
Decentralized user group assignment in Windows NT q

Gail-Joon Ahn a,*, Ravi Sandhu b

a Laboratory for Information Security Technology, Information and Software Engineering Department, George Mason University,

4400 University Dr., MNS 4A4, Fairfax, VA 22030, USA
b ISE Dept., George Mason University, USA

Received 10 August 1999; received in revised form 12 November 1999; accepted 25 January 2000

Abstract

The notion of groups in Windows NT is much like that in other operating systems. Rather than set user and ®le rights indi-

vidually for each and every user, the administrator can give rights to various groups, then place users within those groups. Each user

within a group inherits the rights associated with that group. In this paper, we describe an experiment to extend the Windows NT

group mechanism in two signi®cant ways that are useful in managing group-based access control in large-scale systems. The goal of

our experiment is to demonstrate how group hierarchies (where groups include other groups) and decentralized user-group as-

signment (where administrators are selectively delegated authority to assign certain users to certain groups) can be implemented by

means of Microsoft remote procedure call (RPC) programs. In both respects the experimental goal is to implement previously

published models (RBAC96 for group hierarchies and URA97 for decentralized user-group assignment). Our results indicate that

Windows NT has adequate ¯exibility to accommodate sophisticated access control models to some extent. Ó 2001 Elsevier Science

Inc. All rights reserved.

Keywords: Security; Role-based access control; Windows NT

1. Introduction

Groups have been used for access control ever since
the ®rst time-sharing systems were implemented in the
early 1970s. A group is a collection of users and serves as
a convenient unit for granting and revoking access.
Membership in a group is presumably determined by the
need to share resources and information so the group
provides a suitable unit for access decisions. A user or
administrator can make a resource available to an entire
group without having to explicitly provide access to
every member. Similarly, access can be revoked from a
group without explicitly revoking each member's access.
Also new users can be made members of appropriate
groups, thereby obtaining access to a number of re-
sources.

Every account in NT's user database contains a
group membership list indicating which groups the ac-
count belongs to (Sutton, 1997; Rutstein, 1997). Users
belonging to a group are explicitly displayed with the
User Manager program. Windows NT notably lacks a
facility for including one group in another. 1 In practice,
it is often desirable that groups bear some relationship
to each other. For instance, consider a project divided
into several independent tasks assigned to di�erent
teams. We can de®ne a group for each task team so its
members have common access to ®les relevant to the
task. Since some ®les may pertain to the entire project
we can de®ne a project group such that members of the
individual task groups are thereby also members of the
project group. The project wide ®les are then made ex-
plicitly available to the project group alone. This is
certainly more convenient than having to explicitly
make such ®les available to every task group.

It is also more convenient than explicitly making every
member of a task group a member of the project group.
By allowing membership in a group to automatically

The Journal of Systems and Software 56 (2001) 39±49
www.elsevier.com/locate/jss

q A preliminary version of this paper appeared under the title

``Group Hierarchies with Decentralized User Assignment in Windows

NT'' in Proceedings of the International Association of Science and

Technology for Development (IASTED) Conference on Software

Engineering, Las Vegas, Nevada, 28±31 October, 1998, pp. 352±355.
* Corresponding author. Present address: College of IT, unc char-

lotte, 9201 University City Blud., Charlotte, NC 28223-0001, USA;

Tel.: +1-704-687-3783; fax: +1-704-687-3516.

E-mail address: gahn@uncc.edu (G.-J. Ahn).

1 Even though a local group can include global group(s) as a

member, Windows NT does not support the hierarchical relationship

between global groups or between local groups.

0164-1212/01/$ - see front matter Ó 2001 Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (0 0) 0 0 0 8 4 - 4

imply membership in some other groups we can reduce
the number of explicit access decisions that need to be
made by users and administrators. Many commercial
database management systems, such as Informix, Oracle
and Sybase, provide facilities for hierarchical groups (or
roles). Commercial operating systems, however provide
limited facilities at best for this purpose.

Let x > y signify that group x is senior to y, in the
sense that a member of x is also automatically a member
of y but not vice versa. Note that a member of x has the
power of a member of y and may have additional power,
hence a member of x is considered senior to a member of
y. It is natural to require that seniority is a partial or-
dering, i.e., > is irre¯exive, transitive and asymmetric.
The irre¯exive property is obviously required since every
member of x is already a member of x. Transitivity is
certainly an intuitive assumption and perhaps even in-
evitable. After all, if x > y and y > z then a member of x
is a member of y and so should also be a member of z.
The asymmetric requirement eliminates redundancy by
excluding groups which would otherwise be equivalent.
We write x P y to mean x > y or x � y. If x is senior to y
we also say that y is junior to x. For convenience we use
the term hierarchy to mean a partial order.

