
Noname manuscript No.
(will be inserted by the editor)

Towards an Elastic Application Model for Augmenting the Computing
Capabilities of Mobile Devices with Cloud Computing

Xinwen Zhang · Anugeetha Kunjithapatham · Sangoh Jeong· Simon Gibbs

Received: date / Accepted: date

Abstract We propose a newelastic applicationmodel that
enables seamless and transparent use of cloud resources to
augment the capability of resource-constrained mobile de-
vices. The salient features of this model include the partition
of a single application into multiple components calledwe-
blets, and a dynamic adaptation of weblet execution config-
uration. While a weblet can be platform independent (e.g.,
Java or .Net bytecode or Python script) or platform depen-
dent (native code), its execution location is transparent –it
can be run on a mobile device or migrated to the cloud, i.e.,
run on one or more nodes offered by an IaaS provider. Thus,
an elastic application can augment the capabilities of a mo-
bile device including computation power, storage, and net-
work bandwidth, with the light of dynamic execution con-
figuration according to device’s status including CPU load,
memory, battery level, network connection quality, and user
preferences. This paper presents the motivation behind de-
veloping elastic applications and their architecture including
typical elasticity patterns and cost models that are applied to
determine the elasticity patterns. We implement a reference
architecture and develop a set of elastic applications to val-
idate the augmentation capabilities for smartphone devices.
We demonstrate promising results of the proposed applica-
tion model using data collected from one of our example
elastic applications.
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1 Introduction

Applications on smartphones traditionally are constrained
by limited resources such as low CPU frequency, small
memory, and a battery-powered computing environment.
For example, the iPhone 3G is equipped with 412MHz CPU,
512MB RAM, and a battery allowing about 5 hours of talk-
ing time. The new Samsung Galaxy Android phone has
528MHz CPU, 128MB RAM, and battery offering about 6.5
hours of talk time. Both devices have up to 7.2 Mbps 3G data
network connection. Compared to today’s PC and server
platforms, these devices still cannot run compute-intensive
applications such as complex media processing, search, and
large-scale data management and mining.

Cloud computing delivers new computing models for
both service providers and individual consumers includ-
ing infrastructure-as-a-service (IaaS), platform-as-a-service
(PaaS), and software-as-a-service (SaaS), which enable
novel IT business models such as resource-on-demand, pay-
as-you-go, and utility-computing [7]. From the perspective
of service providers, cloud computing is often viewed as a
vast and scalable platform for service delivery. We suggesta
new perspective, one tuned to the needs of mobile devices.
We consider cloud computing as a means to extend or aug-
ment the capabilities of resource constrained devices.

There are several approaches to realize this perspective.
One approach is to duplicate the runtime environment of the
device in the cloud and then run the application either on the
device or in the cloud. The off-device runtime environment
is sometimes called a “surrogate” [19], a “clone” [10], or a
cloudlet [24]. Virtual machine technology is often used to
host and isolate the off-device runtime so making this ap-
proach fit well with emerging IaaS platforms such as Ama-
zon EC2 [1]. Running a device clone in the cloud has some
attractive properties such as enhanced CPU and memory re-
sources which lead to better performance. Furthermore, ap-
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plications do not need any modification – the clone and the
physical device can run identical binaries. However, this ap-
proach has disadvantages too. First, the application on the
clone may need to access the physical hardware on the de-
vice. For example, consider a GPS application or simply the
question of how an application running in the clone inter-
acts with the user. It is certainly possible to transfer device
I/O between the device and clone environment over the net-
work, but this may impact responsiveness and battery use.
Secondly, simply replacing one processor with another fails
to take full advantage of cloud compute resources. Ideally,a
cloud application should be able to run in a highly parallel
fashion distributed over many cloud nodes. Thirdly, com-
pletely duplicating a device and running it on the cloud in-
creases the complexity of device management. For example,
the cloud system needs similar security protection and data
privacy control as those on the device since it runs all possi-
ble applications with data from the original device.

The above considerations lead us to focus on applica-
tion level augmentation instead of cloning a complete de-
vice environment. Often these applications are data-parallel
with high compute-to-communication ratio. Examples in-
clude media processing, search, and data mining. Our goal
is to design an architecture and related middleware to enable
elastic applicationswhich consist of multiple components
calledweblets, each of which can be launched on a mobile
device or in the cloud. The decision of where to launch a
weblet is based on application configuration and/or the sta-
tus of the device such as its CPU load and battery level.
Ideally the application model could also support migration
of weblets between the device and cloud platform during
runtime. While offloading and delegating computing have
been proposed by many researchers [12,9,19,15], the nov-
elty of our approach lies in enabling flexible and optimized
elasticity by considering multiple factors including device
status, cloud status, application performance measures, and
user preferences (e.g., different running modes of an appli-
cation including power-saving mode, high speed mode, low
cost mode, offline mode, or in terms of expected application
specific modes).

To enable this new application model, many challenges
exist in different areas, including management of heteroge-
neous computing environments, data management and com-
munication dependencies between weblets, state synchro-
nization between weblets, and cost-effective dynamic ex-
ecution configuration. The middleware should provide in-
frastructure for seamless and transparent execution of elas-
tic applications and offer convenient development support.
This paper first gives the concepts and typical elasticity pat-
terns (Section 2). We then focus on the optimization of cost-
effective execution configuration by considering multiplefac-
tors (Section 3), which we believe is one of the most critical
and unique components of the application model. We then

present a high-level description of an implemented refer-
ence framework including deployment and runtime archi-
tecture and software development kit (SDK) (Section 4).
We then illustrate a set of example elastic applications de-
veloped based on our reference architecture and cloud plat-
form (Section 5). We show some experimental results which
confirm the augmentation capabilities of our approach with
collected data from an elastic image processing application
(Section 6). We present some related work and oversee fur-
ther research themes along this novel application model at
the end of this paper (Section 7 and 8).

