INFS 766 Internet Security Protocols

<u>Lecture 6</u> Digital Certificates

Prof. Ravi Sandhu

PUBLIC-KEY CERTIFICATES

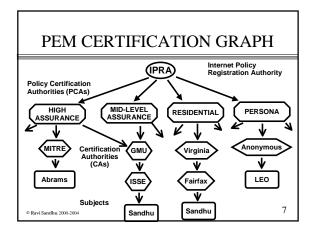
- * reliable distribution of public-keys
- public-key encryption
 - > sender needs public key of receiver
- * public-key digital signatures
 - > receiver needs public key of sender
- * public-key key agreement
 - > both need each other's public keys

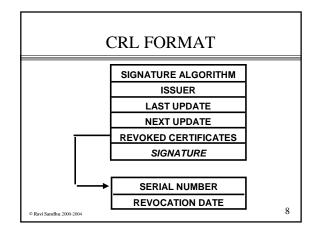
© Ravi Sandhu 2000-2004

2

THE CERTIFICATE TRIANGLE user X.509 attribute certificate SPKI certificate sPKI certificate sPKI certificate sPKI certificate sPKI certificate

X.509 CERTIFICATE VERSION SERIAL NUMBER SIGNATURE ALGORITHM ISSUER VALIDITY SUBJECT SUBJECT PUBLIC KEY INFO SIGNATURE




CERTIFICATE TRUST

- how to acquire public key of the issuer to verify signature
- whether or not to trust certificates signed by the issuer for this subject

© Ravi Sandhu 2000-2004

6

PGP BOTTOM UP TRUST MODEL

- * How does Alice get Bob's public key
 - > directly from Bob through some secure channel (e.g., post, phone, floppy)
 - From Chuck, who is known to both Alice and Bob and introduces Bob to Alice
 - > from a trusted certifying authority
- PGP has mechanisms to support these, and related, alternatives

© Ravi Sandhu 2000-2004

9

X.509 CERTIFICATES

- * X.509v1
 - > very basic
- * X.509v2
 - > adds unique identifiers to prevent against reuse of X.500 names
- * X.509v3
 - > adds many extensions
 - > can be further extended

© Ravi Sandhu 2000-2004

10

SEPARATE KEYS FOR SEPARATE PURPOSES

- RSA is the only known public-key cryptosystem in which the same public-private key pair can be used for
 - > digital signatures
 - > encryption
- * perceived as a major advantage

SIGNATURE KEYS

- private key: must be private for entire life, may never leave smart card
 - > needs to be securely destroyed after lifetime
 - > no need for backup or archiving (would conflict with above)
 - > no need to weaken or escrow due to law
- public key: must be archive possibly for a long time

© Ravi Sandhu 2000-2004 11

© Ravi Sandhu 2000-2004 12

ENCRYPTION KEY

- private key: backup or archive required for recovery
 - > should not be destroyed after lifetime
 - > may be weakened/escrowed due to law
- * public key:
 - no need to backup RSA or other encryption keys
 - > need to backup Diffie-Hellman key agreement keys

13

15

© Ravi Sandhu 2000-2004

X.509 INNOVATIONS

- * distinguish various certificates
 - > signature, encryption, key-agreement
- * identification info in addition to X.500 name
- * name other than X.500 name
 - > email address
- * issuer can state policy and usage
 - good enough for casual email but not good enough for signing checks
- limits on use of signature keys for further certification

© Post Constlus 2000 2004

X.509v3 EXTENSIONS

- X.509v3 same as X.509v2 but adds extensions
- provides a general extension mechanism
 - > extension type: registered just like an algorithm is registered
 - > standard extension types: needed for interoperability

© Ravi Sandhu 2000-2004

X.509v3 EXTENSIONS CRITICALITY

- non-critical: extension can be ignored by certificate user
 - > alternate name can be non-critical
- critical: extension should not be ignored by certificate user
 - > limit on use of signatures for further certification

© Ravi Sandhu 2000-2004 16

X.509v3 EXTENSIONS CRITICALITY

- * criticality is flagged by certificate issuer
 - > certificate user may consider non-critical extensions more important than critical ones
 - certificate user may refuse to use certificate if some extensions are missing
- critical extensions should be few and should be standard

© Ravi Sandhu 2000-2004 17

X.509v3 NAMES

- * internet email address
- * internet domain name
- * web uri (url's are subset of uri)
- * IP address
- * X.400 email address
- * X.500 directory name
- * registered identifier
- other name

© Ravi Sandhu 2000-2004 18

X.509v3 STANDARD EXTENSIONS

- * Key and policy information
- Subject and issuer attributes
- Certification path constraints
- * Extensions related to CRLs
 - > will be discussed with CRLs

andhu 2000-2004

KEY AND POLICY INFORMATION

- key usage
 - > critical: intended only for that purpose, limits liability of CA
 - > non-critical: advisory to help find the correct key, no liability implication
- * private-key usage period
 - > certificate valid for 2 years for verifying signature
 - > key valid only for one year for signing
- certificate policies
 - > for CAs

19

21

20 Paul Sandhu 2000 2004

SUBJECT AND ISSUER ATTRIBUTES

- Subject alternative names
- * Issuer alternative names
- Subject directory attributes
 - > whatever you like
 - > position, phone, address etc.

