IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO.4, JULY/AUGUST 2016

411

A Provenance-Aware Access Control Framework

with Typed Provenance

Lianshan Sun, Jaehong Park, Dang Nguyen, and Ravi Sandhu, Fellow, IEEE

Abstract—Provenance is a directed graph that captures historical information about data items in Provenance-Aware Systems (PAS).
A variety of access control models and policy languages specific to PAS have been recently discussed in literature. However, it is still
not clear how to efficiently specify provenance-aware access control policies and how to effectively enforce these policies with respect
to complex provenance graph that can only be captured at run-time. To this end, we design and implement a provenance-aware access
control framework with a layered architecture that features an abstract layer, including a Typed Provenance Model (TPM) and a set of
TPM interpreters. TPM includes a set of abstract provenance types enabling efficient specification of provenance-aware policies. New
provenance types can be composed of extant ones for specifying new policies. TPM interpreters can be integrated to enable the policy
enforcement with respect to provenance graphs in different physical representations. By treating provenance types as special
attributes, the proposed framework enables an adoption of provenance-aware access control in existing attribute-based access control
frameworks, such as XACML-compliant ones. We implement the proposed framework by extending SUN’s XACML implementation and

show that it facilitates the specification of provenance-aware policies in XACML with minor extensions. We also analyze the

performance of the proposed framework.

Index Terms—Typed provenance model, provenance-aware systems, access control framework, OPM, PROV-DM, XACML

1 INTRODUCTION

A CCESS control systems are common components in mod-
ern multi-user software systems. An access control sys-
tem mediates a request to resources and determines whether
the request should be granted or denied according to given
policies [1], [2]. These policies are usually specified in policy
languages [3] under the guidance of access control models [2].

Provenance is information about entities, activities, and
people involved in producing a piece of data or thing. In the
last decade we have seen the emergence of PAS, which gen-
erate, store, process, and disseminate provenance of data
items in domains such as scientific workflow, intelligence,
and healthcare systems [4], [5], [6]. Provenance can be used
to verify trustworthiness of data items or to reproduce the
experiment results [7], [8].

Multi-user PAS needs access control facilities to protect
not only normal data items but their provenance [9]. Prove-
nance impacts access control in at least two ways. First,
provenance access control (PAC) is required to protect sen-
sitive provenance [10]. Second, provenance-based access
control (PBAC) can be used to adjudicate access requests to
sensitive resources [11], [12]. Note that we call both PAC
policies and PBAC policies as provenance-aware policies.

Provenance captured inside a PAS differs from tradi-
tional data items and meta-data in that it is an immutable

o L. Sun is with Shaanxi University of Science and Technology, Xi'an,
China. E-mail: sunlianshan@gmail.com.

o |. Park is with the University of Alabama in Huntsville, Huntsville, AL,
USA. E-mail: jae.park@uah.edu.

o D. Nguyen and R. Sandhu are with University of Texas at San Antonio,
San Antonio, TX, USA.
E-mail: {dnguyen, ravi.sandhu}@utsa.edu.

Manuscript received 15 Apr. 2014; revised 17 Feb. 2015; accepted 19 Feb.
2015. Date of publication 9 Mar. 2015; date of current version 13 July 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TDSC.2015.2410793

directed graph incrementally captured at run-time. Nodes
of a provenance graph denote entities, activities, and people
that are involved in producing a piece of data. Edges of a
provenance graph denote causality dependencies between
two nodes [7]. Provenance subgraphs with certain path pat-
terns may reveal some meaningful information that should
be protected or can be used for access control decisions [11],
[13]. Extant access control models, policy languages,
enforcement infrastructures, as well as policy authoring
methodologies and tools cannot be straightforwardly
adopted to accommodate provenance-aware access control
in PAS [9], [14], [15].

To this end, researchers have presented several access
control models [10], [11] as well as several policy lan-
guages [13], [16] for either PAC or PBAC. However, these
models, languages and corresponding enforcement infra-
structures do not provide a flexible and efficient way to
specify and enforce various application-specific prove-
nance-aware policies.

In order to specify provenance-aware policies in existing
policy languages, policy specifiers have to understand secu-
rity requirements at conceptual level as well as the complex
provenance graph at implementation level. It is difficult to
efficiently specify complex provenance queries to identify
provenance subgraphs with application-specific semantics.
These semantics are necessary for defining application-spe-
cific provenance-aware policies [13], [17].

Note that some researchers have identified the difficulty
of specifying policies using complex provenance graph. For
example, Cadenhead et al. adopted several fixed (applica-
tion-independent) provenance query templates, such as
why-query and where-query, to reduce the efforts of specify-
ing provenance-aware policies. However, their solution suf-
fers from the inflexibility or inefficiency of specifying
various application-specific provenance semantics [13].

1545-5971 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

412 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO.4, JULY/AUGUST 2016

Furthermore, extant enforcement infrastructures that
come along with access control models and policy lan-
guages specific to PAS [11], [13], [16] are either conceptual
architectures or just prototypes that are developed without
considering engineering issues, such as facilitating efficient
and flexible specification of access control policies, ensuring
compatibility with current practices, and shielding the het-
erogeneity of underlying provenance stores.

To address these issues, we design and implement a
provenance-aware access control framework with a layered
architecture, which supports both PBAC and PAC [11]. The
proposed architecture features an abstract layer, including a
TPM and a set of TPM interpreters.

TPM includes a set of abstract provenance types that can
be used to efficiently specify provenance-aware policies
during PAS development. Extant provenance types can be
used to flexibly compose new ones to capture new prove-
nance semantics that are necessary for enforcing security
requirements. TPM also shields the complexity and hetero-
geneity of the underlying provenance graphs. So the pro-
posed framework is extensible to work with provenance
repositories in different physical representations by intro-
ducing appropriate TPM interpreters.

The proposed framework can enforce the policies speci-
fied using provenance types by introducing appropriate
TPM interpreters. It treats provenance-type as a special attri-
bute whose values are provenance types that are further
processed by TPM interpreters. So it enables easy adoption
of provenance-aware access control in PAS that deployed
attribute-based access control frameworks, such as
XACML-compliant ones. As a proof of concept, we imple-
ment the proposed framework by extending SUN’s XACML
implementation. We show that it accommodates the specifi-
cation of provenance-aware policies in XACML with minor
extensions and we also analyze its performance.

The rest of this paper is organized as follows. Sections
2 and 3 introduce PAS and provenance-aware access con-
trol respectively as preliminaries. Section 4 elaborates our
goals and corresponding tactics. Section 5 presents the
typed provenance model as the basis of designing the tar-
get framework. Section 6 presents a layered architecture
of the target framework. Section 7 implements the frame-
work and evaluates its performance and computability
with current practices. Section 8 discusses related work
and Section 9 concludes this paper and envisions our
future work.

2 PROVENANCE-AWARE SYSTEMS

This section introduces basic concepts of PAS which influ-
ence the decision making during the construction of the
provenance-aware access control framework.

2.1 Basics of PAS

A PAS mainly includes three components for provenance
management: a capture mechanism, a representation model,
and an infrastructure for storage, access and queries [17].
The capture mechanism collects provenance which com-
plies with a given representation model. The underlying
infrastructure stores the collected provenance and executes
queries on provenance stores.

The capture mechanisms. Generally there are two prove-
nance collection strategies, the observed strategy and the
disclosed strategy [18]. The observed strategy requires oper-
ating systems to continuously collect provenance about run-
ning processes, their inputs and outputs [19]. The disclosed
strategy requires adapted applications to collect provenance
as designed by software architects [20], [21]. Users some-
times need to manually declare provenance when it cannot
be captured by the system or application [11], [18]. Most
PAS adopt the disclosed strategy because observed prove-
nance is application independent and difficult to be used to
answer application-specific questions [18].

The representation model. The collected provenance is
often documented according to a given provenance data
model, such as Open Provenance Model (OPM) [7],
PROV-DM [8], or some proprietary provenance model
[17]. OPM captures provenance as causality dependencies
among different entities and enables provenance interop-
erability across systems [7]. PROV-DM [8] is the newest
variant of OPM and is a member of the provenance speci-
fication family from W3C for provenance inter-operability
across web-based applications. Although neither OPM
nor PROV-DM has been universally accepted, their inter-
section does capture a common consensus as reviewed in
section 2.2.

