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Abstract—Cloud computing, while becoming more and more popular as a dominant computing platform, introduces new security

challenges. When virtual machines are deployed in a cloud environment, virtual machine placement strategies can significantly affect

the overall security risks of the entire cloud. In recent years, the attacks are specifically designed to co-locate with target virtual

machines in the cloud. The virtual machine placement without considering the security risks may put the users, or even the entire cloud,

in danger. In this article, we present a fine-grained model to quantify the risk level caused by co-residency. Using a large scale dataset

collected from Microsoft Azure Platform, we profile the behavior patterns of normal service subscribers (tenants) using our proposed

feature metrics. Tenants are clustered into multiple categories. After the baseline is established based on the normal behavior pattern,

the derivation can be evaluated for each category and the high-risk group can be labeled accordingly. With the labeled datasets, a

classification component and a quantification component are constructed to dynamically quantify the co-residency risks for a specific

virtual machine. Our experimental results demonstrate the robustness of our model to the new data and the accuracy is verified by

examination of F-score Matrix.

Index Terms—Cloud security, deep learning, co-resident attack

Ç

1 INTRODUCTION

FOR a cloud computing system, one of themost critical and
fundamental components is the Virtual Machine (VM).

Multi-tenant deployment of VMs significantly improves
cloud resources utilization, which would benefit the cloud
service provider. On the other hand, sharing resource among
clients makes the cost of service more affordable and mini-
mizes the maintenance overhead of the computing resour-
ces. Along with these advantages, cloud computing acts as
more and more important roles in our daily life, and also
attracts more attention from attackers. Since VMs could be
exposed to various types of security threats, lots of research
efforts [1], [2], [3], [4], [5], [6], [7] have been made into this
particular field.

The logical isolation between VMs deployed on the same
server is provided by virtualization techniques [8]. Under
the control of a hypervisor, one VM can only access its own
assigned partition of hardware resources, such as memory
space or storage blocks. In the ideal situation, one VM
should never be compromised by another VM on the same
physical computer. However, in the real world, many steal-
thy attacks can happen. For example, cache utilization can
determine the execution time of cache read operations [9].

As the result, various types of side channels between
attacker’s VMs and victim’s VMs could be built and sensi-
tive information could be extracted [1], [9], [10], [11], which
are called co-resident attacks. One of the most influential
co-resident attacks is to extract private keys [2] through a
side-channel. Construct a useful side-channel needs to over-
come challenges to handle processor core migration, numer-
ous sources of channel noise, and the preemption of the
victim with sufficient frequency to extract fine-grained
information from it. The authors [2] demonstrated the attack
in a lab setting by extracting an ElGamal decryption key
from a victim using the most recent version of the libgcrypt
(v1.5.0) cryptographic library [12].

To address the problem, a lot of research have been done
to defend against co-residency attack. Most of them [13],
[14], [15], [16], [17], [18] focused on preventing the construc-
tion of side channels. One major requirement of those meth-
ods is that substantial changes to the existing system are
needed, which can be very expensive to a cloud provider.
Other researchers investigated the problem from different
perspectives. Sundarewaran, et al. [19] proposed a defense
mechanism to identify anomalies in CPU and RAM utiliza-
tion, or cache miss rate. To improve the overall security
level of the cloud system, we proposed a four-dimensional
security evaluation model to cover possible attack paths in a
cloud [20]. In this work, the co-resident risk is taken into
consideration and a coarse-grained method was proposed
to quantify the co-residency risk through individual VMs,
although the effectiveness of our model was not verified via
real world case. Another major issue is we believe the co-
residency risk factor should be determined by the tenants,
instead of individual VM. If a tenant is identified as an
attacker, all of his owned VMs should be considered with
high risk level. To better address this issue, Yi Han et al. [21]
proposed a mechanism to identify the co-resident attacker’s
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behaviors in the absence of any defense, and proposed the
semi-supervised learning algorithm, Deterministic Anneal-
ing Semisupervised SVM (DAS3VM) [6], to classify normal
users and high risk users in the cloud [22]. Followed with
his lead, multiple works were done [7], [23], [24] based on
Game Theory Model. However, the effectiveness of game
was determined by the accuracy of the classification of
attackers. In their experiment, the clustering was either
done with a simulation or small size dataset, which had a
very limited chance to contain real attackers.