2 Concepts & Elasticity Patterns

2.1 Concepts and Benefits

We define elastic applications as having two properties. First,
following the client/server split of traditional web applica-
tions, an elastic application is split or partitioned so that ex-
ecution occurs partially on the device and partially on the
cloud. Previous work has proposed many mechanisms for
splitting an application into modular components for remote
execution orcyber foragingpurposes, such as [8,9,12,15,
22,26]. For elastic devices we assume application develop-
ers can determine how to organize weblets based on their
functionalities and runtime behaviors such as computation
demand, data dependency, and communication need, which
we believe should be part of high-level design consideration
of an application. Elastic middleware should provide neces-
sary SDK and tools allowing developers to implement and
test their designs. A unique requirement for elastic applica-
tions is that a weblet’s functionality should not be affected
by the location or environment where it is running. Essen-
tially, the location of individual weblets should be transpar-
ent to users. One principle for partitioning applications is
that each weblet should have minimum dependency on oth-
ers. This is not only for robustness but decreases communi-
cation overhead between weblets during runtime.

Second, theexecution configurationof an elastic appli-
cation is not static, instead it is determined when the appli-
cation is launched and potentially modified during runtime.
By execution configuration, we mean the assignment of ap-
plication partitions to execution units (e.g., cores or virtual
machines), either on the device or in the cloud. The left hand
side of Figure 1 shows some possible execution configura-
tions for an application using three weblets.

There are several benefits that the elastic application con-
cept offers to mobile users and application developers de-
riving from coarse-grained application partitioning and dy-
namic configuration. First, elastic applications are not con-
strained by the compute capabilities of today’s mobile plat-
forms and can be configured to take advantage of multiple
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Fig. 1: Execution configurations and elasticity patterns.

processing cores when available. If more compute (or stor-
age) is needed then this can be obtained from the cloud. As
devices become more powerful, compute and storage can
shift back to the device. On the other hand, mobile device
compute and storage need not be designed to satisfy the
most demanding applications. Device resources can be mod-
est (and less power consuming) since the more demanding
applications can acquire resources from the cloud. From a
performance perspective, the ability to allocate resources in
the cloud and migrate functionality gives the device great
flexibility. For example, performance can be increased or
optimized to fit various goals (such as responsiveness, mon-
etary cost, or power consumption). Furthermore, application
components that are partitioned for migration can also be
replicated. The failure then of one instance of a replicated
component need not compromise the application. Also, the
elastic application model offers a testbed for future tech-
nologies of mobile devices. Applications that run on the
cloud today can move to the device in future products. This
greatly extends the lifetime of applications and reduces de-
velopment costs.

2.2 Elasticity Patterns

We now consider elastic applications and weblets in more
detail. Our motivation for using weblets is that developers
are familiar with the web application model and so can eas-
ily transition from the client/server partitioning of web ap-
plications to the more general form of partitioning found
in elastic applications. Furthermore, programming methods
used for web applications, for example AJAX and REST, are
adapted by weblets. To see the similarities and differencesof
web applications and elastic applications, it is interesting to
compare weblets with traditional web services. We highlight
some areas for comparison in Table 1.

In designing a web application, a key issue is determin-
ing what logic will run on the server and what on the client.
For early web sites, the client was mainly used for rendering
and input, but now with JavaScript, AJAX, and plug-ins such
as Flash and Silverlight, many tasks can be performed by the
client. With elastic applications there is a similar issue,but
because several weblets can be created by a single applica-
tion, the topology of elastic applications is more varied. It
appears these topologies fall into some common patterns,
what we callelasticity patterns, several of these are shown
on the right hand side of Figure 1 and briefly summarized as
follows.
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Table 1: Weblets vs. Web Services

Weblets Web Services

HTTP (REST interface) HTTP (REST or SOAP interface)
single client many clients
client is application root or other weblet clients are generally browsers or other web services
short-lived & long-lived requests generally short-lived requests
dynamic endpoints (may migrate) fixed endpoints
lifetime is client dependent lifetime is client independent
runs on servers or client (cloud or device) runs on servers
push to client possible not available or non-standard

Replication Patterns: Pools and ShadowingWeblet repli-
cation refers to running multiple weblets with the same in-
terface, i.e., accepting the same types of request. There are
two forms of replication:poolsandshadowing. Weblet pools
allow an application to leverage cloud CPU cycles and aug-
ment its throughput. With this pattern, the application issues
requests that are routed to weblets as they become available.
Weblet pools are well suited for applications that are eas-
ily divided into similar tasks, for example processing sets
of images or scanning sets of files. Closely related to pools
is shadowing in which the same request is sent to a set of
replicated weblets in parallel. Shadowing can be used for
fault tolerance and latency control. For example, shadowing
a weblet on the device with a copy on the cloud can help
the application recover from loss of network connectivity or
loss of battery power. Shadowing can also enable more flex-
ible latency control for an application, e.g., the device can
use the earliest response from multiple shadowed weblets
on the cloud.