The infrastructure. The collected provenance is stored in
a provenance repository in certain physical representa-
tions (storage models), ranging from specialized Semantic
Web Languages and XML dialects stored as files to tuples
stored in relational database tables [17]. A query engine is
usually specific to a storage model. Hence, users have to
write queries in languages specific to the storage model,
such as SQL [22], Prolog [21], or SPARQL [23]. However,
these general languages were not designed specifically
for provenance. It is awkward and complex for users to
write queries on provenance in these languages [17].
Even queries that are specified in a language designed
specifically for provenance, such as OPQL [24] are likely
to be too complicated for many users because provenance
contains structural information represented as a graph
[17]. For example, a policy language that is an XML dia-
lect requires specification of regular expressions in prove-
nance-aware policies to dynamically identify sensitive
provenance subgraphs [13].

Note that a provenance-aware access control framework
is a subsystem of a PAS and is supposed to use the prove-
nance graph that has been collected by existing collection
mechanisms in PAS according to a given provenance repre-
sentation model. However, the observed provenance tends
to include too many details that policy specifiers can neither
understand nor use in defining provenance-aware policies
according to security requirements. It may also be recorded
in inappropriate granularity for the purpose of defining pol-
icies. Policy specifiers need a flexible and efficient way to
refer to provenance to enable efficient specification of prov-
enance-aware access control policies.

2.2 Basic Provenance Model
This section introduces the basic provenance model that is

used as the basis of our target framework. It is mainly the
core structure of PROV-DM.

SUN ETAL.: APROVENANCE-AWARE ACCESS CONTROL FRAMEWORK WITH TYPED PROVENANCE 413

wasGeneratedBy (g)

wasDerivedFrom (d),

wasAttributedTo (t)

Used (u)

wasAttributed With (w)

|

ActedOnBehalfOf (b)
| IS |

(2)

Fig. 1. a) The core structure of PROV-DM. b) An example of provenance
graph.

The basic provenance model shown in Fig. 1a includes
three elements and seven relationships (or dependences)
among elements. Elements are entities (artifacts in OPM),
activities (processes in OPM), and agents. In PAS, entities
are snapshots of data objects at run-time, activities are pro-
cesses that may take as inputs some artifacts and may pro-
duce other artifacts as outputs, and agents are special
entities representing users or organizations that influence a
process. Dependences are causality relationships between
any two elements (except from an agent to an entity or an
activity because these have no practical semantics). Note
that the core structure can be extended to include subtypes
of core elements and dependencies to capture application-
specific casuality semantics [8].

Most dependency types in Fig. la are literally compre-
hensible. Note that wasAttributedTo indicates that Entity was
owned, processed, influenced by Agent while wasAttributed-
With indicates that Activity was controlled or influenced by
Agent. The name of each dependency in Fig. la has an
abbreviation in brackets, such as used with its abbreviation
‘u’. Each dependency can be denoted as R(n,m), where R
denotes its short name such as ‘u’ or ’g’, n the effect element,
and m the cause element.

Fig. 1b shows a provenance graph with nodes and edges
instantiated from elements and relationships in Fig. 1a. For
example, the edge u(p2, a2) denotes that an activity p2 used
an entity a2.

Besides causality semantics denoted by individual edges,
some application specific semantics could also be inferred
from some paths in a provenance graph. For example, a
path w(p2,a2) - g(a2,pl) - u(pl,al) indicates that the behav-
ior of the activity p2 might be influenced by the entity al.
Note that neither OPM nor PROV-DM guarantees that
every path in a provenance graph is semantically meaning-
ful [7], [25]. However, some paths do reveal provenance
semantics that could be used in specifying provenance-
aware access control policies. We will discuss how to
identify and specify the meaningful paths in Section 5.

3 PROVENANCE-AWARE ACCESS CONTROL

This section introduces basic notions of PAC, PBAC, and
their common requirements on grouping provenance for
efficiently specifying provenance-aware policies, and then
discusses why they should be and how they can be aligned
with the generic Attribute-Based Access Control (ABAC).!

1. Here we assume that ABAC has been adopted by PAS as a generic
model for provenance-unaware policies, such as traditional DAC poli-
cies, MAC policies, and RBAC policies [26].

3.1 PAC, PBAC, and their Common Foundation
There are at least two categories of provenance-aware access
control, PAC [10] and PBAC [11]. PAC aims at protecting
sensitive provenance from unauthorized access, while
PBAC aims at adjudicating access requests to sensitive
resources (including provenance) by using provenance as a
decision factor.

Currently, there are no full-fledged access control models
for PAC [10] even though their necessity has been well dis-
cussed in literature [9], [10], [14]. Instead, researchers have
presented policy languages and corresponding enforcement
architectures for PAC [13], [16]. These languages are usually
results of extending XACML to incorporate provenance
queries inside access control policies. The query results are
sensitive provenance subgraphs to be protected. Various
grouping mechanisms have been used to identify sensitive
provenance subgraphs for defining PAC policies, for exam-
ple statically pre-defined groups [27] and dynamically com-
puted groups defined by regular expressions of edges in
provenance graph [13].

Park et al. proposed a family of PBAC models [11]. A
PBAC policy has some provenance related predicates as its
decision part. Park et al. also adopted regular expressions to
dynamically group provenance used in specifying PBAC
policies. Furthermore, they introduced the concept of
Dependency Name or (named dependency) to refer to a regular
expression that identifies one or more paths of a provenance
graph. Park et al. defined a PBAC policy language in a con-
text-free grammar but did not discuss how to specify PBAC
policies in XACML-compatible languages.

In both PAC and PBAC, some provenance subgraphs
should be grouped as a single unit that carries applica-
tion-specific semantics in order to be protected as sensi-
tive resources or to be used to adjudicate access requests.
Dependency Name is a dynamic grouping mechanism
that can be used to enable simple specification of complex
queries on a provenance graph. Each dependency name
is a query template that can be applied to a starting node
to query its antecedents and even descendants in a prove-
nance graph. Here, the notion of dependency name is
common foundation for efficient specification of both
PAC and PBAC policies because dependency names
could be defined at first and then used later in multiple
places by different policy specifiers [28]. The dependency
type introduced in section 5 is an extension and formal-
ization of Dependency Name.

Note that PAS may include user-declared provenance
that could be modifiable and somewhat less trustworthy.
User-declared provenance would require PAC to con-
sider how to protect it from being illegally modified and
PBAC to determine how much to trust it for purpose of
adjudicating access requests. For simplicity, we assume
there is no user-declared provenance, so this paper
only considers query operations on immutable system-
captured provenance which is common to both PAC and
PBAC.

3.2 Alignment of Both PAC and PBAC in ABAC

In real settings, provenance-aware policies are likely to be
applied in conjunction with some forms of attribute-based
policies since provenance alone usually is not enough for

414 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO.4, JULY/AUGUST 2016

y

2. access request: 13. obligations: obllga?lons
requester service

3.request 12 response

4. request notification

. attribute queries. 9. resource

content

context

handler resource

10. attributes

11. response context
6. attribute
query

8. attribute
7c. resource

attributes

1. policy

" 7a. subject
RAR attributes

Fig. 2. The XACML Architecture [3].

7b. environment

y environment
attributes

access control decision. For example, consider a policy that
a user can grade a homework and see its owner if and only
if the user’s position is a professor and the user did not pre-
viously review the homework. Here, we can view position as
a general attribute that could have a string of ‘professor’ as
its value. The facts that both its owners and the user did not
previously review the homework are provenance items
involved in the policy. So it is desirable to specify and
enforce both provenance-aware policies and generic attri-
bute-based policies in a unified manner.

Generally, each attribute-based policy can be defined as a
set of predicates on attributes of either subjects, objects, or
environments [3], [29], [30]. Fig. 2 shows the XACML archi-
tecture for ABAC. The request from an access requester is
intercepted by Policy Enforcement Point (PEP) and for-
warded to Policy Decision Point (PDP). PDP then evaluates
the request according to given policies from Policy Admin-
istration Point (PAP) by querying values of attributes of
subjects, objects, and environments from Policy Information
Point (PIP). PDP then returns the evaluation result to PEP.
PEP grants or denies the request and triggers the obligation
services when necessary. Note that the context handler is
responsible for forwarding and translating requests and
responses in different representations among components.

From ABAC point of view, a PAC policy is a policy that
has provenance as the requested resources and a PBAC pol-
icy is a policy that comprises predicates on provenance
about either the requesting subject or the requested objects.
Ideally, if we have special attributes whose values are
meaningful units of provenance, then we would be able to
specify and enforce provenance-aware policies and other
policies in a unified manner.

However, most traditional attributes used in the attri-
bute-based policies are of simple data types, such as String
and Integer. Their values are usually easy to be stored and
retrieved to/from databases, and to be compared to literal
values. Things get much more complex if we try to intro-
duce provenance attributes. First, it is difficult to specify lit-
eral provenance values.” Second, it is difficult for policy
specifiers to flexibly define appropriate provenance attrib-
utes of a subject or an object to denote different provenance
semantics. Third, it is difficult for the enforcement frame-
work to efficiently validate predicates on provenance attrib-
utes and literal provenance values.

