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Abstract We propose a newlastic applicatiormodel that 1 Introduction
enables seamless and transparent use of cloud resources to
augment the capability of resource-constrained mobile deApplications on smartphones traditionally are constraine
vices. The salient features of this model include the pamtit by limited resources such as low CPU frequency, small
of a single application into multiple components caleet memory, and a battery-powered computing environment.
blets and a dynamic adaptation of weblet execution configfor example, the iPhone 3G is equipped with 412MHz CPU,
uration. While a weblet can be platform independent (e.g.512MB RAM, and a battery allowing about 5 hours of talk-
Java or .Net bytecode or Python script) or platform depening time. The new Samsung Galaxy Android phone has
dent (native code), its execution location is transpareint — 528MHz CPU, 128MB RAM, and battery offering about 6.5
can be run on a mobile device or migrated to the cloud, i.e hours of talk time. Both devices have up to 7.2 Mbps 3G data
run on one or more nodes offered by an laaS provider. Thusietwork connection. Compared to today’s PC and server
an elastic application can augment the capabilities of a maplatforms, these devices still cannot run compute-intensi
bile device including computation power, storage, and netapplications such as complex media processing, search, and
work bandwidth, with the light of dynamic execution con- large-scale data management and mining.
figuration according to device’s status including CPU load, Cloud computing delivers new computing models for
memory, battery level, network connection quality, and-useboth service providers and individual consumers includ-
preferences. This paper presents the motivation behind ding infrastructure-as-a-service (laaS), platform-asensice
veloping elastic applications and their architectureudolg  (PaaS), and software-as-a-service (SaaS), which enable
typical elasticity patterns and cost models that are agplie novel IT business models such as resource-on-demand, pay-
determine the elasticity patterns. We implement a ref&@encas-you-go, and utility-computing [7]. From the perspestiv
architecture and develop a set of elastic applications to vaof service providers, cloud computing is often viewed as a
idate the augmentation capabilities for smartphone devicevast and scalable platform for service delivery. We sugaest
We demonstrate promising results of the proposed applicarew perspective, one tuned to the needs of mobile devices.
tion model using data collected from one of our examplene consider cloud computing as a means to extend or aug-
elastic applications. ment the capabilities of resource constrained devices.
There are several approaches to realize this perspective.

One approach is to duplicate the runtime environment of the
Keywords elastic application cloud computing mobile  device in the cloud and then run the application either on the
device- weblet- dynamic execution configuration device or in the cloud. The off-device runtime environment

is sometimes called a “surrogate” [19], a “clone” [10], or a

cloudlet [24]. Virtual machine technology is often used to

host and isolate the off-device runtime so making this ap-
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plications do not need any modification — the clone and th@resent a high-level description of an implemented refer-
physical device can run identical binaries. However, this a ence framework including deployment and runtime archi-
proach has disadvantages too. First, the application on thecture and software development kit (SDK) (Section 4).
clone may need to access the physical hardware on the dé/e then illustrate a set of example elastic applications de-
vice. For example, consider a GPS application or simply theeloped based on our reference architecture and cloud plat-
question of how an application running in the clone inter-form (Section 5). We show some experimental results which
acts with the user. It is certainly possible to transfer devi confirm the augmentation capabilities of our approach with
I/0 between the device and clone environment over the netollected data from an elastic image processing applicatio
work, but this may impact responsiveness and battery uséSection 6). We present some related work and oversee fur-
Secondly, simply replacing one processor with anothes failther research themes along this novel application model at
to take full advantage of cloud compute resources. ldeally, the end of this paper (Section 7 and 8).

cloud application should be able to run in a highly parallel

fashion distributed over many cloud nodes. Thirdly, com-

pletely duplicating a plevice and running it on the cloud in-2 Concepts & Elasticity Patterns

creases the complexity of device management. For example,

thg cloud system needs similar segurity proFection and da@'1 Concepts and Benefits

privacy control as those on the device since it runs all possi

ble applications with data from the original device. We define elastic applications as having two propertiest Fir

The above considerations lead us to focus on applic&ollowing the client/server split of traditional web apg-
tion level augmentation instead of cloning a complete detions, an elastic application is split or partitioned sa e
vice environment. Often these applications are data-garal ecution occurs partially on the device and partially on the
with high compute-to-communication ratio. Examples in-cloud. Previous work has proposed many mechanisms for
clude media processing, search, and data mining. Our gosplitting an application into modular components for reenot
is to design an architecture and related middleware to enabéxecution orcyber foragingpurposes, such as [8,9,12,15,
elastic applicationsvhich consist of multiple components 22,26]. For elastic devices we assume application develop-
calledweblets each of which can be launched on a mobileers can determine how to organize weblets based on their
device or in the cloud. The decision of where to launch &unctionalities and runtime behaviors such as computation
weblet is based on application configuration and/or the stademand, data dependency, and communication need, which
tus of the device such as its CPU load and battery levelve believe should be part of high-level design considenatio
Ideally the application model could also support migrationof an application. Elastic middleware should provide neces
of weblets between the device and cloud platform duringsary SDK and tools allowing developers to implement and
runtime. While offloading and delegating computing havetest their designs. A unique requirement for elastic applic
been proposed by many researchers [12,9, 19, 15], the nowons is that a weblet’s functionality should not be affetcte
elty of our approach lies in enabling flexible and optimizedpy the location or environment where it is running. Essen-
elasticity by considering multiple factors including dei tially, the location of individual weblets should be traasp
status, cloud status, application performance measumes, aent to users. One principle for partitioning applicatioss i
user preferences (e.g., different running modes of an -applihat each weblet should have minimum dependency on oth-
cation including power-saving mode, high speed mode, lovers. This is not only for robustness but decreases communi-
cost mode, offline mode, or in terms of expected applicatioation overhead between weblets during runtime.
specific modes). Second, thexecution configurationf an elastic appli-