Splitter Pattern With the splitter pattern, a set of worker
weblets perform variant implementations of a shared inter-
face. For example, the workers may encapsulate adapters to
access different social networks, or codecs to process dif-
ferent media formats. The application is decoupled from the
various implementations by a splitter weblet that routes re-
quests to appropriate workers. This pattern increases appli-
cation extensibility since new worker weblets are added with-
out changing the application structure. Splitting can alsoen-
hance the user experience by converging multiple services
on a single device. For instance, in the case where the worker
weblets access different social networks, the splitter weblet’s
interface provides a unified or converged interface to a range
of social networking services.

Aggregator Pattern An elastic application can also ag-
gregate computations from multiple worker weblets. In this
pattern, an aggregator weblet collects information from mul-
tiple worker weblets and usesweblet pushto relay this in-
formation to the device. For example, an application can
run multiple weblets in the cloud as background threads that
monitor the user’s web accounts (e.g., emails or instant mes-
sages), the aggregator weblet pushes events (such as account

activity) to the device. In some cases the splitter and aggre-
gator patterns are combined or overlaid, the splitter pushes
requests to the workers while the aggregator pushes events
back to the device.

3 Cost Optimization for Elastic Applications

3.1 Cost Model

The augmented computation of an elastic application is not
free but introduces costs to the mobile device and user, which
depends on when and where a weblet is running and com-
munications within weblets or between weblets and Internet.
Furthermore, elastic applications can exhibit variant runtime
behaviors with dynamic execution configurations, such as
power consumption, monetary consummation, application
performance, and even security and privacy properties. There-
fore, the dynamic execution configuration of an elastic ap-
plication is decided based on some cost saving objectives,
which form a cost model in our framework. As Figure 2
shows, the cost model takes inputs of sensor data from both
device and cloud sides, and runs optimizing algorithms to
decide execution configuration of applications. Device and
cloud related data such as battery level, network conditions,
device loads, cloud loads and other performance data includ-
ing current latency of the application, are obtained from ap-
propriate sensing modules. The output of the cost model is
possible actions that lead to the optimal execution config-
uration for the application, such as allocating resources on
the cloud, launching/migrating weblets on/to device and/or
cloud, selecting/switching between different network inter-
faces, replicating and shadowing weblets on cloud, etc.

An important part of the cost model is choosing the at-
tributes or objectives that should be optimized. We consider
the following four attributes in our current elastic applica-
tion framework, while we believe new cost objectives can
be integrated easily.

Power Consumption Each application/weblet running on
a mobile device consumes battery power by using CPU cy-
cles, memory and radio module for communication with peer
weblets on the cloud and/or external web services. The power
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Fig. 2: Cost model of elastic applications.

consumption of a weblet on the device heavily depends on
the I/O operations it performs [28,5,4]. In addition, different
communication channels, such as W-CDMA, WiFi (802.11)
etc., consume different power [2,6,3]. Considering the above,
it is evident that although launching/migrating weblets to
clouds should ideally save power consumption of compu-
tation on the device, the power consumption of network in-
terfaces may override the benefits of the migration.

Monetary Cost Execution of a weblet on a cloud platform
may involve a monetary cost for the application user, based
on the exact resources consumed on the platform. Usually,
a commercial cloud service provider measures the cost of a
computing task based on the amount of CPU cycles, stor-
age, and communication traffic (in and out) of a cloud plat-
form [1]. The monetary cost of a weblet running on the
cloud platform is determined by the size of the input data
consumed by the weblet (including those from peer weblets
on the device for the same application and external web
services), total execution time of the weblet on the cloud
platform, data size/rate for intra-cloud communication be-
tween this weblet and others within the same cloud service
provider (if applicable), and any other attributes that affect
these parameters, such as network status affecting data trans-
mission rate.

Performance Attributes As an elastic application poten-
tially runs across different platforms, latency is an important
design consideration. There are different aspects of latency,
such as impact on the user experience when using the ap-
plication’s UI and network latency with different network
connections and traffic status, and the application latency
to finish a particular computing task. Throughput also can
be an important objective for some applications. For exam-
ple, an application that does image analysis to find similar
pictures from a large database needs maximum throughput.
To achieve this, the heavy computing tasks are launched
or migrated to the cloud, although there is a tradeoff be-
tween doing this and the data communication overhead: too
much communication may slow down the overall applica-
tion throughput. Given this, building a good performance
model is more challenging than power and monetary as-

pects. In general, to optimize latency, throughput and some
application-specific options, CPU cycles and memory used
by the weblets, along with the available network bandwidth
for communication between the device and the cloud should
be carefully evaluated.

Security and Privacy Security is increasingly concerned
in web-based computing systems. A mobile device poten-
tially contains many user secrets and privacy-sensitive data,
such as: contacts, SIM information, credit card details and
many other credentials that may be needed to consume web
services. Naturally, a mobile user may trust her device more
than the cloud platform which is controlled by a third-party
service provider. As launching or migrating a weblet to the
cloud may also require offloading user data to the cloud, the
user security and privacy concerns are even higher with an
elastic mobile device. A weblet on the device or the cloud
may need to access external web services on behalf of the
user. For cost modeling purposes, we need to evaluate if a
weblet requires any user data and if the user has strong con-
cerns about offloading such data to the cloud. If the user has
concerns over doing this, the weblet that requires this data
should be launched on the device only and never migrated.
Furthermore, during runtime, if a weblet needs to acquire
external user data from other web services, which usually re-
quires user credentials (username/password, public key cer-
tificate, or any other security credentials), the weblet may
have to be migrated back to the device.