2. Besides individual nodes and edges, some of them could be prov-
enance subgraphs with meaningful semantics.

Based on the idea of Dependency Names [11], we introduce
the concept of provenance types in Section 5. If we view
each provenance type as a possible value of a special attri-
bute provenance-type of a subject or an object, and develop
mechanisms to extract a provenance subgraph from a prov-
enance graph by taking as input the provenance type which
is a query template and the subject or the object which is the
starting node that is fed into the query template, then it is
feasible to specify provenance-aware policies as generic
attribute-based policies. Consequently, traditional attribute-
based access control frameworks, such as XACML-compli-
ant ones, can be adapted to interpret provenance types for
enforcing the provenance-aware policies specified using
provenance types.

4 GOALS AND TACTICS

In this section, we first identify high-level goals of our prov-
enance-aware access control framework. To address these
goals, we further identify four specific tactics that we can
apply as our design disciplines for the framework.

G1: Efficiency of specifying provenance-aware policies. Policy
specifiers are not likely to have enough knowledge
and skills to use complex provenance graphs. So it is
imperative to introduce appropriate provenance
abstractions for efficiently specifying provenance-
aware policies, especially, during PAS development.

G2: Adaptability to changes of security requirements. New
security requirements keep emerging in software
development and even in software operation. So it is
imperative to enable policy specifiers to flexibly
define new provenance abstractions that will be
used to implement new security requirements as
provenance-aware policies.

G3: Extensibility to work with provenance repositories in dif-
ferent physical representations. The proposed frame-
work should be extensible to enforce provenance-
aware policies with respect to provenance in differ-
ent physical representations.

G4: Performance of enforcing provenance-aware policies at
run-time. Enforcement of provenance-aware policies
involves queries on a provenance graph, which
could be much more time-consuming than queries
on traditional attributes organized in linear struc-
ture. It is important to ensure that the proposed
framework will not introduce significant perfor-
mance overhead.

G5: Compatibility with generic attribute-based solutions.

G51: The policy language for provenance-aware
policies should be compatible with that for
generic attribute-based policies.

G52: The enforcement framework for provenance-

aware policies should be compatible with the
generic ABAC framework.
To address these goals, below we identified four tactics
that can be applied to the framework. Figure 3 shows the
identified tactics that can help achieving the goals.

T1: Introducing an abstract layer of provenance can free
policy specifiers from directly handling complex
provenance graphs, shield the heterogeneity of

SUN ETAL.: APROVENANCE-AWARE ACCESS CONTROL FRAMEWORK WITH TYPED PROVENANCE 415

ﬁ

Sepanne concerns on policies Inuoduoe p anoe

0
Reuse XACML and extend
nance absmwnnns stractions in fmmewurk the XACML architecture

Fig. 3. Goals and tactics contributing to goals.

different provenance storage models, enable the
specification of provenance-aware policies at devel-
opment time, improve the efficiency of policy specifi-
cation and enable the enforcement of policies defined
in provenance abstractions. However interpreting
provenance abstractions into provenance subgraphs
will inevitably introduce additional performance
overhead.

T2: Separating concerns on policies authoring and those
on provenance modeling can facilitate efficient pol-
icy specification. Policy specifiers can define policies
using available provenance abstractions that were
defined by software architects during PAS develop-
ment. Policy specifiers can also define and evolve
provenance abstractions for specifying new access
control policies together with software architects or
by themselves.

T3: Reusing XACML and extending the XACML archi-
tecture is helpful for achieving the goal of high com-
patibility. It allows us to specify and enforce both
provenance-aware policies and provenance-unaware
policies in a unified manner.

T4: Caching results of frequent queries on a specific
starting node could be useful in mitigating perfor-
mance overhead introduced by querying complex
provenance graph.

In this paper, we applied the first three tactics in our
framework. Tactic 4 is discussed briefly but not imple-
mented in the prototype. This means our framework par-
tially achieves the identified goals except G4.

5 TyYPED PROVENANCE MODEL

We have discussed possible benefits of introducing an
abstract layer of provenance between the consumers of
provenance (such as PDP and policy specifiers) and the
complex provenance graph. This section first introduces a
running example, then introduces the overall idea of the
TPM and its main elements and relationships among multi-
ple elements. Note that we interchangeably use the term
TPM either to denote the application-independent meta-
model for modeling provenance abstractions or to denote a
specific model instance of a PAS application in the rest of
this paper. Note that the way it is used is similar to the way,
in which the term class model is used in the object-oriented
methodology.

5.1 A Running Example
A homework grading subsystem (HGS) is a running exam-
ple in the rest of this paper. We assume that HGS has a

Provenance questions in problem space

TPM: Provenance in abstraction
Dependency types |
| Relationships and constraints among Dependency types

| Element types | _

Provenance graph in solution space

Fig. 4. Provenance abstraction.

simple role-based subsystem deployed and can authenticate
a user as either a Student or a Professor.

- A student can upload, replace, submit, and view
grade of her own homework.

- A homework can be submitted only once but can be
replaced many times before submission.

- A professor or a student on behalf of a professor can
review a submitted and ungraded homework if she
did not own or review it before, and if it has been
reviewed less than three times.

- A user can revise a review if she created the review
and the reviewed homework is not graded.

- A professor can grade a homework if it has been
reviewed at least two times.

- A student can see how many times her homework
has been reviewed.

- A professor who grades a homework can see who its
owners and reviewers are, and if any of its reviews
was involved in conflict of interests.

5.2 Typed Provenance Model Overview

Provenance is usually viewed as retrospective information®
about a system and can only be captured after the system
starts running [7]. So it is very difficult for developers to
define provenance-aware policies during PAS development.
As we have argued, an intuitive idea is to introduce an
abstract layer of provenance.

In Fig. 4, TPM is introduced to bridge the gap between
provenance questions in problem space and complex prove-
nance graph in solution space. TPM abstracts underlying
provenance graphs of a specific application as element
types, dependency types, as well as relationships and con-
straints among them. On one hand, it enables users to spec-
ify resolvable provenance questions by flexibly composing
new provenance types using existing ones. On the other
hand, it guides provenance collection at run-time.

5.2.1 Element Types and Dependency Types

Each provenance type in a TPM identifies a set of nodes,
edges, or subgraphs with commonalities in a provenance
graph. TPM captures two kinds of provenance types: ele-
ment types and dependency types.

Each element type in a TPM is an abstract data type that
can be instantiated into elements in a provenance graph,
including entities, activities, and agents [7]. For example in
the HGS, an entity could be instantiated from a class in

3. Some researchers argued that prospective provenance, typically
the workflow specification, should also be captured [17].

416 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO.4, JULY/AUGUST 2016

L Review > CHomwork > <~
T w ———— . Sl
'{’{n‘r-ﬁw
Urev-rw Wrev-prof Bud-prof Wetg-Prof
review | > Smd :
. W rev-Stud Urﬂg-&‘rm.f eshetiss
(J'Ru'-n'r
< Review >

Fig. 5. Primitive provenance types.

design model, such as Homework. An activity could be
instantiated from a business operation in requirements
model or a method of a class in design model, such as
upload or submit. An agent could be instantiated from an
acting user of the target system, who plays organizational
roles such as Student or Professor. A class (role) may inherit
or include other classes (roles) to form a hierarchy. Prove-
nance could be captured with respect to objects at different
levels in a hierarchy and can be efficiently stored if the hier-
archical information is suitably utilized [31].

Dependency type is the core concept of TPM. It has roots
in the notion of Dependency Name [11], [28]. It models a prov-
enance semantic that can be verified by one or more depen-
dency paths (subgraphs) connecting elements of specific
types in a provenance graph. A dependency type 1" defined
below is a composition of its name (V), an element type E
as effect, and an element type C as cause.

T := N(E,C). 1)

Here N is a unique name of 7' and literally indicates
semantics of 7. Note that 7" and NV are interchangeably used
to refer to a dependency type in the rest of this paper. A
dependency type can be instantiated into a provenance
dependency instance by instantiating both its effect node
type and cause node type. For example, a dependency type
Reviewed By(Homework, User) can be instantiated into
ReviewedBy(hwy,u1) to denote that homework hw; was
reviewed by user u;.

Note that we can view each dependency type as a prove-
nance question getting either the effect or the cause nodes
of a starting node. For example, ReviewedBy(hw,) returns
the set of users who reviewed the homework hw; and we
have ReviewedBy(hwi,u;) = € ReviewedBy(hw;). While
N (such as ReviewedBy) of a dependency type is similar to a
dependency name [11], [28], £ and C clarify element types
that will be involved in a possible provenance dependency.