To enable this new application model, many challengesation is not static, instead it is determined when the appli
exist in different areas, including management of heterogecation is launched and potentially modified during runtime.
neous computing environments, data management and cofidy execution configuration, we mean the assignment of ap-
munication dependencies between weblets, state synchrplication partitions to execution units (e.g., cores otuaf
nization between weblets, and cost-effective dynamic exmachines), either on the device or in the cloud. The left hand
ecution configuration. The middleware should provide in-side of Figure 1 shows some possible execution configura-
frastructure for seamless and transparent execution sf elations for an application using three weblets.
tic applications and offer convenient development support  There are several benefits that the elastic application con-
This paper first gives the concepts and typical elasticity pa cept offers to mobile users and application developers de-
terns (Section 2). We then focus on the optimization of costriving from coarse-grained application partitioning and d
effective execution configuration by considering multifale- namic configuration. First, elastic applications are nat-co
tors (Section 3), which we believe is one of the most criticalstrained by the compute capabilities of today’s mobile-plat
and unique components of the application model. We theforms and can be configured to take advantage of multiple
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Fig. 1. Execution configurations and elasticity patterns.

processing cores when available. If more compute (or stor2.2 Elasticity Patterns
age) is needed then this can be obtained from the cloud. As
devices become more powerful, compute and storage caffe now consider elastic applications and weblets in more
shift back to the device. On the other hand, mobile deviceletail. Our motivation for using weblets is that developers
compute and storage need not be designed to satisfy tleee familiar with the web application model and so can eas-
most demanding applications. Device resources can be motly transition from the client/server partitioning of wep-a
est (and less power consuming) since the more demandimgications to the more general form of partitioning found
applications can acquire resources from the cloud. From i elastic applications. Furthermore, programming meshod
performance perspective, the ability to allocate resairte used for web applications, for example AJAX and REST, are
the cloud and migrate functionality gives the device greatdapted by weblets. To see the similarities and differeotces
flexibility. For example, performance can be increased oweb applications and elastic applications, it is interestd
optimized to fit various goals (such as responsiveness, mogeompare weblets with traditional web services. We higtligh
etary cost, or power consumption). Furthermore, appticati some areas for comparison in Table 1.
components that are partitioned for migration can also be |n designing a web application, a key issue is determin-
replicated. The failure then of one instance of a replicate¢hg what logic will run on the server and what on the client.
component need not compromise the application. Also, thgor early web sites, the client was mainly used for rendering
elastic application model offers a testbed for future techand input, but now with JavaScript, AJAX, and plug-ins such
nologies of mobile devices. Applications that run on theas Flash and Silverlight, many tasks can be performed by the
cloud today can move to the device in future products. Thiglient. With elastic applications there is a similar issbiet,
greatly extends the lifetime of applications and reduces depecause several weblets can be created by a single applica-
velopment costs. tion, the topology of elastic applications is more varidd. |
appears these topologies fall into some common patterns,
what we callelasticity patternsseveral of these are shown
on the right hand side of Figure 1 and briefly summarized as
follows.



Table 1: Weblets vs. Web Services

Weblets I Web Services
HTTP (REST interface) HTTP (REST or SOAP interface)
single client many clients
client is application root or other weblet|| clients are generally browsers or other web services
short-lived & long-lived requests generally short-lived requests
dynamic endpoints (may migrate) fixed endpoints
lifetime is client dependent lifetime is client independent
runs on servers or client (cloud or devicg) runs on servers
push to client possible not available or non-standard
Replication Patterns: Pools and ShadowingWebletrepli-  activity) to the device. In some cases the splitter and aggre

cation refers to running multiple weblets with the same in-gator patterns are combined or overlaid, the splitter psishe
terface, i.e., accepting the same types of request. There arequests to the workers while the aggregator pushes events
two forms of replicationpoolsandshadowingWeblet pools  back to the device.

allow an application to leverage cloud CPU cycles and aug-

ment its throughput. With this pattern, the applicationés

requests that are routed to weblets as they become availabfe Cost Optimization for Elastic Applications

Weblet pools are well suited for applications that are eas-

ily divided into similar tasks, for example processing sets3-1 Cost Model

of images or scanning sets of files. Closely related to pools ) ] o
is shadowing in which the same request is sent to a set dihe augmented computation of an elastic application is not
replicated weblets in parallel. Shadowing can be used foiree butintroduces costs to the mobile device and userfwhic

fault tolerance and latency control. For example, shadgwindepends on when and where a weblet is running and com-
a weblet on the device with a copy on the cloud can heu;numcatlonswnhln weblets or between weblets and Internet

the application recover from loss of network connectivity o Furthermore, elastic applications can exhibit variantiroe

loss of battery power. Shadowing can also enable more fleRehaviors with dynamic execution configurations, such as
ible latency control for an application, e.g., the devica ca POWer consumption, monetary consummation, application

use the earliest response from multiple shadowed weblef€rformance, and even security and privacy propertiegefhe
on the cloud. fore, the dynamic execution configuration of an elastic ap-

