
Exploitation and Threat Analysis of Open Mobile Devices

Lei Liu
Dept. of Computer Science
George Mason University

lliu3@cs.gmu.edu

Xinwen Zhang
Computer Science Lab

Samsung Information Systems America
xinwen.z@samsung.com

Guanhua Yan
Information Sciences

Los Alamos National Lab
ghyan@lanl.gov

Songqing Chen
Dept. of Computer Science
George Mason University
sqchen@cs.gmu.edu

ABSTRACT
The increasingly open environment of mobile computing sys-
tems such as PDAs and smartphones brings rich applica-
tions and services to mobile users. Accompanied with this
trend is the growing malicious activities against these mobile
systems, such as information leakage, service stealing, and
power exhaustion. Besides the threats posed against indi-
vidual mobile users, these unveiled mobile devices also open
the door for more serious damage such as disabling criti-
cal public cyber physical systems that are connected to the
mobile/wireless infrastructure. The impact of such attacks,
however, has not been fully recognized.

In this work, we show that mobile devices, even with the
state-of-the-art security mechanisms, are still vulnerable to
a set of carefully crafted attacks. Taking Linux-based cell-
phones as an example, we show that this vulnerability not
only makes it possible to attack individual mobile devices
such as accessing unauthorized resources, disabling prede-
fined security mechanisms, and diverting phone calls, but
also can be exploited to launch distributed denial-of-service
attacks against critical public services such as 911. Using the
open multi-class queuing network model, we analyze in de-
tail the consequence of these attacks against the 911 service
in a large region and also present some unique character-
istics of these attacks. We further discuss potential coun-
termeasures that can effectively mitigate or eliminate these
attacks.

1. INTRODUCTION
Today’s mobile devices such as cellphones and smartphones

have increasing processing power, integrated functions, and
network connectivities, and hence, there are more and more
data services available on these devices, such as messaging,
content sharing, and other rich Internet applications. To ac-
commodate such services, mobile devices are also becoming
more open and general-purpose than ever. New application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’09 October 19-20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010 ...$10.00.

development and distribution models for these open plat-
forms accelerate these trends, such as Apple AppStore [12]
for iPhones. Mobile users nowadays can easily find and
download applications developed by untrusted developers
from these stores and install them on their devices.

The increasing usage of mobile devices in practice has at-
tracted not only more regular users, but also more attackers.
According to F-Secure [39], currently there are more than
370 mobile malware in circulation, most of which are in-
fected via user installed applications. McAfee’s 2008 mobile
security report [19] indicates that nearly 14% of global mo-
bile users have been directly infected or have known some-
one who was infected by a mobile virus and the number of
infected mobile devices increases remarkably according to
McAfee’s 2009 report [20].

Both the research community and the mobile industry
have been seeking solutions to defend against mobile mal-
ware. For example, extensive research has been conducted
to protect mobile devices and user data, such as signature-
and anomaly-based analysis [35, 38, 46]. But few of them
have been adopted in practice. On the other hand, in in-
dustry, two security models have commonly been proposed
and/or adopted by mobile devices to combat malware activ-
ities. The first is Capability-based Application Digital Sig-
nature (CADS), which requires that only digitally signed
packages can be installed on a device. It has been used
on many platforms, such as MotoMAGX [22], Android [5],
Qtopia [26], and the latest Symbian system [37]. The sec-
ond is Runtime Security Policy Enforcement (RSPE), such
as Security Policy Enforcement Framework (SPEF) [14] pro-
posed by LiMo Foundation and SELinux support on Mon-
taVista MobiLinux 5.0 [21], aiming to provide fine-grained
specification and enforcement of access control for applica-
tions. For instance, with a proper SPEF configuration, the
addressbook can only be accessed by certain applications.

CADS and RSPE are effective in dealing with malware
like Dampig [9], Fontal [10], Locknut [16], and Cardblock [7].
However, CADS mainly protects applications statically by
ensuring that they are unaltered when they are installed
and also checks whether APIs being called have been de-
clared before. Runtime altering of the program image in the
memory, however, can make it useless. For example, with-
out using new APIs, changing the parameter of the APIs
can be done without being detected. On the other hand,
although RSPE can perform runtime checks during execu-
tion to verify whether some resources can be used by the

application, it cannot prevent the misusing of APIs. There-
fore, even with both of them deployed, an attacker capable
of runtime code modification can still hijack the device to
launch various attacks.

Such attacks can be implemented in many existing mobile
systems to attack individual devices and critical public ser-
vices, such as 911, and cause catastrophic results. Amongst
the three major mobile operating systems (OS) – Symbian,
Windows Mobile, and Linux, these attacks can be easily
mounted on Linux-based mobile systems, given the public
availability of mobile Linux source code. These days al-
though Linux-based mobile systems only occupy about 8.1%
market share [11], they are becoming more and more popular
because of their open development environment. For exam-
ple, Maemo [18], a modified version of Debian GNU/Linux
slimmed down for mobile devices, has been used on Nokia
Internet Tablet including Nokia 770, Nokia N800, and Nokia
N810. Motorola EZX [23] is among the first series of Linux
phones that are available. It has been used on many phones
such as A780, E680, and A1200. Lots of LiMo platform [13]
based mobile phones have also been released by many ven-
dors, including Motorola, LG, NEC, and Panasonic. Open-
moko [24] has been used on Neo 1973, Neo FreeRunner,
and Dash Express. Recently, Android [4] is used on Google
phones. These products all use a Linux-based mobile OS.

