre-, ongoing, and post-
updates of UCON policy are stated in the corresponding
obligation rules in our enforcement model.

5.2 Enforcement Meta-model
As enforcement model provides the system architecture

in an abstract level, a general configuration mechanism is
desired for system designer or administrators to customize
the development and deployment of UCON in a real sys-
tem. For this purpose we propose a meta-model for UCON
enforcement which is able to configure the enforcement en-
gine with rules needed for each state in usage sessions. In
other words, a meta-model aims to include information re-
lated to all kinds of rules/constraints defined in the Decision
Point component of an enforcement model (cf. Figure 3)
in the context of usage session (cf. Figure 2). As shown
in Figure 4, the core elements of the meta-model are the
ADF Rules and ODF Rules. ADF Rules are the rules rep-
resenting ADF function of the enforcement model, i.e. the
authorization and condition predicates of a UCON policy.
The ODF Rules on the other hand are obligation rules rep-
resenting ODF functions of the decision point. For better
understanding an instance of this meta-model is presented
in Section 6 for configuring the developed engine as an XML
schema.

As shown in the state diagram of Figure 2, each state
contains some authorization related decisions that must be
taken. In the requestCheck state, the preA and preC decision
constraints (defined in ADF Rules) and preB decision rules
(defined in ODF Rules) of the policy are evaluated. The
same evaluations are made in the ongoingCheck state but
for the onA, onC and onB decision components of the policy.
On the other hand, it can be argued that there is no need
for attribute related authorization checks in the end, revoked
and denied states, thereby they contain only postB decision
components.

128

Figure 4: UCON enforcement meta-model.

As Figure 4 shows, StateElement type contains elements
of both “ADF Rules” and “ODF Rules” types. The rules of
the requestCheck and ongoingCheck states are of type ”Sta-
teElment”. However, the rules of the rest of the states are of
the ODF Rules type. Finally we organize the different rules
in each state in one UCON policy element that includes the
following rules: OngoingCheckRules, RequestCheckRules, Re-
vokedStateRules, DeniedRules and EndRules for the ongo-
ingCheck, requestCheck, denied, revoked, and end states, re-
spectively.

6. IMPLEMENTATION MODEL: ENFORCE-
MENT ENGINE AND PROTOTYPE

To show the feasibility and functionality of our usage con-
trol enforcement model, we design a concrete usage control
enforcement engine. We then develop and test a proof-of-
concept prototype. Furthermore, in order to utilize and fa-
cilitate the existing standards and frameworks in the area of
access control, XACML is extended and used in this proto-
type.

Two main aspects should be considered when implement-
ing a usage control enforcement engine in remote clients:
The first issue is the trust problem and second is the con-
figurable usage control enforcement mechanism. Given that
the usage enforcement should be done in a remote client
platform, we have no control over the remote system. That
requires trust establishment between the service provider
and the remote client before any data is released. Trusted
computing technologies provide the technical underpinning
for trust establishment between remote machines [24, 20,
21]. While the trust issue goes beyond the scope of this
paper, we assume that the remote client is trusted before
the usage control policy enforcement takes place. A gen-
eral configurable usage control enforcement model has been
presented in section 5 and a prototypical implementation of
that model is discussed in this section.

6.1 Prototype Architecture
In our eHealth scenario, when a patient visits a doctor,

the doctor requests the patient’s EHR from the HIS. Af-
ter authenticating and authorizing the doctor based on his
role, the HIS releases the record and a UCON policy in one
encrypted package. The enforcement component, which is
integrated into the document reader, checks the integrity of
the package and extracts the usage control policy and the
patient’s record.

