
Architectural Support of Multiple Hypervisors over Single
Platform for Enhancing Cloud Computing Security

Weidong Shi
University of Houston

Houston, TX 77004, USA
larryshi@ymail.com

JongHyuk Lee
University of Houston

Houston, TX 77004, USA
jonghyuk.lee@daum.net

Taeweon Suh
Korea University

Seoul, South Korea
suhtw@korea.ac.kr

Dong Hyuk Woo
Intel Labs

Santa Clara, CA 95054, USA
dong.hyuk.woo@intel.com

Xinwen Zhang
Huawei America R&D Center
Santa Clara, CA 95050, USA

xinwenzhang@gmail.com

ABSTRACT
This paper presents MultiHype, a novel architecture that
supports multiple hypervisors (or virtual machine monitors)
on a single physical platform by leveraging many-core based
cloud-on-chip architecture. A MultiHype platform consists
of a control plane and multiple hypervisors created on-demand,
each can further create multiple guest virtual machines. Sup-
ported at architectural level, a single platform using Multi-
Hype can behave as a distributed system with each hypervi-
sor and its virtual machines running independently and con-
currently. As a direct consequence, vulnerabilities of one hy-
pervisor or its guest virtual machine can be confined within
its own domain, which makes the platform more resilient to
malicious attacks and failures in a cloud environment. To-
wards defending against resource exhaustion attacks, Mul-
tiHype further implements a new cache eviction policy and
memory management scheme for preventing resource mo-
nopolization on shared cache, and defending against denial
of resource exploits on physical memory resource launched
from malicious virtual machines on shared platform. We use
Bochs emulator and cycle based x86 simulation to evaluate
the effectiveness and performance of MultiHype.

Categories and Subject Descriptors
D.4 [Operating Systems]

Keywords
Virtualization, Architecture, Security, Scalability

1. INTRODUCTION
Cloud computing is emerging as a viable alternative to

premise-based deployment of hardware and software sys-
tems. The economy of scale and elasticity offered by cloud
computing has garnered rapid adoption for increasingly dy-
namic and competitive business climate. As a consequence,
cloud computing is quickly altering the landscape of the in-
formation technology service industry. Virtualization plays
a critical role in cloud computing by multiplexing the re-
sources and computing power of a single platform to mul-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’12, May 15–17, 2012, Cagliari, Italy.
Copyright 2012 ACM 978-1-4503-1215-8/12/05 ...$10.00.

tiple logical platforms. The development of virtualization
technology has turned traditional software into virtual appli-
ances and allows software and their execution environment
to be rapidly deployed and delivered as services in ways that
are both massively scalable and elastic. According to IDC’s
analysis, cloud services will be in the order of $44.2bn in
2013 [8].

Virtualization has existed long before the emergence of
cloud computing. However, with the light of recent advance
on low cost many-core processors, virtualization has made
cloud computing economically viable. Specifically, many-
core processors have increased virtualization density to the
point where large numbers of virtual servers can be ran con-
currently on a single physical server. In foreseeable future,
the number of processor cores in a single processor will con-
tinue to double steadily [11]. Therefore, we will reach the era
of hyperscale virtual server consolidation where hundreds or
even thousands of virtual servers can be packed on a single
many-core based physical server. This will enable virtual-
ization based computing at epic scale.

On the other side, although cloud computing holds great
potential and promises, security is one of the main chal-
lenges and deficiencies in today’s cloud environment. Not
surprisingly, the characteristics of multi-tenancy and shared
resources introduce new risks and threats to any resources
on cloud platform. Potential risks include failure of sepa-
ration mechanisms for storage, memory, routings between
different tenants, and hypervisor subversion [30]. Further
threats come from the possibilities of attacks that “escape”
from a guest virtual machine (VM) and being able to inject
codes into the host system or other VMs [16, 22]. Public
consent and study [10, 17] have shown major security con-
cerns, including the reluctance to deploy virtual machines
on shared physical servers (which run against the funda-
mental cloud computing principles of resource sharing and
on-demand provisioning), potential leak and disclosure of
confidential and proprietary information to third parties,
and compromising of co-located virtual machines. These
concerns are well justified by identified and potential vul-
nerabilities associated with commodity hypervisors and vir-
tual machine systems on shared platforms [25, 7, 16, 22, 30].
Due to those concerns, many data center customers demand
their services be hosted by dedicated servers physically iso-
lated from other customers’ servers. In the near future, we
can expect to see many new security exploitations on cloud
environment towards platforms and user information.

In line with these trends and challenges, we proposeMulti-
Hype, a poly-hypervisor architecture to improve the depend-
ability, scalability, and security of many-core based cloud
servers. Comparing with today’s mono-hypervisor (Mono-
Hype) based systems, MultiHype supports running multiple
hypervisors or VMMs (virtual machine monitors) on a sin-
gle physical platform, in turn, each of which can execute

75

multiple VMs. By leveraging many-core based cloud-on-
chip processor architecture, this extra abstraction provides
strong isolation between physical resources managed by in-
dividual hypervisor realms. As a direct consequence, the
vulnerabilities of one hypervisor or a VM within a hyper-
visor can be confined within its own domain, which makes
platform-wide attacks much harder. With careful design on
physical separation of CPUs, memory, storage, and I/O de-
vices, MultiHype can achieve more dependable, secure, and
scalable cloud server platform than today’s MonoHype plat-
form, which fits the requirement of hyper-scale virtual server
consolidation.
Outline: Next section analyzes and summarizes security

risks, threats, and attacks on existing cloud servers. In Sec-
tion 3 we present the architecture and design of MultiHype.
We then illustrate the evaluation methodology of MultiHype
and result analysis in Section 4 and 5, respectively. Sec-
tion 6 summarizes related work of this paper and Section 7
concludes this paper.

2. HYPERVISOR RELATED THREATS IN
CLOUD COMPUTING

In cloud computing environment, virtual machines from
different cloud customers share a single physical server and
hypervisor. Virtualization offers“layered defense”for system
security, usually by assuming that a malicious attacker who
controls or penetrates one guest virtual machine cannot com-
promise the underlying system and other virtual machines.
This should not always be taken for granted. Previous stud-
ies have demonstrated the vulnerabilities and real attacks
that determined attackers can exploit hypervisor vulnera-
bility, and consequently compromise services of co-located
cloud users [25, 7, 16, 22, 30, 24]. We summarize several
risks and threats of virtualized platform in cloud computing
environment as follows.

2.1 Hypervisor Vulnerabilities
On a cloud server platform, virtual machines from dif-

ferent customers sit above a common hypervisor that man-
ages both the physical hardware resources and customer re-
sources. Like any other software layer, a hypervisor can have
vulnerabilities and is prone to attacks or unexpected failure.
Commodity hypervisor has significantly grown in functions
and features, and thus in code size. These make them look
closer to a real operating system (OS) with large trusted
computing base (TCB), and increasing design and imple-
mentation vulnerabilities. Therefore their isolation and se-
curity functions might be compromised by attacks from guest
OS [13]. An attacker can compromise a hypervisor by hack-
ing it from inside a guest virtual machine and exploit all the
guests. Hypervisor layer attacks are very attractive. In a
MonoHype system, the hypervisor fully controls the physi-
cal resources and all guest virtual machines that run on top
of it.
Past few years have seen a number of successful hypervisor

subversions [25, 7, 16, 22, 30, 24]. King et al. [15] described
the concept of a virtual machine-based rootkit and demon-
strated the subversion of VMWare and VirtualPC using hy-
pervisor rootkit SubVirt. Blue Pill [24] is a rootkit that can
trap a running native OS into a guest virtual machine “on-
the-fly”with hardware-assisted virtulization technology such
as Intel VT-x or AMD Pacifica. In [22], the author investi-
gated several popular x86 based virtual machine implemen-
tations and tested whether the assumed hypervisor security
and virtual machine isolation can be taken for granted. The
authors performed hypervisor stress tests by injecting ran-
dom instructions and I/O activities to the hypervisor from
a guest virtual machine. The results identified vulnerabili-
ties in all popular virtual machine implementations for x86
architecture in use today. If exploited, a vulnerable VMM
can be subverted to execute arbitrary code on the host with
the privileges of the VMM process. In addition, an exploit
from a virtual machine guest could cause VMM to termi-
nate unexpectedly or trigger an infinite loop that prevents

the host from performing normal administration operations
for other virtual machines.

