
POSTER: A Certificateless Proxy Re-Encryption Scheme
for Cloud-based Data Sharing

Xiaoxin Wu†, Lei Xu†, and Xinwen Zhang‡
†Huawei Information Technology Lab, Beijing, China

‡Huawei America Research Center, Santa Clara, CA, USA
{wuxiaoxin, stone.xu, xinwen.zhang}@huawei.com

ABSTRACT
We propose CL-PRE, a certificateless proxy re-encryption
scheme for data sharing with cloud. In CL-PRE, a data
owner encrypts shared data in cloud with an encryption
key, which is further encrypted and transformed by cloud,
and then distributed to legitimate recipients for access con-
trol. Uniquely, the cloud-based transformation leverages
re-encryption keys derived from private key of data owner
and public keys of receipts, and eliminates the key escrow
problem with identity based cryptography and the need of
certificate . While preserving data and key privacy from
semi-trusted cloud, CL-PRE maximumly leverages cloud re-
sources to reduce the computing and communication cost for
data owner. We implement CL-PRE and evaluate its secu-
rity and performance.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems; D.4.6
[Security and Protection]: Cryptographic controls

General Terms
Security, Algorithms

Keywords
cloud computing, cloud storage, certificateless public key
cryptography, proxy re-encryption, access control

1. INTRODUCTION
Security has been considered as one of the critical con-

cerns that hinder public cloud to be widely used. With the
separation of data ownership and storage, a data owner has
strong motivation to preserve its control of access and us-
age of shared data, while leverage storage, computation, and
distribution functions provided by cloud, and desire that a
public cloud should not learn any clear data. It has been
widely recognized that data security should be mainly relied
on cloud customers instead of cloud service providers [1, 5].
A typical approach for data confidentiality protection is to

encrypt a data with a (usually symmetric) key before storing
it to cloud. However, encryption makes it difficult to flexibly
sharing data between different users. On one side, sharing
the data encryption key to all users easily enables a user to

Copyright is held by the author/owner(s).
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

access all data that stored in cloud of a data owner, which
violates the least privilege principle. On the other side, any
change of access control policy either demands decryption
and re-encryption of the data in cloud, which exposes clear
data in cloud, or the owner has to re-encrypt the data and re-
upload to cloud, which brings computation and bandwidth
cost to the owner. Furthermore, collusion between a legit-
imate user and the cloud easily allows unauthorized data
sharing and distribution.

Key management is another burdensome task for encryp-
tion based access control. A data owner may manage the
keys by itself, e.g., through sending the data encryption key
to individual recipients with assumption that each user is
equipped with a private/public key pair and data encryption
key is encrypted with a recipient’s public key. This intro-
duces heavy computing load at data owner side, and relies
on a PKI system, which does not scale well. Broadcast en-
cryption and group key management can be used for sharing
data in group manner. However, managing group is compli-
cated in particular for today’s pervasive data sharing such
as cloud-based collaborations and social networks, where the
number of groups of interest for any individual user is large.
In addition, the size of a group can also be large, and the
membership usually changes frequently, which makes group
key management very tedious for an common user.

Since cloud is a resource pool for computation, storage,
and networking, and provides elastic and pay-as-you-go re-
source consumption model, our motivation is to leverage
cloud for encryption-based access control and key manage-
ment. Towards end-to-end data confidentiality, we consider
the cloud is semi-trusted, that is, clear data and encryp-
tion keys should never be exposed in cloud. Such a cloud
based approach should be able to deliver data encryption
keys with respecting to pre-defined access control policies
from the data owner, and introduce minor overhead on cloud
users by eliminating any direct interaction between a data
owner and its recipients.

To achieve these goals, we develop CL-PRE, a new proxy-
based re-encryption scheme augmented with certificateless
public key cryptography, which leverages cloud not only for
data storage but also for secure key distribution for data
sharing. With CL-PRE, a data is first encrypted with a
symmetric data encryption key (DEK) before stored in cloud
by its owner. The data owner then generates proxy re-
encryption keys with all of its potential recipients and sends
to a cloud resident proxy service, along with the encrypted
DEK with its public key. Using the re-encryption keys, the
cloud is then able to transform the encrypted DEK to the

one that can be decrypted using an individual recipient’ pri-
vate key. In this way, the cloud works only as a proxy for
key management. CL-PRE ensures that the cloud cannot
get the clear DEK during the transformation.
Towards a cloud-based solution, the proxy in CL-PRE

runs in potentially malicious execution environment, where
any vulnerability in cloud platform (e.g., in virtualization
layer of a cloud node) can compromise the proxy, which
enables an attacker to perform data re-encryption for any
unauthorized user. To address this, we further extend CL-
PRE for multi-proxy encryption, with multiple proxies de-
ployed in different cloud providers. An attacker has to com-
promise all of them in order to achieve the attacking goal,
therefore the security is significantly enhanced.
Our proxy re-encryption algorithm is similar to [3], yet we

consider more specifically flexible data sharing within cloud.
An important novelty of our scheme is using certificateless
public key cryptography for proxy re-encryption, which is
the first attempt to our best knowledge. Uniquely, CL-PRE
leverages the identity of a recipient as an ingredient of public
key, while eliminates the key escrow problem in traditional
identity-based encryption (IBE) [4], and does not require
certificates to guarantee the authenticity of public keys. In
addition, CL-PRE does not have a problem in [3] that the
weak secret can be released if the proxy colludes with users.