Figure 5 shows the architecture of our usage control en-
forcement engine. The implementation is based on XACML
enforcement engine. The elements with white background
represent the original XACML enforcement engine elements,
while those with the grey background represent our exten-
sions. In general the engine consists of the following compo-
nents:

• Policy enforcement point (PEP) acts as single entry
point to protected resources and performs access con-
trol. It receives usage requests from an access re-
quester (the subject), i.e., the doctor in our example,
and makes a usage decision request (UDQ) and con-
sequently receives usage decision response(s) (UDS)
from the finite state machine (FSM) element during
the whole usage session. The PEP enforces the au-
thorization decisions it receives by either allowing the
access or denying it. It is important to note that
we integrate the PEP in our prototype in the docu-
ment reader. Without loss of generality, the document
reader in our prototype is a simple notepad-like appli-
cation. The design of PEP depends on the application
and the target architecture. For example, it can be
implemented as a security gateway in SOA system [3]
or as a bundle in OSGi architecture [2].

• Finite state machine (FSM) represents the session man-
agement point in our enforcement model. It is the dy-
namic part of the whole engine and capture the con-
tinuity behavior of the access control system. Fur-
thermore, it orchestrates the functions of other ele-
ments of the architecture and ensures the transitions
from one state to another according to the extended
UCON states illustrated in Figures 2. It can be con-
figured using an instance of the enforcement meta-
model showed in Figure 4. Initially the FSM is in
the initial state. Upon receiving a UDQ request from
the PEP, the initial-request transition is triggered and
the FSM moves to the requestCheck state. In this
state the FSM requests authorization and obligation
decisions from the PDP L1 and the PDP L2, respec-
tively. According to the corresponding rules specified
in the RequestCheckRules of the meta-model, the de-
cision points (PDP L1 and PDP l2) make their deci-
sions. Deny responses received from PDP L1 or PDP L2
trigger denyAccess transition and the FSM moves to
the denied state. On the other hand, permit responses
from both decision points trigger the permit transi-
tion and the FSM moves to the accessing state. In
the denied state FSM checks the obligation (postB)
rules specified in the DeniedRules of the meta-model
and sends a deny response to the PEP to deny the
requested access. Finally it goes back to the initial
state waiting for new session requests. This sequential
session nature of the engine make post obligations pro-
posed in this contribution enforceable, as their result
can affect future usage sessions. Similarly the rest of
the states are managed by the FSM.

• Policy decision point level 1 (PDP L1) refers to the
ADF function in our enforcement model and is repre-
sented as an XACML PDP. It is the component that
evaluates attribute related constraints (authorizations
and conditions) and renders decisions to the FSM.

129

Figure 5: Implementation architecture with finite state machine.

• Policy decision point level 2 (PDP L2) refers to the
ODF function of our enforcement model. It receives an
obligation request from the FSM and checks whether
the obligation has been fulfilled. As already men-
tioned, we classify obligations according to two factors:
The executor of the obligation (system vs. subject)
and the object controllability. The system obligations
on controllable objects do not need fulfillment check,
while other obligations must be checked. The check
can be done by transforming the obligation into a se-
quence of system actions. We describe the details of
this obligation check mechanism in next subsection.

• Event handler handles the events that trigger transi-
tions from one state to another. The transitions of a
UCON state diagram can be classified into two classes:
internal transitions indicated by dashed arrows in Fig-
ure 2 and external transitions indicated by solid-line
arrows. Internal transitions are transitions that are
triggered by internal events, while the external ones
are triggered by external events. The internal events
are the events that result from the decision responses
received form the decision points. denyAccess, permi-
tAccess, ongoingPermit and revokeAccess are examples
of internal events because they are raised according to
deny/permit decisions. All other events are consid-
ered as external events, like the usage request from
the subject, the timer trigger, and attribute updates.
The event handler entity is responsible to listen to the
external events and send trigger actions to the FSM.

• Timer handles temporal conditions. A timer can be
set by the FSM or PDP L2 and it triggers an event
through the event handler. The Timer can be used for
supporting obligations with deadlines and obligation
reevaluation.

This architecture represents the implementation model in
our PEI framework and provides full configurable continuity-

enhanced usage control enforcement engine. The FSM lever-
ages the continuity feature and orchestrates the functions of
other components during a usage session. While PDP L2
facilitates the obligation handling, the possibility to track
multi-sequential sessions makes post-obligations enforceable.
This is due to the fact that post-obligations can have impact
to future usage sessions, e.g., by declining the next usage re-
quest from the same subject or offering different quality of
services.