When a hypervisor is subverted, an attacker can escape
the isolation between different customers. For example, a
documented attack on VMWare [25] allows “guest to host
escape”. After a hypervisor is subverted, an attacker may
take control of other virtual machines running on the same
hypervisor or gain access to the data contained inside them.
Furthermore, an attacker may manipulate resource alloca-
tion; reduce resources assigned to other virtual machines and
as a consequence cause denial of service.

2.2 Weak Separation between VMs
Cloud computing infrastructures mostly rely on architec-

tural designs to separate physical resources in a logical man-
ner such as to share computing capacity, storage, and net-
work among multiple virtual machines and therefore multi-
ple customers. On a many-core computing platform, hun-
dred or even thousand of virtual machines may share the
same physical platform. Failure of resource separation be-
tween different tenants could lead to potential devastating
results such as unauthorized access to shared resources, pro-
voking denial of services by manipulating resources allocated
to other customer’s virtual machines or terminating other
customer’s running virtual machines, and side-channel data
leakage. In [23], the authors illustrated the steps for access-
ing confidential information from running EC2 instances and
demonstrated side-channel exploits.

2.3 Resource Exhaustion
Cloud services acquire resources in on-demand manner.

In multi-tenancy working environment, malicious attack-
ers may trigger resource exhaustion and cause denial-of-
resources attacks to other users’ virtual machines. Shared
resources with capacity limitation include memory, storage,
I/O bandwidth, networking buffers, CPU, etc. If an at-
tacker can trigger the allocation of these limited resources,
but the number or size of the resources is not controlled,
the attacker could cause a denial of service by consuming
all available resources on a physical platform. For example,
a memory exhaustion attack against an application could
slow down the application as well as its host OS. A mali-
cious customer may run mischievous guest virtual machines
that use certain resources intensively. For example, a vir-
tual machine can deliberately trigger a lots of interrupts or
generate switches between virtual machine and hypervisor
at extremely high frequency.

3. ARCHITECTURE AND DESIGN
3.1 Requirements

Comparing with MonoHype systems [3, 19], a MultiHype
system in ideal scenario should satisfy the following require-
ments.

• Multiple and separated hypervisors that can scale with
large scale many-core based platform (e.g., hundreds
of cores platform) and support of hyper-scale virtual
server consolidation for multiple customers;

• Two-tiered resource allocation and isolation mecha-
nism: resources such as CPUs and memory are first
allocated and partitioned among hypervisors and then
for each hypervisor, the resources are shared among
guest virtual machines; and

• Security breach compartmentalization: an architecture
capable of preventing security breach from spreading
to other customer’s hypervisors and virtual machines.

One desirable feature to support these requirements is
that different hypervisors share minimal physical resources,
thus the normal function of a hypervisor requires little or
no interaction from other hypervisors. With this, an at-
tack on one hypervisor by a malicious customer or attacker

76

Table 1: Comparison of Three Frameworks

Multiple
Hypervisors

Single Hyper-
visor

Distributed
Hypevisors

Single Physi-
cal Platform

Single Physi-
cal Platform

Multiple
Physical
Platforms

Hypervisor
Vulnerabilities

Confined Not confined Not confined

Risks of Re-
source Monop-
olization

Low High High

Hypervisor
Single Point-
of-Failure

No or very
limited

Yes Yes

Shared Hyper-
visor States

Guests of the
same

All guests Across physi-
cal servers

realm/customer
Hypervisor
Creation

On-demand Boot time Boot time

Examples MultiHype All MonoHype
based

3leaf systems
[1]

including [5]

may not affect other customers’ hypervisors and guest vir-
tual machines. Ideally, MultiHype achieves the same level of
availability and dependability as running each hypervisor on
a dedicated MonoHype platform using single physical server.

3.2 Advantages of MultiHype
Comparing with the existing Mono-hypervisor design, a

MultiHype system has the following advantages,
First, MultiHype is well-positioned to be the virtualiza-

tion platform for emerging large scale highly distributed
platform. Future multi-processor multi-core sever platform
that is armed with multiple memory controllers and multiple
many-core processors (e.g., 32 independent cores per pro-
cessor, and 128 cores per quad-processor platform in 2014
according to AMD) will behave more as a distributed sys-
tem instead of a monolithic system. Such platform requires
a scalable, decentralized hypervisor design to achieve its full
potential. In a MonoHype system, all the virtual machine
guests share the same hypervisor for handling page faults,
exceptions, interrupts, and resource management. The mono-
lithic hypervisor contains numerous mutexes, spinlocks, shared
memory states, etc that hinder performance. Running mul-
tiple hypervisors with separated states is one of the solutions
to address this challenge.
Second, MultiHype enhances cloud security and depend-

ability by eliminating the reliance on shared hypervisor. In
multi-tenancy cloud environment, a monolithic hypervisor
exposed to virtual machine guests of different customers be-
comes a potential single-point-of-failure and is attractive to
malicious attackers. MultiHype reduces the attack surface
associated with shared monolithic hypervisor. In Multi-
Hype, when a single server platform is shared among cus-
tomers, a different hypervisor can be created for each cus-
tomer. Virtual machine guests of the same customer are
supported by separated hypervisor and, as a result hypervi-
sor vulnerabilities are confined within each customer’s own
domain.
Table 1 compares three main concepts of cloud comput-

ing oriented virtualization environment, single hypervisor
over single physical platform, multiple hypervisors over sin-
gle physical platform, and single hypervisor over multiple
platforms.

3.3 Hypervisor/Virtual Machine Realms
Figure 1 shows the concept of MultiHype platform. On

a MultiHype server, a VM realm or hypervisor realm refers
to all guest virtual machines supported by one VMM or
hypervisor. A MultiHype server may constitute multiple
concurrent virtual machine realms, and launch new VMMs
in on-demand manner. A MultiHype server has a single
control plane that administrates the physical machine and
retains selective control of resources, including processor
cores, physical memory, interrupt assignment, and I/O de-

vices. The control plane can be a virtual machine realm, aka
manager realm, while others are regular realms. The man-
ager realm does not run code from guest virtual machine
for cloud customers; instead, it allocates physical resources
to, bootstrap, and terminate a VMM. After being started,
a VMM can function as a normal hypervisor and run in-
dependently, i.e., it can manage a number of guest virtual
machines and act as a host for the guests. The control plane
runs at the highest privilege level, higher than hypervisor’s
privilege level, therefore ensures isolation among VMMs by
allocating or partitioning resources among them. The al-
located resource can be physical or virtual. Within each
hypervisor, virtual machine guests can be created with ad-
ditional levels of privileges. For example, within each hyper-
visor, there can one or multiple administrative guests just
like MonoHype system.

For strong isolation purpose, each realm comprises at least
one physical processor core and allocated physical RAM
space. There is no overlap on processor cores and RAM
space for different realms. For a regular realm, its processor
cores (one or more) run at lower privilege level than the man-
ager realm. This prevents a regular hypervisor from chang-
ing resource allocation made by the control plane. After a
hypervisor is started, the control plane delegates control of
the allocated physical resources to the started hypervisor.
In turn, the hypervisor can further create guest virtual ma-
chines and allocate assigned resources by the control plane
to the guests.

When a hypervisor starts, it boots from a modified BIOS
that bypasses physical RAM initialization. The control plane
retains the control of certain physical resources such as phys-
ical memory allocation and I/O device discovery. Interrupts
for each VM realm are routed and handled by the corre-
sponding hypervisor for the realm. Page faults and excep-
tions caused by guest virtual machines of a realm are han-
dled by the realm’s hypervisor just like in normal MonoHype
systems.