An example of a group hierarchy for a hypothetical
engineering department is shown in Fig. 1. By conven-
tion, senior groups are shown toward the top and junior
ones toward the bottom. Transitive edges from seniors
to juniors are omitted. In this example there is a junior-
most group E to which all employees in the organization
belong. Within the engineering department there is a
junior-most group ED and senior-most group DIR. 2 In
between there are groups for two projects within the

department, project 1 on the left and project 2 on the
right. Each project has a senior-most project lead group
(PL1 and PL2) and a junior-most engineer group (E1
and E2). In between each project has two incomparable
groups, production engineer (PE1 and PE2) and quality
engineer (QE1 and QE2). We will use this example
throughout this paper.

This example can be extended to dozens and even
hundreds of projects within the engineering department.
Moreover, each project could have a di�erent structure
for its groups. The example can also be extended to
multiple departments with di�erent structure and poli-
cies applied to each department.

Another limitation of Windows NT groups is that
membership is exclusively controlled by built-in admin-
istrator groups such as Account operators, Administrators
and Domain admins (Sutton, 1997; Rutstein, 1997). This
is a centralized model which does not scale gracefully to
systems with large numbers of groups and users. More
generally, it is possible to decentralize user-group as-
signment by allowing administrators to selectively dele-
gate authority to assign certain users to certain groups.
Our decentralization philosophy is motivated by the
principle that a manager who can assign a user to work
on a particular task should also have the authority to
enroll that user in appropriate groups which confer the
necessary permissions to work on that task. E�ective
decentralization of user-group assignment is one step
towards making security more acceptable to end users as
an enabling and empowering technology, rather than as
the general nuisance it is often perceived to be.

In this paper, we describe an experiment to extend the
Windows NT group mechanism to include group hier-
archies and decentralized user-group assignment can be
implemented by means of Microsoft RPC programs. A
Microsoft RPC program runs with the permissions of
the user associated with the program, rather than with
permissions associated with the user who invokes the
program (Grimes, 1997). This feature allows the access

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Fig. 1. An example group hierarchy.

2 For purpose of our example it is convenient to have a powerful

senior-most group DIR. We emphasize that, in general, our model

allows arbitrary hierarchies so it is not required that there be such a

senior-most group. In many cases we would not want to have such a

group. Similar comments apply to the junior-most group E.

40 G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49

control behavior of Windows NT to be extended in a
controlled and protected manner.

One of the di�culties inherent in the kind of experi-
ment we describe here is that we need models for group
hierarchies and for decentralized user-group assignment
before the experimental implementation on Windows
NT can be attempted. If these models are designed as
part of the experiment there will always be a question
as to whether the model was designed (deliberately or
inadvertently) to facilitate a Microsoft RPC-based im-
plementation. Fortunately we were able to use previ-
ously published models for our experiment to avoid this
possibility of bias in model design. Our model for group
hierarchies is based on the RBAC96 model for role-
based access control (Sandhu et al., 1996). 3 The model
for decentralized user-group assignment, called URA97,
is adapted from (Sandhu and Bhamidipati, 1997). Nei-
ther model was designed with Microsoft RPC programs
in mind. There are numerous papers in the literature on
hierarchical groups and alternate models for this
purpose including (Fernandez et al., 1995; Hu et al.,
1995; Nyanchama and Osborn, 1995; Rabitti et al.,
1991; Sandhu, 1988).

The example of Fig. 1 is taken from (Sandhu and
Bhamidipati, 1997). URA97 distinguishes between reg-
ular groups and administrative groups. Fig. 2 shows a
hierarchy of administrative groups. The senior-most
group is the senior security o�cer (SSO). Junior to SSO
is a department security o�cer group (DSO) and two
project security o�cer groups (PSO1 and PSO2). These
administrative groups are authorized to grant and re-
voke membership of users in the regular groups of Fig. 1,
as we will see shortly. (For simplicity, URA97 assumes
that control of membership in the administrative groups
is centralized.)

The rest of the paper is organized as follows. In
Section 2, we discuss how to implement group hierar-
chies in Windows NT. In Section 3 we review the
URA97 model and discuss its implementation in Win-
dows NT. Implementation details are described in Sec-
tion 4. Section 5 concludes the paper.

2. Group hierarchies

As we have mentioned Windows NT does not have
the notion of hierarchy between groups. We show how
group hierarchies can be simulated in Windows NT. The
basic idea is that when a user added to a senior group
the assign program automatically adds the user to all
junior groups. Similarly, when a user is removed from a

senior group the revoke program automatically removes
the user from appropriate junior roles.