3.2 Optimizing Execution Configuration

Once a cost model is developed for a particular applica-
tion, a mechanism is needed for efficient and intelligent dy-
namic execution configuration, e.g., via some lightweight
machine learning algorithms at the device side. In our imple-
mentation of one elastic application, we use Naı̈ve Bayesian
Learning techniques to find the optimal weblet configura-
tion (# of weblets on device and cloud), given device status
(in terms of CPU, memory and network consumption), user
preference (in terms of expected # of images that should be
concurrently processed), and history data of the application.

As Figure 3 shows, a vector ‘x’ consists of values rep-
resenting device status components such as the upload band-
width, throughput, power level, memory usage and file cache.
A vector ‘z’ consists of values representing user’s preferred
setting for cost objectives including monetary cost, power
consumption, and processing speed. The configuration vari-
able ‘y’ has values from 1 toN (max number of possible
configurations), where each value maps to a specific config-
uration pair. Given all these data, the following expression
can be applied to determine the most optimal configuration.
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y∗ = argmax
y

p(y)

L∏

i=1

p(xi|y)

M∏

j=1

p(zj |y) (1)

In the above expression,xi is the i-th status compo-
nent value that can have different number of states for each
component andzj is a j-th preference component, where
i ∈ {1, 2, · · · , L} andj ∈ {1, 2, · · · ,M}, with L andM
representing the number of components in the status vector
and the number of components in the preference vector, re-
spectively.
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Fig. 3: Weblet scheduling through Machine Learning tech-
niques.

Note that it is relatively easy to determine dynamic con-
figurations in this application since it has only one type of
weblet. For a general application with multiple types of we-
blets, each having different runtime behaviors, the optimiza-
tion can be very complex and the computation itself may
override the cost savings. Considering that an elastic appli-
cation can be installed and executed by many users on sim-
ilar devices, a service-oriented cost optimization implemen-
tation can save computation cost for the device.

4 Reference Implementation

4.1 Reference Architecture

To experiment with this new application model, we have de-
veloped a reference framework including application bun-
dle, architecture, and some example elastic applications.Our
framework works with Amazon EC2 and S3. Figure 4 shows
the main functional components.

In our current framework design, a typical elastic ap-
plication consists of a UI component, one or more weblets,
and a manifest. Weblets are autonomous software entities
that run either on the device or cloud and expose RESTful
web service interfaces via HTTP. The manifest is a static
XML file that contains metadata for the application. It could

be used to specify any requirements and constraints for the
application and the individual weblets, such as: the digital
signature needed to download/migrate the weblets, require-
ments for compute power, network and storage, time limits
for weblet execution, maximum instances of the weblet that
can be launched on the device and the cloud, if a weblet can
be launched/migrated to the cloud and specifics about han-
dling data required/generated by the application/webletsetc.

On the device side, the key component is the device
elasticity manager (DEM) which is responsible for config-
uring applications at launch time and making configuration
changes during run time. The configuration of an applica-
tion includes: where the application’s components (weblets)
are located, whether or not components are replicated or
shadowed (e.g., for reliability purposes), and the selection
of paths used for communication with weblets (e.g., WiFi or
3G if such a choice exists). The router passes requests from
UI components to weblets. It insulates the UI logic from
weblet location. When a weblet is migrated, the router will
be aware of the new location and will continue passing re-
quests from the UI to the weblet (and passing replies back
to the UI). Each device also provides sensing data from the
device such as processor type, utilization, and battery state.
This data is made available to the elasticity manager and is
used to determine when and where a new weblet instance
should be launched.
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Fig. 4: Reference architecture for elastic application.

The cloud elasticity service (CES) consists of the cloud
manager, application manager, and sensing information col-
lection. The cloud manager is responsible for allocating re-
sources from, and releasing to, underlying cloud nodes. It
maintains usage information, including compute, bandwidth
and storage, for the various weblets running on the cloud.
The application manager provides functions to install and
maintain applications on behalf of elastic devices, and helps
launch weblets on different cloud nodes. Sensing informa-
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tion refers to the collection of operational data on the cloud
platform. These data are made available to the cloud man-
ager to assist it in tracking usage. In addition to application
performance data, sensing may collect information on cloud
architecture, failures of various forms, and resource avail-
ability. As a service provider, the CES exports a web service,
referred to as the cloud fabric interface (CFI) to elastic de-
vices and applications. A node manager on each cloud node
oversees resources associated with a particular node (server)
within the cloud. It communicates directly with the cloud
manager and application manager. Each node runs one or
more weblet containers which are the weblet runtime envi-
ronments hosted on an Amazon EC2 instance.

4.2 SDK Development

We have implemented a preliminary SDK based on the ref-
erence architecture, which is used to develop the basic in-
terfaces of weblets in our example applications. Using this
SDK as a base, developers can build elastic applications in
high-level languages such as JavaScript, Java, and C#. Cur-
rently the SDK has C# bindings; however it is easy to extend
it to other languages.

A typical elastic application includes aAppRoot com-
ponent and one or more weblets. TheAppRoot is the part
of the application that provides the user interface and is-
sues requests to weblets. All of these are packaged into one
bundle, which includes the binaries of weblets and a man-
ifest describing the application, and most importantly, the
developer-signed hash values of the individual weblets. Fig-
ure 5 shows a state diagram illustrating the lifecycle of a
weblet, including the various states that a weblet can be in
and the actions that cause the state transitions. A weblet is
an independent functional unit of an application that is ca-
pable of compute, storage, and networking tasks. It resem-

bles an embedded or dedicated web server and presents a
web service interface (i.e., it is accessed via HTTP). In our
SDK, an abstract class calledAbstractWeblet is de-
fined to represent the core behavior of weblets. Other spe-
cific types of weblets can be implemented as subclasses of
AbstractWebletand extend its methods as required. Each
weblet is associated with a weblet type and identified through
a unique id. Once an application has defined one or more
weblet types, it can use the DEM to create instances (i.e., to
create specific weblets) and issues requests to these weblets.
We describe below the core interfaces supported by DEM
and illustrate how to create and communicate with a weblet.