The whole system behaves like a distributed system with
multiple concurrent virtual machine realms, each having its
own hypervisor. Each hypervisor supports context switch
between virtual machine mode and hypervisor mode using
vm enter and vm exit. There is no such context switch be-
tween the management realm and a regular realm. The con-
trol plane and customer’s hypervisor run concurrently us-
ing different cores. They communicate with one another
through inter-core interrupts and messages. This makes
MultiHype fundamentally different from other approaches
such as supporting virtual machine creation inside a virtual
machine.

3.4 Memory Mapping for Hypervisor/Virtual
Machine Realms

To support strong memory partitioning between multiple
hypervisors on a single platform, we propose a physical mem-
ory remapping mechanism. In particular, physical memory
space is divided into chunks of equal size (e.g., 8MB). The
control plane assigns physical memory chunks to each hy-
pervisor realm. The remapping mechanism restricts mem-
ory access from a hypervisor realm to pre-assigned physical
memory regions. This is achieved by a hardware physical
memory remapping logic situated in the memory controller.
The remapping logic creates a virtual continuous physical
memory space for each hypervisor realm. It is programmed
by the privileged control plane. A regular hypervisor run-
ning at lower privilege level cannot modify or program the
remapping logic. For each memory access, e.g., read or
write access from a hypervisor or its guest VMs, the memory
remapping logic translates the address of the access request
to its corresponding physical memory address. Therefore,
it serves as a memory access reference monitor and per-
forms access control based on configurations provided by
the control plane. For translating memory addresses, the
memory controller uses either a realm-to-memory remap-
ping table managed by the control plane, or a local cache of
the remapping table. The remapping table cache is part of
the memory controller. It resembles TLB inside MMU and

77

VM

Guest

VM

Guest
Control Plan

CPU

Core
CPU

Core

CPU

Core

I/O

Device
I/O

Device

I/O

Device

Virtual Machine Realm A

Shadow Page

Tables

for VM Guests

Shadow Guest

Interrupt Control

Registers

Interrupt/

Exception

Handlers

Hypervisor A

Shadow Page

Tables

for VM Guests

Shadow Guest

Interrupt Control

Registers

Interrupt/

Exception

Handlers

Hypervisor B

Shadow Page

Tables

for VM Guests

Shadow Guest

Interrupt Control

Registers

Interrupt/

Exception

Handlers

Hypervisor C

VMCS0 VMCS1

VM

Guest

VMCS2

VM EnterVM Exit

VM

Guest

VM

Guest

Virtual Machine Realm B

VMCS0 VMCS1

VM

Guest

VMCS2

VM EnterVM Exit

VM

Guest

VM

Guest

Virtual Machine Realm C

VMCS0 VMCS1

VM

Guest

VMCS2

VM EnterVM Exit

HW Resource Partition Layer

(Memory Re-mapping, DMA Re-mapping, CPU Core-Hypervisor Binding)

CPU and Core

Management

Memory Re-

mapping Table

Device

Management

CPU

Core

CPU

Core

I/O

Device

I/O

Device

CPU

Core

CPU

Core

I/O

Device

I/O

Device

CPU

Core

I/O

Device

Virtual CPUs Virtual CPUs Virtual CPUs

Figure 1: Concept of a MultiHype Platform

caches recently-used entries of the realm-to-physical memory
remapping table.
Unlike a regular hypervisor, the control plane or privi-

leged manager realm can access the entire physical memory
space without using translation. However, only a portion of
the physical memory space is allocated to the control plane.
Operating systems or virtual machines within the control
plane can use the physical memory space allocated to them
freely for their own purposes. The rest physical memory
space is reserved for other realms, while the control plane
has read/write access rights to it. Overall, physical memory
isolation for MultiHype is achieved by restricting memory
access from hypervisor realm within the space that is as-
signed by the control plane, by using the remapping or the
address-translation tables.
Figure 2 shows an example physical memory allocation for

three VM realms: A, B, and C. When a hypervisor or a VM
tries to access to a certain memory location, the remapping
hardware looks up the address-translation tables for access
permission of the realm to the specific location. If the hy-
pervisor or VM realm tries to access outside of the mem-
ory range assigned to it by the control plane, the remapping
hardware blocks the access and reports a fault to the control
plane, which is achieved by raising exception to the proces-
sor core running the control plane. The described physi-
cal memory remapping is different from traditional virtual
memory management in many aspects. Traditional mem-
ory paging and MMU are tied with process management,
while our physical memory remapping mechanism is used for
partitioning physical memory resources among multiple VM
realms. It presents a “virtual” continuous physical memory
space for each hypervisor.

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

CPU

Core

Physical Memory

Remapping

Memory

Interface

Realm A

Control Plane

Realm B

Realm C

Figure 2: Physical Memory Re-mapping.

3.5 Memory Management
3.5.1 Weighted LRU for Shared L3
Onchip cache is shared by all cores in most today’s many-

core systems. As a critical hardware resource for achieving
high performance, onchip cache becomes an attractive at-
tacking point in multi-tenant computing environment. To
address this issue, we design weighted LRU in MultiHype.
The main idea is to manipulate LRU priorities in order to
defend against resource exhaustion exploit of shared cache,
which suits for large shared multi-way set associative cache.

Figure 3 provides an illustration of weighted LRU. For
each cache block, in addition to tag, valid bit, and other
necessary structures, there is a realm ID and a LRU rank
associated with it. For an 8-way cache, its LRU rank has
three bits, which provides a rank of all eight cache blocks
of a cache set (7 denotes the least recently accessed cache
block and 0 denotes the most recently accessed cache block).
Each time, when the cache block is accessed, the rank bits
are updated using a map that implements LRU. Design of
the map logic is relatively straightforward so we skip the
details.

Data
2-bit

LRU

Rank

Realm

ID Data
2-bit

LRU

Rank

Realm

ID
Evictor

Realm ID

XOR

Hash

XOR

Hash

Sequential 2-bit

Counter
CLK

Mux

Data
2-bit

LRU

Rank

Realm

ID Data
2-bit

LRU

Rank

Realm

ID

+

>

>

>

2-to-4

decoder

0 01 201 2 30

4bits 4bits

Weight Table

(256 log2(way) bit)

0

0

2

0

1

1

2

3

2

1

3

1

1

When a cache block from Realm Evictee is evicted by Realm Evictor:

Weight Table (Evictor, Evictee) = MIN(Weight Table (Evictor, Evictee) – 1, -2
log2(way)-1

);

Weight Table (Evictee, Evictor) = MAX(Weight Table (Evictee, Evictor) + 1, 2
log2(way)-1

-1);

8 bits
Cache

Block to

Be Evictedlog2(way)+1 – bit

Adder

4-Way Set Associative

Mux

Figure 3: Weighted LRU in MultiHype.

The weight table shown in Figure 3 is used during cache
block eviction. Consider that for a cache line, one cache
block needs to be evicted to accommodate data from vir-
tual machine realm 0 (evictor), and cache block 0 (candidate
evictee) stores data of virtual machine realm 1 and has value
1 as LRU rank. For a pair of evictor and candidate evictee
(for instance, realm 0 and realm 1), there is a weight value in
the weight table, which can be added to the LRU rank. The
summation result is a weighted LRU rank. The range of a
weight value is from −2log2(way)−1 to 2log2(way)−1 − 1. For
each block of a set, a weighted LRU rank can be computed

78

based on the weights stored in the weight table. Using a
comparison tree shown in Figure 3, the block with the high-
est weighted LRU rank can be found after Log2(Way) steps.
The block that emerges after the final comparison step will
be replaced. After the replacement, the weight table is then
updated. If a cache block from virtual machine realm 1 is
evicted by virtual machine realm 0, the weight table entry
corresponding to the realm pair (0, 1) will decrement by 1,
and the weight table entry corresponding to the realm pair
(1, 0) will increment by 1. The modified weights increase, in
future cache replacements, the probability of evicting cache
blocks of realm 0 by accesses from realm 1, and decrease
the future probability of evicting cache blocks of realm 1 by
accesses from realm 0.