Each account in Windows NT has a symbolic name
that identi®es it. When adding a new user account to the
system, the User Manager generates a security identi®-
cation number (SID) which should be unique. Inter-
nally, the SID is the system's way of identifying an
account. We assume that each account has a single hu-
man user associated with it. In practice, a single user
could have multiple accounts and a single account could
be shared by multiple users. We assume the system
administrator enforces a single user per account and a
single account per user policy. Therefore, we will use the
terms user and account as essentially synonymous.

The administrator assigns each user to one or more
groups with User Manager program. 4 The User Man-
ager program displays all de®ned groups which is public
information; all users may read it, but only adminis-
trator groups are allowed to modify it. Group mem-
bership is given in account database.

Table 1(a) shows the ®le account database corre-
sponding to the list of groups in Fig. 1. Each row gives
the group name and a list of group members. For con-
venience we enumerate group members by symbolic
name. This structure is not the real structure in Win-
dows NT. We just use this table to show how group
hierarchies can be simulated in Windows NT. The
account database ®le shows the group membership of
each user. To maintain the group hierarchy we use the
®le grouphr.txt to store the children and parents of
each group. The group hierarchy of Fig. 1 is represented
in grouphr.txt as shown in Table 1(c). The ®rst column
gives the group name, the second column gives the
(immediate) parent groups of that group, and the third
column gives the (immediate) children. The null symbol
``±'' means that the group has no parent or child as the
case may be. In Table 1(c), the ®rst row has the null
symbol because the group director (DIR) does not have
any parent. The grouphr.txt ®le can be easily con-
structed for any group hierarchy.

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Department Security Officer (DSO)

Senior Security Officer (SSO)

Fig. 2. An example administrative group hierarchy.

3 The notion of a role is similar to that of a group, particularly when

we focus on the issue of user-role or user-group membership. For our

purpose in this paper, we can treat the concepts of roles and groups as

essentially identical.

4 The User Manager is the primary user con®guration tool in

Windows NT.

G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49 41

Using grouphr.txt, we can ®nd all seniors and
juniors for a group by respectively chasing the parents
and children. For example for the PE1 group of
Table 1(c) we can construct the seniors and juniors list
as follows:

We say a user is an explicit member of a group if the
user is explicitly designated as a member of the group. A
user is an implicit member of a group if the user is an
explicit member of some senior group. A user can si-
multaneously be an explicit and implicit member of the
same group. 5 For example, Alice can be an explicit

member of ED and PL1, in which case she is also an
implicit member of ED (by virtue of membership in
PL1). To simulate a group hierarchy we use information
about explicit and implicit membership in account

database. If Alice belongs explicitly or implicitly to a
group she will be added to that group's member list in
account database. However, account database is not
su�cient to distinguish the case where Alice is both an
explicit and implicit member of some group from the
case where she is only an implicit member of the group.
For this purpose we introduce another ®le explic-

it.txt that keep information about explicit member-
ship only. An example is shown in Table 1(b). Each row
gives the group name and a list of group members. For
convenience we enumerate group members by symbolic
name. Alice has explicit memberships for PL1, ED and
E. Alice also has implicit membership for all groups
junior to PL1, i.e., PE1, QE1, E1, ED, and E, as shown
in Table 1(a). If Alice's explicit membership is revoked
from E there will be no change in account database but
explicit.txt will be changed to remove her from E.
Suppose after that Alice is further revoked from PL1 we
will have the following result.

The implementation of group hierarchy by explicitly
assigning a member of a senior group to be a member
of all junior group in account database may raise a

Group Seniors Juniors
PE1 PL1, DIR E1, ED, E

account database (after revocation)
DIR::
PL1::
PL2::
PE1::
PE2::
QE1::
QE2::
E1::
E2::
ED:: Alice
E:: Alice, Dave, Eve

explicit.txt (after revocation)
DIR::
PL1::
PL2::
PE1::
PE2::
QE1::
QE2::
E1::
E2::
ED:: Alice
E:: Dave, Eve

Table 1

The example group hierarchy of Fig. 1

(a) account database

DIR::

PL1:: Alice

PL2::

PE1:: Alice

PE2::

QE1:: Alice

QE2::

E1:: Alice

E2::

ED:: Alice

E:: Alice, Dave, Eve

(b) explicit.txt

DIR::

PL1:: Alice

PL2::

PE1::

PE2::

QE1::

QE2::

E1::

E2::

ED:: Alice

E:: Alice, Dave, Eve

(c) grouphr.txt

Group name Parent group(s) Child group(s)

DIR) PL1, PL2

PL1 DIR PE1, QE1

PL2 DIR PE2, QE2

PE1 PL1 E1

QE1 PL1 E1

PE2 PL2 E2

QE2 PL2 E2

E1 PE1, QE1 ED

E2 PE2, QE2 ED

ED E1, E2 E

E ED)

5 This is a property of the RBAC96 and URA97 models on which

our experiment is based. There are other models, such as Ferraiolo and

Barkley (1997) and Nyanchama and Osborn (1995) which do not allow

this.