Create a weblet: In order to create a weblet, two param-
eters are required including: the type of the weblet and a
call back function to invoke when the weblet is created.
For example, the following code creates a weblet of type
MyWebletType:

CreateWeblet("MyWebletType",

OnCreateMyWeblet);

Send a request to a weblet: A request can be sent to a weblet
using theSendWebletRequest interface. The interface
requires the following parameters: the weblet to which the
request is to be sent, the actual request (query string) to be
sent, and a callback function that is invoked when a reply is
received. Below is sample code to achieve this:

SendWebletRequest(w, "RequestQuery",

OnMyWebletReply);

Receive a response from a weblet: When the DEM receives
a response from a weblet it invokes the callback function
indicated by the requestor along with request. With this, the
requestor only needs to implement the call back function
to receive the reply. For example, in continuation with the
example given above, the DEM would invoke the following
function to convey the reply to the application:

OnMyWebletReply(w, reply);

The DEM can decide to migrate a running weblet from
the device to the cloud or vice-versa; weblet migration is
transparent to the application. When a weblet is running on
device and the DEM decides to migrate it to a cloud node,
the DEM issues aPause request to the weblet, this causes
the weblet to close its request interface, release resources
and save state. The DEM then sends the saved state to the
cloud via the CFI. After the state has been transferred to
the cloud, the weblet is resumed and restores itself from the
saved state. The CFI returns the new connection information
for the weblet (e.g., IP address, port, and session tokens) to
the DEM so that the DEM may continue to route requests to
the weblet on cloud.
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5 Elastic Applications

To demonstrate the elastic application model, we have de-
veloped several applications with our SDK and deployed on
the reference architecture with Amazon EC2. This section
explains the design and elasticity patterns of these sample
applications, aiming to provide the abstract principle of de-
signing elastic applications in general.

5.1 Elastic Image Processing

The simplest is an image processing application in which
various filtering operations are applied to set of images. Fol-
lowing the replication pattern, a weblet pool is created on the
cloud; images are then processed in parallel by pool mem-
bers. The application can adjust the size of the pool, so it
is possible to compare throughputs for different execution
configurations. The application supports 3 workloads (num-
ber of images to process). Load 1 has 1 image, load 2 has
4 images, and load 3 has 16 images. The images are 24-bit
color images of size 240 x 360. Figure 6 shows a snapshot
when the application is running on a Samsung Galaxy smart
phone with Android 1.6.

Fig. 6: Snapshot of elastic image processing application.

The application implements many of the elastic applica-
tion concepts described in the previous sections and enables
the user to do the following through the UI: (1) Specify if
the device is online (i.e., if it should make use of the cloud
to run weblets); (2) specify the number of weblets to run on
the cloud; (3) specify the kind of filtering to be done on the
images; and (4) specify the load or the number of images to
process concurrently.

This image processing application consists of only one
type of weblet (ImageWeblet), as shown in Figure 7. Its
functionality is to perform image filtering as specified by the
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ImageWeblet n 

ImageWeblet 2 

… 

ImageWeblet 

App on Device 
(Analysis & Filtering of 

images) 

Fig. 7: Weblet topology of elastic image processing.

user. The weblet is replicated on the device and the cloud,
as and when required. The total number of weblet instances
spawned depends on the load specified and the user specified
value for number of weblets in the cloud.

5.2 Elastic Augmented Reality: Object Identification and
Replacement

A second example is a form of augmented reality (AR) in
which real-world objects are detected and enhanced. This
application runs tracking and rendering on the device and
uses the splitter pattern with a set of matcher weblets on
the cloud. Each matcher searches for different objects within
video frames. The splitter collects information on identified
objects and relays this to the device for rendering. By run-
ning the matchers in the cloud, many more objects can be
detected (per unit time) than when the application runs fully
on the device.

A snapshot of this application is shown in Figure 8. On
a high level, the application works as follows. First, the im-
age/video frame from the mobile device camera is captured,
and the feature points for the image in the frame are ex-
tracted. With these feature points, planar objects are then
identified, by matching the extracted feature points to those
of known planar objects in a database. The recognized pla-
nar object is then used to select a replacement image in the
user’s choice of language. Finally, the replacement image is
provided to the device and is overlaid on top of the current
image. For this scenario, the users are able to specify the
language of choice for the user and the number of weblets
to run on the cloud through the UI. This augmented reality
application would consist of three types of weblets, as illus-
trated in Figure 9: The first type of weblet (Tracker) per-
forms feature extraction on the live feed; the second type of
weblet (Matcher) matches extracted features with images
in a database. As this is a compute-intensive task, multiple
instances of this weblet type are spawned on the cloud; and
the third type of weblet (Compositor) performs the image
replacements on the device.
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Fig. 8: Snapshot of elastic AR: object identification and re-
placement.
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Fig. 9: Weblet topology of elastic AR: object identification
and replacement.