Figure 4 shows one example that highlights the differ-
ence between LRU and weighted LRU. Assuming a 4-way
set associative cache and two virtual machine realms, there
are three write accesses from virtual machine realm 0, all
mapped to the same cache line. For each way of the cache
line, we use a pair of numbers for storing realm ID, and LRU
rank. For example, way 0 stores cached data from realm 0
and its LRU rank is 0. Figure 4 also illustrates values of
the weight table (2x2 for two virtual machine realms). For
the three write accesses, Figure 4 compares the results of
LRU vs. weighted LRU.
Weighted LRU has many attractive properties. First,

weighted LRU reduces to standard LRU when there is only
one virtual machine realm. This means that when a Mono-
Hype based system is installed, weighted LRU behaves as
LRU. Second, as a cache replacement policy, weighted LRU
does not statically or dynamically change cache configura-
tion. Consequently, it is orthogonal to and can be used in
conjunction with other cache sharing techniques that stat-
ically or dynamically share cache among multiple virtual
machines.

 Cache Line (4-way) Weight

Table

LRU Weighted LRU

Way 0 Way 1 Way 2 Way 3

Initial

Value

(0, 0) (1,1) (1,2) (1,3) 0 1

0 0 0

1 0 0

Write access from

realm0

(0,1) (1,2) (1,3) (0,0) 0 1 Way 3 evicted Way 3 evicted

 0 0 -1

1 1 0

Write access from

ream 0

(0,2) (1,3) (0,0) (0,1) 0 1 Way 2 evicted Way 2 evicted

0 0 -2

1 1 0

Write access from

realm 0

(0,0) (1,3) (0,1) (0,2) 0 1 Way 1 evicted Way 0 evicted

0 0 -2

1 1 0

Figure 4: Weighted LRU Example (4 Way Associa-
tive Cache and 2 VM Realms)

In the current design, MultiHype allocates physical cores
to separated hypervisor realms. This eliminates possibilities
of sharing L2 or L1 cache by multiple virtual machine realms.
Therefore, we only need to consider the shared L3 cache. In
weighted LRU, it takes multiple cycles to find out the cache
block that should be replaced. There is no performance
penalty because the delay is hidden by overlapping WLRU
operations with memory fetch.

3.5.2 Per-realm Memory Throughput Management
Fair queuing is a technique that originally was designed

for managing network bandwidth resources. It allows each
flow of packets passing through a network device to have
a fair share of network resources. Fair queuing has been
demonstrated to help defend against network resource ex-
haustion attacks. The idea of using fair queuing in memory
management was initially exploited in [20] under different
application scenarios and CMP context.
The risks and threats of resource exhaustion exploit at

system platform level are relatively new. The problem is ex-
acerbated by the multi-tenancy nature of cloud computing.
In MultiHype, we apply fair queuing to hypervisor realms to
ensure that each of them can have its share of memory band-

width resources in fair manner. Typically, implementing
perfect fairness requires O(log(n)) to process each request.
Deficit Round-Robin is an approximation of fair queuing
that only requires O(1) to process each request [26]. It is
simple enough to be implemented in hardware. As shown
in [26], Deficit Round-Robin can achieve near perfect fair-
ness.

Addr DataW/RD Realm ID

DataTag
Realm

ID

8-Way Set Associative

DataTag
Realm

ID
DataTag

Realm

ID
DataTag

Realm

ID
DataTag

Realm

ID
DataTag

Realm

ID
DataTag

Realm

ID
DataTag

Realm

ID

Queue

Head

Queue

Tail

NULL NULL

DataAddrW/RD Next

2

1

0

2

Pending

Request Cnt

0

DRB

DC

1

1

1

1

Valid

0

1

Busy

Deficit Round Robin Logic

XOR

Hash

0

1

0

3

RB

Table ID

0

3

Enqueque

Logic

Memory Interface

Waiting Queue

Logic Queue Table

Figure 5: Deficit Round Robin in MultiHype.

Figure 5 illustrates the design of fair queuing in PolyHpye,
where each memory access is tagged with its realm ID. There
is a logic queue table with fixed number of entries (four in
the example). If there are more realms than the queue table
entries, an queue entry has to be shared by multiple realms
(e.g., XOR the MSB and LSB bits of a realm ID). Each entry
has a counter that counts the number of pending memory
accesses for that queue, the pointer of queue head, and the
pointer of queue tail. Each queue head or tail points to an
entry of a memory access waiting queue. All pending mem-
ory accesses are buffered in the waiting queue. The waiting
queue has only fixed number of entries (e.g., 32 or 64 en-
tries). The waiting queue is shared by all logic queues using
head and tail pointers. When the waiting queue is full, up-
stream logic units with new incoming memory access have to
wait or stall until a new waiting queue entry becomes avail-
able. Each entry of the logic queue table will be visited by
the Deficit Round-Robin Logic in round-robin fashion. For
each visited logic queue entry (realm), if there are waiting
memory accesses, the requests will be served using deficit
Round-Robin, and then the Deficit Round-Robin Logic will
visit the next logic queue entry.

3.5.3 Hardware Cost
The proposed micro-architectural features including weighted

LRU and deficit Round-Robin have only small cost in size.
For weighted LRU, each weight needs only three bits (for
8-way cache). The weight table uses only 96B. The largest
hardware cost is caused by the realm ID associated with
each cache block. Consider a 8-way set associative cache
with 4096 sets, and 8 bit realm ID (256 realms), the cost
is 32KB. For deficit Round-Robin, the hardware cost is also
small. The waiting queue table can have 32 or 64 entries
for buffering pending memory accesses. Each entry of the
logical queue table has 32 bits. The logic table has variable
number of entries with a range from 16 to 256. It costs from
64B to 1KB.

3.6 I/O Support
To virtualize I/O devices, the following operations need to

be supported: (1) device discovery and configuration – query
I/O devices on a hardware platform and set up the devices’
configuration registers for initialization; (2) I/O transactions
– transfer data to and from devices including DMA; and (3)

79

interrupts – notify a hypervisor on state updates and events
of a device.
I/O virtualization in MonoHype is typically implemented

with one of three different approaches: emulation, para-
virtualization, and hardware assisted virtualization (e.g., di-
rect assignment on Intel VT-d [2] or single-root IOV where
an I/O device can be shared by multiple VMs). Emula-
tion implements I/O devices and hardware in software; para-
virtualization requires modification of a guest OS; and hard-
ware assisted I/O virtualization such as VT-d can allocate
an I/O device to a VM using IOMMU, a memory address
translation for I/O transactions. Single-root IOV enables
virtual functions on I/O devices and allows an I/O device to
be shared by multiple VMs. For I/O virtualization in Multi-
Hype, we either use I/O proxy or leverage existing hardware
assisted I/O virtualization such as device passthrough.

EP

I/OV

Control Plane

VM

Guest

VM

Guest

VM

Guest

VMM

VMM

VMM

EP EP
EP

I/OV

EP

I/OV
EP

VM

Guest

VM

Guest

Emulation

Driver

Emulation

Driver

Emulation

Driver

Driver

Driver

Driver

Driver

I/O

Interface

I/O Proxy VM

I/O

Interface

I/O Proxy VM

I/O Controller
PCIe Root I/O MMU

Interrupt

Re-mapping

EP
EP

I/OV

device passthrough

device passthrough

Figure 6: Support I/O Virtualization for MultiHype
(I/O Proxy and Device Passthrough

IO Proxy: MultiHype uses device emulation for I/O vir-
tualization, as Figure 6 shows. The control plane consists
of a hypervisor and a number of I/O virtual machines, and
has the full control of physical I/O resources. I/O devices
are allocated to I/O virtual machines in control plane us-
ing hardware assisted I/O virtualization such as single-root
IOV or VT-d. A regular hypervisor and its VMs can only
access the physical I/O resources using the control plane ser-
vices. In a VM realm, a guest virtual machine uses emulated
device drivers, which communicate with the I/O virtual ma-
chines in control plane using physical shared memory. This
is supported because the control plane has control of the
entire physical memory space. Note that the control plane
does not run virtual machines for cloud customers. Virtual
machines on the control plane are executed by dedicated
processor cores in parallel with customers’ virtual machines
in regular realms. At high level, the system functions like a
distributed systems where the control plane and I/O virtual
machines act as I/O proxies for the guest virtual machines of
a regular realm, by performing I/O transactions and issuing
DMA data transfer on behalf of the emulated device drivers.
A drawback of this approach is that it does not scale well
if there are numerous I/O transactions from multiple guests
in a VM realm or VM realms since the control plane is one
central place to process the transactions.

