Equivalence of Group-Centric Collaboration with

Expedient Insiders (GEI) and LBAC with
Collaborative Compartments (LCC)

Tahmina Ahmed!, Ravi Sandhu', Khalid Bijon1 and Ram Krishnan?
Unstitute for Cyber Security & Department of Computer Science
Institute for Cyber Security & Department of Electrical and Computer Engineering
University of Texas at San Antonio

Abstract

Equivalence of access control models can be proved by comparing their expressive power. Tripunitara and Li
[3] have given a generalized theoretical formulation for comparing expressive power of access control models via
simulations that preserve security properties which are called state matching reductions. This report gives a formal
proof of a state matching reduction from Group-Centric Collaboration with Expedient Insiders (GEI) [1] to LBAC
with Collaborative Compartments (LCC), a model defined in this report, and vice versa. So GEI and LCC are
equivalent in their expressive power as per [3].

I. INTRODUCTION

Tripunitara and Li [3] define access control models as a set of access control schemes where each
scheme consists of a set of states and state transition rules. Formally a scheme is represented as a 4-tuple
(I',Q,F, V) as follows.

o ['is a set of states where each state contains the necessary information to decide access control on

that particular state.

o Q is a set of queries.

e F:T'x Q — {true, false} is the entailment relation that verifies whether a query ¢ € @ holds in a

particular state v € I'. If q is valid in state ~y it is written as (v F ¢) or (v I/ ¢) otherwise.

« W is a set of state transition rules where each 1) € U determines how the state changes for that choice

of 1.

Given two access control schemes A=(I'*, Q4, 4, U4) and B=(I'?, Q?,2, UP) a mapping from A
to B is defined as a function o that maps each pair (y*,94) to a pair (v”,?), and each query ¢* to ¢”.
Formally a mapping is represented as o : (I'* x U U Q4 — (I'B x ¥B)uQP. States v and 7 are said
to be equivalent under the mapping o when for every ¢* € Q4, v F4 ¢ if and only if 42 2 o(¢?).
This leads up to the definition for a state matching reduction as follows.

Definition 1. (State Matching Reduction) Given two schemes A and B, a mapping o from A to B is a
state matching reduction if for every ¥4 € T4 and every 1A € U4, we have the following two properties
where (y7,47) = a((y",4%)).
1) For every state 7 in scheme A such that v* i>¢A Vi, there exists vP in scheme B such that
vB S5 P and v{ and ~P are equivalent.
2) For every state vP in scheme B such that v" i>¢3 VB there exists v in scheme A such that
A i>¢A v{, and v{* and P are equivalent.

The significance of state-matching reductions is expressed in Theorem 1 of [3] which asserts that: Given
two schemes A and B, a mapping o from A to B is strongly security-preserving (in a precise formal
sense) if and only if o is a state-matching reduction. Two schemes are said to be equivalent if there is a
state-matching reduction from one to the other, and vice versa.

The goal of this technical report is to formally prove the equivalence of two specific schemes using the
above framework. One scheme is called Group-Centric Collaboration with Expedient Insiders (GEI). It
was introduced and motivated in [1]. The other scheme is newly defined in this report. It is called LBAC
with Collaborative Compartments (LCC), where LBAC is Lattice-Based Access Control [2]. Motivation
and explanation of LCC will be provided in a paper currently under preparation. This report only provides
a formal definition of LCC as a scheme.

The rest of the report is organized as follows. Section II gives a definition of GEI as a scheme. Section
III does the same for LCC. Section IV defines a mapping from LCC to GEI. Section VI proves that
this mapping is a state-matching reduction. Section VII conversely defines a mapping from GEI to LCC,
which is formally proved to be state-matching in section VIII.

II. GEI SCHEME

The GEI scheme is defined in three tables. The elements of each state v € I' are defined in Table I.
Each ¢ € U is a state transition rule and is defined in the Column 1 of Tables II and III. Each ¢ € @ is
defined in Column 2 of Table II and III.

The GEI Scheme that is defined in this report is slightly different from the one defined in [1] in
respect of lattice structure and object version. Here the lattice is more structured with specified categories,
security compartments and levels whereas in [1] the lattice is more generic with unspecified structure. In
[1] version space is an infinite universal set but in this report version is a finite non-empty set.

III. LCC SCHEME

The elements of each state v € I' are defined in Table IV. Each ¢ € WU is state transition rule and is
defined in the Column 1 of Table V and VI. Each ¢ € @) is defined in Column 2 of Table V and VI .

TABLE 1

GEI STATE
Element# | Global Sets and Symbols:
1. CG, C (g, is the finite and strict subset of countably infinite set CG.
2. C, = C, is finite set of existing unordered categories
3. L, =L, is finite set of existing hierarchical ordered security levels
4. SL., = SL, is finite lattice of security compartments where SL = L x 2¢
5. >~ = =, is finite dominance relation C L. x L where
V11,12 € L and Vel,c2 € C. = = {((1,cl), (12,c2)) | 1= 12 A cl D c2}
6. @~ = @, is join operator where
(11,cl) & (12,c2) = (max(11,12),c1Uc2)
7. U, C U, is finite and strict subset of countably infinite set /.
8. O, C O, is finite and strict subset of countably infinite set O.
9. S, C &, is finite and strict subset of countably infinite set S.
10. UTYPE, = UTYPE = {insider, expedient_insider, outsider} is the finite set of user’s type
11. STYPE, = STYPE = {RO, RW} is the finite set of subject’s type.
12. Org, is the entity Organization, a Constant.
User Related State Elements:
13. hierclearanceOfUser: U, — L., this function maps each user to a security level.
14. compcategoryOfUser: U, — 27, this function maps each user to compartments.
15. uCG: U, — 297, this function maps each user to zero or more groups.
16. orgAdmin: U, — {true,false}, this function maps each user to true if she is an admin of Org
17. cgAdmin: U, —2% | this function maps each user to zero or more groups if he is an administrative user of the group.
18. uType: U, — UTYPE,, this function maps each user to a user type.
Objects Related State Elements:
19. hierclassificationOfObject: O, — L., this function maps each object to a security levels.
20. compcategoryOfObject: O, — C,, this function maps each object to compartment.
21. origin: O, — CG, U {Org}, this function maps each object to the entity (group or Org) where it was created.
22. versions: O — Q?iziﬁgv - ¢, this function maps each object to all its existing versions
where UNZV_V is countably infinite set of all possible versions
/* 2?izii",§gv is finite set of existing versions that is a subset of UNZV_V.*/
Subject Related State Elements:
23. hierclearanceOfSubject: S, — L., this function maps each subject to a security levels.
24. compcategoryOfSubject: S, — C,, this function maps each subject to compartment.
25. owner: S, — U,, this function maps each subject to the user who created this.
26. belongsTo: S, — CG,, this function maps each RW subject (not RO subject) to the group where it was created.
217. type: S, — STYPE,, this function maps each subject to a subject type.
Object Version Related State Elements:
28. For each o € O,, vMember,: versions(o)— 2000} ¢ this functions maps each version of every object to one or more
entity (group or Org) where this version is available to access.
20. For each o € O,, hierclassificationOf Version,: versions(o)— L., this function maps each version to a security levels.
30. For each o € O,,, compcategoryOfVersion,: versions(o) — 2 this function maps each subject to compartment.