Compared with previous work [6], [21], [22], we are tak-
ing challenge of dealing with real-world datasets of clouds
in this paper. To better understand and predict workloads
for improved resource management of large cloud plat-
forms, Microsoft construct an open VM trace dataset
source, which contained over 25,000 service subscriber
accounts with 4.6 million VMs and 3.1 billion utilization
reading records [25]. A. George et al. [26] provided
another four new traces from two private and two high-
performance computing clusters to conquer the over-fit
issue with original dataset when evaluating the generality
of new research. The large-scale dataset is widely used
in the workload related research field [27], [28] and we
believe that it also provides a great opportunity to profile
normal service subscriber’s behaviors, which could sepa-
rate attacker out. One major improvement in our current
work (classification module) is that our work is based on
above large-scale real-world datasets. In our previous
works [20], [29], we proposed a set of coarse-grained met-
rics to quantify the risk level of the entire Cloud. Co-resi-
dence risk acts as the most important portion of risk
estimate in our proposed metrics. Due to the limitation of
simulated data used, we calculate the co-resident risk level
based on the vulnerabilities of each VM, which is insuffi-
cient for more complicate situations. The introducing of
Azure dataset leads us to a better mechanism (deep learn-
ing method) to evaluate the co-residency risk on tenant
level, instead of individual VM. Based on this new mecha-
nism, we evaluated these new virtual machine datasets to
quantify the security risks of the entire cloud system. The
unique contributions of our work are as follows.

� Based on a large scale real-world dataset, we profile
the behavior patterns of normal service subscribers
(tenants).

� We propose an effective feature metrics abstracted
from real-world dataset, which are used to profile
the behavior of tenants more accurately.

� We propose an innovative framework to dynami-
cally quantify the co-residency risk level for a spe-
cific tenant and his VMs.

� Based on our experimental results using F-score
Matrix [30], our model demonstrates the robustness
to new seen datasets.

One major challenge we conquered is how to handle the
extremely imbalanced large-scale dataset, which contained
huge amount of traces from normal tenants, but very tiny
amount of traces from attacks.

The rest of our paper is organized as follows. In Section 2,
we discuss the related work. Section 3 provides an overview
of our proposed approach. Section 4 describes the design

details. Evaluation results are discussed in Section 5, and
Section 6 summarizes our work.

2 RELATED WORK

Logical isolation between VMs deployed into the same
server was provided by Virtualization techniques [8]. Under
the control of hypervisor, one VM could only access to its
own assigned partition of hardware resource, such as com-
puting power or data storage. One VM should never be
affected or compromised by another VM’s behavior. How-
ever, in real world, many stealthy attack could happen. For
example, cache utilization rate would determine the execu-
tion time of cache read operations [9]. As a result, various
types of side channels between attacker’s VMs and victim’s
VMs could be built and sensitive information could be
extracted [1], [9], [10], [11], which also was called as co-resi-
dent attack [30]. There is another threat generated by this
risk type is VM image manipulation [31], where the victim’s
VM image could be used by attack to create some new VMs
for attacking.

Resource sharing in cloud computing raises a threat of
Cache-Based Side Channel Attack (CSCA). It is proposed to
detect and prevent guest virtual machines from CSCA.
Cache miss patterns were analyzed in this solution to detect
side channel attack. CSCA is divided into two types and
those are time-driven cache attacks and trace-driven cache
attacks. It is based on a cloud setting with two VMs installed
on the same physical machine using a bare-metal hypervi-
sor sharing a highest-level cache. One of the most influential
one is to extract private keys [2]. Author successfully con-
structed such a side-channel requires overcoming chal-
lenges including core migration, numerous sources of
channel noise, and the difficulty of preempting the victim
with sufficient frequency to extract fine-grained information
from it, and demonstrates the attack in a lab setting by
extracting an ElGamal decryption key from a victim using
the most recent version of the libgcrypt cryptographic
library. Since the Last Lever Cache was used as the side
channel for attack, Yinqian Zhang et al. [23] describer a
Home Alone system that makes tenant verification of exclu-
sive utilization of VMs over physical machine. The primary
concept behind Home Alone is to reverse the essential
application of side channels. Indeed of making the best
advantage of side channel to be vector of any attack, Home
Alone utilizes a side-channel (in Last Level Cache) as a new
protective detection tool. By examining the utilization of
cache while the period in which friendly VMs collaborate to
eliminate segments of cache, the tenant with home Alone
can identify co-resident activity of foe VM.

To defend this particular type attack, lots of other
research effort was devoted into different directions. One of
them is to enforce the isolation of virtual resources. Khalid
Bijon et al. [32] proposed a formal Trusted Virtual Datacen-
ter (TVD) management model to manage strong isolation
among virtual resources and also develop an authorization
model for the cloud administrative-user privilege manage-
ment in the system. In their following works [33], [34], they
presented attribute-based constraints specification and
enforcement as a mechanism to mitigate such co-resident
risks. Conflicting attribute values are specified by the tenant
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or by the cloud IaaS system as appropriate. Based on con-
flict specifications, author developed a conflict-free virtual
machine scheduling framework. Our proposed framework
is also inspired by their work and focused on the scheduling
strategy of deployment of Virtual Machines.