© Ravi Sandhu 2000-2004

CERTIFICATION PATH CONSTRAINTS

- *** Basic Constraints**
 - > can or cannot act as CA
 - > if can act as CA limit on certification path
 - limit=1 means cannot certify other CAs
- ❖ Name Constraints
 - > limits names of subjects that this CA can issue certificates for
- * Policy Constraints
 - > concerned with CA policies

© Ravi Sandhu 2000-2004 22

CERTIFICATE REVOCATION LISTS

- CRLs issued periodically as per CA policy
 - > off-cycle CRLs may also be needed
 - > blank CRLs can be issued

© Ravi Sandhu 2000-2004 23

CERTIFICATE REVOCATION LISTS

- CRL distribution
 - > pull method
 - > push method
- * DMS example
 - pull method with push for compromised key list (CKL) which is broadcast via secure email, single CKL for entire system

© Ravi Sandhu 2000-2004 24

CERTIFICATE REVOCATION LISTS

- * immediate or real-time revocation
 - > needs query to CA on every certificate
 - > maybe ok for small closed communities

25

27

Sandhu 2000-2004

REVOCATION TIME-LINE

Issue Of Revocation CRL 1 Request CRL 2

Compromise Revocation Event Time

O Ravy Sandhu 2000-2004

26

OCSP

ON-LINE CERTIFICATE STATUS PROTOCOL

- * consult authoritative server
- * the server in turn can look up CRLs

© Ravi Sandhu 2000-2004

SHORT-LIVED CERTIFICATES

- Authorization certificates can be short lived
 - > minutes, hours, days instead of
 - > months, years

© Ravi Sandhu 2000-2004

X.509 CRL EXTENSIONS

- *** General Extensions**
- *** CRL distribution points**
- **⋄ Delta-CRLs**
- * Indirect-CRLs
- * Certificate Suspension

© Ravi Sandhu 2000-2004 29

GENERAL EXTENSIONS

- * Reason Code
 - > Key Compromise
 - > CA Compromise
 - > Affiliation changed
 - > Superseded
 - > Cessation of operation
 - > Remove from CRL: defer till Delta-CRL
 - > Certificate hold: defer
- * Invalidity Date

Ravi Sandhu 2000-2004

30

28

CRL DISTRIBUTION POINTS

- * CRLs can get very big
 - > version 1 CRL (1988, 1993)
 - · each CA has two CRLs: one for end users, one for CAs
 - · end user CRL can still be very big
 - > version 2 CRL
 - can partition certificates, each partition associated with one CRL
 - · distribution point
 - also can have different distribution points for different revocation reasons

© Ravi Sandhu 2000-2004

31

33

35

CRL DISTRIBUTION POINTS

- certificate extension field, says where to look
- - > distribution point for this CRL and limits on scope and reason of revocation
 - > protects against substitution of a CRL from one distribution point to another

32

34

10 N 2000 2001

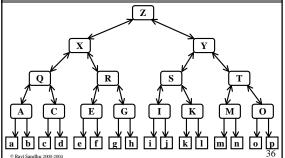
DELTA-CRLs

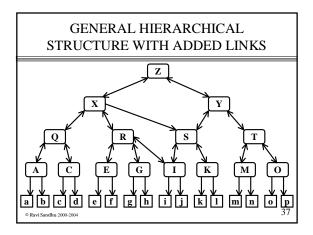
- * Delta CRL indicator
 - > only carries changes from previous CRL
- Remove from CRL reason code causes purge from base CRL (stored at certificate user)
- removal due to expiry of validity period or restoration of suspension

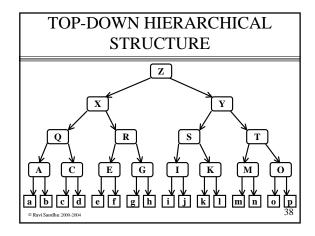
© Ravi Sandhu 2000-2004

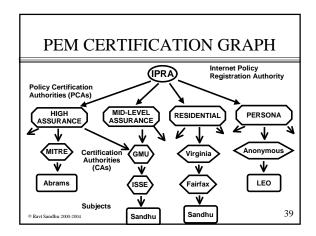
INDIRECT-CRL

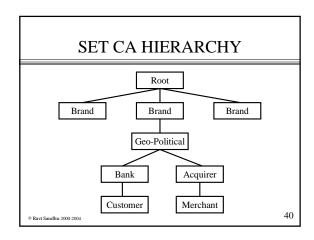
- CRL can be issued by different CA than issuer of certificate
 - > allows all compromise revocations to be one list
 - allows all CA revocations to be on one list (simplify certificate chasing)


© Ravi Sandhu 2000-2004


CERTIFICATE SUSPENSION


- * Certificate hold reason code in CRL
- Supporting CRL entry extension
 - > Instruction code: instructions on what to do with held certificate
 - · call CA, repossess token


© Ravi Sandhu 2000-2004


GENERAL HIERARCHICAL STRUCTURE

