
1

Equivalence of Group-Centric Collaboration with
Expedient Insiders (GEI) and LBAC with

Collaborative Compartments (LCC)
Tahmina Ahmed1, Ravi Sandhu1, Khalid Bijon1 and Ram Krishnan2
1Institute for Cyber Security & Department of Computer Science

2Institute for Cyber Security & Department of Electrical and Computer Engineering
University of Texas at San Antonio

Abstract

Equivalence of access control models can be proved by comparing their expressive power. Tripunitara and Li
[3] have given a generalized theoretical formulation for comparing expressive power of access control models via
simulations that preserve security properties which are called state matching reductions. This report gives a formal
proof of a state matching reduction from Group-Centric Collaboration with Expedient Insiders (GEI) [1] to LBAC
with Collaborative Compartments (LCC), a model defined in this report, and vice versa. So GEI and LCC are
equivalent in their expressive power as per [3].

I. INTRODUCTION

Tripunitara and Li [3] define access control models as a set of access control schemes where each
scheme consists of a set of states and state transition rules. Formally a scheme is represented as a 4-tuple
〈Γ, Q,",Ψ〉 as follows.

• Γ is a set of states where each state contains the necessary information to decide access control on
that particular state.

• Q is a set of queries.
• ": Γ×Q → {true, false} is the entailment relation that verifies whether a query q ∈ Q holds in a

particular state γ ∈ Γ. If q is valid in state γ it is written as (γ " q) or (γ '" q) otherwise.
• Ψ is a set of state transition rules where each ψ ∈ Ψ determines how the state changes for that choice

of ψ.
Given two access control schemes A=〈ΓA, QA,"A,ΨA〉 and B=〈ΓB, QB,"B,ΨB〉 a mapping from A

to B is defined as a function σ that maps each pair 〈γA, ψA〉 to a pair 〈γB, ψB〉, and each query qA to qB.
Formally a mapping is represented as σ : (ΓA×ΨA)∪QA → (ΓB ×ΨB)∪QB. States γA and γB are said
to be equivalent under the mapping σ when for every qA ∈ QA, γA "A qA if and only if γB "B σ(qA).
This leads up to the definition for a state matching reduction as follows.

Definition 1. (State Matching Reduction) Given two schemes A and B, a mapping σ from A to B is a
state matching reduction if for every γA ∈ ΓA and every ψA ∈ ΨA, we have the following two properties
where 〈γB, ψB〉 = σ(〈γA, ψA〉).

1) For every state γA
1 in scheme A such that γA ∗−→ψA γA

1 , there exists γB
1 in scheme B such that

γB ∗−→ψB γB
1 and γA

1 and γB
1 are equivalent.

2) For every state γB
1 in scheme B such that γB ∗−→ψB γB

1 there exists γA
1 in scheme A such that

γA ∗−→ψA γA
1 , and γA

1 and γB
1 are equivalent.

The significance of state-matching reductions is expressed in Theorem 1 of [3] which asserts that: Given
two schemes A and B, a mapping σ from A to B is strongly security-preserving (in a precise formal
sense) if and only if σ is a state-matching reduction. Two schemes are said to be equivalent if there is a
state-matching reduction from one to the other, and vice versa.



2

The goal of this technical report is to formally prove the equivalence of two specific schemes using the
above framework. One scheme is called Group-Centric Collaboration with Expedient Insiders (GEI). It
was introduced and motivated in [1]. The other scheme is newly defined in this report. It is called LBAC
with Collaborative Compartments (LCC), where LBAC is Lattice-Based Access Control [2]. Motivation
and explanation of LCC will be provided in a paper currently under preparation. This report only provides
a formal definition of LCC as a scheme.

The rest of the report is organized as follows. Section II gives a definition of GEI as a scheme. Section
III does the same for LCC. Section IV defines a mapping from LCC to GEI. Section VI proves that
this mapping is a state-matching reduction. Section VII conversely defines a mapping from GEI to LCC,
which is formally proved to be state-matching in section VIII.

II. GEI SCHEME

The GEI scheme is defined in three tables. The elements of each state γ ∈ Γ are defined in Table I.
Each ψ ∈ Ψ is a state transition rule and is defined in the Column 1 of Tables II and III. Each q ∈ Q is
defined in Column 2 of Table II and III.

The GEI Scheme that is defined in this report is slightly different from the one defined in [1] in
respect of lattice structure and object version. Here the lattice is more structured with specified categories,
security compartments and levels whereas in [1] the lattice is more generic with unspecified structure. In
[1] version space is an infinite universal set but in this report version is a finite non-empty set.

III. LCC SCHEME

The elements of each state γ ∈ Γ are defined in Table IV. Each ψ ∈ Ψ is state transition rule and is
defined in the Column 1 of Table V and VI. Each q ∈ Q is defined in Column 2 of Table V and VI .



3

TABLE I
GEI STATE

Element# Global Sets and Symbols:
1. CGγ ⊂ CG, is the finite and strict subset of countably infinite set CG.
2. Cγ = C, is finite set of existing unordered categories
3. Lγ = L, is finite set of existing hierarchical ordered security levels
4. SLγ = SL, is finite lattice of security compartments where SL = L × 2C

5. #γ = #, is finite dominance relation ⊆ L × L where
∀l1,l2 ∈ L and ∀c1,c2 ∈ C. # = {((l1,c1), (l2,c2)) | l1# l2 ∧ c1 ⊇ c2}

6. ⊕γ = ⊕, is join operator where
(l1,c1) ⊕ (l2,c2) = (max(l1,l2),c1∪c2)

7. Uγ ⊂ U , is finite and strict subset of countably infinite set U .
8. Oγ ⊂ O, is finite and strict subset of countably infinite set O.
9. Sγ ⊂ S , is finite and strict subset of countably infinite set S.
10. UTYPEγ = UTYPE = {insider, expedient insider, outsider} is the finite set of user’s type
11. STYPEγ = STYPE = {RO, RW} is the finite set of subject’s type.
12. Org, is the entity Organization, a Constant.

User Related State Elements:
13. hierclearanceOfUser: Uγ → Lγ , this function maps each user to a security level.
14. compcategoryOfUser: Uγ → 2Cγ , this function maps each user to compartments.
15. uCG: Uγ → 2CGγ , this function maps each user to zero or more groups.
16. orgAdmin: Uγ → {true,false}, this function maps each user to true if she is an admin of Org
17. cgAdmin: Uγ →2CGγ , this function maps each user to zero or more groups if he is an administrative user of the group.
18. uType: Uγ → UTYPEγ , this function maps each user to a user type.

Objects Related State Elements:
19. hierclassificationOfObject: Oγ → Lγ , this function maps each object to a security levels.
20. compcategoryOfObject: Oγ → Cγ , this function maps each object to compartment.
21. origin: Oγ → CGγ ∪ {Org}, this function maps each object to the entity (group or Org) where it was created.
22. versions: Oγ → 2Univ V

finite - φ, this function maps each object to all its existing versions
where UNIV V is countably infinite set of all possible versions
/* 2Univ V

finite is finite set of existing versions that is a subset of UNIV V .*/

Subject Related State Elements:
23. hierclearanceOfSubject: Sγ → Lγ , this function maps each subject to a security levels.
24. compcategoryOfSubject: Sγ → Cγ , this function maps each subject to compartment.
25. owner: Sγ → Uγ , this function maps each subject to the user who created this.
26. belongsTo: Sγ ↪→ CGγ , this function maps each RW subject (not RO subject) to the group where it was created.
27. type: Sγ → STYPEγ , this function maps each subject to a subject type.