42 G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49

scalability issue. For example, many Unix implementa-
tions limit the number of groups activated in a process
to a fairly small number such as 32 or 16, so this ap-
proach does not scale for Unix. We conducted a small
experiment to ascertain how many group can be acti-
vated in a process on Windows NT. Our experiment
indicated that Windows NT can accommodate up to 993
groups simultaneously activated in a single process. 6

This is a sizable number so large group hierarchies can
be accommodated by means of this approach.

In summary, to simulate group hierarchies in Win-
dows NT, we use account database, explicit.txt,
and grouphr.txt ®les. The account database ®le
shows all group membership including implicit and ex-
plicit group memberships. The explicit.txt ®le just
has information about explicit group membership and
the grouphr.txt ®le keeps the structure of the group
hierarchy. Modi®cations to these ®les are made by Mi-
crosoft RPC programs as discussed in Section 4. The
above example illustrated why we need the explic-

it.txt ®le in addition to account database.

3. Decentralized groups

Windows NT centralizes user-group assignment and
revocation entirely in hands of built-in administrator
groups. However, this simple approach does not scale to
large systems. Clearly it is desirable to decentralize user-
group assignment to some degree so that expensive
system administrators do not need to spend valuable
time on routine tasks. In particular we can use admin-
istrative groups for this purpose. For convenience we
de®ne administrative groups as distinct from regular
groups.

Sandhu and Bhamidipati (1997) recently introduced
the URA97 model for decentralized administration of
user-role membership (URA97 stands for user-role as-
signment 1997). Since the notion of a role is similar to
that of a group, particularly when we focus on the issue
of user-role or user-group membership, we will adopt
this model. This section reviews URA97 and the next
one describes our approach to implementing it in Win-
dows NT. In our review of URA97 we will use the term
group rather than role. Our description of URA97 is
informal and intuitive. A formal statement of URA97 is
given by Sandhu and Bhamidipati (1997). We emphasize
that URA97 was de®ned in earlier work independent of
any consideration of its implementation in NT.

3.1. User-group assignment

There are two issues that need to be addressed in
decentralized management of group membership.
Firstly, we would like to control the groups that an
administrative group has authority over. Recall Figs. 1
and 2 which, respectively, show the regular and ad-
ministrative groups of our example. We would like to
say, for example, that the PSO1 administrative group
controls membership in project 1 groups, i.e., E1, PE1,
QE1 and PL1. Secondly, it is also important to control
which users are eligible for membership in these groups.

URA97 addresses these two issues, respectively, by
means of a group range 7 and a prerequisite group or
more generally a prerequisite condition. URA97 has a
can_assign relation which we store in the ®le can_as-
sign.txt. An example of can_assign.txt with pre-
requisite groups is given in Table 2. We put a colon
between the columns to indicate the boundary. The ®rst
row authorizes the administrative group PSO1 to assign
users to groups in the range [E1, PL1]. A group range is
speci®ed by giving a junior and senior group. The range
includes all groups between these two endpoints. The
``['' and ``]'' brackets indicate that, respectively, the ju-
nior and senior end point are included in the range,
whereas the ``('' and ``)'' brackets indicate the end point
is excluded. Thus [E1, PL1] consists of E1, PE1, QE1
and PL1, while [E1, PL1) omits PL1. The prerequisite
group speci®es which users can be assigned by PSO1 to
groups in the authorized range. Only those users who
are already members of ED can be assigned by PSO1 to
[E1, PL1]. The other rows of Table 3 are similarly
interpreted.

Table 3 illustrates the more general case of can_
assign.txt with prerequisite conditions. Let us
consider the PSO1 rows. The ®rst row authorizes PSO1
to assign users with prerequisite group ED into E1. The
second one authorizes PSO1 to assign users satisfying
the prerequisite condition that they are members of ED
but not members of QE1 to PE1. Taken together the
second and third rows authorize PSO1 to put a user who
is a member of ED into one but not both of PE1 and
QE1. The fourth row authorizes PSO1 to put a user who

Table 2

Example of can_assign.txt with Prerequisite groups

Administrative group Prerequisite group Group range

PSO1: ED: [E1, PL1]:

PSO2: ED: [E2, PL2]:

DSO: ED: (ED, DIR]:

SSO: E: [ED, ED]:

6 It is actually possible to assign a user up to 1000 global groups but

this causes logon failure due to too many SIDs. As we reduced the

number of groups, we found that the Windows NT system works

successfully with 993 groups simultaneously assigned to a user. This

result must depend on the internal data structure of account database

in the NT kernel.