6.2 Design of Obligation PDP
Base on our proposed policy model, we conclude that obli-

gations are either obligations that need fulfillment check (we
call these obligations non-trusted obligations) or obligations
that do not need, which is called trusted obligations. Trusted
obligations are the ones that must be fulfilled by our trusted
system on controllable objects. We argue that this distinc-
tion is very crucial in designing the obligation PDP (the
PDP L2 in Figure 5) as these two types should be handled
differently. Trusted obligations are simply system actions
that returns permit response always. On the other hand,
we can further distinguish between instance obligations that
need instant fulfillment check, and obligations that must be
fulfilled within a specific period of time (deadline) (cf. Sec-
tion 4). An instant non-trusted obligation is treated using
PDP L2 by transforming the obligation into an ordered se-
quence of system actions that include a condition at the end.
Accordingly, the obligation decision response is created. For
example, the obligation obl1(s1,o1,provide,t0,0): that a user
s1 must provide his valid email address o1 instantly can be
transformed into the following actions (please note that the
obligation fulfillment check includes insuring that the email
address is valid): (1) check that the address is in the form
of xxx@xxx.xxx; (2) send a testing email to that address;
(3) wait for 2 minutes; (4) check the inbox of the sending
email account for new error email; (4) if an error notifica-
tion email is received which indicates that the user email
is not valid, send back deny response; (5) otherwise send

130

permit response. Similarly, obligations with deadlines can
be treated with the help of other components like the timer
and some special environmental attributes and variables.

Figure 6: Check obligation fulfillment with obliga-
tion PDP.

Figure 6 shows the proposed design of the obligation PDP.
When a request comes to the decision point, a switch sep-
arates the trusted and the non-trusted obligations. The
trusted obligations are then sent directly to the executor
for execution. The non-trusted obligations are transformed
by the transformer into a set of ordered system actions us-
ing the specific rules stored in the obligation mapping rules
repository. The list of system actions is sent to the orderer
which ensures that the actions are going to be executed by
the executor in order and finally sends the response back
according to the replies it receives from the executor. The
obligation mapping rules repository is extendable and con-
figurable that maps between the actions that the executor
can commit and the obligations that are needed for each
policy. It is important to notice that the permission check,
according to our enforcement model (cf. Section 5), whether
a subject is allowed to fulfill an obligation or not, is done by
the ADF component, i.e. PDP L1 in Figure 5.

Compensating actions that must be committed in the de-
nied or revoked states are considered system obligations (like
attribute updates) . Hence, the obligation PDP is respon-
sible for checking the fulfillment of untrusted obligations as
well as for enforcing them.

6.3 Policy Specifications
Figure 4 shows the meta-model for UCON policy that

can configure the enforcement engine. Based on this meta-
model and XACML policy specification, we have developed a
UCON policy specification. In this specification, ADF Rules
are substituted by the XACML policy set, while the ODF Rules
are represented by StateAction elements in XACML. The
following shows our developed UCON policy schema based
on the XACML schema:

<?xml version="1.0" encoding="UTF-8"?>
<schema >
<complexType name="StateActionType">
<sequence minOccurs="0">
<element ref="ucon:StateAction"/>
</sequence>
</complexType>
<element name="RevokedPolicy" type="ucon:StateActionType"/>
<element name="DeniedPolicy" type="ucon:StateActionType"/>
<element name="EndPolicy" type="ucon:StateActionType"/>
<complexType name="StatePolicy">
<sequence>