TABLE II

STATE TRANSITION AND QUERY OF GSIS-EXPEDIENT-INSIDER(PART 1: ADMIN MODEL)

Op.# | Operation Authorization Query State Element Update on State Transition
1. Create_Insider(ul,u2,uType,sl,cp) ul e UAu2¢UA if uType=Insider then
/*Admin ul creates user orgAdmin(ul)=TrueA sl € L hierclearanceOfUser’ (u2)=sl
u2 as insider*/ Acp C CA uType=Insider compcategoryOfUser’ (u2)=cp
uType(u2)’=Insider
U =U U {u2}
2. Create_OutSider(ul,u2,uType,slcp) | ul e UAu2 ¢ UA uType(u2)’=Outsider
/*Admin ul creates user orgAdmin(ul)=TrueA sl € L U =U U {u2}
u2 as outsider*/ A cp C CA uType=Outsider
3. Delete_User(ul,u2) ul e UAu2eUA if(utype(u2)=Insider) then
/*Admin ul creates user orgAdmin(ul)=TrueA sl € L forall s € S
u2 as outsider®/ Acp CC if(owner(s)=u2)
owner’ = owner-{s—owner(s)}
S" = S-{s}
uType’ = uType - { u2 — uType(u2)}
U =U - {u2}
4. Establish(u, cg) ueUAcg¢ CGA cgAdmin’(u) = cgAdmin(u) U {cg}
/*Admin user u establishes orgAdmin(u)=True CG' = CG U {cg}
new collaboration group cg*/
5. Join_Insider(ul,u2,cg) ule UAu2eUAcgeCGA uCG'(u2) = uCG(u2) U {cg}
/*Admin ul grants cg membership cg € cgAdmin(ul) A
to a true insider u2*/ uType(u2) = Insider A cg ¢ uCG(u2)
6. Leave_Insider(ul,u2,cg) ul e UAu2 e UAcg e CGA uCG’(u2) = uCG(u2) - {cg}
/*Admin ul revokes cg membership | cg € cgAdmin(ul) A cg € uCG(u2) forall s € S
from a true insider u2*/ A uType(u2) = Insider if owner(s) = u2 A belongsTo(s) = cg
then S' =S - {s}
7. Join_Outsider(ul,u2,cg,sl,cp) ul e UAu2eUAcgeCGA uType’(u2) = Expedient_Insider
/*Admin ul grants cg membership cg € cgAdmin(ul) A cg ¢ uCG(u2) if uCG(u2) =) then hierclearanceOfUser’(u2) = sl
to an expedient insider u2*/ A uType(u2)= Outsider A compcategoryOfUser’ (u2) = cp
sleLAcpCC uCG’(u2) = uCG(u2) U {cg}
8. Leave_Expedient_Insider(ul,u2,cg) | ul e UAu2 € UAcg € CG A uCG'(u2) = uCG(u2) - {cg}
/*Admin ul revokes cg membership | cg € cgAdmin(ul) A cg € uCG(u2) forall s € S
from an expedient insider u2*/ A uType(u2) = Expedient_Insider if owner(s) = u2 A belongsTo(s) = cg
then S' =S - {s}
/*Kill subjects belongsTo the respective insider*/
if uCG(u2) =) then hierclearanceOfUser’ =
hierclearanceOfUser-{u2—hierclearanceOfUser(u2) }
compcategoryOfUser’ =
compcategoryOfUser-{u2—compcategoryOfUser(u2) }
uType(u2) = Outsider
9. Add(u,0,v,cg) ueUAcgeCGA0OEOA vMember/,(v) = vMember,(v) U {cg}
/*Admin u adds version v v € versions(0) A cg € cgAdmin(u)
of object o from Org to cg*/ A cg ¢ vMember,(v)
10. Remove(u,0,v,cg) uceUAcgeCGA0oeOA vMember, (v) = vMember,(v) - {cg}
/*Admin u removes version v v € versions(0) A cg € cgAdmin(u)
of object o from cg*/ A cg € vMember,(v)
11. Import(u,01l,vl,02,cg) ue UAcge CG A vl € versions(o) | versions’(02) = versions(02) U {v2}
/*Admin u imports version vl of A 01,02 € O A origin(02) = Org A
object ol to new version v2 of cg € cgAdmin(u) A origin(ol) = cg vMember’(02,v2) = {Org}
object 02 in Org*/ AhierclassificationOfObject(o1l) = hierclassificationOf Version,2(v2) =
hierclassificationOfObject(02) A hierclassificationOfObject(02)
compcategoryOfObject(02) D compcategoryOfVersion,z(v2)=compcategoryOfObject(02)
compcategoryOfObject(o1)
12. Merge(u,0,v,cg) ueUAcgeCGA0EOA vMember/,(v) = vMember,(v) U {Org}
/*Admin u merges version v v € versions(o) A cg € cgAdmin(u)
of object o from cg to Org*/ Acg € vMember,(v) A
origin(o) = Org A v € versions(o)
13. Disband(u, cg) ueUAcgeCGA Jorallul € U

/*Admin u disbands
a collaboration group cg*/

cg € cgAdmin(u)

if cg € uCG(ul)
then uCG'(ul) = uCG(ul) - {cg}
if cg € cgAdmin(ul)
then cgAdmin’(ul) = cgAdmin(ul) - {cg}
forall o € O
if origin(o) = cg
then O' = O - {0}
forall o € O and forall v € versions(0).
if cg € vMember,(v)
then vMember,,(v) = vMember,(v) - {cg}
CG' = CG - {cg}