7 In our actual implementation, we use group set which is identical to

group range. i.e., group set for group range [E1, PL1] is E1, PE1, QE1,

PL1.

G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49 43

is a member of both PE1 and QE1 into PL1. Note that,
a user could have become a member of both PE1 and
QE1 only by actions of a more powerful administrator
than PSO1. The rest of Table 3 is similarly interpreted.

Assignment of a user to a group in URA97 means
explicit assignment. Implicit assignment to junior
groups happens as a consequence and side-e�ect of
explicit assignment. In other words can_assign.txt
applies only to explicit membership.

3.2. User-group revocation

URA97 authorizes revocation by the can_revoke re-
lation which we store in the can_revoke.txt ®le. An
example is shown in Table 4. The meaning of each row
in can_revoke.txt is that a member of the adminis-
trative group can revoke membership of a user from any
regular group in group range. We would typically expect
some correlation between the range authorized for an
administrative group in can_assign.txt and in
can_revoke.txt, but this is not required by the model.

URA97 de®nes two notions of revocation called weak
and strong. Weak revocation is straightforward and has
impact only on explicit membership in the group in
question. Strong revocation requires revocation of both
explicit and implicit membership. Strong revocation of a
user U's membership in role x requires that U be re-
moved not only from explicit membership in x, but also
from explicit (or implicit) membership in all groups se-
nior to x. Strong revocation therefore has a cascading
e�ect upwards in the group hierarchy. In URA97 strong
revocation is e�ectively equivalent to a series of weak
revocations. Strong revocation is a convenient operation

for administrators even though it can logically be
accomplished by multiple weak revokes.

Let us consider the example shown in Table 4 and
interpret it in context of the hierarchies of Figs. 1 and 2.
Let Bob be a member of PSO1, and let this be the only
administrative group he has. Bob is authorized to re-
voke membership of users from groups E1, PE1 and
QE1. Table 5(b) illustrates whether or not Bob can
strongly revoke membership of a user from group E1
based on Table 5(a). The e�ect of Bob's strong revoca-
tion of each of these users from E1 is shown in Table
5(c). Bob is not allowed to strongly revoke Eve and
Frank from E1 because they are members of senior
groups outside the scope of Bob's revoking authority. If
Bob was assigned to the DSO group he could strongly
revoke Eve from E1 but still would not be able to
strongly revoke Frank's membership in E1. In order to
strongly revoke Frank from E1, Bob needs to be in the
SSO group. The general rule is that strong revocation
takes e�ect within the revocation range authorized for
an administrative group.

URA97 further de®nes two options for strong revo-
cation. The options are called drop and continue. In
Table 5(a), Bob is not allowed to strongly revoke Eve
and Frank from E1 because they are members of senior
groups outside the scope of Bob's revoking authority.
At this step, we can choose one of two options. With the
drop option strong revocation takes no e�ect. Otherwise
we can strongly revoke a user from groups inside the
scope of Bob's revoking authority. For example assume
that we choose drop option for strong revocation of Eve
from E1 and choose continue for strong revocation of
Frank from E1. The result will be as shown in Table 6.

The strong revocation of Eve from E1 takes no e�ect
because we chose the drop option but the strong revo-
cation of Frank from E1 takes partial e�ect. Frank still
has group membership for PL1 and DIR groups outside
the scope of Bob's revoking authority. We emphasize
that the e�ect of strong revocation can be achieved by a
series of weak revocations, but it is a convenient oper-
ation to have in both variations (drop and continue).

4. Implementation details

We use Microsoft RPC to enforce desired behavior of
URA97 with respect to di�erent administrative groups.
The RPC mechanism is the simplest way to implement
client-server applications, because it keeps the details of
network communications out of the application code.
The security of RPC is part of the operating system that
uses it. Therefore, Microsoft RPC on Windows NT can
use the Windows NT security built in as part of the
operating system. The Windows NT security model is
designed for C2-level security, as de®ned by the US
Department of Defense (MicrosoftPress, 1997b). One of

Table 3

Example of can_assign.txt with Prerequisite conditions

Administrative group Prerequisite condition Group range

PSO1: ED: [E1, E1]:

PSO1: ED ^ QE1: [PE1, PE1]:

PSO1: ED ^ PE1: [QE1, QE1]:

PSO1: PE1 ^ QE1: [PL1, PL1]:

PSO2: ED: [E2, E2]:

PSO2: ED ^ QE2: [PE2, PE2]:

PSO2: ED ^ PE2: [QE2, QE2]:

PSO2: PE2 ^ QE2: [PL2, PL2]:

DSO: ED: (ED, DIR):

SSO: E: [ED, ED]:

SSO: ED: (ED, DIR]:

Table 4

Example of can_revoke.txt

Administrative group Group range

PSO1: [E1, PL1):

PSO2: [E2, PL2):

DSO: (ED, DIR):

SSO: [ED, DIR]:

44 G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49

the most important requirements of C2-level security is
that the owner of a resource (such as a ®le) must be able
to control access to the resource. In order to use this
aspect, we use named pipes as RPC's transport mecha-
nism, and since pipes are part of the ®le system, we can

use NT security mechanisms using Microsoft RPC. We
reiterate, the security is implemented by the OS (Win-
dows NT) and not by the RPC mechanism. 8

The main mechanism is illustrated in Fig. 3. In Fig. 3,
let us assume that Alice owns the RPC server program
and two ®les assign.exe and explicit.txt. The RPC
server program can be executed by everyone and Alice
can execute the executable ®le assign.exe which should
refer explicit.txt ®le to accomplish its function. Alice
also can read and write the text ®le explicit.txt.
We can summary the permission lists for these ®les as
follows.

Table 5

Example of strong revocation

(a) account database and explicit.txt prior to strong revocation

account database explicit.txt

DIR:: Frank DIR:: Frank

PL1:: Frank, Eve PL1:: Frank, Eve

PL2:: PL2::

PE1:: Frank, Eve, Dave,

Cathy

PE1:: Frank, Eve,

Dave, Cathy

PE2:: PE2::

QE1:: Frank, Eve, Dave QE1:: Frank, Eve, Dave

QE2:: QE2::

E1:: Frank, Eve, Dave,

Cathy

E1:: Frank, Eve,

Dave, Cathy

E2:: E2::

ED:: ED::

E:: E:

(b) Status prior to strong revocation

User E1 PE1 QE1 PL1 DIR Bob can revoke

user from E1

Cathy Yes Yes No No No Yes

Dave Yes Yes Yes No No Yes

Eve Yes Yes Yes Yes No No

Frank Yes Yes Yes Yes Yes No

(c) account database and explicit.txt after strong revocation

account database explicit.txt

DIR:: Frank DIR:: Frank

PL1:: Frank, Eve PL1:: Frank, Eve

PL2:: PL2::

PE1:: Frank, Eve PE1:: Frank, Eve

PE2:: PE2::

QE1:: Frank, Eve QE1:: Frank, Eve

QE2:: QE2::

E1:: Frank, Eve E1:: Frank, Eve

E2:: E2::

ED:: ED::

E:: E:

Table 6

Result of strong revocation with options

account database explicit.txt

DIR:: Frank DIR:: Frank

PL1:: Frank,Eve PL1:: Frank,Eve

PL2:: PL2::

PE1:: Eve PE1:: Eve

PE2:: PE2::

QE1:: Eve QE1:: Eve

QE2:: QE2::

E1:: Eve E1:: Eve

E2:: E2::

ED:: ED::

E:: E:

8 Usually, a protocol sequence in RPC contains options for network

communications protocols. Named pipes (ncacn_np) is one option of

transport protocols for communications.

G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49 45

According to this list, no one can access assign.exe

and explicit.txt, except for Alice. However, by
means of using Microsoft RPC named pipes, any user
can execute assign.exe and access explicit.txt. This
allows us to provide users access tp explicit.txt

but only by way of assign.exe. In other words,
assign.exe is a protected subsystem which runs with
di�erent permissions than the user who invokes it. 9

When the RPC Server program is executed, the e�ective
user of the process is the owner (Alice) of the ®le, ac-
quiring that user's access rights for duration of the
program contained in this ®le. Therefore, a user who is
executing RPC server program can invoke assign.exe

and access explicit.txt. Using this feature a user who
is working as an administrative group can read and
write reference ®les: explicit.txt, grouphr.txt,
can_assign.txt and can_revoke.txt. Thereby we can
enforce desired behavior of URA97 with respect to
di�erent administrative groups.

To implement URA97 in Windows NT we also use
several reference ®les introduced in the previous sections
and set their permission bits as shown in Table 7. 10

These procedures can read and write the four reference
®les. We previously described the structure of ®les ex-

plicit.txt and grouphr.txt in Section 2, and

can_assign.txt and can_revoke.txt in Section 3. For
simplicity all these ®les in our implementation are
owned by user rbac.