Another approach is to prevent the construction of a spe-
cific side channel. Aviram et al. [13], C. Vattikonda et al. [15]
and J. Wu [16] focus on eliminating the timing channels.
Cache-based channel is another major defense target. J. Shi
[4], T. Kim [17] and Y. Zhang [18] worked on mitigate
cache-based side channel attack to better protect cloud sys-
tem. As we discussed, these defense mechanisms are lim-
ited by their specific target and are not universal solution.
Another major common requirement of these methods is
that substantial changes to the existing system are needed,
which can be very expensive to the cloud provider or very
difficult to utilize these defenses.

Some of existing works focused on the analysis of the
potential data traffic information. Adam Bates et al. [35]
depicts about Co-resident watermarking, traffic analysis
attack, which facilitates dangerous co-resident VM to intro-
duce watermark signature over the internet flow of target
instance. The final examination illustrates that there is a care-
ful hardware design to be utilized in the cloud environment.
Similarly, there has been many techniques developed for the
security of cloud computing. Several security metrics were
proposed to better protect the cloud. Taous Madi et al. [36]
propose a quantitative model and a set of multi-level dis-
tance metrics for multi-tenancy in the cloud at different
layers. Followed by their lead, N. Alhebaishi et al. [37] model
both cross-layer and co-residency attacks on the NFV stack
and mitigate such threats through optimizing the virtual
machine (VM) placementwith respect to given constraints.

Another interesting direction is based on game theory. Yi
Han et al. [21] proposed a mechanism to identify the co-resi-
dent attacker’s behaviors in the absence of any defense.
Overall speaking, the attacker has to start a much larger
number of VMs than the normal user to achieve the co-resi-
dency with their target. Based on the assumption, they used
the semi-supervised learning algorithm, Deterministic
Annealing Semisupervised SVM (DAS3VM) [6], to classify
normal users and high risk users in the cloud. In their subse-
quent work [22], they proposed a semi-supervised learning
based defense strategy to increase the attack cost. Followed
with his lead, multiple works were done [7], [23], [24] based
on Game Theory Model. C. zhang et al. [38] proposed an
information Model to increase user’s value and improve
user experience by reducing job failures. In those works, the
two-player security game will be utilized. However, the
effectiveness of the game was determined by the accuracy
of the classification of attackers. In their experiment, the
clustering work either done with simulation or a small size
dataset, which had a very limited chance to contain real
attackers. To conquer this weakness, our proposed frame-
work is based on real-world large scale dataset, and it also
could dynamically adapt to keep-evolving environment.

Our previous work [39] proposed a VM placement
scheme based on security risk of each VM, and Yuchi and
Shettey [40] extended it to the VM placement initialization.
Both of them mainly focused on the dependency relations.
Yuchi and Shettey’s method also oversimplified the problem

and did not reflect the potential risk caused by co-resident
VMs, whose importance was discussed in [41], [42]. In [42],
the author studied the characteristics of different PaaS cloud
and the co-resident threat in placement policies. They imple-
mented a memory-bus based covert-channel detection for
co-residence and presented an efficient launch strategy.
Their experiment concluded the risk caused by co-residency
was real in popular PaaS clouds. Previously, we have investi-
gated to periodically migrate VMs based on the game theory,
making it much harder for the adversaries to locate the target
VMs in terms of survival capability measurement [43]. But
we did not consider the risk caused by the co-resident VMs
in the same physical machine.

3 OVERVIEW OF OUR APPROACH

In our previous work, we proposed a set of coarse-grained
metrics to quantify the risk level of the entire Cloud. The co-
resident risk level is based on the vulnerabilities of each
VM, which is insufficient for more complex situations. To
solve the problem, we develop a fine-grained model to bet-
ter quantify the co-resident risk based on service subscrib-
ers(tenants). In our new design, we consider large scale
dataset for real world cloud risk estimate. Furthermore, we
design our framework in the way adapting to the dynamic
changing environment.

3.1 Threat Model and Security Assumptions

To accomplish the co-resident attack, attackers have to make
effort to deploy their own VMs on the same physical server
with the victim’s VMs. In other words, one major portion of
the attacker’s cost would be determined by the procedure of
co-locating with the target. Service providers should have
the capability to collect necessary information they need to
profile a service subscriber. For stealth purposes, the
attacker wants to reduce the possibility of being detected as
much as possible.

We have the following assumptions specifically for profil-
ing and classification of service subscribers: 1. Service pro-
vider has no knowledge about the attacker’s presence; 2.
Attacker’s behavior pattern could be evolved and different
in every time period; 3. Service provider can verify a limited
amount of normal service subscriber (mark as legal); 4.
Attacker has no way to compromise the data collected by the
service provider for profiling purpose; and 5. Attacker can-
not compromise the data processing components described
in the paper.