= -
§=5 VseS,belongsTo(s)zch

TABLE III

GSIS-EXPEDIENT-INSIDER STATE TRANSITIONS AND QUERIES(PART 2: OPERATIONAL MODEL)

Op.# | Operation Authorization Query State Elements Update in State Transition
14. CreateRWInCG(u,s,cg,slep) | u € UAs € S A cg € uCGu) A owner'(s) = u
/*User u creates read-write sl =< hierclearanceOfUser(u) A hierclearanceOfSubject’(s) = sl
subject s in a group cg*/ cp C compcategoryOfUser(u) belongsTo’(s) = cg
compcategoryOfSubject(u)’ = cp
type’ (s) = RW
S’ =S U {s}
15. CreateRWInOrg(u,s,sl,cp) ue UAs ¢S A utype(u) = Insider owner’(s) = u
/*Only true insider creates A sl < hierclearanceOfUser(u) A hierclearanceOfSubject’(s) = sl
read-write subject in Org*/ cp C compcategoryOfUser(u) belongsTo’(s) = cg
compcategoryOfSubject(u)’ = cp
type’ (s) = RW
S’ =S U {s}
16. CreateRO(u,s,sl,cp) uceUAsESA owner'(s) = u
/*User u creates read-only sl < hierclearanceOfUser(u) A hierclearanceOfSubject’(s) = sl
subject s*/ cp C compcategoryOfUser(u) type’(s) = RO
compcategoryOfSubject(u)’ = cp
S’ =S U {s}
17. Read(s,o,v) s€SANoe€OAV E versions(o) A None
/*Subject s reads the hierclearanceOfSubject(s) >~
version v of object o*/ hierclassificationOf Version, (v) A
compcategoryOfSubject(s) 2O
compcategoryOfVersion, (V)A
(type(s) = RO A
((uCG(owner(s)) N vMember,(v)# ¢)
V (utype(owner(s)) = Insider A
{Org} € vMember,(v)))) V
(type(s) = RW A
(belongsTo(s) € vMember,(v))))
18. Update(s,o,v) sE€SAo€OAvV E versions(0) A versions’(0) = versions(o) U {v1}
/*Subject s updates the hierclearanceOfSubject(s) =
version v of object o. hierclassificationOf Version,(v) A vMember,,(vl) = vMember,(v1) U {cg}
This function returns compcategoryOfSubject(s) = hierclassificationOf Version,(v1) = hierclassificationOfVersion,(v)
updated version v1*/ compcategoryOfVersion,(V)A compcategoryOfVersion),(v1) = compcategoryOfVersion,(v)
(type(s) = RW A
belongsTo(s) € vMember,(v))
19. Create(s,0) s €S Ao¢ O A type(s)=RW 0" =0 U {o}
/*Subject s creates versions’(0) = {v}
version v of object o.
This function returns newly vMember,,(v) = {belongsTo(s)}
created version v*/ origin’(0) = belongsTo(s)
hierclassificatonOfObject’(0) = hierclearanceOfSubject(s)
hierclassificatonOfVersion,,(v) = hierclearanceOfSubject(s)
compcategoryOfVersion], = compcatgoryOfSubject(s)
20. Kill(u,s) uecUAseSA owner’ = owner - {s — owner(s)}

/*User u kills subject s*/

owner(s) = u V
belongsTo(s) € cgAdmin(u)

type’ = type - {s — type(s)}

hierclearanceOfSubject’ =

hierclearanceOfSubject - {s — hierclearanceOfSubject(s) }
compcategoryOfSubject’ = compcategoryOfSubject -

{s — compcategoryOfSubject(s)}

belongsTo’ = belongsTo - {s — belongsTo(s)}

S’ =S - {s}

TABLE 1V
ATTRIBUTE SPECIFICATION OF LBAC WITH COLLABORATIVE COMPARTMENTS

Element# | Global Sets and Symbols:
1. CC, C CC, is finite and strict subset of countably infinite set of unordered collaborative categories CC
2. C, =C, is finite set of existing unordered categories
3. L, =L, is finite set of existing hierarchical ordered security levels
4, SysHigh, SysHigh, the system High (constant label) that dominates every security labels € SL
S. SysLow, the system Low (constant label) that is dominated by every security labels € SL
6. SL, C SL, is finite and strict subset of countably infinite security labels S£ where S£ = {(L x 2€)x(CC U {Org})} U {SysHigh, SysLow}
7. >~ C =, is finite and strict subset of countably infinite dominance relation »CSL x SL where
VI1,12 € L and Vel,c2 € C and Veel,cc2 € CC. > = {((11,cl,ccl), (12,c2,cc2)) | ccl=cc2 A 11= 12 A cl D 2}
vl € L and Ve € C and Vee € CC. = = {SysHigh, (l,c,cc)}
vl € L and Ve € C and Vee € CC. = = {(l,c,cc),SysLow}
8. @~ = @, is join operator where
VI1,12 € L and Vcl,c2 € C and Veel,ec2 € CC.
(I1,cl,ecl) @ (12,¢2,c¢2) = (max(11,12),c1Uc2,ccl), if ccl=cc2
(11,cl,ccl) @ (12,c2,cc2)=SysHigh, if ccl#cc2
vl € L and Vc € C and Vcc € CC.
(l,c,cc) @ SysHigh = SysHigh, Syshigh & (I,c,cc) = SysHigh
(lic,cc) @ SysLow = (l,c,ce), SysLow & (l,c,cc) = (l,c,cc)
9. U, C U, is finite and strict subset of countably infinite set I/.
10. 0, C O, is finite and strict subset of countably infinite set O.
11. S, C &, is finite and strict subset of countably infinite set S.
12. UTYPE, = UTYPE = {insider, expedient_insider, outsider} is the finite set of user’s type
13. STYPE, = STYPE = {RO, RW} is the finite set of subject’s type.
14. Org, is the entity Organization, a Constant.
User Related State Elements:
15. hierclearanceOfUser: U, — L., this function maps each user to a security level.
16. compcategoryOfUser: U., — 27, this function maps each user to compartments.
17. uCC: U, — 2C, this function maps each user to zero or more collaborative compartments.
18. orgAdmin: U, — {true,false}, this function maps each user to true if she is an admin of Org
19. ccAdmin: U, —2%, this function maps each user to zero or more groups if he is an administrative user of a collaboration group.
20. uType: U, — UTYPE,, this function maps each user to a user type.
Objects Related State Elements:
21. hierclassificationOfObject: O, — L, this function maps each object to a security levels.
22. compcategoryOfObject: O, — C,, this function maps each object to compartment.
23. origin: O, — CC, U {Org}, this function maps each object to the entity (collaboration category or Org) where it was created.
24. versions: O, — 2?;}5{;‘/ - ¢, this function maps each object to all its existing versions
where UN'ZV_V is countably infinite set of all possible versions
fx 2=V s finite set of existing versions that is a subset of UNTV_V.*/
Subject Related State Elements:
25. hierclearanceOfSubject: S, — L., this function maps each subject to a security levels.
26. compcategoryOfSubject: S, — C,, this function maps each subject to compartment.
27. owner: S, — U, this function maps each subject to the user who created this.
28. belongsTo: S, < CC,, this function maps each RW subject (not RO subject) to the collaboration category where it was created.
29. type: Sy — STYPE,, this function maps each subject to a subject type.
Object Version Related State Elements:
30. For each o € O, vMember,: versions(o)— 2CCyU{0re} ¢, this functions maps each version of every object to one or more
entity (collab. category or Org) where this version is available to access.
31. For each o € O, hierclassificationOf Version,: versions(o)— L, this function maps each version to a security levels.
32. For each o € O,, compcategoryOfVersion,: versions(o) — 27 this function maps each subject to compartment.