5.3 Elastic Augmented Reality: Augmented Video

Our third sample application is another elastic AR applica-
tion which enables an augmented video scenario, where in
a user visiting a building (e.g., a technology expo or a mu-
seum) is able to seamlessly access information about points
of interest (POIs)/demos in the area. When the user holds up
his phone camera, information about points of interest in the
area (title, description of demos and the number of people in
the demo area) is overlaid on the camera view, represented
using different types of icons and labels.

Figure 10 shows the snapshot of the application when
running on Samsung Galaxy. When running, the applica-
tion obtains the accelerometer, compass and GPS readings
from the phone thus the current position and direction of
the user are identified. The application then obtains a list
of POIs/demos in the target area by submitting its location
information to a web service interface running on cloud.
The web service also collects the number of people near
each POI, which would be done periodically by monitoring
the location/coordinates of people in the target area through
their devices; After these, the POIs near the user’s position
and within the camera’s field of view are determined, and the

Fig. 10: Snapshot of elastic AR: augmented video
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Fig. 11: Weblet topology of elastic AR: augmented video.

POIs and information about the number of people in their
proximity are overlaid on the user’s screen.

Figure 11 shows the weblet topology of this application,
which consists of four types of weblets. The first type of
weblet (UserTracker) identifies the position and direc-
tion of the user. The second type of weblet (PoiMonitor
andCrowdMonitor) collects device information and cal-
culates the number of people near the POIs. Multiple in-
stances of this weblet type are spawned on the cloud. The
third type of weblet (PoiFilter) determines the POIs in
the user’s vicinity and field of camera view. The fourth type
of weblet (Compositor) overlays the information about
the POIs on the device’s screen.

6 Experimental Validation

We validate the elasticity of our framework by using the
aforementioned image processing application as benchmark.
This application consists of only one type of weblet called
ImageWeblet. Its functionality is to perform image fil-
tering with an algorithm specified by the user. The weblet
is replicated on the device and the cloud, as and when re-
quired. The total number of weblet instances spawned de-
pends on application load and the number of weblets in the
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Fig. 12: Experiment configuration for elastic image processing application.

cloud, both specified by the user. The application UI enables
the user to do the following configurations during runtime:
online (can launch weblet at cloud) or offline (all weblets are
running on the device) mode of the application, number of
weblets to run on the cloud (if in online mode), the filtering
algorithm to be used, and the number of images (workload)
to process at the same time. The images used in by the ex-
periment are 24-bit color with size 240 x 360.

The goal of our validation is to compare the performance
of an elastic device (ED) and a non-elastic device (NED)
running the same image processing application. Figure 12
shows an overview of the demo configuration and system
setup. For the elastic device, the application uses an in-house
cloud comprising of 8 Linux boxes. A non-elastic version
of the application is also running independently in order
to compare it with the elastic version. Essentially, the non-
elastic version uses only the device to run weblets, whereas
the elastic version uses both the device and the in-house
cloud. The setup also includes PCs to host the CFI and a per-
formance monitor application. The CFI is implemented with
PHP scripts on a Linux server with Apache and MySQL.

The performance monitor collects several measurements,
including the available upload/download bandwidth (KB/sec),
application workload (number of images to be processed)
and throughput (the number of image tiles processed/sec),
average CPU usage (%), and available memory (MB), from
the test device and from the cloud. In addition, it also main-
tains information about the total number of weblets started
for the application and the individual number of weblets run-
ning on the device and the cloud.

Each configuration has a unique composition of device
weblets and cloud weblets. We set the maximum number
of weblets as 16 and consequently, more than 100 different
configurations are possible. The configuration specifying 1
device weblet & 0 cloud weblets is considered the default
configuration for the non-elastic device. Among all possi-
ble configurations, we chose the 74 configurations where the
number of device weblets is less than or equal to 4 (due to
limitations with CPU utilization) for analysis. For each con-

figuration, the data was collected 20 times and the average
values were considered for final comparisons.
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Fig. 14: CPU usage vs. configurations

Figure 13 shows the performance of the elastic device
over 74 configurations. In comparison with the throughput
of about 6 tiles/sec for the default/non-elastic device config-
uration (1 device weblet, 0 cloud weblets), the throughputs
of all other configurations are better. We can observe that the
throughput for the configuration with 0 device weblet and 16
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Fig. 15: Available memory vs. configurations

cloud weblets has the highest throughput among the 74 con-
figurations tested. The configuration with 16 device weblets
has the best performance, as there are a total of 16 images
in load 3. A surprising observation is that the configuration
with 8 weblets performed better than configurations with 9-
15 weblets (a result of internal application logic). This in-
dicates that an intelligent weblet scheduling is essentialto
identify the most efficient weblet configuration.

CPU usage is more predictable overall, in that more de-
vice weblets lead to more CPU usage. However, the trend
is interesting when comparing the number of device we-
blets. For configurations with up to 2 device weblets, run-
ning more cloud weblets leads to more CPU usage. For con-
figurations with 3 and 4 device weblets, a general trend is
that running more cloud weblets reduces the CPU usage. By
combining CPU usage data in Figure 14 with the through-
put data in Figure 13, we are able to identify the config-
urations that lead to low CPU usage and high throughput:
for instance, configurations (0,2), (0,3) and (0,4) have lower
CPU usage (than that of a non-elastic device) and higher
throughput. This results in more available CPU cycles for
other applications and improves multi-tasking capabilities.