In this paper, taking Linux-based mobile systems as an
example, we show how an attacker can exploit the vulnera-
bility of existing mobile system security models to attack the
critical cyber physical infrastructure, such as the 911 service.
We target Linux-based mobile systems because of two rea-
sons. The first is that Linux mobile OS is open and publicly
accessible. The second is that although Linux-based mobile
systems have the least market share among the three pop-
ular mobile OSes, we demonstrate that it is still sufficient
to leverage only 1% of them to disable the service of a 911
call center in a region with millions of population. If other
mobile systems equipped with Symbian or Windows Mobile
are successfully attacked, the damage potentially would be
enormous. In a nutshell, our key contributions in this work
include the following:

• We analyze the two security models, CADS and RSPE,
and show that attacks can still be launched in a system
even with both of them deployed.

• We give an example attack on how to exploit this vul-
nerability at the system level on Linux-based mobile
systems, which are usually built on the ARM architec-
ture instead of the Intel.

• Taking a typical regional 911 call center as an example,
we show how exploited mobile systems can saturate the
capability of the 911 service center, practically making
it unable to receive new emergency calls.

• We identify the unique characteristics of these attacks
and propose possible countermeasures for users, ser-
vice providers, mobile network operators, and mobile
system developers.

The rest of the paper is organized as follows. Some back-
ground of mobile security models is introduced in Section 2.
We present the vulnerability analysis and how to exploit
the discovered vulnerability in Section 3. We show how to
leverage this vulnerability to attack individual devices in
Section 4. The threat analysis for the public 911 service is
performed in Section 6. Section 7 discusses some counter-

measures. We present some related work in Section 8 and
make concluding remarks in Section 9.

2. MOBILE SECURITY MODELS
Facing burgeoning mobile malware, the mobile device in-

dustry has developed various security mechanisms to miti-
gate the growing threat from mobile malware. In this sec-
tion, we present the basics of two widely deployed security
models, CADS and RSPE.

2.1 Capability-based Application Digital Signature (CADS)

To confine the activities of applications, many mobile sys-
tems require that only digitally signed packages can be in-
stalled, such as MotoMAGX [22], Android [5], Qtopia [26],
and the latest Symbian system [37]. Application signing
is the process of encoding a tamper-proof digital certificate
into an application package. For example, each Android
package (apk) includes a digital signature from its devel-
oper. The digital signature authenticates the origin of the
package and guarantees the integrity of the package during
distribution and installation.

Besides developer or vendor information, a package can
also declare the capabilities it demands in order to per-
form its functions. In some implementations (e.g. Sym-
bian), a digital signature grants accesses to those Capability-
protected APIs that an application has declared at build-
time. The application cannot use Capability-protected APIs
that are not declared in the application’s digital signature.
For instance, an application cannot use phonecall APIs un-
less it has claimed the phonecall capability.

2.2 Runtime Security Policy Enforcement (RSPE)

The Capability-based application digital signature grants
the access to Capability-protected APIs, but it cannot con-
fine the behavior of general-purpose APIs and system calls.
For example, file access APIs are used by most applications.
To provide fine-grained specification and enforcement of ac-
cess control for applications, Runtime Security Policy En-
forcement (RSPE) is proposed, such as SPEF [14] proposed
by LiMo Foundation. Under SPEF, each process runs in a
protected domain, which only allows authorized code to ac-
cess resources and perform operations. Domains can be de-
fined according to the level of trust associated with the appli-
cation. Domains, permissions, and policies are described in
a set of configuration files, called Domain and Policy Stores.
Kernel resources are secured by SPEF policy checking in-
side the kernel. For instance, sensitive resources such as the
addressbook could only be accessed by certain applications
with a proper SPEF configuration.

A malicious process, even with root privileges, if not in
a certain domain, is incapable of accessing all resources in
that domain. The SPEF policy is enforced at runtime. In
general, after a software package is verified, signed and in-
stalled (with CADS), SPEF does not take effect until its
corresponding process attempts to access resources via sys-
tem calls or APIs.

3. VULNERABILITY ANALYSIS AND EX-
PLOITS

In this section, we present the vulnerability of the existing
mobile security models, and show how to exploit it for code

injection and replacement on the ARM architecture since
ARM is used by most (>90%) mobile devices [28].

3.1 Vulnerability Analysis
Both CADS and RSPE have their advantages and disad-

vantages. In Table 1, we summarize their critical features.

Table 1: Summary of CADS and RSPE Features

CADS RSPE

stage installation execution
checking static dynamic
APIs Capability-protected

APIs
general-purpose APIs
and system calls

targets
no tamper at instal-
lation; no Capability-
protected APIs

access control

overall no control over
general-purpose APIs

threat only detected at
runtime

As indicated in the above table, CADS and RSPE work at
different stages and thus can complement each other. CADS
and RSPE together build a fortress around the mobile de-
vice. On the one hand, an application’s digital signature
prevents the application from using undeclared Capability-
protected APIs. On the other hand, RSPE guarantees APIs
only access certain pre-authorized resources. The seemingly
seamless security fortress, however, still has some vulnerabil-
ity: CADS together with RSPE guarantees that the applica-
tion can be installed without modification and the applica-
tion can be launched in a safe domain. However, this com-
bined security architecture cannot guarantee the integrity
of the application at runtime. For example, a runtime mod-
ification of the code or a runtime modification to the pa-
rameters to the API can pass the checking of both CADS
and RSPE. Thus, if the application is tampered dynami-
cally, the combined security architecture cannot detect and
prevent the subsequent security breakage.

Figure 1 illustrates how a malware program manages to
evade these mobile security mechanisms. The figure shows
that to get installed on a mobile device, the malware applica-
tion has to be digitally signed and claims proper, usually low,
capabilities. With CADS, the malware process cannot use
Capability-protected APIs. After installation, the malware
process runs in an untrusted domain. When it tries to ac-
cess protected resources with general-purpose APIs, RSPE
checks the domain policy and stops unauthorized accesses.

However, if the malware process manages to dynamically
tamper with a running process in a trusted domain, the
malware can manipulate the victim process to

• call Capability-protected APIs that itself cannot use
to perform operations, and

• call general-purpose APIs to access resources protected
by RSPE.