TABLE V

STATE TRANSITION AND QUERY OF LBAC WITH COLLABORATIVE COMPARTMENTS(PART 1: ADMIN MODEL)

Op.# | Operation Authorization Query State Element Update on State Transition
1. Create_Insider(ul,u2,uType,sl,cp) ule UAu2 ¢ UA if uType=Insider then
/*Admin ul creates user orgAdmin(ul)=TrueA sl € L hierclearanceOfUser’ (u2)=sl
u2 as insider*/ Acp € CA uType=Insider compcategoryOfUser’ (u2)=cp
uType(u2)'=Insider
U =UU {u2}
2. Create_OutSider(ul,u2,uType,slcp) | ul e UAu2 ¢ U A uType(u2)'=Outsider
/*Admin ul creates user orgAdmin(ul)=TrueA S1 € L U =U U {u2}
u2 as outsider*/ A cp C CA uType=Outsider
3. Delete_User(ul,u2) ul e UANu2eUA if(utype(u2)=Insider) then
/*Admin ul creates user orgAdmin(ul)=TrueA S1 € L forall s € S
u2 as outsider®/ Acp CC if(owner(s)=u2)
owner’ = owner-{s—owner(s) }
S = S-{s}
uType’ = uType - { u2 — uType(u2)}
U =U - {u2}
4. Establish(u, cc) ueUAcc¢CCA ccAdmin’(u) = ccAdmin(u) U {cc}
/*Admin user u establishes orgAdmin(u)=True CC’ = CC U {cc}
new collab compartment cc*/ SL' = {(L x 2°).(CC U {Org})} U {SysHigh} U {SysLow}
V11,12 € L and Vcl,c2 € C and Vcecl,cc2 € CC.
=" = {((l,cl,ccl), (12,c2,cc2)) | ccl=cc2 A 11= 12 A cl D c2}
5. Add_Clearance(ul,u2,cc) ul e UAuw2€UAcceCCA uCC’(u2) = uCC(u2) U {cc}
/*Admin ul grants cc clearance cc € ccAdmin(ul) A
to a true insider u2*/ uType(u2) = Insider A cc ¢ uCC(u2)
6. Remove_Clearance(ul,u2,cc) ul e UAu2 eUAcceCCA uCC’(u2) = uCC(u2) - {cc}
/*Admin ul revokes cc membership | cc € ccAdmin(ul) A cc € uCC(u2) forall s € S
from a true insider u2*/ A uType(u2) = Insider if owner(s) = u2 A belongsTo(s) = cc
then S’ =S - {s}
7. Join_Outsider(ul,u2,cc,sl,cp) ul e UAu2 eUAcceCCA uType’(uZ) = Expedient_Insider
/*Admin ul grants cc membership cc € ccAdmin(ul) A cc ¢ uCC(u2) if uCC(u2) = () then hierclearanceOfUser’(u2) = sl
to an expedient insider u2*/ A uType(u2)= Outsider A compcategoryOfUser’ (u2) = cp
sleLAcpCC uCC’(u2) = uCC(u2) U {cc}
8. Leave_Expedient_Insider(ul,u2,cc) | ul e UAu2 € UAcc € CCA uCC’(u2) = uCC(u2) - {cc}
/*Admin ul revokes cc membership | cc € ccAdmin(ul) A cc € uCC(u2) forall s € S
from an expedient insider u2*/ A uType(u2) = Expedient_Insider if owner(s) = u2 A belongsTo(s) = cc
then S’ =S - {s}
/¥Kill subjects belongsTo the respective insider*/
if uCC(u2) = 0 then hierclearanceOfUser’ =
hierclearanceOfUser-{u2—hierclearanceOfUser(u2) }
compcategoryOfUser’ =
compcategoryOfUser-{u2—compcategoryOfUser(u2) }
uType(u2) = Outsider
9. Add(u,0,v,cc) ueUAcceCCAoeOA vMember,,(v) = vMember,(v) U {cc}
/*Admin u adds version v v € versions(0) A cc € ccAdmin(u)
of object o from Org to cc*/ A cc ¢ vMember,(v)
10. Remove(u,0,v,cc) ueUAcceCCAoeOA vMember,,(v) = vMember,(v) - {cc}
/*Admin u removes version v v € versions(0) A cc € ccAdmin(u)
of object o from cc*/ A cc € vMember,(v)
11. Import(u,01,v1,02,cc) uc€ UAcc€ CCA vl € versions(o) | versions’(02) = versions(o2) U {v2}
/*Admin u imports version v1 of A 01,02 € O A origin(02) = Org A
object ol to new version v2 of cc € ccAdmin(u) A origin(ol) = cc vMember’(02,v2) = {Org}
object 02 in Org*/ AhierclassificationOfObject(ol) = hierclassificationOf Version,2(v2) =
hierclassificationOfObject(02) A hierclassificationOfObject(02)
compcategoryOfObject(02) 2O compcategoryOfVersionz2 (v2)=compcategoryOfObject(02)
compcategoryOfObject(ol)
12. Merge(u,0,v,cc) ueUAcceCCAOEOA vMember/,(v) = vMember,(v) U {Org}
/*Admin u merges version v v € versions(0) A cc € ccAdmin(u)
of object o from cc to Org*/ Acc € vMember,(v) A
origin(o) = Org A v € versions(o)
13. Disband(u, cc) ueUAcceCCA forall ul € U