Object Version Related State Elements:
28. For each o ∈ Oγ , vMembero: versions(o)→ 2CGγ∪{Org}- φ, this functions maps each version of every object to one or more

entity (group or Org) where this version is available to access.
29. For each o ∈ Oγ , hierclassificationOfVersiono: versions(o)→ Lγ , this function maps each version to a security levels.
30. For each o ∈ Oγ , compcategoryOfVersiono: versions(o) → 2Cγ this function maps each subject to compartment.



4

TABLE II
STATE TRANSITION AND QUERY OF GSIS-EXPEDIENT-INSIDER(PART 1: ADMIN MODEL)

Op.# Operation Authorization Query State Element Update on State Transition
1. Create Insider(u1,u2,uType,sl,cp) u1 ∈ U ∧ u2 /∈ U ∧ if uType=Insider then

/*Admin u1 creates user orgAdmin(u1)=True∧ sl ∈ L hierclearanceOfUser′(u2)=sl
u2 as insider*/ ∧cp ⊆ C∧ uType=Insider compcategoryOfUser′(u2)=cp

uType(u2)′=Insider
U′ = U ∪ {u2}

2. Create OutSider(u1,u2,uType,sl,cp) u1 ∈ U ∧ u2 /∈ U ∧ uType(u2)′=Outsider
/*Admin u1 creates user orgAdmin(u1)=True∧ sl ∈ L U′ = U ∪ {u2}
u2 as outsider*/ ∧ cp ⊆ C∧ uType=Outsider

3. Delete User(u1,u2) u1 ∈ U ∧ u2 ∈ U ∧ if(utype(u2)=Insider) then
/*Admin u1 creates user orgAdmin(u1)=True∧ sl ∈ L forall s ∈ S
u2 as outsider*/ ∧ cp ⊆ C if(owner(s)=u2)

owner′ = owner-{s→owner(s)}
S′ = S-{s}

uType′ = uType - { u2 → uType(u2)}
U′ = U - {u2}

4. Establish(u, cg) u ∈ U ∧ cg /∈ CG ∧ cgAdmin′(u) = cgAdmin(u) ∪ {cg}
/*Admin user u establishes orgAdmin(u)=True CG′ = CG ∪ {cg}
new collaboration group cg*/

5. Join Insider(u1,u2,cg) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ uCG′(u2) = uCG(u2) ∪ {cg}
/*Admin u1 grants cg membership cg ∈ cgAdmin(u1) ∧
to a true insider u2*/ uType(u2) = Insider ∧ cg /∈ uCG(u2)

6. Leave Insider(u1,u2,cg) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ uCG′(u2) = uCG(u2) - {cg}
/*Admin u1 revokes cg membership cg ∈ cgAdmin(u1) ∧ cg ∈ uCG(u2) forall s ∈ S
from a true insider u2*/ ∧ uType(u2) = Insider if owner(s) = u2 ∧ belongsTo(s) = cg

then S′ = S - {s}
7. Join Outsider(u1,u2,cg,sl,cp) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ uType′(u2) = Expedient Insider

/*Admin u1 grants cg membership cg ∈ cgAdmin(u1) ∧ cg /∈ uCG(u2) if uCG(u2) = ∅ then hierclearanceOfUser′(u2) = sl
to an expedient insider u2*/ ∧ uType(u2)= Outsider ∧ compcategoryOfUser′(u2) = cp

sl ∈ L ∧ cp ⊆ C uCG′(u2) = uCG(u2) ∪ {cg}
8. Leave Expedient Insider(u1,u2,cg) u1 ∈ U ∧ u2 ∈ U ∧ cg ∈ CG ∧ uCG′(u2) = uCG(u2) - {cg}

/*Admin u1 revokes cg membership cg ∈ cgAdmin(u1) ∧ cg ∈ uCG(u2) forall s ∈ S
from an expedient insider u2*/ ∧ uType(u2) = Expedient Insider if owner(s) = u2 ∧ belongsTo(s) = cg

then S′ = S - {s}
/*Kill subjects belongsTo the respective insider*/
if uCG(u2) = ∅ then hierclearanceOfUser′ =

hierclearanceOfUser-{u2→hierclearanceOfUser(u2)}
compcategoryOfUser′ =
compcategoryOfUser-{u2→compcategoryOfUser(u2)}

uType(u2) = Outsider
9. Add(u,o,v,cg) u ∈ U ∧ cg ∈ CG ∧ o ∈ O ∧ vMember′o(v) = vMembero(v) ∪ {cg}

/*Admin u adds version v v ∈ versions(o) ∧ cg ∈ cgAdmin(u)
of object o from Org to cg*/ ∧ cg /∈ vMembero(v)

10. Remove(u,o,v,cg) u ∈ U ∧ cg ∈ CG ∧ o ∈ O ∧ vMember′o(v) = vMembero(v) - {cg}
/*Admin u removes version v v ∈ versions(o) ∧ cg ∈ cgAdmin(u)
of object o from cg*/ ∧ cg ∈ vMembero(v)

11. Import(u,o1,v1,o2,cg) u ∈ U ∧ cg ∈ CG ∧ v1 ∈ versions(o) versions′(o2) = versions(o2) ∪ {v2}
/*Admin u imports version v1 of ∧ o1,o2 ∈ O ∧ origin(o2) = Org ∧
object o1 to new version v2 of cg ∈ cgAdmin(u) ∧ origin(o1) = cg vMember′(o2,v2) = {Org}
object o2 in Org*/ ∧hierclassificationOfObject(o1) = hierclassificationOfVersiono2(v2) =

hierclassificationOfObject(o2) ∧ hierclassificationOfObject(o2)
compcategoryOfObject(o2) ⊇ compcategoryOfVersiono2(v2)=compcategoryOfObject(o2)
compcategoryOfObject(o1)

12. Merge(u,o,v,cg) u ∈ U ∧ cg ∈ CG ∧ o ∈ O ∧ vMember′o(v) = vMembero(v) ∪ {Org}
/*Admin u merges version v v ∈ versions(o) ∧ cg ∈ cgAdmin(u)
of object o from cg to Org*/ ∧cg ∈ vMembero(v) ∧

origin(o) = Org ∧ v ∈ versions(o)
13. Disband(u, cg) u ∈ U ∧ cg ∈ CG ∧ forall u1 ∈ U

/*Admin u disbands cg ∈ cgAdmin(u) if cg ∈ uCG(u1)
a collaboration group cg*/ then uCG′(u1) = uCG(u1) - {cg}

if cg ∈ cgAdmin(u1)
then cgAdmin′(u1) = cgAdmin(u1) - {cg}

forall o ∈ O
if origin(o) = cg

then O′ = O - {o}
forall o ∈ O and forall v ∈ versions(o).