<element ref="ucon:StateAction" />
<element ref="xacml:PolicySet"/>
</sequence>
</complexType>
<element name="RequestcheckPolicy" type="ucon:StatePolicy"/>
<element name="OngoingcheckPolicy" type="ucon:StatePolicy"/>
<complexType name="UCONPolicyType">
<sequence>
<element ref="ucon:RequestcheckPolicy"/>
<element ref="ucon:OngoingcheckPolicy"/>
<element ref="ucon:DeniedPolicy"/>
<element ref="ucon:EndPolicy"/>
<element ref="ucon:RevokedPolicy"/>
</sequence>
<attribute name="UCONPolicyId" type="anyURI" use="required"/>
</complexType>
<element name="UCONPolicy" type="ucon:UCONPolicyType"/>
<element name="StateAction" type="ucon:StateActions"/>
<complexType name="StateActions">
<sequence>
<element ref="xacml:Obligations"/>
</sequence>
</complexType>

</schema>

This schema specifies all elements of a UCON policy. Specif-
ically, the UCONPolicy represents the root element of the
policy, which consists of different rules for each state. These
rules have the same name of the state with the suffix pol-
icy, e.g., the rules of requestCheck state is RequestCheck-
Policy. RequestCheckPolicy and OngoingCheckPolicy are of
StatePolicy type, which contains XACML’s PolicySet and
StateAction elements. DeniedPolicy, EndPolicy, and Re-
vokedPolicy, on the other hand, contain only StateAction
elements, which represent the obligations in the ODF Rules.

Based on this schema, a UCON policy can be created and
used to configure our developed enforcement engine, to cope
with the requirements discussed in Section 3. Due to space
limit, we omit the full XACML policy specification here.

7. CONCLUSION AND FUTURE WORK
Usage Control meets new security requirements that go

beyond the capabilities of traditional access control systems.
Such requirements are identified in eHealth in our project.
To leverage the capabilities of usage control system in real
applications, we have developed a UCON-based solution for
a secure healthcare information system by following PEI
framework. First, an extended version of UCONABC model
is proposed as a formal policy model. Secondly, a continuity-
enhanced usage control enforcement model with related spec-
ification of configuring meta-model is introduced. This model
consists of two sub-modules(ADF and ODF). The first is re-
sponsible for authorizing a subject to do some actions and
the second checks the obligation that the subject must ful-
fill. Hence, the relationship between usage/access control
and obligation is clearly defined. without subordinating any
aspect to the other, which is the case in most related work in
both areas. Finally, a proof-of-concept prototype is imple-
mented and a UCON policy schema is developed and tested
in the context of our healthcare use case. Performance eval-
uation and different use cases will be considered in future
work.

Considering the implementation model, we integrate the
PEP in the document reader application. This approach is
not flexible in real world. On other hand, the more we ap-
proach the hardware layer the more secure and trusted the
system is. Hence, designing a general PEP in kernel space
and bridging the gap between kernel and user space seman-
tics is another future research direction. Trust management

131

protocols can be investigated as well to facilitate trust estab-
lishment between remote systems. Finally, the feasibility of
using our enforcement architecture as history-based policy
engine by adding additional components for storing related
session’s information is an open issue.

8. REFERENCES
[1] [ACF]ITU-T Rec X.812 (1995) | ISO/IEC

10181-3:1996. Security frameworks for open systems:
Access control framework. Technical report, 1996.

[2] B. Agreiter, M. Alam, R. Breu, M. Hafner,
A. Pretschner, J.-P. Seifert, and X. Zhang. A technical
architecture for enforcing usage control requirements
in service-oriented architectures. In Proc. ACM
workshop on Secure web services, 2007.

[3] M. Alam, M. Hafner, M. Memon, and P. Hung.
Modeling and enforcing advanced access control
policies in healthcare systems with sectet. Mothis,
2007.

[4] C. Bettini, S. Jajodia, X. SeanWang, and
D. Wijesekera. Provisions and obligations in policy
rule management. J. Network and System Mgmt.,
2003.

[5] C. Bettini, S. Jajodia, X. Sean Wang, and
D. Wijesekera. Obligation monitoring in policy
management. IEEE 3rd Intern. Workshop on Policies
for Distributed Systems and Networks, 2002.

[6] C. Bettini, S. Jajodia, X. Sean Wang, and
D. Wijesekera. Provisions and obligations in policy
management and security applications. In Proc. of the
28th VLDB Conference ,Hong Kong, China, 2002.