3.2 Exploiting Linux-based Mobile Systems
In this subsection, we show how to exploit such a vulner-

ability on Linux-based mobile systems. Most mobile Linux
systems port conventional open source Linux into mobile
devices, and keep the user-based permission management

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

low
capability

Domain/
Policy
Store

LSM

User
Kernel

untrusted domain

trusted domain

resources

Package
Manager

No unauthorized
access

launch process

malware
process

trusted
process

resource
request
APIs

Capability
protected
APIs

digital
signature

install

signed
package

runtime tamper

security
goal

security
goal

No tamper

No Capability−protected API

Verified, singed, no Capability−protected APIs

Malware

Mobile

Kernel

forbidden

request
resource

APIs

OS

RSPE

RSPE

by RSPE

constrained

application

Figure 1: How malware evade the integrated mobile
security architecture

framework. Traditional desktop Linux systems maintain
multi-user accounts. Due to various considerations, most of
mobile Linux systems used in the massive production on the
market, such as Maemo, EZX 1, LiMo, and Openmoko, are a
single user OS environment except for Android. The single
user environment in these systems makes the exploitation
much easier. We discuss two types of system-level exploita-
tion, code injection and code replacement, in the following.
For both of them, we can leverage system calls like ptrace()
write_data() and read_data(). Before we present the ex-
ploitation, we first present several critical difference between
the Intel x86 and the ARM architectures since most of the
mobile systems (> 90%) on the market are ARM-based [28].

3.2.1 Exploitation on the ARM Architecture
Relative to Intel x86 on which the shell code and exploits

are well documented, there are few documents about such
exploits on ARM. While there are a number of differences,
we list a few critical ones here.

• The registers on ARM are organized differently (from
Intel x86), and are stored in different structures. Thus,
one needs to firstly find out the correct structure for
the registers and their status.

• An exploitation commonly starts with code injection
in stack. However, the base address of a stack varies
from architecture to architecture. The base address

1EZX has two users, root and ezx. ezx user could
launch process by switching to root user with a sim-
ple command: start-stop-daemon -start -chuid root -
exec {command}. Therefore, it is essentially a single user
system.

of the shell code has an offset from the stack pointer.
Before starting, one needs to find out the correct offset
value.

• Breakpoints are commonly used to return to the origi-
nal process workflow during exploitation. On the Intel
x86 architecture, int 3 instruction would set a break-
point. But there is no such instruction on ARM. The
bkpt instruction works on some ARM devices, but
not all. For example, it does not work on Android.
One needs to find out the right breakpoint instruc-
tion. For example, with the help of Android Emu-
lator, we find the breakpoint instruction is actually
”\x00\x05\x00\x0d”.

Being aware of these critical differences, we discuss how
to directly exploit this vulnerability on mobile devices. In
particular, we focus on two common exploits: code injection
and code replacement.

3.2.2 Code Injection
While there are potentially many different ways for code

injection, we find a particularly easy one on Linux, thanks to
the single user environment on a Linux-based mobile system.
That is, an attacker can use ptrace() and write_data() for
code injection. As we have mentioned, they are available on
all the aforementioned Linux cellphones that are in mass
production. Basically, a root process is capable of calling
ptrace() and relevant APIs to any other process, no matter
whoever the owner is, while a normal user’s process can only
make ptrace() to access processes owned by the same user.
On Linux mobile systems, the single user is either root or
can easily switch to root.

The code injection with ptrace follows these steps:

1. PTRACE ATTACH: ptrace attaches to a given pro-
cess.

2. PTRACE GETREGS: This reads the registers of the
process. One can obtain some information from those
registers including the stack address. Usually attackers
prefer putting shell code into the stack, so we need to
calculate the shell code address according to the stack
address. The registers are saved for future use.

3. PTRACE PEEKTEXT: This is to read the memory
of the process that will be replaced by the shell code
and store it.

4. PTRACE POKETEXT: This is to write the shell code
to the process.

5. PTRACE SETREGS: This is to set the eip value with
the shell code address, and the process will start and
execute from the shell code address.

6. PTRACE CONT: This restores execution of the pro-
cess.

7. Wait for interruption when the process goes into the in-
terruption status. The parent process regains the con-
trol and is ready for restoring process original memory
and register values.

8. PTRACE POKETEXT: This is to write back the saved
memory to the process.

9. PTRACE SETREGS: This is to write back the save
register values for the process.

10. PTRACE DETACH: This is to detach from the pro-
cess and the process will resume running again.

3.2.3 Code Replacement

Code injection enables an attacker to run malcode in the
context of another legitimate process. In some scenarios,
the attacking process does not execute shell code, but can
only replace/modify some segments of victim process’s code.
When the victim process runs, its workflow changes and
the attacking process can manipulate the victim process to
perform desired operations.

Besides writing the shell code to the stack, ptrace (and
relevant APIs) can also dynamically modify other memory
sections of a victim process. For instance, with ptrace, the
shell code can be written to a particular address of a process’
text section, such as the entry address of a function, to
replace the existing code. After the code of the function is
replaced, next time when the function is called, the process
will execute the injected code.

The procedure of code replacement can be simpler than
that of code injection with ptrace. The attacker only writes
the shell code to a particular address and does not need
to change any register value. Before the code replacement,
the attacker needs to know the exact entry address of the
function it plans to replace. To obtain the entry address
of a function, the attacker must have the binary file of the
application and then use a tool (e.g., objdump or gdb) to
locate the entry address. Then the procedure is as follows:

1. PTRACE ATTACH: ptrace attaches to a given pro-
cess.

2. PTRACE POKETEXT: This is to write shell code to
the process at a particular address.

3. PTRACE DETACH: This is to detach from the pro-
cess.

4. Restore the original memory content when necessary.

Note that code replacement does not always replace an
entire function. It can precisely replace tiny sections which
can also change the normal workflow of the application, as
we demonstrate later. A code replacement attack can also
consist of a sequence of code replacement actions.