Figure 15 shows interesting but not easily comprehensi-
ble results regarding the available memory versus configura-
tions. Certain configuration such as (0,1), (0,2), (0,3), (1,0),
(1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), and (4,0) have
much available memory. Most of the configurations have
only up to 4 total weblets and using only the device we-
blets consumed only a little memory up to 4 device weblets.
Meanwhile, other configurations up to (3, 13) have similar
available memory, but there is significant variation between
(4,1) and (4,12). It is not clear why the system behaves that
way, but it could be related to cache operations and mem-
ory paginations. This will need further investigations. Com-
bining this result with Figure 13 can lead to a memory-
constrained optimal configuration. Of course, it would also
be conceivable to find a good configuration constrained on
both memory and CPU.

7 Related Work

7.1 Execution offloading

The elastic model builds on previous work in the areas of
remote execution and application offloading. Cyber forag-
ing [26,9,8,19] is a common approach explored by many to
augment the capability of resource-constrained mobile de-
vices. The basic idea is to dynamically discover and make
use of nearby resources, aka surrogates, to offload the exe-
cution of an application or parts of an application running
on a mobile device. Compared to these approaches, elastic
application model has more flexible deployment patterns to
parallelize tasks on multiple remote cores.

CloneCloud takes the approach of cloning the entire
user’s mobile device environment on a remote server. Appli-
cations can then be quickly restarted on or migrated to the
remote machine when the user’s machine is running low on
resources [10]. Similar virtual machine-based approach is
used by cloudlet [24]. As mentioned in Section 1, our elas-
tic application model offloads computing tasks in more fine-
grained level such that it leverages the parallel computing
advantage of cloud resources.

Some research work extend existing programming lan-
guage and application runtime middleware to transform ap-
plications into distributed systems [12,15,22]. AdaptiveOf-
floading [12] leverages Java’s object oriented design to iden-
tify possible partitions for a Java application and modified
the JVM to support such partitioning. Coign [15] makes use
of the location transparency supported by COM and con-
verts an application built from COM components into a dis-
tributable application. R-OSGi [22] extends the centralized
module management functionality supported by the OSGi
specification to enable an OSGi application to be transpar-
ently distributed across multiple machines. The main limi-
tation with these approaches is that they are tied to one par-
ticular language or specification and hence not suitable fora
wide range of applications. Compared to these approaches,
our proposed elastic application model is programming lan-
guage independent, and can be extended to many existing
application middleware.

Virtual machine migration [20,27] and VM-based
cloudlet [24] are complementary approaches to enable users
to seamlessly access their applications and data across mul-
tiple and heterogeneous devices in general. It also enables
users to instantly continue/restore an application on a dif-
ferent device, when their current machine is running low on
resources.

7.2 Cost-aware configuration

There have been literatures dealing with configuration meth-
ods based on resource estimation. In [18,25], a resource-
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aware configuration method decides the configuration based
on user’s quality of service requirement, resource and ser-
vice availability, and application fidelity as a function ofre-
sources. It tries to maximize a product-based utility func-
tion so that the aggregate resource demand cannot exceed
the resource supply. A machine learning approach is intro-
duced in [33] to capture the complex nonlinear relationship
between resource properties and computing power. It pro-
vides resource selection for a job in Grid scheduling to have
the maximum utility of CPU. However, these works are not
specifically targeted for remote execution on mobile devices.
The tactics-based remote execution in [9] aims to select the
best tactic, the useful knowledge about an application rele-
vant to remote execution, using resource prediction and re-
source monitoring. It tries to maximize the latency-fidelity
metric in the tactic selection. In [11], a similar work is pro-
posed, using a product-based decision criterion for remote
execution. It considers only three metrics of execution time,
energy usage, and fidelity.

Narayanan et al. [21] use historical application logging
data to predicate the fidelity of an application, which de-
cides its resource consumption. However, in this work, only
aspects of device hardware and application inputs are con-
sidered. In our cost model, we consider more comprehen-
sive factors not only on device side, but also on cloud side.
Uniquely, we incorporates user preferences in terms of cost
objectives. Gurun et al. [14] extend the network weather ser-
vice (NWS) toolkit in grid computing to predict offloading,
which can be leveraged as an implementation mechanism
for our cost model.

In [13], a Fuzzy Control model-based offloading infer-
ence engine is introduced to solve when to trigger adap-
tive offloading and how to partition an application. How-
ever, the decision criterion is based only upon the memory,
not considering multiple factors. Our approach provides an
optimized elasticity by considering multiple factors as costs,
including device status, Cloud status/usage, applicationper-
formance measures, and user preference to the cost factors.

Comparing with these approaches our work is based on
the assumption that cloud has huge resources, thus releas-
ing the resource estimation requirement in the cloud from
the decision of weblet scheduling. There are some litera-
tures regarding cost analysis on the cloud side-only. The
tradeoffs between the cloud computing and desktop grids
are provided in [16]. The total cost of ownership and utiliza-
tion cost is introduced in [17] to evaluate the economic effi-
ciency of the Cloud. A workload balancing approach [31] is
proposed between public Cloud and private Cloud for cost-
saving. In [29], the monetary cost of leasing CPU time from
commercial Clouds is compared with that of purchasing and
using a server cluster of equivalent capability.

8 Conclusions and Future Work

We propose an elastic application programming model aim-
ing to remove the constraints of specific mobile platforms
by providing a distributed framework that extends the de-
vice into the cloud. The salient feature of this model is that
it offers a range of elasticity patterns between resource con-
strained devices and Internet-based clouds. Each pattern in
turn can be realized by several execution configurations. A
comprehensive cost model is used to dynamically adjust ex-
ecution configurations thus optimizing application perfor-
mance in terms of a set of objectives. We present the high
level design of elasticity framework and primitive experi-
mental results with an example application.