The above assumptions ensure that our proposed defense
mechanism works properly. Also, the attacks should not be
common or standard events in the cloud.We assume that the
major portion of data collected by service providers should
belong to normal activities instead of attacks.

3.2 Patterns of The Co-Resident Attacks

To successfully accomplish co-resident attack, an attacker
needs to achieve co-residency with the targets. Some previ-
ous work [21] focused the problem. A general procedure
can be summarized as follows to launch co-resident attacks.

1) A large number of virtual machines are launched in
the cloud.
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2) Check if any of attacker’s virtualmachines is deployed
on the same physicalmachinewith the target.

3) In order to save the cost, turn off virtual machines
which failed to co-locate with the target. This step is
optional.

The above steps may be repeated several times by the
attacker until co-residency is achieved. In contrast to the
normal service subscriber, a large number of virtual
machines have to be started by the attacker. To reduce the
cost of attacks, virtual machines which failed to achieve co-
residency will be short-lived. Otherwise, a high CPU utiliza-
tion would be observed due to active long-lived virtual
machines. In reality, the attacker might use a single sub-
scriber account or multiple subscriber accounts to accom-
plish the attack. Nowadays, the Cloud service provider
allows a service subscriber to start multiple VMs simulta-
neously in a single account. Thus, we cannot simply use the
number of VMs owned by a subscriber to tell an attacker
from legitimate service subscribers.

Note that the presence of attack can be rare in the real
world, which means the major portion, if not all, of a dataset
from a cloud, is from normal service subscribers. We believe
that the behavior pattern of normal service subscribers
should demonstrate some derivation from the above pattern
of attacks. In other words, if service providers can success-
fully profile normal service subscribers, the attacker has to
adjust their behavior pattern to match the normal pattern to
reduce the chance being detected, which will increase the
attacker’s cost accordingly.

3.3 Proposed Processing Framework

Fig. 1 demonstrates the diagram of our proposed frame-
work to classify service subscribers and better quantify the

Co-Resident Risk Rate. It contains five necessary compo-
nents to generate a quantified co-resident Risk Rate and
one optional component to make our framework more
adaptive to the practical environment. In the figure, the
Pre-Process component organizes raw data using the fea-
ture metrics determined by the service provider. More
detailed explanation of feature metrics are in Section 4. A
service provider can update the feature metrics based on
their unique requirements. The Clustering component clas-
sifies service subscribers into different categories. As the
outputs, candidate categories for subscribers are sent to
Partial Labeling Component. The Partial Labeling compo-
nent examines the candidate categories of subscribers and
determines the labeling of each category. Some categories
of subscribers may be dropped in this component they are
not relevant to quantifying the risks. In the Classification
component, a Deep Neural Network is trained to perform
the classification task for incoming subscriber. Hyper-
parameter tuning is performed to increase training effi-
ciency. In the Quantified Risk Rate component, the risk level
of incoming subscriber is evaluated based on the predic-
tion of classification component and pre-defined quantify
function. The Manual Verification is an optional component
to make our processing structure more adaptive to the real
world. The prediction of new subscriber data can be veri-
fied manually by the service provider and send it back to
training data to make our proposed DNN model adapt to
the latest environment.

4 DESIGN

In this section, we provide more detailed discussions and
explanations of our design.

Fig. 1. Overview of framework.
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4.1 Feature Metrics to Profile Normal Service
Subscriber(Tenant)

In our proposed framework, the feature metrics are used in
the Pre-Process component to process collected raw data.
As we mention earlier, service provider can define their
own feature metrics according to their unique business
requirement. In our experiments, we propose a six dimen-
sion feature metrics to profile service subscriber:

1) N - the total amount of VMs created and deployed
by a specific service subscriber.

2) T - the average interval time between starting two
VMs. Note that it is the time between starting the ith
and the (i+1)th VMs, rather than difference between
the stopping ith and the (i+1)th VMs.

3) M - the median memory size among VMs for a spe-
cific service subscriber.

4) A - the overall active rate for a specific service sub-
scriber. Detail explanation would be explained by
following section.

5) W - the average amount of active VM at each time
stamp for a specific service subscriber.

6) I - the median of average CPU utilization rate among
all VMs at each time stamp for a specific service
subscriber.

Among these features, feature 1) to 4) are the overall
analysis factors for each service subscriber. Feature 5) and
6) are detail features for a specific service subscriber. The
reason we have two types features, because not only we
want to know the whole picture of subscriber’s behavior,
we also want to more accurately profile each subscriber’s
behavior pattern and build the characteristic image with
detail inside information.

M - Median Memory Size. For each service subscriber, the
memory requested by the VMi is recorded as Mi. The fea-
tureM is calculated as:

M ¼ medianðMiÞ: (1)

We believe that the requested memory size could represent
the tenant’s expectation of potential workload for the VM.