if cg ∈ vMembero(v)
then vMember′o(v) = vMembero(v) - {cg}

CG′ = CG - {cg}
S′ = S -

⋃
∀s∈S.belongsTo(s)=cgS



5

TABLE III
GSIS-EXPEDIENT-INSIDER STATE TRANSITIONS AND QUERIES(PART 2: OPERATIONAL MODEL)

Op.# Operation Authorization Query State Elements Update in State Transition
14. CreateRWInCG(u,s,cg,sl,cp) u ∈ U ∧ s /∈ S ∧ cg ∈ uCG(u) ∧ owner′(s) = u

/*User u creates read-write sl - hierclearanceOfUser(u) ∧ hierclearanceOfSubject′(s) = sl
subject s in a group cg*/ cp ⊆ compcategoryOfUser(u) belongsTo′(s) = cg

compcategoryOfSubject(u)′ = cp
type′ (s) = RW
S′ = S ∪ {s}

15. CreateRWInOrg(u,s,sl,cp) u ∈ U ∧ s /∈ S ∧ utype(u) = Insider owner′(s) = u
/*Only true insider creates ∧ sl - hierclearanceOfUser(u) ∧ hierclearanceOfSubject′(s) = sl
read-write subject in Org*/ cp ⊆ compcategoryOfUser(u) belongsTo′(s) = cg

compcategoryOfSubject(u)′ = cp
type′ (s) = RW
S′ = S ∪ {s}

16. CreateRO(u,s,sl,cp) u ∈ U ∧ s /∈ S ∧ owner′(s) = u
/*User u creates read-only sl - hierclearanceOfUser(u) ∧ hierclearanceOfSubject′(s) = sl
subject s*/ cp ⊆ compcategoryOfUser(u) type′(s) = RO

compcategoryOfSubject(u)′ = cp
S′ = S ∪ {s}

17. Read(s,o,v) s ∈ S ∧ o ∈ O ∧ v ∈ versions(o) ∧ None
/*Subject s reads the hierclearanceOfSubject(s) #
version v of object o*/ hierclassificationOfVersiono(v) ∧

compcategoryOfSubject(s) ⊇
compcategoryOfVersiono(v)∧
(type(s) = RO ∧
((uCG(owner(s)) ∩ vMembero(v) /= φ)
∨ (utype(owner(s)) = Insider ∧
{Org} ∈ vMembero(v)))) ∨
(type(s) = RW ∧
(belongsTo(s) ∈ vMembero(v))))

18. Update(s,o,v) s ∈ S ∧ o ∈ O ∧ v ∈ versions(o) ∧ versions′(o) = versions(o) ∪ {v1}
/*Subject s updates the hierclearanceOfSubject(s) =
version v of object o. hierclassificationOfVersiono(v) ∧ vMember′o(v1) = vMembero(v1) ∪ {cg}
This function returns compcategoryOfSubject(s) = hierclassificationOfVersion′

o(v1) = hierclassificationOfVersiono(v)
updated version v1*/ compcategoryOfVersiono(v)∧ compcategoryOfVersion′

o(v1) = compcategoryOfVersiono(v)
(type(s) = RW ∧
belongsTo(s) ∈ vMembero(v))

19. Create(s,o) s ∈ S ∧ o /∈ O ∧ type(s)=RW O′ = O ∪ {o}
/*Subject s creates versions′(o) = {v}
version v of object o.
This function returns newly vMember′o(v) = {belongsTo(s)}
created version v*/ origin′(o) = belongsTo(s)

hierclassificatonOfObject′(o) = hierclearanceOfSubject(s)
hierclassificatonOfVersion′

o(v) = hierclearanceOfSubject(s)
compcategoryOfVersion′

o = compcatgoryOfSubject(s)
20. Kill(u,s) u ∈ U ∧ s ∈ S ∧ owner′ = owner - {s → owner(s)}

/*User u kills subject s*/ owner(s) = u ∨ type′ = type - {s → type(s)}
belongsTo(s) ∈ cgAdmin(u) hierclearanceOfSubject′ =

hierclearanceOfSubject - {s → hierclearanceOfSubject(s)}
compcategoryOfSubject′ = compcategoryOfSubject -
{s → compcategoryOfSubject(s)}
belongsTo′ = belongsTo - {s → belongsTo(s)}
S′ = S - {s}



6

TABLE IV
ATTRIBUTE SPECIFICATION OF LBAC WITH COLLABORATIVE COMPARTMENTS

Element# Global Sets and Symbols:
1. CCγ ⊂ CC, is finite and strict subset of countably infinite set of unordered collaborative categories CC
2. Cγ = C, is finite set of existing unordered categories
3. Lγ = L, is finite set of existing hierarchical ordered security levels
4. SysHigh, SysHigh, the system High (constant label) that dominates every security labels ∈ SL
5. SysLow, the system Low (constant label) that is dominated by every security labels ∈ SL
6. SLγ ⊂ SL, is finite and strict subset of countably infinite security labels SL where SL = {(L × 2C)×(CC ∪ {Org})} ∪ {SysHigh, SysLow}
7. #γ ⊂ #, is finite and strict subset of countably infinite dominance relation #⊆SL × SL where

∀l1,l2 ∈ L and ∀c1,c2 ∈ C and ∀cc1,cc2 ∈ CC. # = {((l1,c1,cc1), (l2,c2,cc2)) | cc1=cc2 ∧ l1# l2 ∧ c1 ⊇ c2}
∀l ∈ L and ∀c ∈ C and ∀cc ∈ CC. # = {SysHigh, (l,c,cc)}
∀l ∈ L and ∀c ∈ C and ∀cc ∈ CC. # = {(l,c,cc),SysLow}

8. ⊕γ = ⊕, is join operator where
∀l1,l2 ∈ L and ∀c1,c2 ∈ C and ∀cc1,cc2 ∈ CC.
(l1,c1,cc1) ⊕ (l2,c2,cc2) = (max(l1,l2),c1∪c2,cc1), if cc1=cc2
(l1,c1,cc1) ⊕ (l2,c2,cc2)=SysHigh, if cc1 /=cc2
∀l ∈ L and ∀c ∈ C and ∀cc ∈ CC.
(l,c,cc) ⊕ SysHigh = SysHigh, Syshigh ⊕ (l,c,cc) = SysHigh
(l,c,cc) ⊕ SysLow = (l,c,cc), SysLow ⊕ (l,c,cc) = (l,c,cc)

9. Uγ ⊂ U , is finite and strict subset of countably infinite set U .
10. Oγ ⊂ O, is finite and strict subset of countably infinite set O.
11. Sγ ⊂ S , is finite and strict subset of countably infinite set S.
12. UTYPEγ = UTYPE = {insider, expedient insider, outsider} is the finite set of user’s type
13. STYPEγ = STYPE = {RO, RW} is the finite set of subject’s type.
14. Org, is the entity Organization, a Constant.