TPM includes two kinds of dependency types, the primi-
tive ones that can be instantiated into individual edges of a
provenance graph, and the composite ones that can be
instantiated into provenance subgraphs rather than individ-
ual edges. Each composite type is defined as a composition
of primitive types to make it resolvable against an underly-
ing provenance graph.

5.2.2 Primitive Dependency Types

Each primitive dependency type abstracts the semantic of a
set of individual edges in a provenance graph. It is a sub-
type of one of the application-independent dependency
types in PROV-DM core structure. It is introduced mainly
to accommodate application-specific semantics with its lit-
eral name and types of the involved elements.

Fig. 5 presents six primitive dependency types specific
to HGS. The primitive types that share the same activity
type form an activity-centered directed graph. Here, we
use multiple copies of the entity type Review (Rw) to
make the figure easier to read. Fig. 5 shows that the
activity type review (rev) was attributed with Professor
(Prof) or Student (Stud) on behalf of Prof and used Home-
work (Hw) and existing Reviews of Hw as inputs to pro-
duce a new Review on Hw. Note that we consistently
capitalize the initial letter of entity type names and agent
type names, but leave activity type names as lowercase
for readability. In the list below, the inside of [] shown
at the end of each dependency type describes its mean-
ing in natural language. If an activity review (p;) takes
as inputs a homework (h;) and optionally a previous
Review (r;) of hy, we can instantiate 77 and 7, as
Ureo—pruw(P1,7m1) and Uyep— g (p1, h1) respectively.

T, =
T :=
T3 := GRru-rev(Review, review)[a Review was generated by reviewl;
Ty := Wiew-prof(review, Prof)[review was attributed with Prof].

Ty := Wyerswuda(review, Stud)[review was attributed with Stud)].

T := Bsd-prof(Stud, Prof)[Stud acted on behalf of Prof].

rev-Ruw(review, Review)[review used a Reviewl;

rev-Hw (Teview, Homework)[review used a Homework];

Note that we name a dependency type in a pattern which
comprises two parts. The first part is a capital letter such as
‘U, ‘G’, 'W’, and ‘B’, which denotes that the corresponding
primitive types are subtypes of ‘Used’, ‘wasGeneratedBy’,
‘wasAttributedWith’, or ‘ActedOnBehalfOf in PROV-DM
respectively. The second part comprises the abbreviated
type names of both effect and cause elements when the
activity uses or produces only one instance of a specific
type. Otherwise, the abbreviated type name of either effect
or cause element should be replaced by unique string that
denotes the role of the effect or cause element in the context
of an activity. For example, a divide (div) process used two
numbers, one as dividend and the other as divisor. So two
dependency types could be Ugiy—dividend and Ugiy—divisor-

Each activity type is generally a method signature in soft-
ware design model or a business operation in requirements
model that can be eventually refined into a set of methods.
Each activity type can be instantiated into one or more pro-
cesses at run-time. A PAS can easily capture primitive
dependency types that are directly related to an activity,
such as wasGeneratedBy, Used ,andwasAttributedWith. These
are essential dependency types. Other dependency types
such as wasAttribuedTo, wasDerivedFrom, waslnformedBy,
andActedOnBehalfOf are less essential in that they need to be
deliberately defined by software architects.

For example, suppose HGS has an activity delegate (dlg)
that was attributed with a professor and used a set of stu-
dents as its inputs to produce a delegation relation among
students and a professor. Here, the software architect has
two options to determine the specific primitive provenance
types to be documented. One option is to capture two essen-
tial primitive types Ugy—swa and Weay—prop, and then to
semantically construct Bgyq—pros from them. In this case,
Bsyui—proy becomes a composite dependency type. The other
option is to deliberately define Bg;q—pos as a primitive

SUN ETAL.: APROVENANCE-AWARE ACCESS CONTROL FRAMEWORK WITH TYPED PROVENANCE 417

dependency type while omitting Ugy—siua and Wy prof-
Fig. 5 visualizes the latter option by showing the prove-
nance type Bgui—proy in solid line and Ugy—gua as well as
Waig—pros in dashed line.

5.2.3 Composite Dependency Types

Each composite dependency type can be defined as a com-
position of primitive types. It is actually a path pattern that
can be instantiated into paths composed of multiple edges
instantiated from corresponding primitive dependency
types. This section introduces various operators used to
form a composite dependency type.

First, the simplest composite pattern is the concatenation
of two dependency types. We introduce a binary operator
“” to formally indicate the concatenation of two depen-
dency types. A composite dependency type T" := T} - T} indi-
cates that the effect and the cause node types of 1" are the
effect node type of 7T; and the cause node type of T} respec-
tively, and that the cause node type of 7; is the effect node
type of 7. T' means that some instances (t;,t;) of T; and 7}
can be concatenated to indicate that the effect node of ¢; is to
some extent caused by the cause node of ¢;. For example, T
below indicates that a homework (Hw) was uploaded by a
student (Stud). Note that G py—yp and Wyp_gp,q are primitive
type names and upload(up) is an operation of HGS.

T; := Uploaded By(Hw, Stud)
= GHw—up(Hw> Up) ' Wup—Stud(upy StUd)7

Second, provenance is usually captured in a directed
graph. Usually, queries are made to trace provenance graph
backward in time. However, users could ask about the effect
nodes caused by a given cause node. For example, a
reviewer may want to know all existing Reviews of a given
homework as references of his/her reviewing the home-
work. To this end, we introduce an unary operator called
“inversion” (“ ~1”) on dependency types. Letting Rw denote
a class of Reviews and Hw denote a class of Homework, we
define Ty and Ty as follows.

Ty := Reviewof(Rw, Hw) :=Ts - Ty
Ty := Reviewof ' (Hw, Rw) =T, ' =T, - T; .

Formally, we denote the inversion of a dependency
type T as T~! = N7Y(C, E). It means that a cause node of
type C caused one or more effect nodes of type E in the
sense of N. It allows us to traverse a provenance graph
from cause to effect.

Third, some provenance semantics could be constructed
from paths with unspecified lengths because some activities
in PAS might be repeatedly activated many times or option-
ally activated. For example, an uploaded homework can be
optionally replaced many times before final submission. To
concisely specify possible path patterns, we can define com-
posite dependency types in regular expressions having the
available dependency types as alphabet table. Specifically,
we introduce the operator “*”, “+”, and “?” to define a regu-
lar expression over available dependency types. Note that
T+ means zero or more 7' concatenated with each other by
the operator “-”; 7'+ means 7' - T+ and 77 means zero or one

T. For example, we define a dependency type 714 to model
dependencies between the submitted homework and its his-
torical versions, where replace(rep) and submit(sub) are two
activities in HGS.

Tl() = GHur—rep(Hwy Tep): Tll = Ureprw(repy Hw)
T2 = Grup-sup(Hw, sub), Tz := Usup— o (sub, Hw)
Ty := SubmisionO f(Hw, Hw) := Tis - Th3 - (Tio - T11) * .

Fourth, some provenance semantics can be validated by
multiple paths in a provenance graph either disjunctively or
conjunctively. For example, only the owner of a homework
can upload, replace, and submit it and a homework cannot
be reviewed by its owner due to conflict of interest. To this
end, we introduce both the conjunctive and disjunctive
operator “A” and “V” to enable the conjunctive or disjunc-
tive composition of multiple fine-grained dependency types
into a composite dependency type. We define 15 - T for
tracing owners of a homework in HGS as follows.

Ti5 := Wiep-stud(rep, Stud)

Ty¢ := Replaced By(Hw, Stud) := ((Tho - T11)*) - Tho - 115

T17 := Submitted By(Hw, Stud) := Tha - Wup—stua(sub, Stud)
Tis := OwnedBy(Hw, Stud) := T17 V (T14) * Tig V (T14) * T
Tyg := Reviewed By(Hw, User) := (Ty ' - T5) Vv (Ty - Ty)

Ty := ReviewedBySel f(Hw, Stud) := Tis A Tig.

Here T’ is defined as three disjunctive sub-types to denote
that the semantic of “OwnedBy” can be validated in three
ways. 117 says that the user who submitted a homework is
its owner. (T14) * -T1¢ says that the users who replaced a
homework are its owner. (T74) * - says that the user who
uploaded a homework is its owner. Note that Stud is a sub-
class of User. So Ty, denotes that a homework was reviewed
by its owner, i.e. involving conflict of interests.