plication is decided based on some cost saving objectives,
Splitter Pattern  With the splitter pattern, a set of worker \which form a cost model in our framework. As Figure 2
weblets perform variant implementations of a shared intershows, the cost model takes inputs of sensor data from both
face. For example, the workers may encapsulate adaptersd@vice and cloud sides, and runs optimizing algorithms to
access different social networks, or codecs to process diffecide execution configuration of applications. Device and
ferent media formats. The application is decoupled from thejoud related data such as battery level, network condition
various implementations by a splitter weblet that routes regevice loads, cloud loads and other performance data includ
quests to appropriate workers. This pattern increases-app|ng current latency of the application, are obtained from ap
out changing the application structure. Splitting can alse - possible actions that lead to the optimal execution config-
hance the user experience by converging multiple servic&gration for the application, such as allocating resourges o
onasingle device. Forinstance, in the case where the workgiie cloud, launching/migrating weblets on/to device and/o
weblets access different social networks, the splitterietab  ¢joq, selecting/switching between different networleint
interface provides a unified or converged interface to aganggaces, replicating and shadowing weblets on cloud, etc.
of social networking services. An important part of the cost model is choosing the at-
Aggregator Pattern An elastic application can also ag- tributes or objectives that should be optimized. We conside

gregate computations from multiple worker weblets. In thisthe following four attributes in our current elastic apphc
pattern, an aggregator weblet collects information fronrmu tion framework, while we believe new cost objectives can
tiple worker weblets and useeeblet pusho relay this in- b€ integrated easily.

formation to the device. For example, an application carPower Consumption Each application/weblet running on
run multiple weblets in the cloud as background threads tha mobile device consumes battery power by using CPU cy-
monitor the user’s web accounts (e.g., emails or instant megles, memory and radio module for communication with peer
sages), the aggregator weblet pushes events (such as aiccouablets on the cloud and/or external web services. The power



Inputs Constraints c Execution pects. In general, to optimize latency, throughput and some
Resources onfigurations i . . i
batery ovel Cost model _» Cloud application-specific options, CPU cycles and memory used
Application ‘%&) A_"O%t‘_‘io” “a Device by the weblets, along with the available network bandwidth
: Requirements migration K X A
Congﬁ;ﬂfyn\ i wiFi for communication between the device and the cloud should
; —p» 2) Connection —
device loads———— | Cost Model |-» 2) Connect @._.3G (w) be carefully evaluated.
cloud loads Goal (examples) switching Weblet pool X . o .
oo Minimize cost 3) Replication (@ ebietpoo Security and Privacy Security is increasingly concerned
errormanc imi. A . n "
...... mﬁ;:i];: p%ewrfsrrmanci - (w) in web-based computing systems. A mobile device poten-
aimize ropusiness ) shadowing - (i}~ @ tially contains many user secrets and privacy-sensitive, da
such as: contacts, SIM information, credit card details and
Fig. 2: Cost model of elastic applications. many other credentials that may be needed to consume web

services. Naturally, a mobile user may trust her device more

than the cloud platform which is controlled by a third-party
consumption of a weblet on the device heavily depends ogervice provider. As launching or migrating a weblet to the
the I/O operations it performs [28, 5, 4]. In addition, difat  cloud may also require offloading user data to the cloud, the
communication channels, such as W-CDMA, WiFi (802.11)user security and privacy concerns are even higher with an
etc., consume different power [2, 6, 3]. Considering thevabo elastic mobile device. A weblet on the device or the cloud
it is evident that although launching/migrating weblets tomay need to access external web services on behalf of the
clouds should ideally save power consumption of compuuser. For cost modeling purposes, we need to evaluate if a
tation on the device, the power consumption of network inweblet requires any user data and if the user has strong con-
terfaces may override the benefits of the migration. cerns about offloading such data to the cloud. If the user has
concerns over doing this, the weblet that requires this data

may involve a monetary cost for the application user, baseahotl::d be Iaur(ljchgd on t?e de\.?ce onlgll ‘ind n((ajvetr mlgrat_ed.
on the exact resources consumed on the platform. Usuall!/:,utr er:nore,d utrlr]:g runtlr:ne, ! t? weble net:]. Sh 0 a;qluwe
a commercial cloud service provider measures the cost of gernatuser datairomother web services, which usually re

computing task based on the amount of CPU cycles, stofluires user credentials (username/password, public key ce

age, and communication traffic (in and out) of a cloud plat_nflcate, or any other security credentials), the weblet may

form [1]. The monetary cost of a weblet running on thehave to be migrated back to the device.

cloud platform is determined by the size of the input data

consumed by the weblet (including those from peer weblets

on the device for the same application and external web

services), total execution time of the weblet on the cloud.2 Optimizing Execution Configuration

platform, data size/rate for intra-cloud communication be

tween this weblet and others within the same cloud servicgnce a cost model is developed for a particular applica-
provider (if applicable), and any other attributes thaeeff tjon, a mechanism is needed for efficient and intelligent dy-
these parameters, such as network status affecting dasa tranamic execution configuration, e.g., via some lightweight
mission rate. machine learning algorithms at the device side. In our imple