2. CL-PRE SCHEME

2.1 Trust Model and Assumptions
We assume cloud is semi-trusted. This means that cloud

works fairly by following pre-defined protocols and policies
between end users and cloud services, upon client agreement.
Yet with the high complexity of public cloud environment,
cloud is not able to guarantee data confidentiality. The cor-
ruption of data security may be caused by social attacks
launched by an administrator, or by any outside attacks that
take advantage of any security vulnerabilities of the cloud.
However, we assume that cloud is able to achieve security
over critical data. The critical data includes integrity of
public keys and access control policies. We further assume
that the operation righteousness over these critical data is
guaranteed.
We assume a cloud client has basic capabilities on generat-

ing and managing different type of keys. In addition, a client
is able to make its own data secure. We do not consider data
re-dissemination after a legitimate user successfully decrypts
a protect data.
We further assume that there exists a private key gen-

erator (PKG) that is able to generate part of private keys
based on user identities and securely deliver these keys to
cloud users.

2.2 Overview
As Figure 1 shows, a cloud user, named data owner, shares

data to a number of other cloud users (recipients). The
data is first encrypted with a symmetric data encryption
key (DEK), and then stored in the cloud, along with an
access control list (ACL) indicating the recipient group. It
also encrypts the DEK using its public key, and sends the
encrypted DEK to the cloud as well. Upon access request
from a recipient, based on the ACL, the cloud uses a re-
encryption algorithm to transfer the encrypted DEK into
the format that can be decrypted by the recipient’s private

Proxy Server

Re-encryption Keys

Shared Data

Access Control List

Encrypted Data

Re-encrypted Keys

Encrypted Data

Encrypted Keys

Encrypted Keys

Re-encryption keys

Data Key

Data Owner
Recipients

Figure 1: Overview of CL-PRE for data sharing.

key. The recipient then can download the encrypted data
from the cloud and use the DEK for decryption.

A data owner may share different files with different re-
cipient groups. For each of these groups, it uses a unique
DEK. Therefore, a recipient cannot read data for a group
it does not belong to. The cloud, on the other hand, acts
as an intermediate proxy making data understood among
cloud users. It cannot read the data as it cannot get DEKs.

In our scheme, a re-encryption key is generated from the
data owner’s private key and a recipient’s public key. Since
the number of cloud users participating in file sharing may
be large, traditional PKI based approach has the public key
management issue, and IBE based approach has the private
key escrow problem. Therefore certificateless based encryp-
tion [2] is adopted in our scheme.

2.3 Basic Algorithm
In following description, we denote user A the data owner,

user B a data recipient, and proxy a cloud-resident service.
Both user A and B obtains public/private key pairs as the
following describes.

PKG Setup: Let G1, G2 be two cyclic groups of prime
order p, and e : G1 × G1 → G2 be a bilinear map. The
message space is G2, the cipher space is G1 × G2. H1 is a
hash function from {0, 1}∗ to G1, and H2 is a hash function
from G2 to G1. A random generator g ∈ G1 is chosen. The
PKG randomly picks an integer s ∈ Z∗

p as the master key,
and publishes gs.

Private Key Extraction: User A with identity IDA asks
the PKG for partial private key extraction. The PKG cal-
culates gA = H1(IDA), DA = gsA and sends DA to user A.
The same operation with user B.

Secret Value Generation: User A randomly chooses an
integer xA ∈ Z∗

p. The same with user B.

Private Key Generation: User A computes private key:

skA = DxA
A = gs·xA

A ,

where skA is kept secret. The same operation is performed
by user B. To achieve decryption delegation (to allow others
to decrypt data that is originally encrypted by A), A also
chooses a random integer t.

Public Key Generation: User A computes her public key:

pkA = (gxA , gs·xA)

pkA is published and anyone who wants to send A a message
can use this for encryption. Note that gA can be calculated
by everyone from user A’s identity. For decryption delega-
tion, user A also publishes gt as part of her public key.

Encryption: To encrypt message m ∈ G1 that can only be
decrypted by herself, user A randomly chooses integer r and
calculates

c = CA(m) = (gr,m · e(gA, gs·xA)r)

For decryption delegation, user A also randomly chooses
integers r and calculates

c′ = C′
A(m) = (gtr, gr,m · e(gA, gs·xA)r)

In our data sharing scenario illustrated in Section 2, m is
the DEK for a sharing group generated by user A.