4. ATTACKING INDIVIDUAL DEVICES
In this section, we present some examples on how malware

could leverage the exploit as we have discussed to attack an
individual device even with the presence of state-of-the-art
security mechanisms.

4.1 Accessing Unauthorized Resources
On a LiMo-compatible evaluation device, all processes are

owned by the root account. To enhance security, a proper
SPEF configuration can be set to grant access rights of cer-
tain resources to only particular processes. The following
shows such a configuration on LiMo with SPEF.

<POLICYSTORE version="1">

<DOMAIN name="PERSONAL">

<PERMISSION name="FILE">

<RULE>

<RESOURCE value="/myuser/privacy"/>

<RESOURCE value="READ"/>

</RULE>

</PERMISSION>

</DOMAIN>

</POLICYSTORE>

With this configuration, only processes in the PERSONAL

domain have the privilege to read files under

/myuser/privacy. A process outside the PERSONAL domain
cannot read the private files if it is not manually configured
in the PERSONAL domain.

Assume an attacker wants to access any restricted file from
a non-PERSONAL domain process. With ptrace, the un-
trusted process can inject some shell code in the stack of a
victim process in the PERSONAL domain. The shell code is
to store the data it reads from the private files in memory.
While the stack is writable, the shell code can store data in
the stack with a simple relative memory address offset. The
following code snippets would accomplish this task:

.text

.align 2

.global _start

_start: adr r0, name

mov r1, #0

mov r2, #0

swi #0x900005 @ sys_open

mov r3, r0

adr r1, disk_addr

mov r2, #100

swi #0x900003 @ sys_read

mov r2, r0 @ read length

mov r0, #1 @ std out

adr r1, disk_addr

swi #0x900004 @sys_write

mov r0, r3

swi #0x900006 @ sys_close

bkpt

name:

.string

"/mnt/nfs/myuser/privacy/myfile.dat\0"
disk_addr:

.string "0000000000"

After this injection, SPEF will grant the permission to
access file myfile.dat because the shell code was executed
in the victim process which belongs to the PERSONAL domain.
The SPEF security checking is successfully bypassed.

4.2 Disabling Security Mechanisms
An attacker can also disable all security checks on a mo-

bile device with the code replacement we have shown. On
most mobile devices, some services such as the telephony
and network connectivity managers have a central security
checking point. On our evaluation device, it is the func-
tion check_avc(), which decides whether a process can ac-
cess the protected resources of the service, such as reading
SIM card data and building network connections, based on
the pre-defined security context of the process in a security
policy file. If this function returns 1, the access request is
granted, otherwise it is denied. An attacker can always let
check_avc() return 1 so that the whole security mechanism
of the service is practically disabled. The code replaced via
ptrace is thus very simple:

int svc(void)

{

return 1;

}

With objdump, it is easy to obtain the corresponding shell
code shown as follows.

"\x0d\xc0\xa0\xe1"
"\x00\xd8\x2d\xe9"
"\x04\xb0\x4c\xe2"
"\x00\x30\xa0\xe3"
"\x03\x00\xa0\xe1"
"\x00\xa8\x9d\xe8"

An attacking process can replace the text code of the func-
tion check_avc() with the above shell code. Note again that
before the code replacement takes effect, the address of func-
tion check_avc() must be correctly identified, which can be
done with tools like objdump or gdb. In our experiment, the
address is 0x103d4.

4.3 Diverting Phone Calls
With the techniques we have identified, it is an easy task

for an attacker to forward a regular phone call to a different
destination. Even worse, if the call is forwarded to a ser-
vice provider which charges much higher than a regular rate,
the owner is overcharged. On a LiMo-compatible device, a
phone call is handled by the CallServices, with Capability-
protected function TapiResult_t TelTapiCallSetup (const

TelCallSetupParams_t * pParams, unsigned int *

pCallHandle, int * pRequestId), which completes the
call setup procedure. The dialed phone number is passed on
as a parameter. To implement the overcharge attack, an at-
tacker can replace a small segment of the TelTapiCallSetup
function and switch the destination phone number to an-
other. As a result, the phone call is diverted. When we
analyze the text code of TelTapiCallSetup, we find the cor-
responding code as follows. Note that due to version differ-
ence, the code address, offset, and length may vary slightly.
Here the offset such as 40 and 80 is only for reference.

ldr r3 [fp, #40] ;Line 1

add r2, r3, #4 ;Line 2

The destination phone number resides in szNumber mem-
ber of struct TelCallSetupParams_t. When function
TelTapiCallSetup is called, the address of
TelCallSetupParams_t is obtained via fp (frame pointer)

in Line 1. The exact address of szNumber has a 4-byte offset
which is stored in register r2 in Line 2. To replace the des-
tination phone number, r2 should point to another address
that holds the target destination number “nnn-nnnnnnn”.

The code replacement for this attack consists of two steps.
First, the destination phone number string “nnn-nnnnnnn”
is written to the end of function TelTapiCallSetup. It can
be put in other places, but the address can be referred by
a relative address from pc (instruction pointer). Second,
replace Line 1 and Line 2 with the following code:

add r3, pc, #80 ;Line 1

mov r2, r3 ;Line 2

Note that 80 is the offset from the end of function
TelTapiCallSetup to Line 1. The address is calculated

in new Line 1 and finally stored in r2 in new Line 2. After
completing these steps, once TelTapiCallSetup is called, all
calls are diverted to the target number no matter where the
caller wants to connect.

In this attack, TelTapiCallSetup is a Capability-protected
API and malware cannot directly use it to call the target
destination due to the application signature by CADS. How-
ever, with code replacement we have described, an attacker
can successfully divert any phone call to any target.

5. MALWARE PROPAGATION
We have shown the feasibility of possible attacks that mal-

ware can launch on an individual device. While such attacks
only affect a single mobile user, large scale attacks can also
be mounted to disable critical public services, such as 911,
which we shall present in the next section.