A - Overall Active Rate. In our experiment, for a sub-
scriber, its VMi at time stamp tj to be considered as active if
its CPU utilization is over 15. Assume at the time stamp i,
one subscriber has total NTi alive VMs, where NAi VMs are
active. Then, the Overall Active Rate for the subscriber
would be:

A ¼
Xn
i¼1

ðNAi=NTiÞ
 !

=n: (2)

W - Average Active VM Amount. Feature A presents the
overall active rate among all timestamps. We need a feature
to demonstrate the overall workload requested by the sub-
scriber. Assume at the time stamp i, one subscriber has a
total NTi VMs alive, where NAi VMs are active. Then, the
average active VM amount for the subscriber would be:

W ¼
Xn
i¼1

NAi

 !
=n: (3)

I - Median of Average CPU Utilization. Features A and W
present the activeness level for a subscriber, but they do not
cover any difference of each VM even with the same active-
ness rate. We introduce feature I : median of Average CPU
Utilization Rate in overall period per subscribers.

Assume at the time stamp i, one subscriber has total NTj

VMs alive. For each VM, its CPU utilization is CPUj. Then,
the median of average CPU Utilization Rate in all time
period for the subscriber would be:

C ¼ median
XNTj

j¼1

CPUj

 !
=NTj

 !
: (4)

We use the median value rather than the mean value is
because the median value is more robust with outliers.

Since we are taking a data-driven approach in our classi-
fication module, the effectiveness of features acts as the
most dominant factor. Also, our proposed framework is
general enough and can be used in different cloud service
platforms. The service provider can easily adjust above fea-
ture metrics to meet their own business need.

4.2 Choice of Clustering Algorithm

In the clustering component, the service provider can
choose a specific clustering algorithm per their own need.
In our work, we test several clustering algorithms and chose
DBSCAN in the end due to it’s robustness towards the out-
lier detection. There are two parameters in the DBSCAN
algorithm, " and MinPts, where " is the maximum distance
between two neighbors, and MinPts is the minimum num-
ber of points in a cluster. Once MinPts is set, " can be deter-
mined by drawing a k-distance graph (k=MinPts). In other
words, " can be considered as a function of MinPts. MinPts
should not be too small, otherwise, noise in the data will
result in spurious clusters.

In our experiments, we use DBSCAN ("=35, Minpts=10)
to initially cluster subscribers into total 6 categories. Then
we manually verify every category with the activeness level
and partially label them into three major types: Inactive
(Normal), Periodically Active, and Extremely Active. Gen-
erally speaking, most of original category 1 and 2 was put
into Inactive type. Extremely Active type are most from
original category 0 (outliers) and category 5. The labeled
data will be used as the training data of the classification
component.

4.3 Dynamically Quantify Co-Residency Risks

To better quantify the co-resident risk level, we combine
classification and quantification in our proposed frame-
work. Though the cloud service provider could collect any
information they want and use them to detect malicious
activities, the presence of malicious activity is a very rare
case and majority of the collected data belongs to normal
service subscriber, which makes the classification task very
difficult, if not impossible. However, the rich information of
the normal behavior enables the service subscriber to suc-
cessfully profile normal tenant’s behavior patterns. The ser-
vice provider is be able to determine a risk rate by
measuring the derivation rate from the normal pattern. In
order to do so, the service provider needs to build a non-
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rule based general system which can dynamically adapt to
the environment changes.

4.3.1 Deep Neural Network Architecture

Fig. 2 shows the Deep Neural Network model used in our
experiments, which was implemented in Tensorflow Frame-
work. It consists of 9 layers. First, the fully connected layer
has 64 nodes (or neurons). Afterward, three fully connected
layers with 128 neurons and Relu activation, followed with
the dropout layer. The last layer is a 3-node softmax layer
that returns an array of 3 probability scores that sum to 1. In
our current experiment, during the feature abstraction proce-
dure, detail active rate curve for each tenant was converted
into a vector. Fully connected(FC) layer is designed to handle
vector info efficiently. At the same time, even transfer train-
ing for new seen data can be finished offline, it might be
important for some provider to enable online transfer train-
ing. The depth of model should be carefully determined. We
applied five layers of FC layers here, but it can be adjusted
by service provider to achieve the balance between the com-
plexity of target model(Better detection accuracy) and
acceptable online transfer training time for new seen data.

Dropout is a regularization technique that turns neurons
on/off in each layer to force them to go through a different
path. This operation improves the generalization of the net-
work and prevents over-fitting. To reduce overfitting, we
use a dropout [44] layer after the second and third fully con-
nected layers, since its effectiveness is proved in [45] and the
dropout regularization works really well with the fully con-
nected layers. Rectified linear unit (ReLU) is a type of acti-
vation function. It is simply defined as f(x) = max(0, x).
ReLU usually works better in practice than other activation
functions, such as sigmod function. It is one of the most
commonly used activation functions in the neural network.