8.1 Future Work

There are aspects of this work that need further research ef-
forts. We highlight some of them at the end of this paper.

Data and State Synchronization As aforementioned in
the elasticity patterns, weblets of a single application may
share application data and state. For example, different we-
blets may require the same data from the device for their in-
put, or they may update the same data during runtime. Since
weblets run in different locations, it is desirable to repli-
cate data to increase performance, but then data integrity and
synchronization become issues. Alternatively, data synchro-
nization can be explicitly performance by applications, or
implicitly by framework architecture and transparent to ap-
plications. In the first case, an elastic application handles
its own data management including storage and synchro-
nization between device and cloud nodes. The advantage
is flexibility: a user or application developer can select the
data storage mechanism on the cloud. However, this leaves
data access handling to developers, and the user may need
to manually initiate synchronization during runtime. In the
architecture-based approach, application data are duplicated
and synchronized by the elasticity architecture, such thatthe
applications are not aware of data location. APIs can be de-
fined to access (read and write) data via middleware, which
hide the details of data management including synchroniza-
tion and backup. This releases the burden of data manage-
ment from application developers, while heterogeneous data
storage mechanisms at device and cloud side give challenges
to middleware design.

Communication between weblets In our reference archi-
tecture, weblet requests are initiated on the device side and
can propagate to the cloud to be passed from one cloud we-
blet to another (as in thesplitter pattern). To support more
flexible elasticity patterns, a mechanism is needed to allow
a cloud-residing weblet to invoke requests of device we-
blets. This problem becomes challenging when the device is
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mobile, it may switch between different network channels,
e.g., between WiFi or 3G network, or even between different
wireless network providers, and it may be running behind
a firewall or using NAT. Communication beyond organiza-
tion boundaries is another challenging issue to be solved. In-
creasingly smartphones run enterprise applications and con-
nect to intranet servers. Typically VPN software is installed
on these devices. How to enable secure and flexible com-
munications between weblets on enterprise-owned mobile
devices and cloud servers needs further research efforts.

Media channel between webletsAlthough HTTP is light-
weight and flexible, and is used in our reference architec-
ture and example applications, it is not a good option for
media streaming or distributed visual processing between
device and cloud. Tasks requiring significant processing or
data storage, such as visual object recognition or rendering
complex 3D models, can be performed in the cloud rather
than on the device. However for cloud computing to be used
in highly interactive and visually rich applications, there is
a need for a high-speed and low-latency transfer method for
structured visual data between the device and cloud. For ex-
ample, consider a 3D game where some scene elements are
rendered on the cloud and then sent, along with camera and
depth information, to the device for mixing with locally ren-
dered elements. Early work in this direction includes frame-
oriented 2D graphics protocols (e.g., RDP, RFB, VNC), pro-
tocols for remote rendering of 3D graphics (e.g., X11 exten-
sions for OpenGL) and protocols for encoding segmented
video (MPEG4). Generally these protocols involve a generic
decoder, i.e., no application-specific logic is required for de-
code and display. For situations where application logic is
split between the device and the cloud, and visual process-
ing takes place on both sides, new protocols are needed to
exchange partially rendered and partially processed data.

Weblet migration Code and computation migration is a
traditional problem in many systems [9,30]. To enhance the
mobile user experience, our model supports migration with-
out the need to migrate code. During installation of elas-
tic applications, the code used by weblets is installed on
both the device and the cloud. When a weblet is required
to migrate from device to cloud, a new weblet instance is
allocated on a cloud node, and the runtime state is copied
from the device weblet to this new weblet. We believe this
state migration is more efficient than migrating a weblet’s
memory image and state information. To support this type
of migration, a weblet is not migrated when in an arbitrary
state. Instead the weblet closes any pending requests and
then saves state information in preparation for transfer. After
migration the weblet loads the saved state and resumes its
operation. With this approach, the specification and repre-
sentation of a weblet state are critical. Basically, the state in-
formation should include the current task status, its working
data, and handles to any other weblets with which it com-

municates. The state should also ensure that the physical lo-
cation of the new weblet does not affect existing communi-
cation channels between other weblets and external parties.
For this purpose, a routing-like mechanism should be pro-
vided by the architecture and supported by the middleware.
A weblet can then have some well-known name for use by
the application, while the binding between the name and a
physical weblet entry point (e.g., a URL) is dynamic.

Trust and security The elastic application model and mid-
dleware should provide a mechanism to authenticate we-
blets belonging to a single application. Authentication isthe
prerequisite to building secure communication between we-
blets. Also, session management is essential, especially we-
blet behaviors at cloud side should be accounted, e.g., to
give the mobile user the resource usage and cost of the ap-
plication. In our reference architecture, we have designed
a lightweight protocol to distribute shared secrets and ses-
sion keys between weblets for mutual authentication pur-
poses [32]. Beyond this, there are some challenging prob-
lems for elastic applications. First of all, a mobile user needs
trust to launch weblets on a public cloud, especially when
the computation and network traffic incur monetary bills to
the user. This demands that the computing environments in
the cloud should be verifiable by a user or a trusted party,
e.g., to ensure there is no hidden or even malicious code run-
ning beside weblets. Similarly, the quality of service from
cloud providers should be verifiable. Furthermore, a mobile
user should be assured that the weblets running in the cloud
are the ones that she has installed and their integrity can be
verified via trusted mechanisms. We believe that extending
the trusted computing base (TCB) of the mobile device to
some necessary but minimum cloud service is necessary to
satisfy these security requirements [23].
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