To start a large scale attack like DDoS, a number of mo-
bile devices must have been infected by the malware. Mal-
ware commonly propagate themselves to potential victims
via various communication channels, such as email, Blue-
tooth, MMS/SMS, Wi-Fi, and Web applications. Cellphone
malware such as Skull [27], Cabir [6], and Mabir [17] lever-
age Bluetooth to propagate. Some latest malware such as
CommWarrior [8] adopts MMS due to its efficiency to prop-
agate to a large number of devices without physical loca-
tion constraints posed by Bluetooth. Malware can also ex-
ploit Wi-Fi communications to attack phone services, such
as cross-service attacks [46, 45] against cellular networks.

Since similar propagation on mobile Linux systems has not
been reported, we implement a demonstration-of-concept
propagation, much like the propagation of CommWarrior.
An .ipk, an installation package, is constructed and sent to
victims on the addressbook via MMS. When this package is
received by a victim, it will be activated and installed. We
omit the details of this propagation implementation since
this is not the focus of this paper.

6. ATTACKING THE PUBLIC 911 SERVICE
Having demonstrated how various attacks can be engaged

on individual devices, we show that more serious attacks
can be launched to bring down critical public services such
as 911 in this section.

6.1 911 Service Overview
According to FCC [32], “the number of 911 calls placed by

people using wireless phones has radically increased. Pub-
lic safety personnel estimate that about 50 percent of the
millions of 911 calls they receive daily are placed from wire-
less phones, and that percentage is growing”. According to
the FCC’s wireless 911 rules [32], wireless service providers
are required to transmit all 911 calls to a Public Safety An-
swering Point (PSAP) [25], regardless of whether the caller
subscribes to the provider’s service or not.

PSAP is a call center responsible for answering calls from
emergency telephone numbers for police, firefighting, and
ambulance services. 911 operators are responsible for dis-
patching these emergency services. The telecommunication
system automatically associates a physical address with the
calling party’s telephone number, and routes the call to the
most appropriate PSAP for that address. Most PSAPs are
capable of handling wireline calls, wireless calls, and VOIP
calls. Figure 2 sketches such a structure.

6.2 Modeling of 911 Service
To study how the performance of a 911 service in a region

can be adversely affected or even fully disabled by mobile
malware attacks, we first develop an open multi-class queu-
ing network model to quantify their impact [44, 43]. In this
model, there are multiple classes of customers C1, C2, ...,
CK . In this queuing network, there are M stations, denoted
by S1, S2, ..., SM . The service demand of class Ci by the
station Sj , where 1 ≤ i ≤ K and 1 ≤ j ≤ M , is given by
Di,j . Let Uj and Ui,j denote the overall utility of station j

Internet

Gateway

wireless
phone

phone

VOIP
assistant resource

PSAP

Radio Tower

wireline

Figure 2: Network architecture for emergency ser-
vices

and its utility due to class Ci customers, respectively. Also,
we define Ri,j as the average residence time, including both
service time and waiting time, of customers of class Ci at
station Sj . Suppose that all classes of customers follow the
same path and traverse each station in the network once.
Let Ri be the average residence time of class Ci customers
in the network. Assuming that the arrival rate of class Ci

customers is λi, we have the following solution:

Ui,j = λi ×Di,j (1)

Uj =

K∑
i=1

Ui,j (2)

Ri,j =
Di,j

1− Uj
(3)

Ri =

M∑
j=1

Ri,j . (4)

In reality, PSAP handles wireline calls, wireless calls, and
VOIP calls and the amount of time it takes to handle a call
depends on the type of that call. Hence, we treat each type
of calls as a customer class in the open multi-class queuing
network model. Also, each station is modeled as a multi-
processor system that possesses a number of homogeneous
resources. In the following, we will present more details
about the model that is used to characterize the 911 service.
To this end, we need to have the following parameters: the
number of stations M , the number of customer classes K,
the arrival rate of each customer classes λi, the number of
resources associated with each station, and the service de-
mand for each customer class by a station. Now we will
show how to obtain these parameters for a typical regional
911 call center.

6.2.1 Number of stations M

To serve the public, PSAP has 911 operators that handle
incoming calls and contact other resources such as ambu-
lance and patrol officers when necessary. To simplify the
model, we consider 911 operators as the only type of re-
sources in our queuing model. Hence, the number of stations
M is always 1.

6.2.2 Number of customer classes K

Currently most PSAP accepts three kinds of calls: wire-
line call, wireless call, and VOIP calls. According to the
statistics shown in [34], between 25% and 70% calls are unin-
tentional calls due to misdialing. Once an operator receives
an unintentional call, if the caller does not hang up, the
operator talks with the caller; as she knows it is an uninten-
tional call, she proceeds to handle other calls immediately.
If the caller hangs up or keeps silent, according to the 911
operator guidelines [1], the operator is required to call back
and ask for the help of other people such as a patrol officer.
In this case, it almost takes the same amount of time as a
real emergency call. We assume that 20% of 911 calls are
unintentional emergency calls, requiring short time to deal
with while other 80% take longer time.

Besides 911, PSAP also handles non-emergency calls which
have a 7-digit local telephone number. In this study, we
treat non-emergency calls as regular 911 calls. We do not
further break down VOIP calls as they are still rare com-
pared with wireline and wireless calls. Thus, we have five
customer classes in the model:

1. Wireline emergency calls: for such calls, an operator
needs to call back and/or deal with other assisting peo-
ple.

2. Wireline unintentional calls: an operator can decide
these calls are unintentional in a short time.

3. Wireless emergency calls: these are the same as wire-
line emergency calls.

4. Wireless unintentional calls: these are the same as
wireline unintentional calls.

5. VOIP call: these are calls made from the Internet.

6.2.3 Arrival rate of each customer class
According to PSN (Public Safety Network) [40], the av-

erage hourly call volume for a regional 911 call center is
between 20-70 calls per hour. To challenge our model, we
assume that the arrival rate of all five customer classes com-
bined is 90 calls per hour. To derive the arrival rate of
each class for the regional 911 call center under analysis, we
use the following incoming call statistics collected in 2008,
where the incoming call statistics is shown in the following
table [2].