Performance Attributes As an elastic application poten- Mentation of one elastic application, we use Naive Bayesia
tially runs across different platforms, latency is an intpat ~ Learning techniques to find the optimal weblet configura-
design consideration. There are different aspects ofdgten tion (# of weblets on device and cloud), given device status
such as impact on the user experience when using the afit terms of CPU, memory and network consumption), user
plication’s Ul and network latency with different network Preference (in terms of expected # of images that should be
connections and traffic status, and the application latenc§oncurrently processed), and history data of the apptinati

to finish a particular computing task. Throughput also can As Figure 3 shows, a vectok” consists of values rep-

be an important objective for some applications. For examresenting device status components such as the upload band-
ple, an application that does image analysis to find similawidth, throughput, power level, memory usage and file cache.
pictures from a large database needs maximum throughpui.vector ‘z’ consists of values representing user’s preferred
To achieve this, the heavy computing tasks are launchesktting for cost objectives including monetary cost, power
or migrated to the cloud, although there is a tradeoff beconsumption, and processing speed. The configuration vari-
tween doing this and the data communication overhead: toable ‘4’ has values from 1 toN (max number of possible
much communication may slow down the overall applica-configurations), where each value maps to a specific config-
tion throughput. Given this, building a good performanceuration pair. Given all these data, the following expressio
model is more challenging than power and monetary assan be applied to determine the most optimal configuration.

Monetary Cost Execution of a weblet on a cloud platform



be used to specify any requirements and constraints for the
application and the individual weblets, such as: the digita
sighature needed to download/migrate the weblets, require
ments for compute power, network and storage, time limits
for weblet execution, maximum instances of the weblet that
In the above expressiom; is the i-th status compo- can be launched on the device and the cloud, if a weblet can
nent value that can have different number of states for eage launched/migrated to the cloud and specifics about han-
component and; is a j-th preference component, where gjing data required/generated by the application/weklets
i€{1,2,---,L}andj € {1,2,---, M}, with L and M On the device side, the key component is the device
representing the number of components in the status VeCt@lasticity manager (DEM) which is responsible for config-
and the number of components in the preference vector, reging applications at launch time and making configuration
spectively. changes during run time. The configuration of an applica-
tion includes: where the application’s components (weablet
are located, whether or not components are replicated or

L M
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4 Reference Implementation

Elastic Device

4.1 Reference Architecture Fig. 4: Reference architecture for elastic application.

To experiment with this new application model, we have de-
veloped a reference framework including application bun-
dle, architecture, and some example elastic applications. The cloud elasticity service (CES) consists of the cloud
framework works with Amazon EC2 and S3. Figure 4 showamanager, application manager, and sensing information col
the main functional components. lection. The cloud manager is responsible for allocating re
In our current framework design, a typical elastic ap-sources from, and releasing to, underlying cloud nodes. It
plication consists of a Ul component, one or more webletsinaintains usage information, including compute, bandwidt
and a manifest. Weblets are autonomous software entitiend storage, for the various weblets running on the cloud.
that run either on the device or cloud and expose RESTfulhe application manager provides functions to install and
web service interfaces via HTTP. The manifest is a statienaintain applications on behalf of elastic devices, angsel
XML file that contains metadata for the application. It couldlaunch weblets on different cloud nodes. Sensing informa-



bles an embedded or dedicated web server and presents a
web service interface (i.e., it is accessed via HTTP). In our
N Cre:ale Send SDK, an abstract class calledbst r act Wbl et is de-
Reauest | |7 fined to represent the core behavior of weblets. Other spe-
! cific types of weblets can be implemented as subclasses of
Abst ract Webl et and extend its methods as required. Each
weblet is associated with a weblet type and identified thihoug
Die a unigue id. Once an application has defined one or more
Pause for migrate weblet types, it can use the DEM to create instances (i.e., to
create specific weblets) and issues requests to these seblet
We describe below the core interfaces supported by DEM
and illustrate how to create and communicate with a weblet.

AppRoot

Resume after migrate
(from saved state)

Fig. 5: Lifecycle of a weblet. A weblet is always created by create a webletin order to create a weblet, two param-

the AppRoot , and can be in state unni ng, Paused,  eters are required including: the type of the weblet and a

orTer m nat ed. call back function to invoke when the weblet is created.
For example, the following code creates a weblet of type

tion refers to the collection of operational data on the dlou M/ Vbl et Type:

platform. These data are made available to the cloud man-  Cr eat eWebl et (" MyWebl et Type",
ager to assist it in trackipg usage. In addition to. applorati OnCr eat eMyWebl et ) :
performance data, sensing may collect information on cloud

architecture, failures of various forms, and resourcelavai Send a request to a wehiét request can be sent to a weblet
ability. As a service provider, the CES exports a web servichSing theSendViebl et Request interface. The interface

r(_eferred to as Fhe _cloud fabric interface (CFI) to elastic derequires the following parameters: the weblet to which the
vices and applications. A node manager on each cloud noqgquest is to be sent, the actual request (query string) to be

oversees resources associated with a particular nod@(serVgent ang a callback function that is invoked when a reply is
within the cloud. It communicates directly with the cloud ..o ed Belowis sample code to achieve this:

manager and application manager. Each node runs one or
more weblet containers which are the weblet runtime envi- SendVeébl et Request (w, " Request Query",

ronments hosted on an Amazon EC2 instance. OnM/Webl et Repl y) ;

Receive a response from a webMthen the DEM receives
4.2 SDK Development a response from a weblet it invokes the callback function

indicated by the requestor along with request. With this, th
We have implemented a preliminary SDK based on the refrequestor only needs to implement the call back function
erence architecture, which is used to develop the basic iRg receive the reply. For example, in continuation with the
terfaces of weblets in our example applications. Using thigyxample given above, the DEM would invoke the following