Using Existing Device Passthrough Support: An-
other approach is to leverage the existing hardware support
for MonoHype I/O virtualization. It works as follows. The
control plane retains the control of I/O devices and assigns
I/O resources to guest virtual machines of a realm. This al-
lows I/O virtualization on a MultiHype system using exist-
ing hardware I/O virtualization support. The control plane
performs device discovery, manages the I/O devices, and
assigns devices to guest virtual machines of a VM realm.
One guest virtual machine can issue DMA data transfer us-
ing hardware I/O virtualization such as VT-d or IOMMU
without involving the control plane. When it needs to ac-
cess protected resources (such as I/O configuration and in-

terrupt management), it first exits into the hypervisor of
its realm. The hypervisor then sends an interrupt (such as
Inter-processor Interrupt (IPI)) to the processor cores run-
ning the control plane. The control plane handles the re-
quest and returns results to the hypervisor. For each regular
VM realm, its hypervisor cannot perform these I/O control-
ling functions which are reserved for the control plane. It
can only forward the requests from its guests to the control
plane.

In our experimentation of MultiHype, both approaches
were employed. Both approaches work with the existing
I/O virtualization support in MonoHype based systems.

3.7 Interrupts
For the delivery of I/O interrupts to an appropriate VM

realm, the current architecture can be minimally changed
to support the hypervisor ID. In x86 systems, I/O inter-
rupts are delivered using MSI either via I/O APIC or di-
rectly to Local APICs in cores. Destination is determined
based on physical or logical IDs of Local APICs in a pre-
defined memory address location. To support the interrupt
delivery in MultiHype, an addition of only one register (Hy-
pervisor ID register) is required in I/O APIC, Local APIC
and PCIe devices as an extension of hardware virtualiza-
tion support. Currently, MSI or MSI-x in PCIe 3.0 provides
a plenty of space for address encoding. The procedure of
interrupt generation and delivery is as follows with a NIC
example; A realm requests a network packet to the NIC. Its
device driver programs the requester realm ID to the de-
vice’s hypervisor ID register along with other information.
Upon receipt of the packet, the NIC sends an MSI message
of which address field embeds the hypervisor ID (realm ID).
The MSI message can be broadcasted to the entire realms
or directed to the target realm if routers and/or switches in
interconnection network inside many-core support the inter-
rupt routing capability. Even simple broadcasting would not
incur significant overhead in the interconnection bandwidth
considering the intermittent nature of interrupts. The Local
APICs compare their hypervisor IDs with the MSI message,
and the target (requested) realm takes the interrupt.

4. IMPLEMENTATION & EVALUATION
4.1 Setup and Implementation

We use Bochs [12] – a full-system x86 emulator, and TAXI [29]
– a compatible cycle based x86 architecture simulator, to
evaluate MultiHype. Bochs models an entire platform in-
cluding network device, hard drive, VGA, and other devices
to support the execution of a complete OS and its applica-
tions. In addition, Bochs supports emulation of Intel VMX
hardware support for virtualization. TAXI is a Simplescalar
simulator with x86 front-end for our performance analysis.
Architectural support for MultiHype and the associated re-
source management features such as weighted LRU, deficit
Round-Robin memory bandwidth management, hypervisor
realm memory remapping are implemented in both Bochs
and TAXI.

We extended Bochs’s VMX support and created an em-
ulated hardware partition layer in Bochs. Our emulation
framework emulates a multi-core platform. The framework
supports configurable logic hardware partition. Multiple hu-
pervisors can be started and executed on an emulated hard-
ware platform using modified Bochs. The modification in-
cludes a thin layer of logic hardware partition. Processor
cores are bound with hypervisors; that is, virtual machines
supported by the same hypervisor can share processor cores,
while different hypervisors and their virtual machines run
over different processor cores. Each emulated hardware par-
tition can boot a complete hypervisor (Xen 3.3) and run
Ubuntu 8.04 Linux distribution.

Our implementation also includes physical memory man-
agement for hypervisor realms in Bochs. The performance
simulator is extended to support realm based memory map-
ping, weighted LRU, and deficit Round-Robin. We also in-

80

tegrated an accurate DRAM model [9] to improve system
memory modeling, where bank conflicts, page miss, and row
miss are all modeled according to SDRAM specification.
The processor parameters are listed in Table 2.

Table 2: Platform Parameters in Simulation
Parameters Values

Frequency 2.0 GHz
Cores 4
Fetch/Decode width 8
Issue/Commit width 8
L1 I-Cache DM, 16KB, 32B line
L1 D-Cache DM, 16KB, 32B line
L2 Cache 4way, unified, 32B line,

WB cache 256KB for each core
L1/L2 Latency 1 cycle / 6 cycles (256KB)
L3 Cache 8way, 128B line, WB cache,

weighted LRU 4MB shared
L3 Latency 16 cycles 4MB
I-TLB 4-way, 128 entries
D-TLB 4-way, 256 entries

Weighted LRU 16 x 3bits table
Deficit Round Robin 16 queues,

shared 64 entries

Memory Bus 200MHz, 8B wide
Memory Latency X-5-5-5 (core clocks),

X depends on page status
CAS latency 20 mem bus clocks
Precharge latency (RP) 7 mem bus clocks
RAS-to-CAS (RCD) latency 7 mem bus clocks

We use eight popular open source applications for our eval-
uation: ffmpeg (a complete cross-platform application to
record, convert, and stream audio and video), bzip2 (a pop-
ular open-source data compressor), povray (a cross-platform
ray tracer), gcc (free compiler for GNU system), pybench (a
benchmark suite for python scripting language), octave (a
high-level interpreted language for numerical computations,
a clone of commercial Matlab), hmmer (an application for
searching gene sequence databases), and xalan (an XSLT
processor for transforming XML documents into HTML,
text, or other XML document types). All applications are
installed on Ubuntu 8.04 virtual machine guests and exe-
cuted together with its host system.

4.2 Hypervisor Subversion Tests
The effectiveness of using multiple hypervisors to defend

against attacking on MultiHype platform is evaluated using
stress tests. We follow the approach in [22] where hypervisor
vulnerability is evaluated by conducting several stress tests
on main stream hypervisors. Since most revealed vulnera-
bilities have been patched, we use multiple older versions of
hypervisors in our tests. Our experiments show that hyper-
visor failures induced by stress tests do not spread to other
hypervisors. This confirms the validity of using MultiHype
to fend off hypervisor based attacks. In addition, we also try
to artificially inject faults into a hypervisor through Bochs.
Boches emulates all executed x86 instructions. By altering
instruction execution, we inject faults into the hypervisor
running ontop. We have observed similar results with this
approach. During the test we need to restart the failed hy-
pervisor frequently. However, the fault did not spread to
other hypervisors.