The model is trained using back-propagation for Adam
Optimizer [46], a stochastic gradient descent that automati-
cally adapts the learning rate. The optimizer works on mini-
mizing the loss function. We use the mean cross-entropy as
a loss function in our experiment. The model is also trained
with a batch setting, which is not reflected in the layers
described above.

4.3.2 Hyper-Parameters Tuning

Hyper-Parameters tuning is always a very challenging
problem in a deep learning task. Normally, the accuracy

rate of classification tasks could be dramatically affected by
the setting of hyper-parameters. In order to achieve the best
classification accuracy, multiple methods were tested, such
as random search [47], and grid search tested afterward.
After carefully studies and experiments, we set up the
hyper-parameters for training as follows. We set the Drop-
out rate to 0.5 in each dropout layer. Learning rate, another
important parameter, determines how fast we move toward
the optimal weights in our network. If it is too large, it will
skip optimal values. On the other hand, if it is too small, it
will take too much time to converge to the optimal values,
and it may get stuck in local minima. Fortunately, Adam
Optimizer provides a very detailed and flexible API to set
up the initial rate and decay rate. We finish our training by
setting the initial learning rate started as 1e - 3 (0.001), beta1
as 0.9, beta2 as 0.999 and decay rate as 0.1.

4.3.3 Handling Imbalanced Data

The imbalance is common in the real world. Most classifica-
tion data sets do not have an exactly equal number of
instances in each class, while a small difference often does
not matter. But when there is a modest class imbalance like
4:1 in the dataset or above, it can cause problems [48]. Some-
times imbalance is not just common, it is expected. For
example, in datasets like those that characterize fraudulent
transactions are imbalanced. The vast majority of the trans-
actions will be in the Not-Fraud class and a very small
minority will be in the Fraud class. We had the same situa-
tion in our own dataset, most of the subscribers should be
legal and only very rare events could be caused by the mali-
cious attacker.

There are several methods available for dealing with the
imbalance situation: Change Performance Metrics Since we
are dealing with an extremely imbalanced dataset, the accu-
racy rate is not enough to accurately evaluate the perfor-
mance model. F-score Matrix [29] was applied in our
experiment. It contains three major metrics as below [48]:

� Precision: the number of true positives divided by all
positive predictions. Precision is also called Positive
Predictive Value. It is a measure of a classifier’s
exactness. Low precision indicates a high number of
false positives.

� Recall: the number of true positives divided by the
number of positive values in the test data. Recall is
also called Sensitivity or the True Positive Rate. It is
a measurement of classifier’s completeness. Low
recall indicates a high number of false negatives.

� F-score: the weighted average of precision and recall
Oversample Minority Class. Oversampling can be defined

as adding more copies of the minority class. In our experi-
ment, we implement oversampling by constructing the
batch with a solid number of periodically and extremely
active types, which was randomly chosen each time.

4.3.4 Quantify the Co-Residency Risk

In our framework design, the quantification component
takes the output from the classification component and
applies it into a pre-defined quantify function. In our experi-
ment, for simplicity, we use a softmax activation function in

Fig. 2. Architecture of proposed deep neural network.
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the classification component and directly output the predic-
tion of the probability of each category. The probability rate of
the normal category will be used to calculate the co-resident
risk. In other words, we believe it represents the derivation
rate fromnormal behavior patterns.

5 EXPERIMENTAL EVALUATION

We conduct our experiments on a Dell Precision Tower
T5810 Workstation. The Dell Workstation has an Intel Xeon
E5-1620, 32G RAM, and Nvidia Quadro P5000 Graphic
Card for GPU acceleration. GPU acceleration is applied in
our Model Training procedure and it shortens the training
time dramatically.

5.1 Insight of Azure Dataset

We use real-world large-scale dataset, Azure public Dataset,
in our experiments. Azure Public Dataset [25] provides two
portion of the Virtual Machine (VM) workloads of Microsoft
Azure collected in 2019 and 2017. This dataset contains over
12,000 service subscribers with their over 5 million VMs
and the corresponding 3.1 billion CPU utilization record
sampled every five minutes over one month. The total size
of the dataset is over 500GBs. To finish the statistical task
for the proposed feature metrics, we divide the task into
multiple portions of data in each temporary step. We sum-
marize the observations as follows:

A - Overall Active Rate. Fig. 3, shows the average CPU utili-
zation distribution amongVMs. The CPUutilization indicates

the overall active rate for tall subscribers. We noticed that
more than 90 percent VMs’ CPU utilization rate is under 15
percent,whichmeansmost ofVMs stay under very lowwork-
load status.