There is one procedure each for assigning a user to a
group, doing a weak revoke of membership and doing a
strong revoke of membership. In our implementation, a
user invokes the procedure call to grant or revoke a
group from or to another user. The procedure calls are
as follows.
· assign(user, tgroup)
· weak_revoke(user, tgroup)
· strong_revoke(user, tgroup, option)

The parameters user and tgroup (target group)
specify which user is to be assigned to tgroup, or to be
weakly or strongly revoked from tgroup. If the
strong_revoke operation fails because it is not autho-
rized by can_revoke.txt the drop or continue options
will be applied as discussed earlier. In our implementa-
tion this option is designated as part of the command
line call to strong_revoke, so that it might be called from
within programs.

All three procedures follow the basic steps shown in
Fig. 4. The diagram shows the data ¯ow and the rela-
tionship between functions and ®les. Each procedure
call include several functions. The description for each
function is as follows.
· findgrp(): returns a list all groups to which the user

belongs (explicitly or implicitly). It is command line
utility provided by Microsoft Resource kit

· authorization(): checks the invoker's authorization
with respect to can_assign.txt or can_revoke.txt

· prerequisiteTest(): checks whether the user satis-
®es the prerequisite condition

· grouphr(): return the senior and junior list for
tgroup

· rangecheck(): checks if strong_revoke is authorized
and o�ers option of drop or continue

· updategrp(): generates batch ®le to update account

database and updates explicit.txt ®les as appro-
priate 11

In general authorization needs to be tested for mul-
tiple rows in can_assign.txt or can_revoke.txt. In
such cases the authorization and prerequisiteTest pro-
cedures are called repeatedly for each row.

These procedures are called at the Windows NT
command line prompt (which is actually DOS prompt)
as follows.

[usage] assign username target_group
[usage] weak_revoke username target_group
[usage] strong_revoke username target_group
option.

Filename Owner Permission

User or
Group

Permission

RPCserver.exe Alice Everyone X
assign.exe Alice Alice X
explicit.txt Alice Alice RW

RBAC GUI

Client side

return

RPC named pipes (ncacn_np)

RPC Client RPC Server

call remote
procedure :

assign.exe

explicit.txt

Server side

assign.exe

Fig. 3. RPC Mechanism.

9 The Unix operating system has a similar feature by means of setuid

and setgid programs (Bach, 1990). NT provides support for such

protected subsystems only by means of RPC. It should be noted that

Microsoft RPC can be local in that the client and server can be the

same machine, so is a general mechanism for this purpose.
10 Each entry has the name of either a user account or a group, and a

set of permissions that apply to that account or accounts in that group.

R W X stand for READ, WRITE, and EXECUTE, respectively.

11 There is command line utility to assign a user to group(s) such as

net.exe. The updategrp() function generates batch ®le including this

command line utility with several parameters according to its syntax.

46 G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49

In order to make our implementation more convenient
we developed graphical user interfaces which interact
with these procedures to do user-group assignment and
revocation. The graphical user interfaces are illustrated

in Figs. 5 and 6 and are called RBACGUI and
RBACHR, respectively. They were developed using
Visual Basic programming (MicrosoftPress, 1997a).
RBACGUI is used to initiate user-group assignment

Table 7

The permission of reference ®les and procedures

Filename Owner Permission

User or Group Permission

RPCserver.exe rbac Everyone X

RPCclient.exe rbac Everyone X

assign.exe rbac rbac X

weak_revoke.exe rbac rbac X

strong_revoke.exe rbac rbac X

explicit.txt rbac rbac RW

can_assign.txt rbac rbac RW

can_revoke.txt rbac rbac RW

grouphr.txt rbac rbac RW

assign

revoke

findgrp()
preprequi-

siteTest()

grouphr()

account database

grouphr.txt

explicit.txt

FUNCTION

FILE

READ

WRITE

CALL

account database

authorization()

rangecheck()

updategrp()

account database

explicit.txt

can_assign.txt

can_revoke.txt

Fig. 4. Data ¯ow diagram.

Fig. 5. User interface: RBACGUI.

G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49 47

and revocation instead of typing the above as command
line procedure calls. There are three buttons for doing
user-group assignment and revocation; ASSIGN, W-
REVOKE (weak revoke), and S-REVOKE (strong
revoke). RBACHR is an interface which displays all
junior and senior lists according to the group hierarchy.
This implementation is convenient for administrative
groups since they only need to de®ne the group hierar-
chy and the relations can_assign and can_revoke. As
discussed in Section 2 our implementation is scalable
to large group hierarchies, since a single user can be
assigned to as many as 993 groups in NT.