/*Admin u disbands
a collaboration group cc*/

cc € ccAdmin(u)

if cc € uCC(ul)
then uCC’(ul) = uCC(ul) - {cc}
if cc € ccAdmin(ul)
then ccAdmin’(ul) = ccAdmin(ul) - {cc}
forall o € O
if origin(o) = cc
then O' = O - {0}
forall o € O and forall v € versions(0).
if cc € vMember,(v)
then vMember,(v) = vMember,(v) - {cc}
CC’' = CC - {cc}
S/

=S- UVSES.belonasTo(s):ccS

TABLE VI

STATE TRANSITION AND QUERIES OF LBAC WITH COLLABORATIVE COMPARTMENTS (PART 2: OPERATIONAL MODEL)

Op.# | Operation Authorization Query State Elements Update in State Transition
14. CreateRWInCG(u,s,cc,sl,cp) ueUAs ¢S AcceuCCu) A owner’(s) = u
/*User u creates read-write sl < hierclearanceOfUser(u) A hierclearanceOfSubject’(s) = sl
subject s in a group cc*/ cp C compcategoryOfUser(u) belongsTo'(s) = cc
compcategoryOfSubject(u)’ = cp
type’ (s) = RW
S'=S U {s}
15. CreateRWInOrg(u,s,sl,cp) uec UAs ¢S A utype(u) = Insider owner’(s) = u
/*Only true insider creates A sl = hierclearanceOfUser(u) A hierclearanceOfSubject’(s) = sl
read-write subject in Org*/ cp C compcategoryOfUser(u) belongsTo'(s) = cc
compcategoryOfSubject(u)’ = cp
type’ (s) = RW
S'=S U {s}
16. CreateRO(u,s,sl,cp) ucUAsESA owner’(s) = u
/*User u creates read-only sl < hierclearanceOfUser(u) A hierclearanceOfSubject’(s) = sl
subject s*/ cp C compcategoryOfUser(u) type’(s) = RO
compcategoryOfSubject(u)’ = cp
S"=S U {s}
17. Read(s,o0,v) se€S AoeOAvV e versions(o) A None
/*Subject s reads the version v hierclearanceOfSubject(s) >~
of object o*/ hierclassificationOf Version,(v) A
compcategoryOfSubject(s) D
compcategoryOf Version, (V) A
(type(s) = RO A
((uCC(owner(s)) N vMember,(v)# ¢)
V (utype(owner(s)) = Insider A
{Org} € vMember,(v)))) V
(type(s) = RW A
(belongsTo(s) € vMember,(v))))
18. Update(s,o,v) s€SANo€OAvVE versions(0) A versions’(0) = versions(o) U {v1}
/*Subject s updates the version v | hierclearanceOfSubject(s) =
of object o. This function returns | hierclassificationOfVersion,(v) A vMember/,(vl) = vMember,(v1) U {cc}
updated version v1%/ compcategoryOfSubject(s) = hierclassificationOf Version/,(v1) = hierclassificationOf Version,(v)
compcategoryOfVersion, (V)A compcategoryOfVersion,,(v1) = compcategoryOfVersion,(v)
(type(s) = RW A
belongsTo(s) € vMember,(v))
19. Create(s,0) s € S Ao ¢ O A type(s)=RW 0’'=0U {0}
/*Subject s creates version v versions’(0) = {v}
of object o. This function
returns newly created version v*/ vMember,,(v) = {belongsTo(s)}
origin’(0) = belongsTo(s)
hierclassificatonOfObject’(0) = hierclearanceOfSubject(s)
hierclassificatonOf Version,,(v) = hierclearanceOfSubject(s)
compcategoryOfVersion,, = compcatgoryOfSubject(s)
20. Kill(u,s) uce UAseESA owner’” = owner - {s — owner(s)}

/*User u kills subject s*/

owner(s) = u V
belongsTo(s) € ccAdmin(u)

type’ = type - {s — type(s)}

hierclearanceOfSubject’ =

hierclearanceOfSubject - {s — hierclearanceOfSubject(s) }
compcategoryOfSubject’ = compcategoryOfSubject -

{s — compcategoryOfSubject(s) }

belongsTo" = belongsTo - {s — belongsTo(s)}

S =S -{s}

IV. MAPPING FROM LCC 10O GEI

Let, VLCC is the state of LCC scheme where state elements are given in Table IV, wLCC are state-
change rules that given in column 1 of table V and table VI and Q*““ is the set of authorization queries
as mentioned in column 2 of table V and table VI. o is a mapping that produces output (y“F, ¢GET)
for each input (y£C¢, LCC) and q“#! for each qL°C € QLY. Here, v“F! is state of GEI scheme given
in Table I, %! is the state-change rule that given in column 1 of table II and Q%F are queries given
in Column 2 of Table II.

1. 0 mapping of Y€ to y&F!

« o provides one-to-one mapping from Element# 1,2,3,9,10,11,12,13,14 of Table IV
to Element# 1,2,3,7,8,9,10,11,12 of Table I.

« For Element# 4, S L,CY;E[=L£CC*ZCWL o

o For Element# 5, =5%" = SLGP1 x SLSP! where, V11,12 € LZ¢C and Vel,c2 € CX9C. = = {((11,cD),
(12,c2) | 1= 12 Acl D c2}

« For Element# 6, 57" = (11.c1) ® (12,¢2) = (max(11,12),c1Uc2) where 11,12€ LX““ and c1,c2 € CL¢

« o provides one-to-one mapping from Element# 13-30 of Table IV to Element# 15-32 of Table L.
2. o mapping of)*C¢ to y&F!

The “F! is the set of operations that is given in Column 1 of Table II and III can be mapped from
each corresponding operations given in Column 1 of Table V and VI. For example, Op# 5 Join_Insider
of Table II is mapped from Op# 5 Add_Clearance of Table V.