[7] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The ponder policy specification language. Lecture
Notes in Computer Science, 2001.

[8] P. Gama and P. Ferreira. Obligation policies: An
enforcement platform. In Sixth IEEE International
Workshop on Policies for Distributed Systems and
Networks, 2005.

[9] P. Gama, C. Ribeiro, and P. Ferreira. A scalable
history-based policy engine. In Seventh IEEE
International Workshop on Policies for Distributed
Systems and Networks, 2006.

[10] M. Hafner, R. Mair, R. Breu, B. Agreiter,
S. Unterthiner, and T. Schabetsberger. Health@net.
Die verteilte elektronische gesundheitsakte- eine
fallstudie in modell-getriebenem security engineering.
IT-Sicherheitskongress des BSI, 2007.

[11] M. Hilty, D. Basin, and A. Pretschner. On obligations.
In Proc. of European Symposium on Research in
Computer Security, 2005.

[12] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and
T. Walter. A policy language for distributed usage
control. In Proc. of the 12th European Symposium on
Research in Computer Security, 2007.

[13] Keith Irwin, Ting Yu, and William H. Winsborogh.
On the modeling and analysis of obligations. In Proc.
of ACM Conference on Computer and
Communications Security, 2006.

[14] J. Park and R. Sandhu. The ucon abc usage control
model. ACM Transactions of Information and System
Security, 7(1):128–174, 2004.

[15] J. Park and R. Sandhu. Towards usage control models:
Beyond traditional access control. In Proc. of ACM
symposium on Access control models and technologies,
2002.

[16] J. Park, X. Zhang, and R. S. Sandhu. Attribute
mutability in usage control. In Proc. of the Annual
IFIP WG 11.3 Working Conference on Data and
Applications Security,, 2004.

[17] A. Pretschner, M. Hilty, and D. Basin. Distributed
usage control. Communication of the ACM ,
49(9):39-44, 2006.

[18] A. Pretschner, M. Hilty, F. Casati, and F. Massacci.
Usage control in service-oriented architecture. In Proc.
of the 4th Intl. Conf. on Trust, Privacy & Security in
Digital Business, 2007.

[19] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guede.
Spl: An access control language for security policies
with complex constraints. In Proc. of the Network and
Distributed System Security Symposium, 2001.

[20] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation based policy enforcement for remote
access. ACM Conference on Computer and
Communications Security, 2004.

[21] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of tcg based integrity
measurement systems. In Proc. of the 13th conference
on USENIX Security, 2004.

[22] R. Sandhu and J. Park. Usage control: A vision for
the next generation access control. Inter. Workshop on
Mathematical Methods,Models and Architectures for
Computer Networks Security, 2003.

[23] R. Sandhu, K. Ranganathan, and X. Zhang. Secure
information sharing enabled by trusted computing and
pei models. In Proc. of ACM Symposium on
Information, computer and communications security,
2006.

[24] R. Sandhu and X. Zhang. Peer-to-peer access control
architecture using trusted computing technology. In
Proc. of ACM symposium on Access control models
and technologies, 2005.

[25] S. Unterthiner, M. Hafner, R.Breu, and
T. Schabetsberger. Endpoint security in elga
architekturen. eHealth-Medical Informatics meets
eHealth. Vienna, 2007.

[26] G. Vogt. Multiple authoriztion- a model and
architecture for increased, practical security. In Proc.
of IFIP/IEEE Symposium on Integrated Network
Management, 2003.

[27] G. Yee, L. Korba, and R. Song. Ensuring privacy for
e-health services. In Proc. of The First International
Conference on Availability, Reliability and Security,
2006.

[28] X. Zhang, M. Nakae, M. J. Convington, and
R. Sandhu. A usage-based authorization framework
for collaborative computing systems. In Proc. of ACM
Symposium on Access Control Models and
Technologies, 2006.

[29] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park.
Formal model and policy specification of usage
control. ACM Transactions on Information and
System Security, 8(4):351–387, 2005.

132