SDK as a base, developers can build elastic applications iynction to convey the reply to the application:
high-level languages such as JavaScript, Java, and C#. Cur-
OnMyWebl et Repl y(w, reply);

rently the SDK has C# bindings; however it is easy to extend
it to other languages. The DEM can decide to migrate a running weblet from

A typical elastic application includesAppRoot com- the device to the cloud or vice-versa; weblet migration is
ponent and one or more weblets. TAgpRoot is the part transparent to the application. When a weblet is running on
of the application that provides the user interface and isdevice and the DEM decides to migrate it to a cloud node,
sues requests to weblets. All of these are packaged into otiee DEM issues #ause request to the weblet, this causes
bundle, which includes the binaries of weblets and a manthe weblet to close its request interface, release ressurce
ifest describing the application, and most importantlg th and save state. The DEM then sends the saved state to the
developer-signed hash values of the individual weblets. Fi cloud via the CFI. After the state has been transferred to
ure 5 shows a state diagram illustrating the lifecycle of ahe cloud, the weblet is resumed and restores itself from the
weblet, including the various states that a weblet can be isaved state. The CFl returns the new connection information
and the actions that cause the state transitions. A weblet fer the weblet (e.g., IP address, port, and session tokens) t
an independent functional unit of an application that is cathe DEM so that the DEM may continue to route requests to
pable of compute, storage, and networking tasks. It resenthe weblet on cloud.



5 Elastic Applications
To demonstrate the glaspc ap_phcatmn model, we have de- App on Device /
veloped several applications with our SDK and deployed on (Analysis & Filtering of // 7’

the reference architecture with Amazon EC2. This section Images) Z
explains the design and elasticity patterns of these sample -
applications, aiming to provide the abstract principle ef d
signing elastic applications in general.

i

ElasticlP App

ImageWeblet

Fig. 7: Weblet topology of elastic image processing.
5.1 Elastic Image Processing

The simplest is an image processing application in whictuser. The weblet is replicated on the device and the cloud,
various filtering operations are applied to set of imagek. Fo as and when required. The total number of weblet instances
lowing the replication pattern, a weblet pool is createdhen t spawned depends on the load specified and the user specified
cloud; images are then processed in parallel by pool memlue for number of weblets in the cloud.

bers. The application can adjust the size of the pool, so it

is possible to compare throughputs for different execution

configurations. The application supports 3 workloads (num-

ber of images to process). Load 1 has 1 image, load 2 has, E|astic Augmented Reality: Object Identification and

4 images, and load 3 has 16 images. The images are 24-hikp|acement

color images of size 240 x 360. Figure 6 shows a snapshot

when the application is running on a Samsung Galaxy smai{ second example is a form of augmented reality (AR) in
phone with Android 1.6. which real-world objects are detected and enhanced. This
application runs tracking and rendering on the device and
uses the splitter pattern with a set of matcher weblets on
the cloud. Each matcher searches for different objectsmvith
video frames. The splitter collects information on ideatifi
objects and relays this to the device for rendering. By run-
ning the matchers in the cloud, many more objects can be
detected (per unit time) than when the application rung full
on the device.

A snapshot of this application is shown in Figure 8. On
a high level, the application works as follows. First, the im
age/video frame from the mobile device camera is captured,
and the feature points for the image in the frame are ex-
tracted. With these feature points, planar objects are then
identified, by matching the extracted feature points to¢hos
of known planar objects in a database. The recognized pla-
nar object is then used to select a replacement image in the
user’s choice of language. Finally, the replacementimage i
provided to the device and is overlaid on top of the current

The application implements many of the elastic applicaimage. For this scenario, the users are able to specify the
tion concepts described in the previous sections and enablianguage of choice for the user and the number of weblets
the user to do the following through the Ul: (1) Specify if to run on the cloud through the Ul. This augmented reality
the device is online (i.e., if it should make use of the cloudapplication would consist of three types of weblets, asillu
to run weblets); (2) specify the number of weblets to run ortrated in Figure 9: The first type of weblekr(acker ) per-
the cloud; (3) specify the kind of filtering to be done on theforms feature extraction on the live feed; the second type of
images; and (4) specify the load or the number of images tweblet (vat cher ) matches extracted features with images
process concurrently. in a database. As this is a compute-intensive task, multiple

This image processing application consists of only onenstances of this weblet type are spawned on the cloud; and
type of weblet [mageVebl et ), as shown in Figure 7. Its the third type of webletQonposi t or ) performs the image
functionality is to perform image filtering as specified bg th replacements on the device.

Fig. 6: Snapshot of elastic image processing application.
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Fig. 9: Weblet topology of elastic AR: object identification

and replacement.