The cumulative distribution of active rate per subscriber
is shown in Fig. 4. Generally speaking, over 80 percent sub-
scribers have less than 10 percent active rate.

W - Average Active VM Amount. The cumulative distribu-
tion of average active VM amount per subscriber is shown
in Fig. 5. Combine it with feature A, we could filter out the
type of extremely active subscriber.

I - Median of Average CPU Utilization Rate. Fig. 6 shows the
cumulative distribution of CPU utilization per subscriber.
Over 90 percent subscribers have been identified as inactive
type in Fig. 8

Based on above feature metrics, we obtained a draft pro-
file of the service subscribers. In the next section, we will
continue to use our proposed feature metrics to cluster the
subscribers.

5.2 Clustering of Subscribers

Azure Dataset contains over 12,000 service subscribers,
therefore, we clustered them into several candidate groups
for the future study.

5.2.1 Aspect From Activeness Rate

Based on observation of Fig. 7, around 65 percent subscrib-
ers create one VM, and 25 percent subscribers created less
than five VMs in their lifetime.

Combined with the cumulative distribution of feature I,
we could conclude that most service subscribers should
only maintain a small amount VMs at inactive level.

To verify our conclusion, we did the active rate curve in
all timestamps for all subscribers. According to our observa-
tions on all curve diagram, we define the subscribers as fol-
lowing categories based on the activeness rate:

� Inactive Subscriber: In Fig. 8, the very top section is a
typical curve for the inactive type subscriber we
defined, and over 80 percent of subscribers fall into
this category. In this category, a very small amount

Fig. 3. Average CPU utilization distribution among VMs.

Fig. 4. Cumulative distribution of active rate per tenant.

Fig. 5. Cumulative distribution of average active VM amount per tenant.
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of VMs was created by the subscriber, and most of
the time the VM stay inactive.

� Periodically active subscriber: The middle portion of
Fig. 8 is a typical curve for the Periodically active
subscriber we defined. Multiple VMs are created by
the subscriber and the activeness level is shifted dra-
matically over the subscriber’s whole lifetime.

� Extremely active subscriber: The typical curve for
this type of subscriber is located at the bottom of
Fig. 8. This type of subscriber maintains an
extremely high activeness rate over their whole
lifetime.

We performed multi-step testing in our experiment. Ini-
tially, we use DBSCAN to cluster subscribers. And then, we
tested the MinPts ranging from 5 to 50 since we believe
most data should comes from the normal service subscriber.
We expect that there would have at least one clustering out-
put contains a major portion of the subscribers. After careful
testings and studies, we set the MinPts to 10 and " to 35 in
our experiment. In the further step, we manually verify all
user’s activeness level curves among the whole lifetime.
Three major categories were separated, shown in Fig. 8.
Thus, if the attacker tries to pretend a normal user, the cost

will be high. We demonstrated the coefficient relationship
between extremely active subscribers and others in Fig. 9.

We demonstrated our clustering results in Figs. 10 and
11. Most of the service subscribers were clustered into one
category, which fits to our expectations. More important, 78
subscribers were identified as the outlier. By checking with
their detail active rate curve, we believe their behavior pat-
tern would be the closest to potential high-risk ones.

5.3 Training and Evaluating Deep Neural Network

After we initially clustered service subscribers, we manually
labeled them into three major categories: normal subscriber,
periodically active subscriber, and extremely active sub-
scriber, shown in Table 1:

Oversampling Minority Class. 78 subscribers are located
into extremely active category, and only 379 subscribers are
located into periodically active category. Comparing with a
total of 11573 normal subscriber, we are facing an extremely
imbalanced dataset. We divided the whole dataset into two
parts: Training set (90 percent) and Test set (10 percent). For
each training session of our model, we did 100 batches in
each epoch and we finished a total of 100 epochs. To handle
this imbalance, we have to oversample these two minor
classes. We kept choosing 300 unrepeated from the normal
type, 100 from periodically active type, and 30 from
extremely active type, shuffling them to form a batch of the
training set. The training set will be used in one step. Since
all training tasks were finished off-line, the inference proce-
dure for new subscriber data only needs few seconds to
generate the final prediction.

We reserved 10 percent of total service subscribers’ data
for test purposes. The data is new and it has never been
used to optimize our model in the training procedure. We
only recorded the checkpoint when the accuracy rate of the
test dataset has been improved. We noticed the loss value
was shifted several times in our experiment in Fig. 12.
Fig. 13 display the accuracy rate of the test dataset.

Even we tried to use dropout to avoid model overfitting
issue, we still could observe that when training accuracy
keeps rising from 94 to 96 percent, the accuracy rate for test
set actually declined from 97.9 to 95 percent. Considering

Fig. 6. Cumulative distribution of CPU average utilization per tenant.

Fig. 7. Cumulative distribution of created VMs amount per tenant.