4.3 Denial of Resources Tests
We evaluate the strength of MultiHype against denial of

resource attacks from co-located malicious virtual machines.
We use a simple memory throughput exhaustion applica-
tion as malicious denial of memory resource exploit. The
application runs an infinite loop that walks through a large
memory region (several times larger than L3 cache size) and
tries to utilize maximum memory throughput by moving
data around. The malicious application is executed inside a
co-located virtual machine.
We test three collocation scenarios. The the first sce-

nario (dual-hypervisor) includes two concurrently running
hypervisors, each runs one guest virtual machine. One guest

acts as attacker and is configured to execute the memory
throughput exhaustion application. The other guest runs
one of the eight benchmark applications. The second sce-
nario (quad-hypervisor) include four concurrently running
hypervisors, each runs one guest virtual machine. One guest
acts as attacker and is configured to execute the memory
throughput exhaustion application. The other three guests
in different hypervisors run three of the eight benchmark ap-
plications. In the first quad-hypervisor setting (setting one),
there are three guests of bzip2, hmmer, ffmpeg, one guest
per hypervisor. In the second quad-hypervisor setting (set-
ting two), there are three guests of xalan, gcc, and povray,
one per hypervisor. The third scenario (quad dual-guest
hypervisors) includes four hypervisors, each has two guests.
One guest acts as attacker and is configured to execute the
memory throughput exhaustion application. The rest guests
are assigned to run bzip2, hmmer, ffmpeg, xalan, gcc, and
povray.

5. PERFORMANCE ANALYSIS
Our quantitative performance study focuses on weighted

LRU as a cache replacement policy for shared L3 cache,
and deficit Round-Robin for memory access management.
We evaluate how efficient they prevent memory exhaustion
attacks under MultiHype architecture.

5.1 Weighted LRU
From our test results, we found that weighted LRU has

three major effects defending against resource exhaustion
attacks. First, it promotes fair sharing of cache resources.
When there is malicious exploit on cache resources, weighted
LRU can boost the amount of cache resources available to
the legitimate realms. Second, compared with standard
LRU, weighted LRU can significantly increase cache hit rates
for guest realms under cache resource exhaustion attack.
Third, weighted LRU reduces the likelihood that cached
data from legitimate realms are evicted by bombarding cache
access requests from resource exhaustion attacks.

Figure 7 shows percentage of L3 cache blocks occupied
by legitimate realms and attack realms in the dual realm
scenario. As shown in the figure, under the standard LRU,
overwhelming amount of cache blocks is occupied by the at-
tack realms. A legitimate realm only occupies insignificant
amount of cache blocks – less than 5% in average. In con-
trast, under weighted LRU, for all the legitimate realms,
their shares of L3 cache blocks increase to 12.5% in aver-
age. Similar effect of increased L3 occupancy is observed
consistently in the other two test scenarios (Figure 9, 10,
and 11).

With increased cache residence, the number of L3 cache
misses decreases for the legitimate realms. Figure 8 shows
L3 cache miss rates for all the tested realms. Compared with
standard LRU, weighted LRU reduces L3 cache miss rate for
all the legitimate realms from 60% to 41% in average. This
effect can be found in the other two test scenarios as well
(cf. Figure 9, 10, and 11).

Interestingly, as indicated by Figure 8, cache miss rate
remains roughly the same under weighted LRU and standard
LRU for the malicious realm. Though the malicious realm
occupies less number of cache blocks under weighted LRU,
its cache hit rate does not change much. The same effect
is observed in all tested scenarios (see Figure 9, 10, and
11). This indicates that in terms of cache hit rate, weighted
LRU does not improves cache performance for the legitimate
realms at the expense of the attack realm.

Another effect of weighted LRU is that it increases the
fairness in cache replacement across realms. Using weighted
LRU, a malicious realm has less likelihood unilaterally evict-
ing cache blocks of other hypervisor realms. In certain sense,
weighted LRU bestows the legitimate realms power to re-
sist cache evictions by the attack realm. The effect can be
observed in Figure 12. When there are multiple realms
(the third test scenario, four dual-guest hypervisors), un-
der weighted LRU, cache replacements are more evenly dis-

81

tributed across the realms that have light memory access
demand. The effect can be found in Figure 13.

0%
10%
20%

30%
40%
50%
60%
70%

80%
90%

100%
V

M
M

 +

V
M

(f
fm

p
e

g
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(p
o

v
ra

y
)

V
M

M
 +

V
M

(g
c
c
)

V
M

M
 +

V
M

(p
y
th

o
n

)
V

M
M

 +

V
M

(o
c
ta

v
e

)
V

M
M

 +

V
M

(h
m

m
e

r)
V

M
M

 +

V
M

(x
a

la
n

)

V
M

M
 +

V
M

(f
fm

p
e

g
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(p
o

v
ra

y
)

V
M

M
 +

V
M

(g
c
c
)

V
M

M
 +

V
M

(p
y
th

o
n

)
V

M
M

 +

V
M

(o
c
ta

v
e

)
V

M
M

 +

V
M

(h
m

m
e

r)
V

M
M

 +

V
M

(x
a

la
n

)

LRU Weighted LRU

L3 occupancy Maclicious L3 Occupancy

Figure 7: L3 Occupancy: One Legitimate Realm vs.
One Malicious Realm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
M

M
 +

V
M

(f
fm

p
e
g
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(p
o
v
ra

y
)

V
M

M
 +

V
M

(g
c
c
)

V
M

M
 +

V
M

(p
y
th

o
n
)

V
M

M
 +

V
M

(o
c
ta

v
e
)

V
M

M
 +

V
M

(h
m

m
e
r)

V
M

M
 +

V
M

(x
a
la

n
)

V
M

M
 +

V
M

(f
fm

p
e
g
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(p
o
v
ra

y
)

V
M

M
 +

V
M

(g
c
c
)

V
M

M
 +

V
M

(p
y
th

o
n
)

V
M

M
 +

V
M

(o
c
ta

v
e
)

V
M

M
 +

V
M

(h
m

m
e
r)

V
M

M
 +

V
M

(x
a
la

n
)

L3 Miss Rate Malicious L3 Miss Rate

LRU Weighted LRU

Figure 8: L3 Miss Rate: One Legitimate Realm vs.
One Malicious Realm.

0

0.2

0.4

0.6

0.8

1

1.2

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(h
m

m
e

r)

V
M

M
 +

V
M

(f
fm

p
e

g
)

V
M

M
 +

V
M

(m
a

lic
io

u
s
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(h
m

m
e

r)

V
M

M
 +

V
M

(f
fm

p
e

g
)

V
M

M
 +

V
M

(m
a

lic
io

u
s
)

L3 Occupancy L3 Miss Rate

LRU Weighted LRU

Figure 9: L3 Occupancy and L3 Miss Rate: Setting
One of Four Realms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
M

M
+

V
M

(x
a
la

n
)

V
M

M
+

V
M

(g
c
c
)

V
M

M
+

V
M

(p
o
v
ra

y
)

V
M

M
+

V
M

(m
a
lic

io
u
s
)

V
M

M
+

V
M

(x
a
la

n
)

V
M

M
+

V
M

(g
c
c
)

V
M

M
+

V
M

(p
o
v
ra

y
)

V
M

M
+

V
M

(m
a
lic

io
u
s
)

L3 Occupancy L3 Miss Rate

LRU Weighted LRU

Figure 10: L3 Occupancy and L3 Miss Rate: Setting
Two of Four Realms.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

V
M

M
 +

V
M

(b
z
ip

2
)+

V
M

(x
a

la
n

)

V
M

M
 +

V
M

(f
fm

p
e

g
)+

V
M

(h
m

m

e
r)

V
M

M
 +

 V
M

(p
o

v
ra

y
)

+

V
M

(g
c
c
)

V
M

M
 +

 V
M

(m
a

lic
io

u
s
)

V
M

M
 +

V
M

(b
z
ip

2
)+

V
M

(x
a

la
n

)

V
M

M
 +

V
M

(f
fm

p
e

g
)+

V
M

(h
m

m

e
r)

V
M

M
 +

 V
M

(p
o

v
ra

y
)

+

V
M

(g
c
c
)

V
M

M
 +

 V
M

(m
a

lic
io

u
s
)

L3 Occupany L3 Miss Rate

LRU Weighted LRU

Figure 11: L3 Occupancy and L3 Miss Rate: Four
Dual-Guest Realms.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

V
M

M
 +

V
M

(f
fm

p
e

g
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(p
o

v
ra

y
)

V
M

M
 +

V
M

(g
c
c
)

V
M

M
 +

V
M

(p
y
th

o
n

)
V

M
M

 +

V
M

(o
c
ta

v
e

)
V

M
M

 +

V
M

(h
m

m
e

r)
V

M
M

 +

V
M

(x
a

la
n

)