User Related State Elements:
15. hierclearanceOfUser: Uγ → Lγ , this function maps each user to a security level.
16. compcategoryOfUser: Uγ → 2Cγ , this function maps each user to compartments.
17. uCC: Uγ → 2CCγ , this function maps each user to zero or more collaborative compartments.
18. orgAdmin: Uγ → {true,false}, this function maps each user to true if she is an admin of Org
19. ccAdmin: Uγ →2CCγ , this function maps each user to zero or more groups if he is an administrative user of a collaboration group.
20. uType: Uγ → UTYPEγ , this function maps each user to a user type.

Objects Related State Elements:
21. hierclassificationOfObject: Oγ → Lγ , this function maps each object to a security levels.
22. compcategoryOfObject: Oγ → Cγ , this function maps each object to compartment.
23. origin: Oγ → CCγ ∪ {Org}, this function maps each object to the entity (collaboration category or Org) where it was created.
24. versions: Oγ → 2Univ V

finite - φ, this function maps each object to all its existing versions
where UNIV V is countably infinite set of all possible versions
/* 2Univ V

finite is finite set of existing versions that is a subset of UNIV V .*/

Subject Related State Elements:
25. hierclearanceOfSubject: Sγ → Lγ , this function maps each subject to a security levels.
26. compcategoryOfSubject: Sγ → Cγ , this function maps each subject to compartment.
27. owner: Sγ → Uγ , this function maps each subject to the user who created this.
28. belongsTo: Sγ ↪→ CCγ , this function maps each RW subject (not RO subject) to the collaboration category where it was created.
29. type: Sγ → STYPEγ , this function maps each subject to a subject type.

Object Version Related State Elements:
30. For each o ∈ Oγ , vMembero: versions(o)→ 2CCγ∪{Org}- φ, this functions maps each version of every object to one or more

entity (collab. category or Org) where this version is available to access.
31. For each o ∈ Oγ , hierclassificationOfVersiono: versions(o)→ Lγ , this function maps each version to a security levels.
32. For each o ∈ Oγ , compcategoryOfVersiono: versions(o) → 2Cγ this function maps each subject to compartment.



7

TABLE V
STATE TRANSITION AND QUERY OF LBAC WITH COLLABORATIVE COMPARTMENTS(PART 1: ADMIN MODEL)

Op.# Operation Authorization Query State Element Update on State Transition
1. Create Insider(u1,u2,uType,sl,cp) u1 ∈ U ∧ u2 /∈ U ∧ if uType=Insider then

/*Admin u1 creates user orgAdmin(u1)=True∧ s1 ∈ L hierclearanceOfUser′(u2)=sl
u2 as insider*/ ∧cp ⊆ C∧ uType=Insider compcategoryOfUser′(u2)=cp

uType(u2)′=Insider
U′ = U ∪ {u2}

2. Create OutSider(u1,u2,uType,sl,cp) u1 ∈ U ∧ u2 /∈ U ∧ uType(u2)′=Outsider
/*Admin u1 creates user orgAdmin(u1)=True∧ S1 ∈ L U′ = U ∪ {u2}
u2 as outsider*/ ∧ cp ⊆ C∧ uType=Outsider

3. Delete User(u1,u2) u1 ∈ U ∧ u2 ∈ U ∧ if(utype(u2)=Insider) then
/*Admin u1 creates user orgAdmin(u1)=True∧ S1 ∈ L forall s ∈ S
u2 as outsider*/ ∧ cp ⊆ C if(owner(s)=u2)

owner′ = owner-{s→owner(s)}
S′ = S-{s}

uType′ = uType - { u2 → uType(u2)}
U′ = U - {u2}

4. Establish(u, cc) u ∈ U ∧ cc /∈ CC ∧ ccAdmin′(u) = ccAdmin(u) ∪ {cc}
/*Admin user u establishes orgAdmin(u)=True CC′ = CC ∪ {cc}
new collab compartment cc*/ SL′ = {(L × 2C).(CC ∪ {Org})} ∪ {SysHigh} ∪ {SysLow}

∀l1,l2 ∈ L and ∀c1,c2 ∈ C and ∀cc1,cc2 ∈ CC.
#′ = {((l1,c1,cc1), (l2,c2,cc2)) | cc1=cc2 ∧ l1# l2 ∧ c1 ⊇ c2}

5. Add Clearance(u1,u2,cc) u1 ∈ U ∧ u2 ∈ U ∧ cc ∈ CC ∧ uCC′(u2) = uCC(u2) ∪ {cc}
/*Admin u1 grants cc clearance cc ∈ ccAdmin(u1) ∧
to a true insider u2*/ uType(u2) = Insider ∧ cc /∈ uCC(u2)

6. Remove Clearance(u1,u2,cc) u1 ∈ U ∧ u2 ∈ U ∧ cc ∈ CC ∧ uCC′(u2) = uCC(u2) - {cc}
/*Admin u1 revokes cc membership cc ∈ ccAdmin(u1) ∧ cc ∈ uCC(u2) forall s ∈ S
from a true insider u2*/ ∧ uType(u2) = Insider if owner(s) = u2 ∧ belongsTo(s) = cc

then S′ = S - {s}
7. Join Outsider(u1,u2,cc,sl,cp) u1 ∈ U ∧ u2 ∈ U ∧ cc ∈ CC ∧ uType′(u2) = Expedient Insider

/*Admin u1 grants cc membership cc ∈ ccAdmin(u1) ∧ cc /∈ uCC(u2) if uCC(u2) = ∅ then hierclearanceOfUser′(u2) = sl
to an expedient insider u2*/ ∧ uType(u2)= Outsider ∧ compcategoryOfUser′(u2) = cp

s1 ∈ L ∧ cp ⊆ C uCC′(u2) = uCC(u2) ∪ {cc}
8. Leave Expedient Insider(u1,u2,cc) u1 ∈ U ∧ u2 ∈ U ∧ cc ∈ CC ∧ uCC′(u2) = uCC(u2) - {cc}

/*Admin u1 revokes cc membership cc ∈ ccAdmin(u1) ∧ cc ∈ uCC(u2) forall s ∈ S
from an expedient insider u2*/ ∧ uType(u2) = Expedient Insider if owner(s) = u2 ∧ belongsTo(s) = cc

then S′ = S - {s}
/*Kill subjects belongsTo the respective insider*/
if uCC(u2) = ∅ then hierclearanceOfUser′ =

hierclearanceOfUser-{u2→hierclearanceOfUser(u2)}
compcategoryOfUser′ =
compcategoryOfUser-{u2→compcategoryOfUser(u2)}

uType(u2) = Outsider
9. Add(u,o,v,cc) u ∈ U ∧ cc ∈ CC ∧ o ∈ O ∧ vMember′o(v) = vMembero(v) ∪ {cc}

/*Admin u adds version v v ∈ versions(o) ∧ cc ∈ ccAdmin(u)
of object o from Org to cc*/ ∧ cc /∈ vMembero(v)

10. Remove(u,o,v,cc) u ∈ U ∧ cc ∈ CC ∧ o ∈ O ∧ vMember′o(v) = vMembero(v) - {cc}
/*Admin u removes version v v ∈ versions(o) ∧ cc ∈ ccAdmin(u)
of object o from cc*/ ∧ cc ∈ vMembero(v)