911 calls/wireline 11,201
911 calls/wireless 18,697
VOIP 387

Approximately, we can see that 40% calls are 911 wireline
calls, 59% are 911 wireless call, and 1% are VOIP. We ap-
ply the same proportions to calculate the arrival rate of each
class in the target regional 911 call center. Thus, for wireline
emergency calls, wireline unintentional calls, wireless emer-
gency calls, wireless unintentional calls, and VOIPs, their
proportions are 32%, 8%, 47.2%, 11.8% and 1%, respec-
tively. Based on this, the arrival rate of the five customer
classes are 0.48, 0.12, 0.708, 0.177 and 0.015 calls per minute,
respectively.

6.2.4 Service demand
Due to lack of exact statistics data to decide the duration

of each call, we make the following assumptions as shown in
the table:

Class Service
demand

Comments

wireline emer-
gency call

5 min operators have to call back and co-
operate with other assistants

wireline unin-
tentional call

1 min operators decide the false alarm
shortly

wireless emer-
gency call

5 min as wireline emergency call

wireless unin-
tentional call

1 min as wireline unintentional call

VOIP 2 min rare and use average duration

6.2.5 Number of resources in each station
As we assume that each station in the open multi-class

queuing network model is a multi-processor system with ho-
mogeneous resources, we need to estimate the number of
resources in the sole station in our analysis. Due to lack of
the exact number, we search experimentally for the number
of resources (i.e., 911 call operators) to achieve a reason-
able amount of waiting time by each incoming call. More
specifically, we vary the number of 911 call operators in our
model among 5, 10, 15, 20, and 25, and the corresponding
utility and waiting time by each incoming call are given in
the following from the simulation:

Number of resources Resource utility Waiting time
5 >100% -
10 62.8% 0.17-0.8m
15 41.9% 0.04-0.24m
20 31.4% 0.02-0.11m
25 25.1% 0.01-0.06m

From the simulation results, we note that when the num-
ber of resources is 10, the utility is 62.8%. Because the
arrival rate is an average value, the utility seems too high
to handle emergency call bursts. When the number of re-
sources is 25, the utility is 25.1%. Such a utility value offers
a great margin for emergency call bursts and the correspond-
ing waiting time is in the order of seconds. Thus, we assume
that there are 25 911 call operators in all later experiments.

1

2

n

queue

resource

unintentional

911 landline

911 landline

unintentional
911 wireless

911 wireless

VOIP

gateway

PSAP

Figure 3: Our complete 911 queuing network model

With all these obtained parameters, Figure 3 depicts our
5-class open queuing network model in this study.

6.3 DDoS Threat Analysis

6.3.1 Desired attacking call rate for DDoS
A successful DDoS attack against the 911 service means

that the utility of 911 resources is very high (approaching

or even equals 1), which leads to a long waiting queue and
a very high call waiting time. Using our open multi-class
queuing network model, we explore how the increasing in-
coming call arrival rate adversely affects the quality of the
911 service.

0 5 10 15 16 17 18 18.5 18.65
0

20

40

60

80

100

call arrival rate (call per min)

ut
ili

ty
 (

%
)

Figure 4: System utility vs. call arrival rate

0 5 10 15 16 17 18 18.5 18.65
0

5

10

15

20

call arrival rate (call per min)

w
ai

t t
im

e
(m

in
)

emergency call

Figure 5: Call waiting time vs. call arrival rate

Figure 4 and Figure 5 show how the increasing phone calls
saturate the service center. Please note that the scales of the
x-axes in these figures are not uniform (from 0 to 18.65).
Figure 4 shows that the utility increases with the increasing
call arrival rate. As indicated in the figure, once there are
more than 18.65 calls per minute on average, the utility is
approach 100%, which means the call center is fully utilized
and can hardly handle any new emergency calls.

Correspondingly, Figure 5 shows the corresponding wait-
ing time for emergency calls when the call arrival rate in-
creases. When the call arrival rate is larger than 18.65, the
emergency call waiting time is more than 20 minutes on av-
erage, which is not acceptable for emergencies. Practically,
this makes the 911 service unavailable for the public.

6.3.2 Implementing DDoS with more than 18.65 calls
per minute

With the call diverting attack, an attacker can set the
target number as 911. We assume that only 1% of the
Linux-based mobile devices have been infected. We estimate
whether it is possible to severely degrade the service of tar-
get regional 911 call center using this type of call diverting
attacks. As the total number of calls made in this region
is not available, we use the nation-wide average. According
to the statewide statistics, US people make 2 trillion wire-
less minutes in one year [33]. We also assume that all areas
have the same call density. As the entire US population is
300 million, the region under analysis has a population of 7
million [31, 29] and the average wireless call duration is 100
seconds [30], we can estimate that the average call per hour
made by people in the area:

2trillion÷ 300M × 7M ÷ 100sec÷ 365day ÷ 24hours

= 3000000calls/hour.

Currently about 8.1% cell phones are Linux-based [11] and
we assume around 1% of them are infected by the malware
as described in this work. As only outgoing calls can be
leveraged for call diverting attacks, we have

3000000× 8.1%× 1%÷ 2÷ 60 = 19.8calls/minute.

That is to say, assuming that 1% of Linux-based mobile
systems are infected, the malware can generate 19.8 calls
per minute. In our previous analysis, we have found that an
arrival rate of 18.65 calls per minute can saturate the target
regional 911 service. With 19.8 calls diverted per minute by
the malware, the utility becomes 100% and the call waiting
time is much higher than 30 minutes.