3. o mapping of Q*CC to QP!

Finally, the authorization queries in Q“““ are mapped to the corresponding queries given in Column
2 of Table II and III. Note that, Q“““ is the set of queries given in Column 2 of Table V and VI. For
example, if the q7¢C is the query given in row 1,column 2 of Table V then it can be mapped with the

q“F! which is the query of row 1, column 2 of Table II.

V. PROOF OF STATE MATCHING REDUCTION FROM LCC TO GEI
Lemma 1. The mapping from LCC to GEI defined in section IV satisfies property 1 of Definition 1.

Proof: According to property 1 of definition 7 of definition 1 for every state v*¢¢ ¢ ['t¢¢

YOO € WLOC (NGEL) GELY = 5((yLCC 3)LCCY) hag the following property :

For every state v/ in scheme LCC such that v2¢¢ 5, 4FCC there exists a state v*F! in scheme GEI

such that,

and every

e

IT) for every query ¢ LCC | LOC gLOC

LCC c QLCC’ GEI '_GEI LCC).

if and only if] ol(q

> M1
IT can be decomposed into two directions:

IL.a) The “if”’ direction:

,YIGEI I_GEI O'(QLCC) = ,YLCC |_LCC qLCC

I1.b) The “‘only if”’ direction:
LOC [LCC (LCC s, AGEI [GEI 5(

M LCC)'

q

Proof By Induction: Induction on n steps in v2¢¢ = vECC,

Base Case: Let n=0.

I):7/-CC = HLCC and HGE! = AGEI
Thus, o(y LCC) _G(,YLCC) = AGBI = AGEL

SO, ’)/GEI —> GEI ’yl

Therefore, we can say that I of assertion 1 holds for basis case.

ILa): If A1CC = A LCC gapd ALCC |LCC (LCC
then y£CC |-LCC gLCC for every ¢LCC € QECC
Again, If 0(72CC) s 7GFT and o(QFCC) s QGF! and A1CC |-LCC 4LCC then HCET |-GET 5(4LCC) for

every ¢-CC € QLCC
Finally, as 7£¢¢ = 4LCC and 4FF = 49ET we can say, If y2CC HLOC ¢LCC then A GET |FGET 5 (gLCC)

for every ¢~¢¢ ¢ Q*CC.

II.b): If o.(,yLCC) — ,YGEI and O'(QLCC) — QGEI and ,YGEI '_GEI (LCC) then ,YLCC |_LCC qLCC for
every qLCC € QLCC.

Therefore, as y2CC = v2CC and 4 FE! = 4CFL we can say, If ¢
for every ¢“°¢ € QL¢C.

Thus, II of property 1 holds for base case.

Lcc |_LC’C LCccC

GEI l_G’EI (LCC) q

then ~y;

Inductive Hypothesis: Property 1 holds for n = k.

Inductive Steps: Let, n=k+1.

k 1
D:yLco b yrec L o Lcc
According to the inductive hypothesis there exists,

,YGEI —>,¢,GEI rYGEI for ryLC’C’ _> LoC 'VLCC

In order to prove I of property 1 we need to prove that there exists,

1
,YI?EI _>ch1 At GEI for ,YLC’C' _> rYLC’C’

We have shown in section IV, for every ¢/¢¢ € WLCC and %P1 ¢ WEP! and ¢“CC¢ ¢ QLCC and
¢“Fl € QU there exists o(FYC) — YET and o(¢*“C) — ¢“FI. So we can say that, for every

M :
L _> VECC there exists

~GE1 _> aur AGET
Therefore property I holds.

I1.a):We need to prove that,

,YGEI I_GEI (qLCC) = ,ylG’EI l_GEI qLCC

As, 7ECC and v are equivalent, and every ¢X¢C € WLCC has a corresponding o (p2¢C) = p¢FL € WEE!
so we can say that Il.a of property 1 holds.

I1.b):We need to prove that,

,.)/GEI l_GEI qLCC => ,}/GE] }_GEI (qLC’C)

As, vECC and 4! are equivalent, and every ¢X¢C € WLCC has a corresponding o (p2¢C) = p@EL € WEE!
so we can say that II.b of property 1 holds.
|

Lemma 2. The mapping from LCC to GEI defined in section 1V satisfies property 2 of Definition 1.

Proof: According to property 2 of definition 7 of definition 1 for every state v*¢¢ ¢ ['/¢¢

PLOC € WLOC (AGEL) GELY = o ((yLCC 4)LCCY) has the following property :
For every state 7! in scheme GEI such that v¢F1 =5 cer vFPL] there exists a state 7F¢C in scheme
LCC such that,

and every

D) AHC Sy A

LCC c QLCC LCC |_LCC LCC GEI |_GEI LCC)'

II) for every query ¢ if and only if ~}

s M o(q

IT can be decomposed into two directions:

II.a) The “if”’ direction:

,.)/?EI l_GEI O'(qLCC> = ,.ylLCC |_LCC qLCC’.

IL.b) The “only if”’ direction:
LOC | LCC (LCC s, AGEI [.GEI 5(

o LCC)

q

GEI GEI

Proof By Induction: Induction on n steps in y —> GEI V]

Base Case: Let n=0.

I) 'Y ,ylGE] and ,yLCC =7 LCcc
Thus, ,VGEI NGEL = 5 (4ECC) =g (4ECC)
So, ~LCC N
Therefore, we can say that I of assertion 1 holds for basis case.

ILa): If ALCC = HLCC gpq 4LOC |-LCC (LOC
then LCC HLCC ¢LCC for every ¢XCC € QLCC

Again, If o(72CC) s 4GBl and o(QFCC) s QOF! and yLOC |LCC ¢LOC (hen AGEI [-GEL 4(LCC)
for every ¢“¢¢ ¢ Q¢
GEI _

Finally, as yvF¢¢ = 4LCC and ~&F1 = 4CFT we can say, If 1
every qLCC e QLCC.

Lcc |_LCC’ LCC

q then ,}/GEI l_GEI

LCC)

o(q for

ILb): If 5(7"C9) s 4“1 and 0(Q"C) s QU
and 'VGEI |_GEI O'(qLCC) then 'VLCC l_LCC qLCC for every qLCC c QLCC’.