11. Import(u,o1,v1,o2,cc) u ∈ U ∧ cc ∈ CC ∧ v1 ∈ versions(o) versions′(o2) = versions(o2) ∪ {v2}
/*Admin u imports version v1 of ∧ o1,o2 ∈ O ∧ origin(o2) = Org ∧
object o1 to new version v2 of cc ∈ ccAdmin(u) ∧ origin(o1) = cc vMember′(o2,v2) = {Org}
object o2 in Org*/ ∧hierclassificationOfObject(o1) = hierclassificationOfVersiono2(v2) =

hierclassificationOfObject(o2) ∧ hierclassificationOfObject(o2)
compcategoryOfObject(o2) ⊇ compcategoryOfVersiono2(v2)=compcategoryOfObject(o2)
compcategoryOfObject(o1)

12. Merge(u,o,v,cc) u ∈ U ∧ cc ∈ CC ∧ o ∈ O ∧ vMember′o(v) = vMembero(v) ∪ {Org}
/*Admin u merges version v v ∈ versions(o) ∧ cc ∈ ccAdmin(u)
of object o from cc to Org*/ ∧cc ∈ vMembero(v) ∧

origin(o) = Org ∧ v ∈ versions(o)
13. Disband(u, cc) u ∈ U ∧ cc ∈ CC ∧ forall u1 ∈ U

/*Admin u disbands cc ∈ ccAdmin(u) if cc ∈ uCC(u1)
a collaboration group cc*/ then uCC′(u1) = uCC(u1) - {cc}

if cc ∈ ccAdmin(u1)
then ccAdmin′(u1) = ccAdmin(u1) - {cc}

forall o ∈ O
if origin(o) = cc

then O′ = O - {o}
forall o ∈ O and forall v ∈ versions(o).

if cc ∈ vMembero(v)
then vMember′o(v) = vMembero(v) - {cc}

CC′ = CC - {cc}
S′ = S -

⋃
∀s∈S.belongsTo(s)=ccS



8

TABLE VI
STATE TRANSITION AND QUERIES OF LBAC WITH COLLABORATIVE COMPARTMENTS (PART 2: OPERATIONAL MODEL)

Op.# Operation Authorization Query State Elements Update in State Transition
14. CreateRWInCG(u,s,cc,sl,cp) u ∈ U ∧ s /∈ S ∧ cc ∈ uCC(u) ∧ owner′(s) = u

/*User u creates read-write sl - hierclearanceOfUser(u) ∧ hierclearanceOfSubject′(s) = sl
subject s in a group cc*/ cp ⊆ compcategoryOfUser(u) belongsTo′(s) = cc

compcategoryOfSubject(u)′ = cp
type′ (s) = RW
S′ = S ∪ {s}

15. CreateRWInOrg(u,s,sl,cp) u ∈ U ∧ s /∈ S ∧ utype(u) = Insider owner′(s) = u
/*Only true insider creates ∧ sl - hierclearanceOfUser(u) ∧ hierclearanceOfSubject′(s) = sl
read-write subject in Org*/ cp ⊆ compcategoryOfUser(u) belongsTo′(s) = cc

compcategoryOfSubject(u)′ = cp
type′ (s) = RW
S′ = S ∪ {s}

16. CreateRO(u,s,sl,cp) u ∈ U ∧ s /∈ S ∧ owner′(s) = u
/*User u creates read-only sl - hierclearanceOfUser(u) ∧ hierclearanceOfSubject′(s) = sl
subject s*/ cp ⊆ compcategoryOfUser(u) type′(s) = RO

compcategoryOfSubject(u)′ = cp
S′ = S ∪ {s}

17. Read(s,o,v) s ∈ S ∧ o ∈ O ∧ v ∈ versions(o) ∧ None
/*Subject s reads the version v hierclearanceOfSubject(s) #
of object o*/ hierclassificationOfVersiono(v) ∧

compcategoryOfSubject(s) ⊇
compcategoryOfVersiono(v)∧
(type(s) = RO ∧
((uCC(owner(s)) ∩ vMembero(v)/= φ)
∨ (utype(owner(s)) = Insider ∧
{Org} ∈ vMembero(v)))) ∨
(type(s) = RW ∧
(belongsTo(s) ∈ vMembero(v))))

18. Update(s,o,v) s ∈ S ∧ o ∈ O ∧ v ∈ versions(o) ∧ versions′(o) = versions(o) ∪ {v1}
/*Subject s updates the version v hierclearanceOfSubject(s) =
of object o. This function returns hierclassificationOfVersiono(v) ∧ vMember′o(v1) = vMembero(v1) ∪ {cc}
updated version v1*/ compcategoryOfSubject(s) = hierclassificationOfVersion′

o(v1) = hierclassificationOfVersiono(v)
compcategoryOfVersiono(v)∧ compcategoryOfVersion′

o(v1) = compcategoryOfVersiono(v)
(type(s) = RW ∧
belongsTo(s) ∈ vMembero(v))

19. Create(s,o) s ∈ S ∧ o /∈ O ∧ type(s)=RW O′ = O ∪ {o}
/*Subject s creates version v versions′(o) = {v}
of object o. This function
returns newly created version v*/ vMember′o(v) = {belongsTo(s)}

origin′(o) = belongsTo(s)
hierclassificatonOfObject′(o) = hierclearanceOfSubject(s)
hierclassificatonOfVersion′

o(v) = hierclearanceOfSubject(s)
compcategoryOfVersion′

o = compcatgoryOfSubject(s)
20. Kill(u,s) u ∈ U ∧ s ∈ S ∧ owner′ = owner - {s → owner(s)}

/*User u kills subject s*/ owner(s) = u ∨ type′ = type - {s → type(s)}
belongsTo(s) ∈ ccAdmin(u) hierclearanceOfSubject′ =

hierclearanceOfSubject - {s → hierclearanceOfSubject(s)}
compcategoryOfSubject′ = compcategoryOfSubject -
{s → compcategoryOfSubject(s)}
belongsTo′ = belongsTo - {s → belongsTo(s)}
S′ = S - {s}



9

IV. MAPPING FROM LCC TO GEI
Let, γLCC is the state of LCC scheme where state elements are given in Table IV, ψLCC are state-

change rules that given in column 1 of table V and table VI and QLCC is the set of authorization queries
as mentioned in column 2 of table V and table VI. σ is a mapping that produces output 〈γGEI , ψGEI〉
for each input 〈γLCC , ψLCC〉 and qGEI for each qLCC ∈ QLCC . Here, γGEI is state of GEI scheme given
in Table I, ψGEI is the state-change rule that given in column 1 of table II and QGEI are queries given
in Column 2 of Table II.

1. σ mapping of γLCC to γGEI

• σ provides one-to-one mapping from Element# 1,2,3,9,10,11,12,13,14 of Table IV
to Element# 1,2,3,7,8,9,10,11,12 of Table I.