The proposed TPM provides high expressiveness in a
sense that necessary application-specific provenance
semantics are captured as regular-expression based path
patterns. It also enables efficient provenance-aware policy
specification and enforcement by utilizing named abstrac-
tion of the path patterns. However, the discussed TPM spec-
ifications and expressions are by no means complete or
optimal. it is not our goal to show such a model. In fact,
each PAS application may utilize a different set of prove-
nance semantics. Some PAS may need much simplified
models while others may need to extend the proposed
model as necessary. For example, we can define a subtrac-
tion operation “\"” among two dependency types. Then we
can define a new ownership between students and their
homework as Ty := Ti5\((T14) = -1%) to indicate that only
students who submitted or replaced a homework are the
owners of the homework and that the student who
uploaded the homework is not. Note that the subtraction
operator can be utilized as part of TPM model or it can be
also captured as part of policy expression. Having it in the
TPM model can provide more expressive graph abstraction
and simpler policy specification while requires more com-
plex TPM interpreter. If captured in a policy instead, TPM

418 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO.4, JULY/AUGUST 2016

Acting Users Provenance-aware Access Control Framework
T i Permission
[Request | PEP Acti e =
@ constructor | S I:]‘ » Actions » Resources/Provenance
[Provenance-aware PDP Provenance-aware PAP
Legend A A i . A
Reused p— NN) v))
Component ((TPM Interpreter «——(Typed Provenance Model (TPM))
| Component
¥ ¥
Dita flow Query Engine Provenance Query Engine (SPARQL) PIP

n Relational DB~ PROV-DM Compliant Store (RDF)

Fig. 6. A layered architecture of provenance-aware access control
framework.

interpreter could be simpler but more complex policy speci-
fication is needed.

6 ARCHITECTURE OVERVIEW

As shown in Fig. 6, this section presents a layered architec-
ture of a provenance-aware access control framework as an
extension of the XACML architecture in Fig. 2. It includes
three layers. The top layer and bottom layer include mod-
ules reused or extended from either the existing XACML
architecture or provenance-aware systems. The middle
layer comprises TPM and a set of TPM interpreters and is
essential for efficient specification and enforcement of prov-
enance-aware policies.

A typical access control process enforced by the pro-
posed architecture shown in Fig. 6 is as follows. An acting
user initiates a request in a PAS for permissions (actions
against resources). Note that the requested resource might
be provenance and the acting user has been authenticated
as a subject at run-time by the PAS. The request will be
intercepted by PEP and then be forwarded to PDP. PDP
then evaluates the request against provenance-aware poli-
cies from PAP and may query necessary attributes (includ-
ing provenance) from PIP during evaluation. Note that a
provenance-aware policy is defined using dependency
types in TPM and all dependency types in a policy will be
parsed by a TPM interpreter into provenance queries spe-
cific to the underlying provenance store (the provenance-
aware PIP). Provenance query engine executes the queries
and returns the results to PDP. PDP returns the decision of
"permit’ or ‘deny’ to PEP and PEP will then allow or block
the request.

Note that the responsibility of PEP in a provenance-
aware system is same as that of PEP in general systems.
So we do not discuss the implementation of PEP in our
framework and assume that we can reuse existing ones.
In addition, PEPs in various forms that function at differ-
ent points in a PAS may send/receive request/response
messages in various formats. In XACML architecture, a
context handler is responsible for communicating and
translating these messages in different formats. We
assume that all requests and responses are specified in
XACML-compliant format and Fig. 6 omits the context
handler for simplicity. Except for PEP and context han-
dlers, we need to make Request Constructor, PDP, PAP,
andPIP in Fig. 2 be provenance-aware to build a prove-
nance-aware access control framework.

Request constructor. A PAS needs to provide proper func-
tionalities for users to access provenance of data items. So in

Fig. 6, the Request Constructor module needs to be extended
to properly construct access requests to provenance. Specifi-
cally, it should construct not only the general access request
(s,a,0) including a subject (s), an action (a), and an object
(0) but an access request including provenance questions.
As discussed before, each dependency type applied to a
specific starting node is a provenance question with respect
to that node. We assume that a PAS allows users to define a
new dependency type as a composition of existing ones
in a TPM at run-time to query arbitrary meaningful
provenance. So an access request to provenance can be for-
mulated as a tuple (s, a, (P, 0)), where P is a set of depen-
dency types that can be applied to the object o. Note that
(P, 0) that computes all cause or effect nodes of a starting
node o in the sense of a dependency type p € P serves as
the requested object in the request. For example, in the
HGS, a request (s,read, ({OwnedBy}, hy)) denotes that a
subject s wants to read the owner of a homework A, that
is, to get OwnedBy(hy).

Provenance-aware PDP and PAP. A provenance-aware
PDP needs to evaluate an access request against applica-
ble provenance-aware policies retrieved from PAP. The
provenance-aware PDP may not only query generic
attributes from traditional relational databases but also
query provenance from a PROV-DM compliant prove-
nance repository. A provenance-aware PAP is responsible
for specifying and storing provenance-aware policies in
PAS and responsible for retrieving applicable policies
according to the access request. Note that the prove-
nance-aware PDP and PAP can function correctly if and
only if the TPM and TPM interpreter in the lower layer
functions correctly.

TPM and TPM interpreter. Both provenance-aware PDP
and provenance-aware PAP have one TPM as their common
foundation. PAP enables the policy specifiers to specify
provenance-aware policies using dependency types in TPM
and enables the efficient retrieval of policies that are appli-
cable to a given request. PDP should be able to correctly
interpret dependency types in TPM by employing appropri-
ate TPM interpreters. Both TPM and a series of TPM inter-
preters comprise an abstract layer in the proposed layered
architecture to facilitate both PDP and PAP.

In Fig. 6, TPM captures a set of application-specific
provenance types that can be used to construct access
control policies and user provenance questions. A TPM
interpreter converts dependency types defined in TPM
into provenance queries. These queries can then be exe-
cuted by a provenance query engine to get required prov-
enance information from the underlying provenance
store. TPM interpreters are application-independent and
specific to provenance query engines. Note that a prove-
nance query engine (such as SPARQL [32]) is usually spe-
cific to a provenance repository in a particular physical
representation (such as RDF). Multiple TPM interpreters
and provenance query engines should be deployed when
multiple provenance stores in different physical represen-
tations are used in a PAS.

Provenance-aware PIP. Policies in PAP may refer to vari-
ous attributes of subjects, objects, actions, and the environ-
ment. A PIP provides an interface for querying necessary
attributes for evaluating access control policies. Note that a

SUN ETAL.: APROVENANCE-AWARE ACCESS CONTROL FRAMEWORK WITH TYPED PROVENANCE 419

provenance-aware PIP should be able to query provenance
from some repositories. Because the infrastructure for stor-
ing and querying provenance is an essential building block
of a provenance-aware system [17], we argue that the prove-
nance-aware PIP could be reused from the overall database
management infrastructure of PAS as shown in the bottom
layer in Fig. 6. It includes not only relational database man-
agement systems and corresponding query engines for
attributes used in defining generic attribute-based policies,
but also the provenance repositories and corresponding
provence query engine for provenance used in defining
provenance-aware policies. Note that the key to reuse a spe-
cific provenance query engine and corresponding prove-
nance store in our framework is to develop and deploy an
appropriate TPM interpreter.

7 IMPLEMENTATION AND EVALUATION

In this section, we implement a prototype of our framework
and then design experiments to evaluate the compatibility
and performance of the prototype.

7.1 Implementation

We extended the PDP class in SUN’s XACML framework to
get a provenance-aware PDP. The extended PDP takes as
inputs a provenance-aware access request and a set of avail-
able provenance-aware policies. Both of them should be
written in XACML format and stored in XML files. For sim-
plicity, we assume that both of them are directly specified
in XACML format in the following experiments. So our pro-
totype did not implement request constructor and context
handler and simply implemented PAP as a set of policy files
specified in XACML.

The TPM in our framework is pre-defined in a two col-
umn table including pairs of provenance type names and
matching path patterns (composition rule). A TPM inter-
preter retrieves the matching path pattern of a given depen-
dency type name from TPM table and translates the path
pattern into queries specific to a particular query engine,
such as SPARQL.

We implemented a SPARQL-specific TPM [32] inter-
preter as an extension to the FunctionBase class in SUN’s
XACML framework. The TPM interpreter is first registered
into the provenance-aware PDP and then invoked by the
PDP at the time of each access request evaluation. For exam-
ple, in the XACML Policy 2 given in the next subsection, the
PDP invokes our SPARQL-specific TPM interpreter class
named " provenance-query-SPARQL”.

We employed the Apache Jena framework [33] to pro-
vide both the RDF-enabled [34] data store for provenance
graph and the ARQ query engine for enabling SPARQL
queries [32]. In this work, we are using Jena-2.7.4 and the
corresponding ARQ package.