V
M

M
 +

V
M

(f
fm

p
e

g
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(p
o

v
ra

y
)

V
M

M
 +

V
M

(g
c
c
)

V
M

M
 +

V
M

(p
y
th

o
n

)
V

M
M

 +

V
M

(o
c
ta

v
e

)
V

M
M

 +

V
M

(h
m

m
e

r)
V

M
M

 +

V
M

(x
a

la
n

)

LRU Weighted LRU

Self Eviction Malicious Eviction

Figure 12: L3 Eviction Profile: One Legitimate
Realm vs. One Malicious Realm.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
M

M
1

 +

V
M

(b
z
ip

2
)+

V
M

(x
a

la
n

)

V
M

M
2

 +

V
M

(f
fm

p
e

g
)+

V
M

(h
m

m
e

r)

V
M

M
3

 +
 V

M
(p

o
v
ra

y
)

+

V
M

(g
c
c
)

V
M

M
4

 +
 V

M
(m

a
lic

io
u

s
)

V
M

M
1

 +

V
M

(b
z
ip

2
)+

V
M

(x
a

la
n

)

V
M

M
2

 +

V
M

(f
fm

p
e

g
)+

V
M

(h
m

m
e

r)

V
M

M
3

 +
 V

M
(p

o
v
ra

y
)

+

V
M

(g
c
c
)

V
M

M
4

 +
 V

M
(m

a
lic

io
u

s
)

LRU Weighted LRU

Evicted by Realm1 Evicted by Realm2 Evicted by Realm3 Evicted by Realm4

Figure 13: L3 Eviction Profile: Four Dual-Guest
Realms.

5.2 Memory Utilization
Our next defense line against memory exhaustion attacks

is at the memory interface using deficit Round-Robin. As
aforementioned, deficit Round-Robin is a flavor of fair queue-
ing, with the main advantage of simplicity over other fair
queueing implementations. Deficit Round-Robin is easy to
be implemented in hardware. In our test, we compare the
memory utilization between deficit Round Robin and FIFO
with a memory exhaustion attack application, which gener-
ates overwhelming amount of memory accesses. When FIFO
is used for handling memory access requests, requests from
the legitimate realms suffer because they have to wait for
all outstanding memory requests from the malicious appli-
cation to complete. Deficit Round- Robin iterates over all
the memory request waiting queues and guarantees memory
bandwidth allocation to all realms.

For each memory access, we measure its waiting time
(time spent in the memory request queue or FIFO before
memory bandwidth is allocated to the request). We calcu-
late the average waiting time for all memory accesses under
FIFO and deficit Round Robin. For each realm (legitimate
and malicious), we compare the per-realm average waiting

82

time against the overall waiting time across all realms. As
shown in Figure 14, memory requests from the legitimate
realms have much less relative waiting time under deficit
Round Robin than that with the relative waiting time under
FIFO. With deficit Round Robin, memory requests from the
legitimate realms only need to wait 49% of the overall aver-
age waiting time. In contrast, with FIFO, memory requests
from the legitimate realms need to wait 67% of the over-
all average waiting time. For the attacking realm, in both
cases (FIFO and deficit Round Robin), the average wait-
ing time is roughly the same as the overall average waiting
time or slightly higher. This effect can be found in all other
three test scenarios (see Figure 15 and 16). Our quantita-
tive evaluation results show that both weighted LRU and
deficit Round-Robin are effective against memory resource
exhaustion attacks from a malicious realm and guest.

0

0.2

0.4

0.6

0.8

1

1.2

V
M

M
 +

V
M

(f
fm

p
e
g
)

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(p
o
v
ra

y
)

V
M

M
 +

V
M

(g
c
c
)

V
M

M
 +

V
M

(p
y
th

o
n
)

V
M

M
 +

V
M

(o
c
ta

v
e
)

V
M

M
 +

V
M

(h
m

m
e
r)

V
M

M
 +

V
M

(x
a
la

n
)

FIFO Relative Waiting Time FIFO Relative Waiting Time (Malicious)

FIFO Relative Waiting Time DRB Relative Waiting Time (Malicious)

Figure 14: Relative Memory Access Waiting Time:
One Legitimate Realm vs. One Malicious Realm.

0

0.2

0.4

0.6

0.8

1

1.2

V
M

M
 +

V
M

(b
z
ip

2
)

V
M

M
 +

V
M

(h
m

m
e
r)

V
M

M
 +

V
M

(f
fm

p
e
g
)

V
M

M
 +

V
M

(m
a
lic

io
u
s
)

V
M

M
+

V
M

(x
a
la

n
)

V
M

M
+

V
M

(g
c
c
)

V
M

M
+

V
M

(p
o
v
ra

y
)

V
M

M
+

V
M

(m
a
lic

io
u
s
)

Setting 1 Setting 2

FIFO Relative Waiting Time DRB Relative Waiting Time

Figure 15: Relative Memory Access Waiting Time:
Four Realms.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

VMM +

VM(bzip2)+VM(xalan)

VMM +

VM(ffmpeg)+VM(hmmer)

VMM + VM(povray) +

VM(gcc)

VMM + VM(malicious)

FIFO Relative Waiting Time DRB Relative Waiting Time

Figure 16: Relative Memory Access Waiting Time:
Four Dual-Guest Realms.

6. RELATED WORK
Hardware and architectural support for CPU and
I/O virtualization To our best knowledge, majority of
the published studies and designs in this space focus on sup-
porting single hypervisor based systems [2, 28]). In contrast
to these systems, MultiHype is one of the first that employ
new architectural features to support multi-hypervisor based
platform. In [5], Ben Yehuda et al. propose a solution for

supporting nested virtual machines. Compared with Multi-
Hype, this is a special type of mono hypervisor system as
all nested virtual machines depend on a single bottom layer
hypervisor. Thus, in many-core based environments, this
cannot scale with a great many guest VMs because a single
hypervisor should handle them. In addition, this has po-
tential security problems because all guest VMs share the
underlying raw hardware. NoHype [14] is an architecture
that uses hardware virtualization extensions to remove any
need for virtualization layer such as hypervisor. The ar-
chitecture includes running one virtual machine per core,
hardware enforced memory partitioning, dedicated (virtual)
devices. However, NoHype cannot adjust resources partition
between virtual machines dynamically because each guest
virtual machine controls hardware directly.

Resource management in a multicore processorMany
researchers in the last few years have explored the resource
sharing problems of a multicore processor. These problems
include fairness, QoS, or even DoS vulnerability in a shared
cache [21, 6], memory bandwidth [20, 18], or both of them
concurrently [31]. In contrast to the related studies that dy-
namically allocate cache and memory resources, MultiHype
focuses on strong isolation between concurrently executed
hypervisor realms over a single physical platform. Unlike
related work that dynamically allocate cache and memory
resources based on demand, our system does not give more
cache and/or memory resources to any malicious applica-
tion. The described weighted LRU cache replacement policy
does not explicitly or directly manage cache resources (e.g.,
space and bandwidth); instead, it defends against malicious
cache exploits indirectly by manipulating LRU weights of a
shared cache. In a mono hypervisor environment, the policy
reduces to standard LRU. Different from the related work,
we use deficit Round-Robin to manage memory resources for
each hypervisor realm, which introduces low cost and hard-
ware efficient approximation to fair queuing, and is suited for
independency of individual hypervisor realms. Furthermore,
defending against resource exhaustion exploit is only one as-
pect of the strong isolation. Other aspect includes confining
any fault or failure that occurs within a hypervisor realm.

Micro-kernel based hypervisor NOVA [27] is a micro-
kernel based hypervisor that uses a thin and simple virtu-
alization layer to reduce the attack surface and as a result
improve system security. MultiHype is orthogonal and com-
plementary to this approach. Comparing with this, Multi-
Hype eliminates the necessity of sharing hypervisor among
different cloud customers on a single platform and thereby
improves platform reliability, scalability, and security.