In reality, we have reasons to believe that the attack may
have even worse consequences:

• We only assume a very low fraction of infected devices,
which is 1%. The actual infection coverage may be
higher than this assumption.

• As Linux-based cellphones are still gaining popularity,
we expect more vulnerable devices available for the
attack in the future.

• We calculate the call arrival rate as an average rate. In
busy hours, the peak arrival rate may be much higher
than the average value.

• When we build the queuing network model, we have
already considered various server conditions and leave
enough margins for incoming call bursts.

• If carefully designed, malware can engage more effec-
tive attacks rather than just unintentional 911 calls.

7. COUNTERMEASURES
In previous sections, we have discussed that existing se-

curity mechanisms, such as CADS and RSPE, cannot ef-
fectively prevent such attacks. Nevertheless, through the
implementation of attacks, we have also contemplated some
approaches from device side to defend against them.

7.1 Dynamic Process Integrity Checking
The root of the attacks is that the current security ar-

chitecture fails to check the process integrity at runtime. If
there is a runtime security mechanism that can guarantee
the integrity of running processes, it is more difficult for
attackers to mount these attacks.

Dynamic integrity check on desktop systems has been
studied by previous study [49]. If mobile operating sys-
tems adopt similar mechanisms, the threat can be signifi-
cantly mitigated. However, for mobile systems, a concern is
the cost of such protection, given mobile systems commonly
have limited resources.

7.2 Attack Mitigation
Besides dynamic integrity checking, another option is to

block tampering attempt from an attacking process. What-
ever approaches an attacking process adopts to accomplish
dynamic tampering, the attack process has to use some spe-
cific APIs. In our experiments, the attacker uses ptrace

to implement the attacks. If the OS kernel could confine
ptrace and relevant calls and forbids attacking processes to
use them, it would make it more difficult for an attacker to
launch such attacks.

Currently, a lot of mobile Linux OSes have ported SELinux
[42] module as well. But it is often not configured or

enabled. SELinux defines policies in the kernel to confine
system calls such as ptrace. With SELinux, we can easily
constrain ptrace with a proper configuration. An example
is given as follows:

allow global self:capability

{ net_raw net_bind_service net_admin sys_boot

sys_module sys_rawio sys_ptrace sys_chroot }

With such a configuration, ptrace is enabled. To disable
it, we can use the following:

allow global self:capability

{ net_raw net_bind_service net_admin sys_boot

sys_module sys_rawio _chroot }

With such a configuration, an attempt to call ptrace()
generates a failure message like the following:

audit(1141341858.520:2):

avc:denied { ptrace } for pid=372 comm="restorecon"

scontext=system_u:system_r:restorecon_t:s0

tcontext=system_u:system_r:restorecon_t:s0

tclass=process

Nevertheless, ptrace() is only one way to implement such
attacks. Disabling it can raise the bar for the attacker, but
cannot eliminate the concern. Experienced attackers can
still use other approaches, such as directly using read_data()

and write_data(), to implement similar attacks.
If we narrow the countermeasure to mobile Linux systems,

as we have known, the single user OS environment in most
mobile Linux systems makes inter-process tampering much
easier. If all mobile Linux systems adopt multi-user envi-
ronment setup, and different applications are allocated with
different uid like Android, an attacking process cannot tam-
per with other processes with ptrace() and related APIs
because the user-based permission management framework
in Linux forbids inter-process memory access from different
uid.

8. RELATED WORK
Vulnerabilities on mobile and cellphone devices have been

analyzed extensively. Guo et al. [36] examined various types

of attacks on compromised cellphones, and suggested poten-
tial defenses. Racic et al. [47] revealed the vulnerability of
MMS/SMS, which can be exploited to launch attacks to ex-
haust battery of mobile devices.

Mulliner et al. [46] developed a labeling mechanism to dis-
tinguish data received from different network interfaces of a
mobile device. This work is a confirmation of the vulner-
ability we have presented in this paper: the code received
from untrusted resources has the same privilege as a legiti-
mate process which has the permission to make phone calls.
They propose a solution to label a process with the network
interface it connects to: either directly or by reading some
data from the network interface. However, this approach is
not flexible as acknowledged by the authors, as many ap-
plications on mobile devices may access multiple interfaces
naturally.

Signature and anomaly-based mobile malware detections
have also been proposed, such as [35, 38, 41, 48]. The chal-
lenge for these mechanisms is finding an efficient and accu-
rate way to model the normal behaviors of legitimate appli-
cations, or the abnormal behaviors of malicious applications.

On the other hand, from the system point of view, con-
fining the permissions of an application is a fundamental
problem in operating systems. The mandatory access con-
trol (MAC) mechanism has been proposed to confine the
permissions of a process, such as SELinux [42], LIDS [15],
and AppAmor [3]. However, all these approaches need a
complete security policy to specify the security context of
all possible applications, which has significant management
overhead and complexity. Therefore, they are often not en-
abled on many desktop systems. So far to the best of our
knowledge, we have not found any of these mechanisms be-
ing deployed on real mobile devices.

9. CONCLUSION
Mobile devices, such as smartphones, are pervasive today.

Users rely more and more on these mobile devices for voice
and data communications. As a result, mobile devices be-
come the new frontier of security attacks and defenses. Hav-
ing examined the typical proposed security mechanisms on
mobile systems, we have identified some critical vulnerability
of existing security models. Furthermore, we have demon-
strated how to leverage such vulnerability to attack individ-
ual devices and public cyber physical infrastructure, such as
the 911 service. We have also discussed potential prevention
and mitigation schemes. While the attacks demonstrated in
this paper have not appeared in practice, we hope our work
can alert and help the research community and the indus-
try to improve the current security architecture design for
mobile systems.

10. ACKNOWLEDGMENT
We thank the anonymous referees for providing construc-

tive comments. The work has been supported in part by U.S.
AFOSR under grant FA9550-09-1-0071, and by U.S. Na-
tional Science Foundation under grants CNS-0509061, CNS-
0621631, and CNS-0746649.