7.2 Experiments and Evaluation

We deploy the implemented prototype onto a virtual
machine instance which resides in our local Joyent Smart-
Data center. The instance is an Ubuntu 12.10 image with
4GB Memory and a 2.5 GHz quad-core CPU. We design
experiments on top of HGS application outlined in previous
section to evaluate our framework in terms of its

compatibility with XACML and performance overhead
under extreme situations. To enable the experiments, we
have to implement HGS-specific components, including
TPM of HGS, provenance graph of HGS, access requests,
and policies of HGS, which are necessary for our experi-
ments besides the deployed application-independent frame-
work. Note that TPM of HGS mainly includes entity types
and dependency types introduced in section 5. Provenance
graph of HGS is generated as a set of RDF tuples and stored
in memory as a Jena model. Both access requests and poli-
cies are specified in XACML.

7.2.1 Compatibility Evaluation

This experiment feeds a provenance-aware access request
and a provenance-aware policy that are specified in
XACML into our framework to show its compatibility with
XACML.

The following is an example of a provenance-aware
request. A subject with the identity au3 is requesting who is
the owner of a homework hl (the provenance). The
requested provenance is identified by two attributes, prove-
nance-type with value OwnedBy and provenance-startingnode
with value hl. OwnedBy is a dependency type that queries
all owners of a homework and is defined in TPM as a com-
position of primitive dependency types (see T1s in Section
5). Note that both Policy 1 and Policy 2 are specified in
XACML with an minor extension. We introduce the a func-
tion ID ”provenance-query-SPARQL”, and two special attrib-
utes ”provenance-type” and “provenance-startingnode” into
standard XACML.

Example 1. A provenance-aware request in XACML.

<Request>
<Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0
:subject-category:access—-subject">
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0
:subject:subject-id" DataType="http://www.w3.0rg
/2001/XMLSchema#string">
<AttributeValue>au3</AttributeValue></Attribute>
</Subject>
<Resource>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0
:resource:provenance-type" DataType="http://www.
w3.0rg/2001/XMLSchema#string">
<AttributeValue>OwnedBy</AttributeValue></Attribute>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0
:resource:provenance-startingnode" DataType="
http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>hl</AttributeValue></Attribute>
</Resource>
<Action>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0
raction:action-id" DataType="http://www.w3.0rg
/2001 /XMLSchema#string">
<AttributeValue>readprov</AttributeValue></Attribute>
</Action>
</Request>

The following is an example of a provenance-aware pol-
icy that corresponds to the request above. The target section
of this policy shows that it is designed for guarding the
action readprov on a provenance-type OwnedBy that could
be applied to any instances of Homework class. The access
rule HwOwnerRule is that a user will be allowed to see the
owners of a homework only if the user is one of those who
have been grading the homework. Note that the following
policy explicitly refers to a specific TPM interpreter named

420 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO.4, JULY/AUGUST 2016

provenance-query-SPARQL, which takes as inputs a starting
node (designated as hl specified in the request) and a
dependency type (GradedBy).

Example 2. A provenance-aware policy in XACML.

<Policy PolicyId="PACPolicy" RuleCombiningAlgId="
urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:ordered-permit-overrides">

<Description>...</Description>
<Target>
<Subjects> <AnySubject /> </Subjects>

<Resources> <Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0
:function:string-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/
XMLSchema#string">OwnedBy</Attributevalue>
<ResourceAttributeDesignator AttributeId="
urn:oasis:names:tc:xacml:1.0:resource:
provenance-type" DataType="http://www.w3.o0rg
/2001/XMLSchema#string" />
</ResourceMatch>
</Resource> </Resources>
<Actions> <Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0
:function:string-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/
XMLSchema#string">readprov</AttributevValue>
<ActionAttributeDesignator AttributeId="
urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchemat#
string" />
</ActionMatch>
</Action> </Actions>
</Target>

<Rule RulelId="HwOwnerRule" Effect="Permit">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0
:function:string-is-in">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0
:function:string-one-and-only">

<SubjectAttributeDesignator AttributeId="
urn:oasis:names:tc:xacml:1.0:subject:subject-id"

DataType="http://www.w3.0rg/2001/XMLSchema#string" />

</RApply>

<Apply FunctionId="provenance—-query-SPARQL">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0
:function:string-one-and-only">

<ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:
provenance-startingnode"

DataType="http://www.w3.0rg/2001/XMLSchema#string" />

</Rpply>

<AttributeValue DataType="http://www.w3.0rg/2001/
XMLSchema#string">GradedBy</AttributevValue>

</Bpply>

</Rpply>

</Rule>

<Rule RuleId="FinalRule" Effect="Deny" />

</Policy>

The experiment shows not only how to specify access
request to provenance but also how to refer to a specific
TPM interpreter in a provenance-aware policy. It also
shows that both provenance-aware policies and generic
attribute-based policies can be specified and enforced in a
unified manner.

7.2.2 Performance Evaluation

A provenance-aware PDP could receive multiple concur-
rent requests in real settings. So its performance is critical.
We perform experiments to evaluate the time it takes for
the PDP instance to completely handle 500 simultaneous
access requests. These requests are actually replica of one
request, which is almost simultaneously issued 500 times
by an agent simulating the user of HGS application. Note
that the PDP instance will create an independent thread

Multi Requests Evaluation (Wide vs. Deep)

100 —

wide ——
90 deep - T
80 A
70
60
50
40 +
30

Runtime (sec)

6000 8000 10000

Number of trace edges

4000

0
2000

12000

Fig. 7. Throughput evaluation per 500 requests.

to serve each request it received. So there would exist
multiple threads running simultaneously to serve multi-
ple requests.

Querying complex provenance graph could be a time-
consuming task. Different PAS may have provenance
graphs with different quantity of edges, width, and depth,
which would have influence on the provenance overhead of
our framework. On one hand, some provenance informa-
tion necessary for decision making could be spread out
widely in a provenance graph. The outdegree of some nodes
in a wide provenance graph could be very high. For exam-
ple, one homework object can be reviewed by a multitude
of reviewers. In a provenance graph, each review process is
captured as a branch coming out of the homework object.
To obtain all reviewers of the object, a query needs to trace
through all these branches. It is interesting to evaluate the
performance of our framework against a provenance graph
with high width.

On the other hand, some provenance information
could be spread in depth in a provenance graph. Some
paths connecting a cause and an effect in a deep prove-
nance graph could be very long. For example, an
uploaded homework object can be replaced multiple
times (any times) by its owner. To obtain the original ver-
sion of a homework, a query needs to trace back through
a large number of edges. Similarly, it is interesting to
evaluate the performance of our framework against a
provenance graph with high depth.

We design different experiments to evaluate the per-
formance overhead of our framework prototype when the
size and shape of the provenance graph is in different
configurations. Note that we assume that the provenance
graph remains unchanged to accurately evaluate the per-
formance overhead of our framework though granting an
access request might result in additional information
being captured and the underlying provenance graph
being changed. Specifically, we proceed to perform the
experiments in quantities of 2000, 4000, 6000, 8000, 10000,
and 12000 edges traced in evaluating access requests.
That means we simulated both wide provenance graphs
and deep provenance graph having various edges. In a
wide provenance graph, a query may trace from 2000 up
to 12000 edges in width. In a deep provenance graph, a
query may trace from 2000 up to 12000 edges in depth.

The results in Fig. 7 show that in the width-tracing sce-
nario, the performance overhead increases linearly along
with the increase in the number of traced edges. In the

SUN ETAL.: APROVENANCE-AWARE ACCESS CONTROL FRAMEWORK WITH TYPED PROVENANCE 421

depth-tracing scenario, the performance overhead
increases still linearly, but at a higher slope. Here, for the
most heavy tracing query, we obtain the result of 500
requests per 80 seconds (0.16 second per deep request) in
depth-tracing scenario and 500 requests per 20 seconds
(0.04 second per wide request) in width-tracing scenario.
At the same time, for the lightest tracing query, the result
is 500 requests per 7 seconds (0.014 second per deep
request) and 500 requests per 7 seconds (0.014 second per
wide request). That means that at the lightest tracing sce-
narios, the performance overhead of both wide-tracing
and deep-tracing is very low and hardly differentiable. In
fact, according to canonical data structure textbooks, the
asymptotic time complexity of traversing a graph is O(n
+¢), where n is the number of nodes and e the number of
edges in the traversed graph. Our experiments consolidate
the theoretical analysis. We believe the heavier runtime
increase of the depth-tracing query is due to the SPARQL
implementation of query execution that utilizes more
recursive calls for each successive process step in depth-
tracing scenario than that in width-tracing scenario.