• For Element# 4, SLGEI
γ =LLCC

γ *2CLCC
γ

• For Element# 5, *GEI
γ = SLGEI

γ × SLGEI
γ where, ∀l1,l2 ∈ LLCC

γ and ∀c1,c2 ∈ CLCC
γ . * = {((l1,c1),

(l2,c2)) | l1* l2 ∧ c1 ⊇ c2}

• For Element# 6, ⊕GEI
γ = (l1,c1) ⊕ (l2,c2) = (max(l1,l2),c1∪c2) where l1,l2∈ LLCC

γ and c1,c2 ∈ CLCC
γ

• σ provides one-to-one mapping from Element# 13-30 of Table IV to Element# 15-32 of Table I.

2. σ mapping of ψLCC to ψGEI

The ψGEI is the set of operations that is given in Column 1 of Table II and III can be mapped from
each corresponding operations given in Column 1 of Table V and VI. For example, Op# 5 Join Insider
of Table II is mapped from Op# 5 Add Clearance of Table V.

3. σ mapping of QLCC to QGEI

Finally, the authorization queries in QLCC are mapped to the corresponding queries given in Column
2 of Table II and III. Note that, QLCC is the set of queries given in Column 2 of Table V and VI. For
example, if the qLCC is the query given in row 1,column 2 of Table V then it can be mapped with the
qGEI which is the query of row 1, column 2 of Table II.

V. PROOF OF STATE MATCHING REDUCTION FROM LCC TO GEI
Lemma 1. The mapping from LCC to GEI defined in section IV satisfies property 1 of Definition 1.

Proof: According to property 1 of definition 7 of definition 1 for every state γLCC ∈ ΓLCC and every
ψLCC ∈ ΨLCC , 〈γGEI , ψGEI〉 = σ(〈γLCC , ψLCC〉) has the following property :
For every state γLCC

1 in scheme LCC such that γLCC ∗−→ψ γLCC
1 , there exists a state γGEI

1 in scheme GEI
such that,



10

I) γGEI ∗−→ψGEI γGEI
1

II) for every query qLCC ∈ QLCC , γLCC
1 "LCC qLCC if and only if γGEI

1 "GEI σ(qLCC).

II can be decomposed into two directions:

II.a) The “if” direction:
γGEI
1 "GEI σ(qLCC) => γLCC

1 "LCC qLCC .
II.b) The “only if” direction:
γLCC
1 "LCC qLCC => γGEI

1 "GEI σ(qLCC).

Proof By Induction: Induction on n steps in γLCC n−→ψ γLCC
1 .

Base Case: Let n=0.

I):γLCC = γLCC
1 and γGEI = γGEI

1

Thus, σ(γLCC
1 ) =σ(γLCC) = γGEI = γGEI

1 .
So, γGEI ∗−→ψGEI γGEI

1 .
Therefore, we can say that I of assertion 1 holds for basis case.

II.a): If γLCC
1 = γLCC and γLCC "LCC qLCC

then γLCC
1 "LCC qLCC for every qLCC ∈ QLCC

Again, If σ(γLCC) /→ γGEI and σ(QLCC) /→ QGEI and γLCC "LCC qLCC then γGEI "GEI σ(qLCC) for
every qLCC ∈ QLCC

Finally, as γLCC
1 = γLCC and γGEI

1 = γGEI we can say, If γLCC "LCC qLCC then γGEI
1 "GEI σ(qLCC)

for every qLCC ∈ QLCC .

II.b): If σ(γLCC) /→ γGEI and σ(QLCC) /→ QGEI and γGEI "GEI σ(qLCC) then γLCC "LCC qLCC for
every qLCC ∈ QLCC .
Therefore, as γLCC

1 = γLCC and γGEI
1 = γGEI we can say, If γGEI

1 "GEI σ(qLCC) then γLCC
1 "LCC qLCC

for every qLCC ∈ QLCC .
Thus, II of property 1 holds for base case.

Inductive Hypothesis: Property 1 holds for n = k.

Inductive Steps: Let, n=k+1.

I):γLCC k−→ψ γLCC
k

1−→ψ γLCC
1

According to the inductive hypothesis there exists,
γGEI k−→ψGEI γGEI

k for γLCC k−→ψLCC γLCC
k

In order to prove I of property 1 we need to prove that there exists,
γGEI
k

1−→ψGEI γGEI
1 for γLCC

k
1−→ψ γLCC

1

We have shown in section IV, for every ψLCC ∈ ΨLCC and ψGEI ∈ ΨGEI and qLCC ∈ QLCC and
qGEI ∈ QGEI there exists σ(ψLCC) /→ ψGEI and σ(qLCC) /→ qGEI . So we can say that, for every
γLCC
k

1−→ψ γLCC
1 there exists

γGEI
k

1−→ψGEI γGEI
1

Therefore property I holds.



11

II.a):We need to prove that,
γGEI
1 "GEI σ(qLCC) => γGEI

1 "GEI qLCC

As, γLCC
k and γGEI

k are equivalent, and every ψLCC ∈ ΨLCC has a corresponding σ(ψLCC) = ψGEI ∈ ΨGEI

so we can say that II.a of property 1 holds.

II.b):We need to prove that,
γGEI
1 "GEI qLCC => γGEI

1 "GEI σ(qLCC)
As, γLCC

k and γGEI
k are equivalent, and every ψLCC ∈ ΨLCC has a corresponding σ(ψLCC) = ψGEI ∈ ΨGEI

so we can say that II.b of property 1 holds.

Lemma 2. The mapping from LCC to GEI defined in section IV satisfies property 2 of Definition 1.

Proof: According to property 2 of definition 7 of definition 1 for every state γLCC ∈ ΓLCC and every
ψLCC ∈ ΨLCC , 〈γGEI , ψGEI〉 = σ(〈γLCC , ψLCC〉) has the following property :
For every state γGEI

1 in scheme GEI such that γGEI ∗−→ψGEI γGEI
1 , there exists a state γLCC

1 in scheme
LCC such that,

I) γLCC ∗−→ψ γLCC
1

II) for every query qLCC ∈ QLCC , γLCC
1 "LCC qLCC if and only if γGEI

1 "GEI σ(qLCC).

II can be decomposed into two directions:

II.a) The “if” direction:
γGEI
1 "GEI σ(qLCC) => γLCC

1 "LCC qLCC .
II.b) The “only if” direction:
γLCC
1 "LCC qLCC => γGEI

1 "GEI σ(qLCC)

Proof By Induction: Induction on n steps in γGEI ∗−→ψGEI γGEI
1

Base Case: Let n=0.

I): γGEI = γGEI
1 and γLCC = γLCC

1

Thus, γGEI
1 = γGEI = σ(γLCC) =σ(γLCC

1 ) .
So, γLCC ∗−→ψ γLCC

1 .
Therefore, we can say that I of assertion 1 holds for basis case.