Fig. 8. Subscriber categorized with activeness level.
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an extreme imbalanced dataset was processed here, we
need to use several other performance metrics to further
evaluate our model.

When the accuracy rate is above 98 percent, we calcu-
lated out all the recall, precision and F-score for all three cat-
egories as in Table 2:

The test dataset only contains eight extremely active
subscribers, which we believe should be able to simulate
the practical environment since in the real world, the
appearance of an extremely active pattern would be a
very rare case. This extreme imbalance also existed in the
training dataset. Table 2 demonstrates the best F-score
result for test dataset with total 97.8 percent accuracy rate
for test.

Fig. 9. Cluster pairing.

Fig. 10. Cluster result. Fig. 11. Cluster result (extremely active).
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According to the F-score matrix from Fig. 14, the perfor-
mance of classification component on extremely active pat-
tern was affected by the extreme data imbalance in our
experiment. There are two possible explanations for this
issue. First, even we applied multiple methods to handle
the imbalanced training dataset, such as oversampling the
minority category, the training of our model was still under
noticeable affection of data imbalance. In the meanwhile,
this is the major defect of the neural network, it has its limi-
tation to handle unseen data. Another possible reason is
that the initial clustering was not accurate enough. Since

there are only 78 service subscribers were labeled into the
extremely active category, it is possible that too much
detailed feature information was lost during the abstraction
procedure of calculating feature metrics. To fix this issue, we
proposed to construct a Convolutional Neural Network sub-
module for handling the detail active rate curve per each
subscriber. In that case, this manual label procedure would
be replaced by an automatic component, and a lot of
improvement could be achieved in our future work. Also on
the other hand, as we discussed above, this issue is expected.
Since we only used the probability of inactive type in the ref-
erence procedure to calculate the risk level, which will not be
affected by this issue. At the same time, our feature metrics
can be used as good baseline to monitor tenant’s online
behavior. Although the sample time window is five minutes
in Azure dataset, it is too long to the target of monitoring
individual VM. Considering the trade of between expense
added and more detailed sample info, this is will be tough
choice to service provider. Thus we plan to extend our work
to monitor tenant’s behavior, which we believe it is feasible
and much more reliable with current dataset. In our future
work, we will construct one sub-module to analyze the real-
time activeness level for individual tenant.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a comprehensive framework,
using deep learning, to quantify the co-residency risks in a
cloud. We mainly focused on the Infrastructure as a Service
(IaaS) type of cloud services. Our work is based on Microsoft
Azure virtual machine tracing dataset that is a large scale and
real-world dataset. In this paper, we proposed a dynamic
adaptive framework to better quantify the co-residency risks.
A set of feature metrics was proposed to accurately profile
the behavior patterns of normal service subscribers in the
cloud. Based on the analysis of Azure dataset, we used
DBSCAN algorithm to cluster into several groups of service
subscribers andmanually labeled them into three major cate-
gories: Inactive, Periodically Active, and Extremely Active.

TABLE 1
Subscribers in Each Category

Type Amount

Normal 11573
Periodically Active 379
Extremely Active 78

Fig. 12. Cross-entropy loss curve.

Fig. 13. Training accuracy curve.

TABLE 2
Best F-Score Result

Category Recall Precision F-Score

Normal 0.987 0.994 0.99
Periodically Active 0.85 0.708 0.773
Extremely Active 0.636 0.583 0.609

Fig. 14. F-score matrix.
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With the labeled datasets, a classification component was
trained to identify new datasets and the output was used in
the quantification component to quantify the co-residency
risk rate. Based on our experimental results, our classification
component demonstrated robustness to new data. It also
achieved an accuracy of 98 percent for test dataset and its per-
formancewas verified by examination the F-scoreMatrix.

In our future work, we will extend our approach in two
directions. First of all, as we mentioned above, detailed
information about the service subscriber were lost during
the data abstract procedure. Also, we observed that
extremely active pattern is a very rare event in all datasets,
and this extreme imbalance highly affects the classification
task. By analyzing the F-score matrix, there is still a lot of
space for improvements to more accurately identify those
rare events. To conquer the challenge, we propose to build
another sub-module in the classification component to han-
dle the detail feature diagram directly. In this way, we can
more accurately profile normal subscriber’s behavior pat-
terns. Benefited from the improvement, we will be able to
achieve a better classification at the same time. Second, our
framework was trained and tested in one particular dataset.
The general compatibility of our proposed framework may
be questioned by a new dataset. With the newly collected
dataset, a well-trained classification component should be
able to adapt to a new working environment. With appro-
priate transfer training, We could extend applying our
framework to test the general adaption capability. There is
also another possible research direction, if we can success-
fully profile normal subscriber pattern, it can be used to pre-
dict specific subscriber’s future workload request or
detection of abnormal appearance.
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