The result of the above analysis only demonstrates the
feasibility of our framework when the provenance graph
can be fully loaded into memory and its depth and width
traces would not exceed specific quantities. When a prove-
nance store grows extremely large in a real application and
it cannot be loaded into memory as one Jena model, some
queries would involve provenance retrieval from disks,
which apparently costs more time. Also note that the perfor-
mance depends heavily on the underlying provenance
query engine. However this is outside of the scope of this
paper. With these restrictions in mind, while we think the
proposed framework can provide improved performance
for example by caching the abstracted graph, we did not
provide any further discussion on achieving this. An exten-
sive investigation is required to properly address the perfor-
mance issues.

8 RELATED WORK AND DISCUSSION

This section first discusses related work related to prove-
nance management systems, provenance model, and secure
provenance, and then discusses practical issues of applying
our framework in real settings.

8.1 Related Work

Existing literature on provenance was mainly concerned
with the conceptual or functional issues of PAS, such as
what is provenance in databases [4], [5], [35], why prove-
nance is important for the future [36], how to capture prove-
nance and by who [18], [37], how to efficiently store and
query provenance [22], [24], [31], [38], how to communicate
provenance across multiple PAS [7], [8], what a prove-
nance-aware system is and how to build it in an engineering
manner [20]. Accordingly, a series of provenance manage-
ments systems have been built to answer these questions
from different perspectives and to different extent. Freire
et al. surveyed the important concepts related to prove-
nance management so that potential users can make
informed decisions when selecting or designing a prove-
nance solution [17].

One of the most fundamental problems of building a PAS
is to clarify its provenance model [6], [7], [8], [16]. A prove-
nance model, such as PROV-DM and OPM, is usually an
application or domain independent representation frame-
work which tells the generic types of elements and causality
dependencies among those elements that can be captured
as provenance of data items. In PROV-DM or OPM, these
types are generic enough so that the resulted provenance
graph is inter-operable across multiple PAS.

This paper introduced TPM on top of community com-
mon consensus on provenance, such as that captured by
the core structure of PROV-DM or OPM, to enable the
developers to capture application-specific provenance
semantics. Note that although PROV-DM and OPM also
provides a subtyping mechanism to capture application-
specific provenance semantics, TPM provides more flexi-
ble composition mechanisms for developers to do that.
Developers can define a dependency type in a TPM as
not only a subtype of PROV-DM core types but also a
composition of available dependency types in a TPM.
Each dependency type in a TPM can be instantiated into
one or more paths in a provenance graph that denote cau-
sality dependencies among elements of specific types,
such as Homework and Stud in HGS.

Furthermore, unlike PROV-DM that is mainly used to
shape the query and storage infrastructure of PAS, a TPM
that captures application-specific provenance semantics is
intended to drive specific PAS development, such as to
enable the efficient specification of provenance-aware poli-
cies during PAS development. A TPM of specific applica-
tion is actually its prospective provenance that will be
instantiated and captured as retrospective provenance at
run-time.

Secure provenance is critical to verify trustworthiness of
data items in a PAS [9], [14]. Traditional security models
and policy languages are not appropriate for PAS [10], [14].
Correspondingly, the underlying enforcement framework
and policy authoring tools which worked well for tradi-
tional access control policies would not work well in PAS
[3], [39]. To this end, researchers have presented several
access control models [10], [11] as well as policy languages
[13], [16] for either PAC or PBAC. However, these solutions
are not practical for efficiently specifying provenance-aware
policies during PAS development and then efficiently
enforcing these policies at run-time due to their lack of con-
sidering the complexity of provenance graph and several
engineering issues.

In contrast, we introduce a novel provenance model-
TPM to facilitate the efficient specification of provenance-
aware policies during PAS development, and build a
provenance-aware access control framework with TPM
and a set of TPM interpreters as key components to
enforce these policies. TPM enables flexible composition
of novel composite types to capture high-level prove-
nance semantics that are involved in emerging security
requirements. So our framework enables efficient and
flexible specification of provenance-aware policies even
for newly identified security requirements. Furthermore,
our framework is extensible to work with provenance
repositories in different storage models by introducing
appropriate TPM interpreters. In addition, we facilitate

422 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO.4, JULY/AUGUST 2016

the compatibility of our framework with attribute-based
access control ones, such as XACML-compliant ones, by
treating provenance-type as a special attribute having prov-
enance types as its possible values that will be further
processed by TPM interpreters. As a proof of concept, we
show that provenance-aware policies can be specified in
XACML with minor extensions. Note that Sun et al. have
introduced the initial idea of TPM with an emphasis on
the engineering process of defining provenance-aware
policies using TPM [15].

8.2 Discussion
In order to apply our framework in real settings, several
issues need to be carefully considered.

Our framework prototype assumes that PEPs and con-
text handlers in a XACML architecture are available. So
developers need to either integrate existing PEPs and con-
text handlers into our framework prototype or build their
own ones when these components are not available. Our
framework prototype currently only implements a TPM
interpreter for RDF-based provenance store. In real set-
tings, new TPM interpreters are likely to be built for other
PROV-DM compliant provenance stores. Note that our
framework prototype assumes that underlying prove-
nance stores are PROV-DM (or OPM)-compliant. It cannot
be directly integrated into a PAS that creates a prove-
nance store following a proprietary provenance model
rather than PROV-DM or OPM. Even so, developers
could be able to implement the layered architecture
shown in Fig. 6 in their own settings to get a proprietary
framework.

Currently, the proposed framework only considers prov-
enance captured by application systems, but not those
observed at operating system level mainly because they
hardly reveal any application-specific semantics that are
necessary for provenance-aware access control [18]. Our
framework provides an application-independent meta-
model for TPM and a set of application-independent TPM
interpreters. When deployed for a PAS, TPM is designed
typically by system/security architects. Specifically, system
and security architects could define TPM at first on the basis
of system models to drive the PAS development and then
security administrator can use them to define provenance-
aware policies. Sometimes, a security architect may need to
define new dependency types for specifying provenance-
aware policies.

A construction of TPM involves many engineering
issues, such as who should create TPM, when and how to
create and evolve TPM, and how to use TPM to drive
PAS development. We have discussed some of these
issues in our previous work [15]. A more extensive inves-
tigation on these issues is still a must. Note that entities
in a TPM can be derived from special elements in system
models of PAS, such as UML models, and some primitive
dependency types could be automatically derived from
the UML models. So the size of TPM of an application
should be roughly propositional to the size of UML mod-
els of the application. In that sense, we believe that the
manual labor of constructing TPM would be not
unacceptable.

9 CONCLUSION

This paper argues that security architects should be able to
efficiently specify provenance-aware policies during PAS
development, and to have these policies enforced according
to provenance graph captured at run-time. This paper
achieves these goals by introducing an abstract provenance
model, called TPM and by designing and implementing a
provenance-aware access control framework with a layered
architecture. The proposed framework accommodates prov-
enance-aware policies in the same way of accommodating
generic attributed-based policies by treating provenance-type
as a special attribute. Furthermore, it is flexible enough in
accommodating provenance-aware policies involving prov-
enance in different level of abstraction. It is extensible to
work with provenance stores in different physical represen-
tations. We implement a prototype for the proposed frame-
work. We then analyze its performance and evaluate its
compatibility with XACML. Our future work includes
deploying and evaluating the implemented prototype in
real settings, exploring and optimizing the performance
overhead introduced by provenance query engines, design-
ing more practical engineering methodology to guide the
usage of our framework in practice.

ACKNOWLEDGMENTS

This work was partially supported by NSF (No. CNS-
1111925), NSF of China (No. 61202019), and Shaanxi Provin-
cial Education Department (No. 14]JK1098). J. Park is the cor-
responding author of the article.

REFERENCES

[1] P.Samarati and S. D. C. D. Vimercati, Access control: Policies, mod-
els, and mechanisms, ser. FOSAD ‘00, London, United Kingdom:
Springer-Verlag, 2001, pp. 137-196.

[2] R. Sandhu and P. Samarati, “Access control: Principle and
practice,” IEEE Commun. Mag., vol. 32, no. 9, pp. 40-48, Sep. 1994.

[3] T.Moses. (2005). eXtensible Access Control Markup Language TC
v2.0 (XACML). OASIS.

[4] P.Buneman, S. Khanna, and W. C. Tan, Data provenance: Some basic
issues, ser. FST TCS 2000, London, United Kingdom: Springer-Ver-
lag, 2000.

[5] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in databases:
Why, how, and where,” Foundation and Trends in databases, vol. 1,
no. 4, Apr. 2009.

[6] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, and
L. Moreau, “An architecture for provenance systems,” Univ.
Southampton, Southampton, United Kingdom, Tech. Rep. 262023,
Feb. 2006.