II.a): If γLCC
1 = γLCC and γLCC "LCC qLCC

then γLCC
1 "LCC qLCC for every qLCC ∈ QLCC

Again, If σ(γLCC) /→ γGEI and σ(QLCC) /→ QGEI and γLCC "LCC qLCC then γGEI "GEI σ(qLCC)
for every qLCC ∈ QLCC

Finally, as γLCC
1 = γLCC and γGEI

1 = γGEI we can say, If γLCC
1 "LCC qLCC then γGEI

1 "GEI σ(qLCC) for
every qLCC ∈ QLCC .

II.b): If σ(γLCC) /→ γGEI and σ(QLCC) /→ QGEI

and γGEI "GEI σ(qLCC) then γLCC "LCC qLCC for every qLCC ∈ QLCC .



12

Therefore, as γLCC
1 = γLCC and γGEI

1 = γGEI we can say, If γGEI
1 "GEI σ(qLCC) then γLCC

1 "LCC qLCC

for every qLCC ∈ QLCC .
Thus, II of property 1 holds for base case.

Inductive Hypothesis: Property 1 holds for n = k.

Inductive Steps: Let, n=k+1.

I):γGEI k−→ψGEI γGEI
k

1−→ψGEI γGEI
1

According to the inductive hypothesis there exists,
γLCC k−→ψLCC γLCC

k for γGEI k−→ψGEI γGEI
k

In order to prove I of property 1 we need to prove that there exists,
γLCC
k

1−→ψ γLCC
1 for γGEI

k
1−→ψGEI γGEI

1

We have shown in section IV, for every ψLCC ∈ ΨLCC and ψGEI ∈ ΨGEI and qLCC ∈ QLCC and
qGEI ∈ QGEI there exists σ(ψLCC) /→ ψGEI and σ(qLCC) /→ qGEI . So we can say that, for every
γGEI
k

1−→ψGEI γGEI
1 there exists

γLCC
k

1−→ψ γLCC
1

Therefore property I holds.

II.a):We need to prove that,
γGEI
1 "GEI σ(qLCC) => γGEI

1 "GEI qLCC

As, γLCC
k and γGEI

k are equivalent, and every ψLCC ∈ ΨLCC has a corresponding σ(ψLCC) = ψGEI ∈ ΨGEI

so we can say that II.a of property 1 holds.

II.b):We need to prove that,
γGEI
1 "GEI qLCC => γGEI

1 "GEI σ(qLCC)
As, γLCC

k and γGEI
k are equivalent, and every ψLCC ∈ ΨLCC has a corresponding σ(ψLCC) = ψGEI ∈ ΨGEI

so we can say that II.b of property 1 holds.

VI. MAPPING FROM GEI TO LCC
In LCC scheme SysLow and SysHigh are two security labels unpopulated with no objects, subjects,

object version or user for the following reasons:
1) Add Clearance and Join Outsider operations do not assign any user these two clearances
2) By CreateRO, CreateRWInOrg or CreateRWInCG operations user can only assign any of his clear-

ance to newly create subject those are not SysLow or SysHigh
3) Create operation only create object with subject’s security clearance
4) All object versions share same security classification. Merge, Import, Update operation do not change

them.
For this reason, during mapping from GEI to LCC we do not consider SysLow or SysHigh. However,

they are necessary to create a lattice in LCC .
Again, all object versions share same classification, there is no application of ⊕γ in the system.
Let, γGEI is the state of GEI scheme where state elements are given in Table I , ψGEI are state-change

rules that given in column 1 of table II and QGEI is the set of authorization queries as mentioned in column
2 of table II. σ is a mapping that produces output 〈γLCC , ψLCC〉 for each input 〈γGEI , ψGEI〉 and qLCC for
each qGEI ∈ QGEI . Here, γLCC is state of LCC scheme given in Table IV, ψLCC is the state-change rule
that given in column 1 of table V and VI and QLCC are queries given in Column 2 of Table V and table VI.



13

1. σ mapping of γGEI to γLCC

• σ provides one-to-one mapping from Element# 1,2,3,7,8,9,10,11,12 of Table I
to Element# 1,2,3,9,10,11,12,13,14 of Table IV.

• For Element# 6, SLLCC
γ =(SLGEI

γ ).(CG ∪Org)

• For Element# 7, *LCC
γ = SLLCC

γ × SLLCC
γ where, ∀l1,l2 ∈ SLGEI

γ and ∀c1,c2 ∈ CGEI
γ ∀cg1,cg2 ∈

CGGEI
γ . * = {((l1,c1,cg1), (l2,c2,cg2)) | l1* l2 ∧ c1 ⊇ c2 ∧ cg1 = cg2}

• For Element# 8, ⊕LCC
γ = (l1,c1,cg1) ⊕ (l2,c2,cg2) = (max(l1,l2),c1∪c2,cg1) if cg1 = cg2 where

l1,l2∈ LGEI
γ and c1,c2 ∈ CGEI

γ and cg1, cg2 ∈ CGGEI
γ

• σ provides one-to-one mapping from Element# Element# 15-32 of Table I to 13-30 of Table IV.

2. σ mapping of ψGEI to ψLCC

The ψGEI is the set of state transition rules that is given in Column 1 of Table V and VI can be
mapped from each corresponding operations given in Column of 1 of Table II and III. For example, Op#
5 Add Clearance of Table V is mapped from Op# 5 Join Insider of Table II .

3. σ mapping of QGEI to QLCC

Finally, the authorization queries in QGEI are mapped to the corresponding queries given in Column
2 of Table V and VI. Note that, QGEI is the set of queries given in Column 2 of Table II and III. For
example, if the qGEI is the query given in row 1, column 2 of Table II then it can be mapped with the
qLCC which is the query of row 1,column 2 of Table V.

VII. PROOF OF STATE MATCHING REDUCTION FROM GEI TO LCC
Lemma 3. The mapping from GEI to LCC defined in section VI satisfies property 1 of Definition 1.

Proof: According to property 1 of definition 7 of definition 1 for every state γGEI ∈ ΓGEI and every
ψGEI ∈ ΨGEI , 〈γLCC , ψLCC〉 = σ(〈γGEI , ψGEI〉) has the following property :
For every state γGEI

1 in scheme GEI such that γGEI ∗−→ψGEI γGEI
1 , there exists a state γLCC

1 in scheme
LCC such that,

I) γLCC ∗−→ψLCC(=σ(ψGEI) γ
LCC
1

II) for every query qGEI ∈ QGEI , γGEI
1 "GEI qGEI if and only if γLCC

1 "LCC σ(qGEI).

II can be decomposed into two directions:

II.a) The “if” direction:
γLCC
1 "LCC σ(qGEI) => γGEI

1 "GEI qGEI

II.b) The “only if” direction:
γGEI
1 "GEI qGEI => γLCC

1 "LCC σ(qGEI).



14

Proof By Induction: Induction on n steps in γGEI n−→ψ γGEI
1 .

Base Case: Let n=0.

I):γGEI = γGEI
1

Thus, σ(γGEI
1 ) = σ(γGEI) = γLCC = γLCC

1 .
So, γLCC ∗−→ψLCC γLCC

1 .
Therefore, we can say that I of assertion 1 holds for basis case.