POls and information about the number of people in their
proximity are overlaid on the user’s screen.
5.3 Elastic Augmented Reality: Augmented Video Figure 11 shows the weblet topology of this application,
which consists of four types of weblets. The first type of
Our third sample application is another elastic AR applicaweplet (User Tr acker ) identifies the position and direc-
tion which enables an augmented video scenario, where ifon of the user. The second type of weblBo{ Moni t or
a user visiting a building (e.g., a technology expo or a muandcr owdNbni t or ) collects device information and cal-
seum) is able to seamlessly access information about poinggates the number of people near the POIs. Multiple in-
ofinterest (POls)/demos in the area. When the user holds Uances of this weblet type are spawned on the cloud. The
his phone camera, information about points of interestén thnjrd type of weblet Poi Fi | t er ) determines the POIs in
area (title, description of demos and the number of people ifhe yser's vicinity and field of camera view. The fourth type
the demo area) is overlaid on the camera view, represented weplet Conposi t or ) overlays the information about
using different types of icons and labels. the POls on the device’s screen.
Figure 10 shows the snapshot of the application when
running on Samsung Galaxy. When running, the applica-
tion obtains the accelerometer, compass and GPS readingsEExperimental Validation
from the phone thus the current position and direction of
the user are identified. The application then obtains a listVe validate the elasticity of our framework by using the
of POls/demos in the target area by submitting its locatioraforementioned image processing application as benchmark
information to a web service interface running on cloud.This application consists of only one type of weblet called
The web service also collects the number of people nedrmageVWebl et . Its functionality is to perform image fil-
each POI, which would be done periodically by monitoringtering with an algorithm specified by the user. The weblet
the location/coordinates of people in the target area tjinou is replicated on the device and the cloud, as and when re-
their devices; After these, the POIs near the user’s positioquired. The total number of weblet instances spawned de-
and within the camera’s field of view are determined, and thgpends on application load and the number of weblets in the
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Fig. 12: Experiment configuration for elastic image progegsapplication.

cloud, both specified by the user. The application Ul enableBguration, the data was collected 20 times and the average
the user to do the following configurations during runtime:values were considered for final comparisons.
online (can launch weblet at cloud) or offline (all weblets ar

running on the device) mode of the application, number of

weblets to run on the cloud (if in online mode), the filtering CEET)

algorithm to be used, and the number of images (workloac A G @7 @44

to process at the same time. The images used in by the e
periment are 24-bit color with size 240 x 360.

il NED (4.6)

The goal of our validation is to compare the performance
of an elastic device (ED) and a non-elastic device (NED!
running the same image processing application. Figure 1
shows an overview of the demo configuration and syster
setup. For the elastic device, the application uses anuséo )
cloud comprising of 8 Linux boxes. A non-elastic version ) ofigoratons = t# of tace Weblets.# of Cloud Wemiets)
of the application is also running independently in order
to compare it with the elastic version. Essentially, the-non Fig. 13: Throughputs vs. configurations
elastic version uses only the device to run weblets, whereas
the elastic version uses both the device and the in-house
cloud. The setup also includes PCs to host the CFl and a per-
formance monitor application. The CFl is implemented with
PHP scripts on a Linux server with Apache and MySQL. 100 NED 26) R CEON IR,
(1.8) (1,15) (214

Average Throughput (tiles/sec)
‘ s

The performance monitor collects several measuremen 80
including the available upload/download bandwidth (KBjse
application workload (number of images to be processec
and throughput (the number of image tiles processed/sec
average CPU usage (%), and available memory (MB), fron
the test device and from the cloud. In addition, it also main
tains information about the total number of weblets starte«
for the application and the individual number of weblets-run 8

: : 1) (1.0) 20) 30 @0
ning on the device and the cloud. Configurations = (# of Device Weblets, # of Cloud Weblets)

0,8)
(0,16

401

Average CPU usage (%)

20

Each configuration has a unique composition of device Fig. 14: CPU usage vs. configurations

weblets and cloud weblets. We set the maximum number

of weblets as 16 and consequently, more than 100 different

configurations are possible. The configuration specifying 1  Figure 13 shows the performance of the elastic device
device weblet & 0 cloud weblets is considered the defaulbver 74 configurations. In comparison with the throughput
configuration for the non-elastic device. Among all possi-of about 6 tiles/sec for the default/non-elastic devicefigen
ble configurations, we chose the 74 configurations where theration (1 device weblet, 0 cloud weblets), the throughputs
number of device weblets is less than or equal to 4 (due tof all other configurations are better. We can observe tleat th
limitations with CPU utilization) for analysis. For eachnco  throughput for the configuration with 0 device weblet and 16
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400 7 Related Work

NED
/

7.1 Execution offloading

The elastic model builds on previous work in the areas of
remote execution and application offloading. Cyber forag-
ing [26,9,8,19]is a common approach explored by many to
augment the capability of resource-constrained mobile de-
vices. The basic idea is to dynamically discover and make

use of nearby resources, aka surrogates, to offload the exe-
S T . NN S cution of an application or parts of an application running
on a mobile device. Compared to these approaches, elastic
application model has more flexible deployment patterns to
parallelize tasks on multiple remote cores.

CloneCloud takes the approach of cloning the entire
cloud weblets has the highest throughput among the 74 comser’s mobile device environment on a remote server. Appli-
figurations tested. The configuration with 16 device webletgations can then be quickly restarted on or migrated to the
has the best performance, as there are a total of 16 imagegmote machine when the user’s machine is running low on
in load 3. A surprising observation is that the configuratiorresources [10]. Similar virtual machine-based approach is
with 8 weblets performed better than configurations with 9-used by cloudlet [24]. As mentioned in Section 1, our elas-
15 weblets (a result of internal application logic). This in tic application model offloads computing tasks in more fine-
dicates that an intelligent weblet scheduling is essemtial grained level such that it leverages the parallel computing
identify the most efficient weblet configuration. advantage of cloud resources.