Multi-kernel support Baumann et al. [4] proposed a new
operating system, Barrelfish multikernel, which focuses on
the scalability of heterogeneous multicore systems. Bar-
relfish treats each core as an independent entity as if each
core is a node in a distributed system. In such a system,
cores communicate using messages and do not share mem-
ory. In contrast, MultiHype intends to scale in a many-core
platform running multiple hypervisors on a single physical
server. Unlike Barrelfish, each hypervisor can manage mul-
tiple cores while running independently.

7. CONCLUSION
We present the design and evaluation of MultiHype, a

platform architecture to support multiple hypervisors on a
single physical platform by leveraging the emerging many-
core based cloud-on-chip processor. Each hypervisor in Mul-
tiHype manages guest virtual machines like traditional vir-
tualized platform. The strong isolation between hypervisors
and their realms is achieved by the separation of physical
resources provided by a control plane of the platform, which
includes a new LRU based cache replacement policy for pre-
venting cache exhaustion attacks, and efficient memory man-
agement approach for defending against denial of resource
attacks on physical memory in multi-tenancy cloud environ-
ment. These micro-architectural features confines the vul-
nerabilities of one hypervisor or its virtual machine within

83

its own domain, which makes the MultiHype platform more
resilient to malicious attacks and failures in cloud computing
environment. Our evaluations using Bochs emulator and cy-
cle based x86 simulation show both qualitatively and quan-
titatively the effectiveness of MultiHype as a new platform
architecture with improved security and dependability be-
yond legacy virtualization platform.

8. REFERENCES
[1] 3Leaf Systems. Next generation hybrid systems for

hpc.
http://www.3leafsystems.com/download/3leaf_wt_
paper_Next_Gen_Hybrid_Sys\%tems_for_HPC.pdf,
2009.

[2] Abramson, D., Jackson, J., Muthrasanallur, S.,
Neiger, G., Regnier, G., Sankaran, R.,
Schoinas, I., Uhlig, R., Vembu, B., and Weigert,
J. Intel Virtualization Technology for directed I/O.
Intel Technology Journal 10, 3 (Aug. 2006), 179–192.

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
and Warfield, A. Virtual machine monitors: Xen
and the art of virtualization. In Proceedings of the
19th ACM Symposium on Operating Systems
Principles: the Sagamore, Bolton Landing, Lake
George, New York, USA, October 19–22, 2003 (New
York, NY 10036, USA, Dec. 2003), ACM, Ed.,
vol. 37(5) of Operating systems review, ACM Press,
pp. 164–177. ACM order number 534030.

[4] Baumann, A., Barham, P., Dagand, P., Harris,
T., Isaacs, R., Peter, S., Roscoe, T., Sch
”upbach, A., and Singhania, A. The multikernel: a
new os architecture for scalable multicore systems. In
SOSP (2009), vol. 9, Citeseer, pp. 29–44.

[5] Ben-Yehuda, M., Day, M. D., Dubitzky, Z.,
Factor, M., Har’El, N., Gordon, A., Liguori,
A., Wasserman, O., and Yassour, B.-A. The
turtles project: design and implementation of nested
virtualization. In Proceedings of the 9th USENIX
conference on Operating systems design and
implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 1–6.

[6] Chang, J., and Sohi, G. Cooperative cache
partitioning for chip multiprocessors. In Proceedings of
the 21st annual international conference on
Supercomputing (2007), ACM, pp. 242–252.

[7] Ferrie, P. Attacks on virtual machine emulators.
Symantec Security Response 5 (2006).

[8] Frank Gens, Robert P Mahowald, R. L. V. An
empirical study into the security exposure to hosts of
hostile virtualized environments, 2007.

[9] Gries, M., and Romer., A. Performance Evaluation
of Recent DRAM Architectures for Embedded
Systems. In TIK Report Nr. 82, Computing
Engineering and Networks Lab (TIK), Swiss Federal
Institute of Technology (ETH) Zurich (November
1999).

[10] Heiser, J., and Nicolett, M. Assessing the security
risks of cloud computing. http:
//www.gartner.com/DisplayDocument?id=685308,
2009.

[11] Held, J., Bautista, J., and Koehl, S. White paper
from a few cores to many: A tera-scale computing
research review.

[12] K. Lawton. Welcome to the Bochs x86 PC Emulation
Software Home Page. http://www.bochs.com.

[13] Karger, P. A., and Safford, D. I/O for virtual
machine monitors: Security and performance issues.
IEEE Security & Privacy 6, 5 (2008), 16–23.

[14] Keller, E., Szefer, J., Rexford, J., and Lee,
R. B. Nohype: virtualized cloud infrastructure
without the virtualization. In Proceedings of the 37th

annual international symposium on Computer
architecture (New York, NY, USA, 2010), ISCA ’10,
ACM, pp. 350–361.

[15] King, S. T., Chen, P. M., min Wang, Y.,
Verbowski, C., Wang, H. J., and Lorch, J. R.
Subvirt: Implementing malware with virtual
machines. In IEEE Symposium on Security and
Privacy (2006), pp. 314–327.

[16] Kortchinsky, K. Cloudburst – hacking 3D and
breaking out of VMware. In Black Hat USA (2009).

[17] Mell, P. Nist presentation on effectively and securely
using the cloud computing paradigm v26.
http://csrc.nist.gov/groups/SNS/
cloud-computing/index.html, 2009.

[18] Moscibroda, T., and Mutlu, O. Memory
performance attacks: Denial of memory service in
multi-core systems. In Proceedings of 16th USENIX
Security Symposium on USENIX Security Symposium
(2007), USENIX Association, p. 18.

[19] Neiger, G., Santoni, A., Leung, F., Rodgers, D.,
and Uhlig, R. Intel Virtualization Technology:
Hardware support for efficient processor virtualization.
Intel Technology Journal 10, 3 (Aug. 2006), 167–177.

[20] Nesbit, K. J., Aggarwal, N., Laudon, J., and
Smith, J. E. Fair queuing memory systems. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture
(Washington, DC, USA, 2006), MICRO 39, IEEE
Computer Society, pp. 208–222.

[21] Nesbit, K. J., Laudon, J., and Smith, J. E.
Virtual private caches. In Proceedings of the 34th
annual international symposium on Computer
architecture (New York, NY, USA, 2007), ISCA ’07,
ACM, pp. 57–68.

[22] Ormandy, T. An empirical study into the security
exposure to hosts of hostile virtualized environments.
In CanSecWest (2007).

[23] Ristenpart, T., Tromer, E., Shacham, H., and
Savage, S. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM conference on Computer
and communications security (New York, NY, USA,
2009), CCS ’09, ACM, pp. 199–212.

[24] Rutkowska, J. Blue pill. In Black Hat USA (2006).
[25] Secunia. Advisory sa37081 - VMware ESX sever

uodate for DHCP, kernel, and JRE.
http://secunia.com/advisories/37081/.

[26] Shreedhar, M., and Varghese, G. Efficient fair
queuing using deficit round robin. IEEE Trans. Net
(1996).

[27] Steinberg, U., and Kauer, B. NOVA: a
microhypervisor-based secure virtualization
architecture. In Proceedings of the 5th European
conference on Computer systems (New York, NY,
USA, 2010), EuroSys ’10, ACM, pp. 209–222.

[28] Uhlig, R. Forward: Intel Virtualization Technology:
Taking virtualization mainstream on Intel architecture
platforms. Intel Technology Journal 10, 3 (Aug. 2006),
v–vi.

[29] Vlaovic, S., and Davidson, E. S. TAXI: Trace
Analysis for X86 Interpretation. In Proceedings of the
2002 IEEE International Conference on Computer
Design (2002).

[30] Wojtczuk, R. Subverting the Xen hypervisor. In
Black Hat USA (2008).

[31] Woo, D. H., and Lee, H.-H. Analyzing performance
vulnerability due to resource denial of service attack
on chip multiprocessors. In Workshop on Chip
Multiprocessor Memory Systems and Interconnects
(2007).

84