Therefore, as 77CC = yLCC and HFE = HCE

for every ¢*“¢ € QLCC.
Thus, II of property 1 holds for base case.

GEI l_GEI O'(qLCC)

we can say, If v; LCC |.LCC LCC

then ~y; q

Inductive Hypothesis: Property 1 holds for n = k.

Inductive Steps: Let, n=k+1.

k 1
I):’yGEI —>¢,GEI %?‘EI —)chI ’ylGE]

According to the inductive hypothesis there exists,

k k
’}/LCC —>7/}LCC’ %fcc for ’)/GEI —>¢GEI ’7]§E1

In order to prove I of property 1 we need to prove that there exists,

Lcc 1 Lce GEI 1 GEI
Vi —y N for ™" —yerr

We have shown in section IV, for every ¢¢C ¢ WLCC and ¢“FT € WEFI and ¢*C¢ ¢ QFCC and

q“Fl € QU there exists o(*9C) — YUE and o(¢*“C) — ¢“FL. So we can say that, for every

) :
VBT = e 4P there exists

Lcc 1 LCC
Yic —y V1

Therefore property I holds.

I1.a):We need to prove that,
NGEL [GEI (qLOCY s, nGEI [GEI (LCC
As, vECC and yFE! are equivalent, and every ¢XCC € WECC has a corresponding o (¢LC¢) = p@EL ¢ WEEL

so we can say that Il.a of property 1 holds.

I1.b):We need to prove that,

GEI |_GEI ,LCC __ GFEI |_GFEI
Y1 LFCC q ¢ =>4 Fe (g

As, 7ECC and v are equivalent, and every ¢/¢C € WLCC has a corresponding o (p2¢C) = pCF € WEE!
so we can say that II.b of property 1 holds.

LC’C’)

VI. MAPPING FROM GEI TO0 LCC

In LCC scheme SysLow and SysHigh are two security labels unpopulated with no objects, subjects,
object version or user for the following reasons:

1) Add_Clearance and Join_Outsider operations do not assign any user these two clearances

2) By CreateRO, CreateRWInOrg or CreateRWInCG operations user can only assign any of his clear-

ance to newly create subject those are not SysLow or SysHigh

3) Create operation only create object with subject’s security clearance

4) All object versions share same security classification. Merge, Import, Update operation do not change

them.

For this reason, during mapping from GEI to LCC we do not consider SysLow or SysHigh. However,
they are necessary to create a lattice in LCC .

Again, all object versions share same classification, there is no application of @, in the system.

Let, Y9F7 is the state of GEI scheme where state elements are given in Table I , “F' are state-change
rules that given in column 1 of table IT and Q%% is the set of authorization queries as mentioned in column
2 of table II. o is a mapping that produces output (y-¢C, =¢C) for each input (y“E!, »y“El) and qLCC for
each q“%1 € Q%F!. Here, 4“C is state of LCC scheme given in Table IV, 1)*““ is the state-change rule
that given in column 1 of table V and VI and Q*““ are queries given in Column 2 of Table V and table VI.

1. o mapping of 7¢*! to FCC

« o provides one-to-one mapping from Element# 1,2,3,7,8,9,10,11,12 of Table I
to Element# 1,2,3,9,10,11,12,13,14 of Table IV.

« For Element# 6, SLL““=(SLS"").(CG U Org)

o For Element# 7, =1¢¢ = SLLCC x SLLCY where, V11,12 € SLS"! and Vcl,c2 € C§¥' Vegl,cg2 €
CGOPI, = = {((1clegl), (12,62,082)) | 1= 12 Acl D c2 A egl = cg2}

o For Elementi# 8, @500 = (I1,cl,cgl) & (12,c2,cg2) = (max(11,12),c1Uc2,cql) if cgl = cg2 where
11,12¢ LﬁEl and cl,c2 € CgEI and cgl, cg2 € CGS’YEI

« o provides one-to-one mapping from Element# Element# 15-32 of Table I to 13-30 of Table IV.
2. o mapping of %! to ¢

The P! is the set of state transition rules that is given in Column 1 of Table V and VI can be
mapped from each corresponding operations given in Column of 1 of Table II and III. For example, Op#
5 Add_Clearance of Table V is mapped from Op# 5 Join_Insider of Table II .

3. o mapping of Q¢F! to Q¢

Finally, the authorization queries in Q“*! are mapped to the corresponding queries given in Column
2 of Table V and VI. Note that, Q“#' is the set of queries given in Column 2 of Table II and III. For
example, if the q¢F7 is the query given in row 1, column 2 of Table II then it can be mapped with the

q*““ which is the query of row 1,column 2 of Table V.

VII. PROOF OF STATE MATCHING REDUCTION FROM GEI TO LCC
Lemma 3. The mapping from GEI to LCC defined in section VI satisfies property 1 of Definition 1.
Proof: According to property 1 of definition 7 of definition 1 for every state v¢F! ¢ [¢F!
POEL € WOEL | (LCC)y LOCY = o ((yGEL 4)GELY) has the following property :

* . .
GBI GEL = joer y7FL, there exists a state 77““ in scheme

and every

For every state ;""" in scheme GEI such that «
LCC such that,

I) ’)/LCC i)wLCC(:U(wGEI) ’}/ILCC

GEI GEI GEI |_GEI ,GEI LCC |_LCC (GEI
S e q “CF ol).

II) for every query ¢ 7y if and only if v q

IT can be decomposed into two directions:

II.a) The “if”’ direction:
NECC |LLCC 5 (qGEIY = GET |.GEI (GEI

I1.b) The “‘only if”’ direction:

,ylGE'I I_GEI GEI Lcc |_LCC O'(

q =>M GEI)-

q

Proof By Induction: Induction on n steps in y#E! = GBI

Base Case: Let n=0.

I) ,YGEI ,YFEI

Thus, U(GEI) — J(,VGE]> — ,yLC — ’YlLCC
So, ’yLCC —PyLCC ”y{JCC
Therefore, we can say that I of assertion 1 holds for basis case.

ILa): If CFT = 4GEI gng ACGEI GBI (GEI
then yCEL GBI (GBI for every ¢OE! ¢ QOE!

Again, If O'(’)/GEI) — ,YGEI and O.(QGEI) — QGEI and ’VLCC '_LCC qLCC’ then ,YGEI |_GEI U(qLCC)

for every ¢“¢¢ ¢ QF¢C
Finally, as 7€ = 4LCC and ~&F1 = 4CFL we can say, If 4LCC FLCC LCC then 4GB RGBT 5(gECC) for
every qLCC e QLCC.