CPU usage is more predictable overall, in that more de- Some resea_rch .Work e>_<tend gxisting programming lan-
vice weblets lead to more CPU usage. However, the trend439€ ano_l appl.lca_uon runtime middleware to transform ap-
is interesting when comparing the number of device Wephcat.lons into distributed sy,stem_s [12,_15,22].Adgp®fe_
blets. For configurations with up to 2 device weblets, run_f!oadmg _[12] Ievergges Java's objector.lent.ed design m-!(?le
ning more cloud weblets leads to more CPU usage. For cofily Possible partitions for a \?a.wa. apphcgnon and modified
figurations with 3 and 4 device weblets, a general trend i€"€ JVM to support such partitioning. Coign [15] makes use
that running more cloud weblets reduces the CPU usage. ER; the Iocatpn tr.anspa_\rency supported by COM and con-
combining CPU usage data in Figure 14 with the throughy‘,erts an appllc.a'uo_n built from _COM components into a ,d's'
put data in Figure 13, we are able to identify the Conﬁg_tnbutable application. R—OS_Gl [2_2] extends the centealiz _
urations that lead to low CPU usage and high throughpuf.m)dl_“_e management functlona!lty su_ppqrted by the OSGi
for instance, configurations (0,2), (0,3) and (0,4) havesiow spemﬂgaﬂ_on to enable an O$G| appllc_anon to be tr_an;pz_;\r-
CPU usage (than that of a non-elastic device) and higheqn_tly d|s_tr|buted across multlple machines. The main limi-
throughput. This results in more available CPU cycles foriation with these approaches is that they are tied to one par-

other applications and improves multi-tasking capabiti ticular language or specification and hence not suitabla for

wide range of applications. Compared to these approaches,

Figure 15 shows interesting but not easily comprehensis - nronosed elastic application model is programming lan-

ble results regarding the available memory versus conﬁgurzbuage independent, and can be extended to many existing
tions. Certain configuration such as (0,1), (0,2), (0,30)1 application middleware.

(1.1), (1'2?' (2,0), (2.1), (2.2), (3,0), (3,1), .and (.4'@\"3 Virtual machine migration [20,27] and VM-based
much available memory. Most of the configurations have, o dlet [24] are complementary approaches to enable users

only up to 4 total weblets and using only the device We+q geamessly access their applications and data across mul

blets consumed only a little memory up to 4 device webletsyy e ang heterogeneous devices in general. It also enables

Meanwhile, other configurations up to (3, 13) have similar,se(g to instantly continue/restore an application on a dif

available memory, but there is significant variation bemwee o ot device, when their current machine is running low on
(4,1) and (4,12). It is not clear why the system behaves that,qq,rces

way, but it could be related to cache operations and mem-

ory paginations. This will need further investigationsnGo

bining this result with Figure 13 can lead to a memory-7.2 Cost-aware configuration

constrained optimal configuration. Of course, it would also

be conceivable to find a good configuration constrained oithere have been literatures dealing with configuration meth
both memory and CPU. ods based on resource estimation. In [18,25], a resource-

Average available memory (MBytes)

Fig. 15: Available memory vs. configurations
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aware configuration method decides the configuration baseti Conclusions and Future Work

on user’s quality of service requirement, resource and ser-

vice availability, and application fidelity as a functionref ~ We propose an elastic application programming model aim-

sources. It tries to maximize a product-based utility funcing to remove the constraints of specific mobile platforms

tion so that the aggregate resource demand cannot exceley providing a distributed framework that extends the de-

the resource supply. A machine learning approach is introvice into the cloud. The salient feature of this model is that

duced in [33] to capture the complex nonlinear relationshipt offers a range of elasticity patterns between resouree co

between resource properties and computing power. It prestrained devices and Internet-based clouds. Each pattern i

vides resource selection for a job in Grid scheduling to havéurn can be realized by several execution configurations. A

the maximum utility of CPU. However, these works are notcomprehensive cost model is used to dynamically adjust ex-

specifically targeted for remote execution on mobile deszice ecution configurations thus optimizing application perfor

The tactics-based remote execution in [9] aims to select theance in terms of a set of objectives. We present the high

best tactic, the useful knowledge about an application: reldevel design of elasticity framework and primitive experi-

vant to remote execution, using resource prediction and remental results with an example application.

source monitoring. It tries to maximize the latency-figelit

metric in the tactic selection. In [11], a similar work is pro

posed, using a product-based decision criterion for remot8.1 Future Work

execution. It considers only three metrics of executioretim

energy usage, and fidelity. There are aspects of this work that need further research ef-

forts. We highlight some of them at the end of this paper.

Narayane}n etal. [2:,[] use historical qpplication IloggingData and State Synchronization As aforementioned in

data to predicate the fidelity of an application, which de- o elasticity patterns, weblets of a single applicatioryma

cides its resource consumption. However, in this work, onlyg 6 application data and state. For example, different we
aspects of device hardware and application inputs are CoRjeis may require the same data from the device for their in-
sidered. In our cost model, we consider more comprehens, ;o they may update the same data during runtime. Since
sive factors not only on device side, but also on cloud sidey epets run in different locations, it is desirable to repli
Uniquely, we incorporates user preferences in terms of COglye gata to increase performance, but then data integiity a
o_bjectives. Gurun_ e_t al. _[14] exten_d the netW(_)rk Weathgr Sersynchronization become issues. Alternatively, data ssoich
vice (NWS) toolkit in grid computing to predict offloading, nization can be explicitly performance by applications, or

which can be leveraged as an implementation I”r‘ech"’“"'Sm1plicitly by framework architecture and transparent te ap

for our cost model. plications. In the first case, an elastic application hamdle
its own data management including storage and synchro-
T . nization between device and cloud nodes. The advantage
ence engine is introduced to solve when to trigger adap- L S
; ) s o Is flexibility: a user or application developer can selee th
tive offloading and how to partition an application. How- : .