5. Conclusion

In this paper, we have described our experiment to
provide two useful extensions to the Windows NT group
mechanism by means of Microsoft RPC programs. First
we have added hierarchical groups by means of explicit
assignment to junior groups. When a user is assigned to
a senior group the system automatically adds the user to

all junior groups. Similarly, when a user's membership is
revoked from a group, revocation from appropriate
junior groups is automatically carried out. This behavior
is adapted from the RBAC96 model. Second, we have
adapted the URA97 model for decentralized user-group
assignment and implemented it in Windows NT. Our
implementations use Microsoft RPC programs to en-
force authorization to add and remove users from
groups. Our results indicate that Windows NT has ad-
equate ¯exibility to accommodate sophisticated access
control models to some extent. We also indicated that
the Windows NT has better scalability in simulating
group hierarchies by explicit assignment to junior
groups, as compared with Unix.

Acknowledgements

This work is partially supported by grant CCR-
9503560 from the National Science Foundation and by
the University Research Program of NSA at the Labo-
ratory for Information Security Technology at George
Mason University.

Fig. 6. User interface: RBACHR.

48 G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49

References

Bach, M., 1990. The Design of the UNIX Operating System. Prentice-

Hall, Englewood, NJ.

Fernandez, E.B., Wu, J., Fernandez, M.H., 1995. User group

structures in object-oriented database authorization. In: Biskup,

J., Morgernstern, M., Landwehr, C. (Eds.), Database Security

VIII: Status and Prospects. North-Holland, Amsterdam.

Ferraiolo, D., Barkley, J., 1997. Specifying and managing role-based

access control within a corporate intranet. In: Proceedings of

Second ACM Workshop on Role-Based Access Control. ACM,

Fairfax, VA, 6±7 November, pp. 77±82.

Grimes, R., 1997. Professional DCOM Programming. Wrox Press.

Hu, M.-Y., Demurjian, S.A., Ting, T.C., 1995. User-role based

security in the ADAM object-oriented design and analyses envi-

ronment. In: Biskup, J., Morgernstern, M., Landwehr, C. (Eds.),

Database Security VIII: Status and Prospects. North-Holland,

Amsterdam.

MicrosoftPress, 1997a. Microsoft Visual Basic 5.0 Programmer's

Guide. Microsoft Press.

MicrosoftPress, 1997b. Microsoft Windows NT Server Networking

Guide. Microsoft Press.

Nyanchama, M., Osborn, S., 1995. Access rights administration in

role-based security systems. In: Biskup, J., Morgernstern, M.,

Landwehr, C. (Eds.), Database Security VIII: Status and Prospects.

North-Holland, Amsterdam.

Rabitti, F., Bertino, E., Kim, W., Woelk, D., 1991. A model of

authorization for next-generation database systems. ACM Trans-

actions on Database Systems 16 (1).

Rutstein, C.B., 1997. Windows NT Security. McGraw-Hill, New

York.

Sandhu, R.S., 1988. The NTree: a two dimension partial order for

protection groups. ACM Transactions on Computer Systems 6 (2),

197±222.

Sandhu, R., Bhamidipati, V., 1997. The URA97 model for role-based

administration of user-role assignment. In: Lin, T.Y., Qian, X.

(Eds.), Database Security XI: Status and Prospects. North-

Holland, Amsterdam.

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E., 1996. Role-

based access control models. IEEE Computer 29 (2), 38±47.

Sutton, S.A., 1997. Windows NT Security Guide. Addison-Wesley

Developers Press, UK.

Gail-Joon Ahn is an assistant professor of Computer Science Depart-
ment at University of North Carolina at Charlotte. His principal re-
search and teaching interests are in information and systems security.
Ahn received PhD and MS degrees from George Mason University,
Fairfax, Virginia, and BS degree in Computer Science from SoongSil
University, Seoul, Korea. He was a research associate at the Labora-
tory for Information Security Technology, George Mason University.
His research interests include access control, security architecture for
distributed objects, and secure e-commerce systems. Ahn is a member
of ACM and IEEE Computer Society.

Ravi Sandhu is professor of Information and Software Engineering at
George Mason University, Fairfax, Virginia; and director of the
Laboratory for Information Security Technology at GMU. His prin-
cipal research and teaching interests are in information and systems
security. Sandhu received PhD and MS degrees from Rutgers Uni-
versity, New Jersey, and BTech and MTech degrees from IIT Bombay
and Delhi, India, respectively. Sandhu charis ACM's Special Interest
Group on Security Audit and Control.

G.-J. Ahn, R. Sandhu / The Journal of Systems and Software 56 (2001) 39±49 49