11. REFERENCES
[1] 911 guidelines. http://www.marc.org/publicsafety/

ResponseGuidelines.pdf.

[2] 911 statistics.
http://www.lapeercounty911.org/stats.htm.

[3] Ammarmor. http://en.opensuse.org/AppArmor.

[4] Android. http://code.google.com/android/.

[5] Android security and permissions. http:
//code.google.com/android/devel/security.html.

[6] Cabir.
http://www.f-secure.com/v-descs/cabir.shtml.

[7] Cardblock. http:
//www.f-secure.com/v-descs/cardblock_a.shtml.

[8] Commwarrior. http:
//www.f-secure.com/v-descs/commwarrior.shtml.

[9] Dampig.
http://www.f-secure.com/v-descs/dampig_a.shtml.

[10] Fontal.
http://www.f-secure.com/v-descs/fontal_a.shtml.

[11] Gartner. http://www.engadget.com/2009/03/13/
gartner-posts-worldwide-mobile-os-numbers-for-2008/.

[12] iphone appstore. http://applications.
samsungmobile.com/en/gbp/index.html.

[13] Limo foundation. http://www.limofoundation.org/
en/technical-documents.html.

[14] Limo spef. http://www.limofoundation.org/api/R1/
ams/spef/fnd/index.html.

[15] The linux intrusion defence system (lids).
http://www.lids.org/.

[16] Locknut. http:
//www.f-secure.com/v-descs/locknut_e.shtml.

[17] Mabir.
http://www.f-secure.com/v-descs/mabir.shtml.

[18] Maemo. http://www.maemo.org.

[19] Mcafee mobile security report 2008.
http://www.mcafee.com/us/research/mobile_

security_report_2008.html.

[20] Mcafee mobile security report 2009.
http://www.mcafee.com/us/local_content/

reports/mobile_security_report_2009.pdf.

[21] Montavista mobilinux 5.0. http://www.mvista.com/
download/MontaVista-Mobilinux-5-datasheet.pdf.

[22] Motomagx security.
http://ecosystem.motorola.com/get-inspired/

whitepapers/security-whitepaper.pdf.

[23] Openezx. http://wiki.openezx.org/Main_Page.

[24] Openmoko. http://www.openmoko.org/.

[25] Psap. http://en.wikipedia.org/wiki/E911.

[26] Security in qtopia phones.
http://www.linuxjournal.com/article/9896.

[27] Skulls.
http://www.f-secure.com/v-descs/skulls.shtml.

[28] http://en.wikipedia.org/wiki/ARM_architecture.

[29] http:

//en.wikipedia.org/wiki/San_Francisco_Bay_Area.

[30] http://portal.etsi.org/stq/Workshop2005/

presentations2005/P13_SpeechQuality_

CellularNetworks.pdf.

[31] https://www.cia.gov/library/publications/

the-world-factbook/print/us.html.

[32] Wireless 911 services. http://www.fcc.gov/cgb/
consumerfacts/wireless911srvc.html.

[33] Wireless facts. http://www.mywireless.org/facts/.

[34] WTB report. http://www.scribd.com/doc/311371/
US-Federal-Communications-Commission-FCC-Official\

-Release-DA023413A1.

[35] J. Cheng, S. Wong, H. Yang, and S. Lu. Smartsiren:
Virus detection and alert for smartphones. In
Proceedings of ACM MobiSys, San Juan, Puerto Rico,
2007.

[36] C. Guo, H. Wang, and W. Zhu. Smart-phone attacks
and defenses. In Proceedings of HotNets III, San
Diego, CA, November 2004.

[37] C. Heath. Symbian os platform security, symbian
press, 2006.

[38] G. Hu and D. Venugopal. A malware signature
extraction and detection method applied to mobile
networks. In Proceedings of IPCCC, April 2007.

[39] M. Hypponen. State of cell phone malware in 2007.
http://www.usenix.org/events/sec07/tech/

hypponen.pdf.

[40] H. Jasso, C. Baru, T. Fountain, W. Hodgkiss,
D. Reich, and K. Warner. Using 9-1-1 call data and
the space-time permutation scan statistic for
emergency event detection. In Proceedings of the 9th
annual International Digital Government Research
Conference.

[41] H. Kim, J. Smith, and K. G. Shin. Detecting
energy-greedy anomalies and mobile malware variants.
In Proc. of The International Conference on Mobile
Systems, Applications, and Services, 2008.

[42] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the linux operating
system. In Proceedings of USENIX Annual Technical
Conference, pages 29 – 42, June 25-30 2001.

[43] D. A. Menasce and V. A.F. Almeida. Capacity
Planning for Web Services: metrics, models, and
methods.

[44] D. A. Menasce, L. W. Dowdy, and V. A.F. Almeida.
Performance by Design: Computer Capacity Planning
By Example.

[45] C. Miller, J. Honoroff, and J. Mason. Security
evaluation of apple’s iphone.
http://content.securityevaluators.com/iphone/

exploitingiphone.pdf, July 2007.

[46] C. Mulliner, G. Vigna, D. Dagon, and W. Lee. Using
labeling to prevent cross-service attacks against smart
phones. In Proceedings of DIMVA, 2006.

[47] R. Racic, D. Ma, and H. Chen. Exploiting mms
vulnerabilities to stealthily exhaust mobile phone’s
battery. In Proceedings of the Second International
Conference on Security and Privacy in
Communication Networks (SecureComm 2006),
Baltimore, Maryland, August 2006.

[48] D. Venugopal, G. Hu, and N. Roman. Intelligent virus
detection on mobile devices. In Proceedings of ACM
PST, Markham, Ontario, Canada, October 2006.

[49] P. Wang, S. Kang, and K. Kim. Tamper resistant
software through dynamic integrity checking. In
Proceedings of the SCIS 2005.