[71 L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N.
Kwasnikowska, S. Miles, P. Missier,]J. Myers, B. Plale, Y. Simm-
han, E. Stephan, and J. Van den Bussche, “The open provenance
model—core specification (v1.1),” Future Generation Comput. Syst.,
vol. 27, pp. 743-756, Dec. 2009.

[8] K. Belhajjame, R. B'Far,]. Cheney, S. Cresswell, Y. Gil, P. Groth, G.
Klyne, J. McCusker, S. Miles,]J. Myers, S. Sahoo, and C. Tilmes,
“Prov-dm: The prov data model,” Tech. Rep. WD-prov-dm-
20120724, 2012.

[9] R. Hasan, R. Sion, and M. Winslett, Introducing secure provenance:
problems and challenges, ser. StorageSS 07, New York, NY, USA:
ACM, 2007, pp. 13-18.

[10] U. Braun and A. Shinnar, “A security model for provenance,”
Harvard Univ., Cambridge, MA, USA, Tech. Rep. TR-04-06, Jan.
2006.

[11] J. Park, D. Nguyen, and R. Sandhu, “A provenance-based access
control model,” in Proc. IEEE 10th Annu. Conf. Privacy, Secur. Trust,
Jul. 2012.

SUN ETAL.: APROVENANCE-AWARE ACCESS CONTROL FRAMEWORK WITH TYPED PROVENANCE 423

[12] C.Ringelstein and S. Staab, “Papel: Provenance-aware policy defi-
nition and execution,” IEEE Internet Comput., vol. 15, no. 1, pp. 49—
58, Jan. 2011.

[13] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraising-
ham, A language for provenance access control, ser. CODASPY '11,
New York, NY, USA: ACM, 2011, pp. 133-144.

[14] U. Braun, A. Shinnar, and M. Seltzer, “Secure provenance,” in The
3rd USENIX Workshop Hot Topics Secur., Berkeley, CA, USA: USE-
NIX Association, Jul. 2008, pp. 1-5.

[15] L. Sun,]. Park, and R. Sandhu, Engineering access control policies for
provenance-aware systems, ser. CODASPY "13, New York, NY, USA:
ACM, 2013, pp. 285-292.

[16] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han, An access control
language for a general provenance model, ser. SDM ‘09, Berlin, Ger-
many: Springer-Verlag, 2009, pp. 68-88.

[17] J. Freire, D. Koop, E. Santos, and C. T. Silva, “Provenance for
computational tasks: A survey,” Comput. Sci. Engg., vol. 10, no. 3,
pp- 11-21, May 2008.

[18] U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-
Reddy, and M. I. Seltzer, “Issues in automatic provenance
collection,” in IPAW'06, Berlin, Germany: Springer-Verlag,
2006, pp. 171-183.

[19] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Selt-
zer, Provenance-aware storage systems, ser. ATEC'06, Berkeley, CA,
USA: USENIX Association, 2006, pp. 4—4.

[20] S. Miles, P. Groth, S. Munroe, and L. Moreau, “Prime: A meth-
odology for developing provenance-aware applications,” ACM
Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 8:1-8:42, Aug.
2011.

[21] A.Marinho, L. Murta, C. Werner, V. Braganholo, S. M. S. da Cruz,
E. S. Ogasawara, and M. Mattoso, “Provmanager: a provenance
management system for scientific workflows,” Concurrency Com-
put.: Prac. Exp., vol. 24, no. 13, pp. 1513-1530, 2012.

[22] R.S. Barga and L. A. Digiampietri, “Automatic capture and effi-
cient storage of e-science experiment provenance,” Concurr. Com-
put. : Pract. Exper., vol. 20, no. 5, pp. 419-429, Apr. 2008.

[23] K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes,
S. Zednik, and]. Zhao, “Prov-o: The prov ontology,” Tech. Rep.
WD-prov-0-20120724, 2012.

[24] C.Lim, S. Lu, A. Chebotko, and F. Fotouhi, Opgl: A first opm-level
query language for scientific workflow provenance, ser. SCC "11, Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 136-143.

[25] S. Dey, S. Kohler, S. Bowers, and B. Ludéscher, “Datalog as a lin-
gua franca for provenance querying and reasoning,” in Proc.
TaPP, 2012.

[26] X.Jin, R. Krishnan, and R. S. Sandhu, “A unified attribute-based
access control model covering DAC, MAC and RBAC,” in Proc.
DBSec, 2012, pp. 41-55.

[27] A. Syalim, Y. Hori, and K. Sakurai, “Grouping provenance infor-
mation to improve efficiency of access control,” in Advanced Infor-
mation Security and Assurance. Springer, 2009, pp. 51-59.

[28] D.Nguyen, J. Park, and R. Sandhu, “Dependency path patterns as
the foundation of access control in provenance-aware systems,” in
Proc. TaPP, Boston, MA, USA, June 2012.

[29] E. Yuan and J. Tong, Attributed based access control (abac) for web
services, ser. ICWS ’05, Washington, DC, USA: IEEE Computer
Society, 2005, pp. 561-569.

[30] J.Y.Halpern and V. Weissman, “Using first-order logic to reason
about policies,” ACM Trans. Inf. Syst. Secur., vol. 11, no. 4,
pp- 21:1-21:41, Jul. 2008.

[31] A.P. Chapman, H. V. Jagadish, and P. Ramanan, Efficient prove-
nance storage, ser. SIGMOD ’08, New York, NY, USA: ACM, 2008,
pp- 993-1006.

[32] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF,” W3C, Tech. Rep. REC-rdf-sparql-query-20080115,
(2008). [Online]. Available: http://www.w3.org/TR/rdf-sparql-
query/

[33] Apache Jena Framework. [Online]. Available: http://jena.apache.
org/about_jena/architecture.html, 2014.

[34] G. Klyne and J. J. Carroll, “Resource description framework
(RDF): Concepts and abstract syntax,” World Wide Web Consor-
tium, Recommendation REC-rdf-concepts-20040210, 2004.

[35] W. C. Tan, “Provenance in databases: Past, current, and future.”
IEEE Data Eng. Bull., vol. 30, no. 4, pp. 3-12, 2007.

[36]].Cheney, S. Chong, N. Foster, M. I. Seltzer, and S. Vansummeren,
“Provenance: a future history,” in Proc. OOPSLA Companion, 2009,
pp- 957-964.

[37] J. Frew, D. Metzger, and P. Slaughter, “Automatic capture and
reconstruction of computational provenance,” Concurr. Comput. :
Pract. Exper., vol. 20, no. 5, pp. 485-496, Apr. 2008.

[38] O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara, Que-
rying and managing provenance through user views in scientific work-
flows, ser. ICDE ‘08, Washington, DC, USA: IEEE Computer
Society, 2008, pp. 1072-1081.

[39] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon, K.
How, and H. Strong, Expandable grids for visualizing and authoring
computer security policies, ser. CHI ‘08, NY, USA: ACM, 2008, pp.
1473-1482.

Lianshan Sun received the PhD degree in software engineering from
Peking University, Beijing, China. He is currently an associate professor
at Shaanxi University of Science and Technology, Xi'an, China. His
research interests include methodologies, infrastructures, and tools on
engineering secure software system in the whole software development
life-cycle. He is currently focusing on infrastructures for engineering
secure provenance-aware systems.

Jaehong Park is an associate professor at the University of Alabama in
Huntsville, Huntsville, AL. He received his PhD degree in information
technology from George Mason University, Fairfax, VA. His research
interests include data and application security and privacy, access and
usage control, cloud computing security, secure provenance and social
computing.

Dang Nguyen received the BS and MS degrees, both in computer sci-
ence, from the University of Texas at San Antonio, San Antonio, TX, in
2009 and 2013, respectively, where he is currently working toward the
PhD degree. His main area of interest is on the application and security
foundations of provenance data in multi-tenant cloud environment. He is
currently working on provenance-based access control mechanisms in
OpenStack platforms.

Ravi Sandhu is the founding Executive Director of the Institute for
Cyber Security at the University of Texas San Antonio, San Antonio, TX,
and holds an Endowed Chair. He is past Editor-in-Chief of the IEEE
Transactions on Dependable and Secure Computing, past founding Edi-
tor-in-Chief of ACM Transactions on Information and System Security
and a past Chair of ACM SIGSAC. He founded ACM CCS, SACMAT
and CODASPY, and has been a leader in numerous other security con-
ferences. His research has focused on security models and architec-
tures, including the seminal role-based access control model. His
papers have accumulated over 26,000 Google Scholar citations, includ-
ing over 6,400 citations for the RBAC96 paper. He is an ACM, IEEE and
AAAS Fellow and inventor on 29 patents.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