II.a): If γGEI
1 = γGEI and γGEI "GEI qGEI

then γGEI
1 "GEI qGEI for every qGEI ∈ QGEI

Again, If σ(γGEI) /→ γGEI and σ(QGEI) /→ QGEI and γLCC "LCC qLCC then γGEI "GEI σ(qLCC)
for every qLCC ∈ QLCC

Finally, as γLCC
1 = γLCC and γGEI

1 = γGEI we can say, If γLCC
1 "LCC qLCC then γGEI

1 "GEI σ(qLCC) for
every qLCC ∈ QLCC .

II.b): If σ(γLCC) /→ γGEI and σ(QLCC) /→ QGEI

and γGEI "GEI σ(qLCC) then γLCC "LCC qLCC for every qLCC ∈ QLCC .

Therefore, as γLCC
1 = γLCC and γGEI

1 = γGEI we can say, If γGEI
1 "GEI qGEI then γLCC

1 "LCC σ(qGEI)
for every qGEI ∈ QGEI .
Thus, II of property 1 holds for base case.

Inductive Hypothesis: Property 1 holds for n = k.

Inductive Steps: Let, n=k+1.

I):γGEI k−→ψ γGEI
k

1−→ψ γGEI
1

According to the inductive hypothesis there exists,
If γGEI k−→ψGEI γGEI

k then γLCC k−→ψLCC γLCC
k

In order to prove I of property 1 we need to prove that there exists,
γLCC
k

1−→ψ γLCC
1 for γGEI

k
1−→ψGEI γGEI

1

We have shown in section VI, for every ψLCC ∈ ΨLCC and ψGEI ∈ ΨGEI and qLCC ∈ QLCC and
qGEI ∈ QGEI there exists σ(ψGEI) /→ ψLCC and σ(qGEI) /→ qLCC . So we can say that, for every
γGEI
k

1−→ψ γGEI
1 there exists

γLCC
k

1−→ψLCC γLCC
1

Therefore property I holds.

II.a):We need to prove that,
γLCC
1 "LCC σ(qGEI) => γGEI

1 "GEI qGEI

As, γLCC
k and γGEI

k are equivalent, and every ψGEI ∈ ΨGEI has a corresponding σ(ψGEI) = ψLCC ∈ ΨLCC

so we can say that II.a of property 1 holds.

II.b):We need to prove that,
γGEI
1 "GEI qGEI => γLCC

1 "LCC σ(qGEI)



15

As, γLCC
k and γGEI

k are equivalent, and every ψGEI ∈ ΨGEI has a corresponding σ(ψGEI) = ψLCC ∈ ΨLCC

so we can say that II.b of property 1 holds.

Lemma 4. The mapping from GEI to LCC defined in section VI satisfies property 2 of Definition 1.

Proof: According to property 2 of definition 7 of definition 1 for every state γGEI ∈ ΓGEI and every
ψGEI ∈ ΨGEI , 〈γLCC , ψLCC〉 = σ(〈γGEI , ψGEI〉) has the following property :
For every state γLCC

1 in scheme LCC such that γLCC ∗−→
LCC

ψ (= σ(ψGEI))γLCC
1 , there exists a state γGEI

1

in scheme GEI such that,

I) γGEI ∗−→ψGEI γGEI
1

II) for every query qGEI ∈ QGEI , γGEI
1 "GEI qGEI if and only if γLCC

1 "LCC σ(qGEI).

II can be decomposed into two directions:

II.a) The “if” direction:
γLCC
1 "LCC σ(qGEI) => γGEI

1 "GEI qGEI

II.b) The “only if” direction:
γGEI
1 "GEI qGEI => γLCC

1 "LCC σ(qGEI).

Proof By Induction: Induction on n steps in γLCC n−→ψLCC γLCC
1 .

Base Case: Let n=0.

I):γLCC = γLCC
1 and γLCC = σ(γGEI)

Thus, σ(γGEI
1 ) = σ(γGEI) = γLCC = γLCC

1 .
So, γGEI ∗−→ψGEI γGEI

1 .
Therefore, we can say that I of assertion 1 holds for basis case.

II.a): If γGEI
1 = γGEI and γGEI "GEI qGEI

then γGEI
1 "GEI qGEI for every qGEI ∈ QGEI

Again, If σ(γGEI) /→ γLCC and σ(QGEI) /→ QLCC and then γGEI "GEI qGEI γLCC "LCC σ(qGEI)
for every qGEI ∈ QGEI

Finally, as γLCC
1 = γLCC and γGEI

1 = γGEI we can say, If γLCC
1 "LCC σ(qGEI) then γGEI

1 "GEI qGEI for
every qGEI ∈ QGEI .

II.b): If σ(γGEI) /→ γLCC and σ(QGEI) /→ QLCC

and γGEI "GEI qGEI then γLCC "LCC σ(qGEI) for every qGEI ∈ QGEI .

Therefore, as γLCC
1 = γLCC and γGEI

1 = γGEI we can say, If γGEI
1 "GEI qGEI then γLCC

1 "LCC σ(qGEI)
for every qGEI ∈ QGEI .
Thus, II.b of property 2 holds for base case.

Inductive Hypothesis: Property 1 holds for n = k.



16

Inductive Steps: Let, n=k+1.

I):γGEI k−→ψ γGEI
k

1−→ψ γGEI
1

According to the inductive hypothesis there exists,
γLCC k−→ψLCC γLCC

k for γGEI k−→ψGEI γGEI
k

In order to prove I of property 1 we need to prove that there exists,
γLCC
k

1−→ψ γLCC
1 for γGEI

k
1−→ψGEI γGEI

1

We have shown in section VI, for every ψLCC ∈ ΨLCC and ψGEI ∈ ΨGEI and qLCC ∈ QLCC and
qGEI ∈ QGEI there exists σ(ψGEI) /→ ψLCC and σ(qLCC) /→ qGEI . So we can say that, for every
γGEI
k

1−→ψ γGEI
1 there exists

γLCC
k

1−→ψLCC γLCC
1

Therefore property I holds.

II.a):We need to prove that,
γLCC
1 "LCC σ(qGEI) => γGEI

1 "GEI qGEI

As, γLCC
k and γGEI

k are equivalent, and every ψGEI ∈ ΨGEI has a corresponding σ(ψGEI) = ψLCC ∈ ΨLCC

so we can say that II.a of property 2 holds.

II.b):We need to prove that,
γGEI
1 "GEI qGEI => γLCC

1 "LCC σ(qGEI)
As, γLCC

k and γGEI
k are equivalent, and every σ(ψGEI) = ψLCC ∈ ΨLCC has a corresponding ψGEI ∈ ΨGEI

so we can say that II.b of property 2 holds.

REFERENCES

[1] K. Bijon, R. Sandhu, and R. Krishnan. A group-centric model for collaboration with expedient insiders in multilevel systems. In
International Symposium on Security in Collaboration Technologies and Systems, 2012.

[2] R. Sandhu. Lattice-based access control models. Computer, 26(11):9 –19, nov. 1993.
[3] M. V. Tripunitara and N. Li. Comparing the expressive power of access control models. In Proceedings of the 11th ACM conference

on Computer and communications security, pages 62–71, New York, NY, USA, 2004. ACM.