ILb): If o(7*¢C) = ~v“Fl and o(QFCC) s QEF!
and AOET GBI (4ECCY then ~LCC |LOC (LOC for every ¢LCC ¢ QLOC,
Therefore, as yF¢C = 4LC¢C and vFFL = ACFL we can say, If y0EL FGEL gGEL then nECC FLOC 6 (oGET)
for every ¢@F1 ¢ QG

Thus, II of property 1 holds for base case.
Inductive Hypothesis: Property 1 holds for n = k.
Inductive Steps: Let, n=k+1.

k 1
Dy S8 =y P =y PP
According to the inductive hypothesis there exists,

If ’yGE] —) GEI ’)/EEI then ’)/LCC —> LCccC ’}/LCC

In order to prove 1 of property 1 we need to prove that there exists,

,.YlfCC —y ,.YLCC for ,.YGEI % GEI '71GEI

We have shown in section VI, for every ¢/¢C ¢ WECC and ¢&FT ¢ WEFI and ¢*C¢ ¢ QFCC and

q“H! € QP! there exists o(¢CFT) — LCC and o(q“FT) — ¢*“C. So we can say that, for every

FGEL —> 7CET there exists

yECC _> Lo yECC
Therefore property I holds.

I1.a):We need to prove that,
LOC [LCC (qGEL) = AGEI | .GEI (GEI

71 q
As, €Y and vFF! are equivalent, and every 1“F1 € WEFT has a corresponding o (1y“ET) =

so we can say that Il.a of property 1 holds.

¢LCC c \I]LCC

I1.b):We need to prove that,

GEI l_GEI GEI Lcc l_LC’C

~ qPEl => A} GBI

o(q

15

As, vECC and vFF! are equivalent, and every 1“1 € WEE! has a corresponding o (¢ “F1) = £CC € ¢LCC

so we can say that IL.b of property 1 holds.
|
Lemma 4. The mapping from GEI to LCC defined in section VI satisfies property 2 of Definition 1.
Proof: According to property 2 of definition 7 of definition 1 for every state v“F! ¢ [¢F!
PYOEL € WOBL | (4 LOC @) LOCY = 5 ((yGEL GBIV has the following property :

For every state 7{°“ in scheme LCC such that y*¢ = 7" (= o (9F1))7£CC, there exists a state yF7!
in scheme GEI such that,

and every

I) ’)/GEI % GEI ’ylGEI

GEI c QGEI GEI l_GEI GEI LCC l_LCC GEI>.

II) for every query ¢ o(q

s V1 if and only if v;

IT can be decomposed into two directions:

II.a) The “if”’ direction:

,.ylLCC |_LCC O_(qGEI) = ,.ylGEI |_GEI qGE]

IL.b) The “‘only if”’ direction:

GEI I_GEI GEI Lcc |_LCC

7 ¢ => 7] B,

o(q

Proof By Induction: Induction on n steps in 72¢¢ %, .o 4£CC.

Base Case: Let n=0.

1):71CC = 4ECC and 4ECC = (-G
Thus, o(y7) = o(y51) = 7497 = ¢

So, ’}/GEI —) GEI ’yl

Therefore, we can say that I of assertion 1 holds for basis case.

ILa): If yGFT = 4OEI gng ACGEI GBI (GEI
then /GF! GBI ¢GEI for every ¢GF! € QCF!

Again, If o(7GFT) 5 7LCC and o(QCF1) s QLCC and then AGF! GBI (GBI LCC | LLCC 5 GEI)
for every ¢@F1 ¢ QCFT
LCC _ GEI _

Finally, as v/¢¢ = v2CC and 4FF! = 49ET we can say, If 7}
every q@Fl ¢ QUFL,

LCC l_LCC (GE]) GEI l_GE] GEI for

then ~}

ILb): If o(7“FT) s ~FCC and o(QYFT) — QFCC

and ACBT GBI ¢GEI (hen ~LCC |-LOC & (4GET) for every ¢OF1 € QOFI,
Therefore, as yF¢C = 4LC¢C and vFFL = ACFL we can say, If y0EL FGEL gGEL then nECC FLOC 6 (gGET)
for every ¢@F1 ¢ QG

Thus, II.b of property 2 holds for base case.

Inductive Hypothesis: Property 1 holds for n = k.

Inductive Steps: Let, n=k+1.

k 1
1):yCEl Ly (GBI L, GE
According to the inductive hypothesis there exists,

k k
’yLCC —>ch0 ’}/kLCC for ’}/GE[—>¢GEI ’)/EEI

In order to prove I of property 1 we need to prove that there exists,

rcc 1 LCC GEI 1 GEI

We have shown in section VI, for every ¢¥¢¢ € WECC and ¢%F1 ¢ WEFI and ¢"C¢ ¢ QFCC and
q“Fl € QUF! there exists a(YEFL) — LY and o(¢“C) — ¢“FL. So we can say that, for every

1 .
VSEL = O there exists
Lcc

1
%500 —PpLCC Y
Therefore property I holds.

I1.a):We need to prove that,
chc yele O.(QGEI) —~ ,ylGEI -GEI ,GEI

8 q
As, 7ECC and vZF! are equivalent, and every P! € WEFT has a corresponding o (9ET) = pLCC ¢ YLOC

so we can say that Il.a of property 2 holds.

I1.b):We need to prove that,

GFEI |_GEI ,GFEI LCC L LCC GFEI
o LFCCq => ¢ Y g (¢

As, 7ECC and vSFT are equivalent, and every o (9ET) = pLCC € WLCC has a corresponding ¢ ¢! € WEE!
so we can say that II.b of property 2 holds.
|

REFERENCES

[1] K. Bijon, R. Sandhu, and R. Krishnan. A group-centric model for collaboration with expedient insiders in multilevel systems. In
International Symposium on Security in Collaboration Technologies and Systems, 2012.

[2] R. Sandhu. Lattice-based access control models. Computer, 26(11):9 —19, nov. 1993.

[3] M. V. Tripunitara and N. Li. Comparing the expressive power of access control models. In Proceedings of the 11th ACM conference
on Computer and communications security, pages 62—71, New York, NY, USA, 2004. ACM.