data storage mechanism on the cloud. However, this leaves

ever, the decision criterion is based only upon the memory .
o . . data access handling to developers, and the user may need
not considering multiple factors. Our approach provides an

L " L . to manually initiate synchronization during runtime. Ireth
optimized elasticity by considering multiple factors astso architecture-based anproach. application data are .
including device status, Cloud status/usage, applicat@rn PP » 8PP '

and synchronized by the elasticity architecture, suchtbeat
formance measures, and user preference to the cost factors. ~ ™" . .
applications are not aware of data location. APIs can be de-

Comparing with these approaches our work is based Oﬁped to access (read and write) data yia mi_ddleware, wh_ich
the assumption that cloud has huge resources, thus reledide the details of data management including synchroniza-
ing the resource estimation requirement in the cloud frontion and backup. This releases the burden of data manage-
the decision of weblet scheduling. There are some literaMent from application developers, while heterogeneotss dat
tures regarding cost analysis on the cloud side-only. Thétora_\ge mechamsr_ns at device and cloud side give challenges
tradeoffs between the cloud computing and desktop grid® Middleware design.
are provided in [16]. The total cost of ownership and utdiza Communication between weblets In our reference archi-
tion cost is introduced in [17] to evaluate the economic effi-tecture, weblet requests are initiated on the device side an
ciency of the Cloud. A workload balancing approach [31] iscan propagate to the cloud to be passed from one cloud we-
proposed between public Cloud and private Cloud for costblet to another (as in thgplitter patterr). To support more
saving. In [29], the monetary cost of leasing CPU time fromflexible elasticity patterns, a mechanism is needed to allow
commercial Clouds is compared with that of purchasing an@ cloud-residing weblet to invoke requests of device we-
using a server cluster of equivalent capability. blets. This problem becomes challenging when the device is

In [13], a Fuzzy Control model-based offloading infer-
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mobile, it may switch between different network channelsmunicates. The state should also ensure that the physical lo
e.g., between WiFi or 3G network, or even between differentation of the new weblet does not affect existing communi-

wireless network providers, and it may be running behindation channels between other weblets and external parties
a firewall or using NAT. Communication beyond organiza-For this purpose, a routing-like mechanism should be pro-
tion boundaries is another challenging issue to be solved. | vided by the architecture and supported by the middleware.
creasingly smartphones run enterprise applications amd coA weblet can then have some well-known name for use by
nect to intranet servers. Typically VPN software is ingtdll the application, while the binding between the name and a
on these devices. How to enable secure and flexible conphysical weblet entry point (e.g., a URL) is dynamic.

munications between weblets on enterprise-owned mobilgr,st and security The elastic application model and mid-
devices and cloud servers needs further research efforts. gjeware should provide a mechanism to authenticate we-
Media channel between webletsAlthough HTTP is light-  blets belonging to a single application. Authenticatiothes
weight and flexible, and is used in our reference architecprerequisite to building secure communication between we-
ture and example applications, it is not a good option foblets. Also, session management is essential, especially w
media streaming or distributed visual processing betweehlet behaviors at cloud side should be accounted, e.g., to
device and cloud. Tasks requiring significant processing ogive the mobile user the resource usage and cost of the ap-
data storage, such as visual object recognition or renglerirplication. In our reference architecture, we have designed
complex 3D models, can be performed in the cloud rathea lightweight protocol to distribute shared secrets and ses
than on the device. However for cloud computing to be usedion keys between weblets for mutual authentication pur-
in highly interactive and visually rich applications, teas  poses [32]. Beyond this, there are some challenging prob-
a need for a high-speed and low-latency transfer method fdems for elastic applications. First of all, a mobile usezae
structured visual data between the device and cloud. For exrust to launch weblets on a public cloud, especially when
ample, consider a 3D game where some scene elements dhe computation and network traffic incur monetary bills to
rendered on the cloud and then sent, along with camera artlde user. This demands that the computing environments in
depth information, to the device for mixing with locally ren the cloud should be verifiable by a user or a trusted party,
dered elements. Early work in this direction includes framee.qg., to ensure there is no hidden or even malicious code run-
oriented 2D graphics protocols (e.g., RDP, RFB, VNC), pro-hing beside weblets. Similarly, the quality of service from
tocols for remote rendering of 3D graphics (e.g., X11 exteneloud providers should be verifiable. Furthermore, a mobile
sions for OpenGL) and protocols for encoding segmentedser should be assured that the weblets running in the cloud
video (MPEG4). Generally these protocols involve a generi@are the ones that she has installed and their integrity can be
decoder, i.e., no application-specific logic is requiraddie-  verified via trusted mechanisms. We believe that extending
code and display. For situations where application logic ighe trusted computing base (TCB) of the mobile device to
split between the device and the cloud, and visual processome necessary but minimum cloud service is necessary to
ing takes place on both sides, new protocols are needed satisfy these security requirements [23].

exchange partially rendered and partially processed data.
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