Decryption: To decrypt CA(m) = (u, v) under skA, user
A calculates

v/e(skA, u) = m · e(gA, gs·xA)r/e(gs·xA
A , gr) = m

Proxy Re-encryption Key Generation: If user A wants
to delegate decryption right to user B, user A randomly chooses
x ∈ G2, and computes the proxy re-encryption key by

rkA→B = (g−s·xA
A ·Ht

2(x), CB(x)),

which is then sent to the proxy by user A.

Proxy Re-encryption: To re-encrypt a cipher text C′
A(m)

under re-encryption key rkA→B , the proxy computes

c′′ = m·e(gA, gs·xA)r ·e(g−s·xA
A ·Ht

2(x), g
r) = m·e(Ht

2(x), g
r)

and then sends (gtr, c′′, CB(x)) to user B.

Re-encryption Decryption: After receiving (gtr, c′′, CB(x)),
user B decrypts CB(x) to get x, and then gets the message:

c′′/e(H2(x), g
tr) = m

2.4 Security Analysis
The security of CL-PRE is based on the assumed in-

tractability of the Decisional Bilinear Diffie-Hellman prob-
lem (DBDH), which is defined as follows: Let (G1, G2) be
a pair of bilinear groups with an efficiently computable bi-
linear pairing e : G1 × G1 → G2, and let g be a random
generator of G1. The DBDH problem is to decide when
given a tuple of values (g, ga, gb, gc, T) ∈ G4

1 × G2 (where
a, b, c ∈R Zp), whether T = e(g, g)abc or if T is a random
element of G2.
For CL-PRE, assume an adversary can extract partial pri-

vate keys or private keys of a recipient, or both, for identities
of their choice. The adversary also can replace the public
key of any entity with a value of its choice. As a proxy re-
encryption scheme, the adversary has access to re-encryption
oracle and re-encryption key generation oracle. If an adver-
sary can break our scheme, this adversary can be used to
solve the DBDH problem. This also implies that CL-PRE
is collusion resistant, i.e., collusion between a recipient and
the proxy cannot recover the private key of the data owner.
Due to space limit we omit the proof.

2.5 Multi-Proxy Re-encryption
As residing in public cloud, the proxy in CL-PRE can

be compromised, e.g., by cloud system administrators, or
external attacker with virtualization vulnerability in cloud
computing platforms. Towards a security enhanced solution,
we extend CL-PRE to support multi-proxy scheme, where
multiple proxies can be deployed on different clouds.

Assume there are n proxies, user A (data owner) divides
the first part of a re-encryption key into n randomly parti-
tioned pieces, i.e.,

g−s·xA
A ·Ht

2(x) = rk1 · rk2 · . . . · rkn,

and sends rki to proxy i, respectively.
To re-encrypt a ciphertext C′

A = c′ = (gtr, gr,m·e(gA, gs·xA)r),
proxy i calculates ci = e(rki, g

r) and sends

(gtr,m · e(gA, gs·xA)r, ci, CB(x))

to user B.
After receiving all of the n re-encrypted ciphertext, user

B first computes

n∏
i=1

ci =

n∏
i=1

e(rki, g
r) = e(

n∏
i=1

rki, g
r) = e(g−s·xA

A ·Ht
2(x), g

r),

and then decrypts it with his private key.
With this multi-proxy scheme, an attacker needs to com-

promise multiple cloud platforms in different cloud providers,
which significantly increases the attack time and computa-
tion cost.

3. PERFORMANCE EVALUATION
We implement CL-PRE on an elliptic curve defined on

512 bits prime field with a generator of order 160 bits. The
embedded degree of the curve is 2. Our experiments are
carried out on one-core,1GB memory Linux virtual machine
residing on a PC with Intel i5 3.4GHz processor and 4GB
memory. We accelerate the re-encryption process by caching
interim results of pairing computation, which makes each of
the re-encryption 20% faster.

Our primitive experimental result shows that with 3k bits
of both re-encryption key size and ciphertext size, the proxy
re-encryption time is about 7-8 ms. With elastic computing
resources in cloud, we believe the proxy is not a performance
bottle neck. Our result also confirms that CL-PRE achieves
a much lower computing overhead at data owner side by
shifting the computation to cloud.

4. REFERENCES
[1] AWS Customer Agreement

http://aws.amazon.com/agreement/, 2011.

[2] S. S. Al-Riyami and K. G. Paterson. Certificateless
public key cryptography. In ASIACRYPT, 2003.

[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger.
Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM
TISSEC, 9:1 – 30, 2006.

[4] D. Boneh and M. Franklin. Identity-based encryption
from the weil pairing. In CRYPTO, 2001.

[5] C. Security Alliance. Security Guidance for Critical
Areas of Focus in Cloud Computing V2.1, 2009.
https://cloudsecurityalliance.org/csaguide.pdf.

