INFS 766 Internet Security Protocols

<u>Lectures 3 and 4</u> Cryptography in network protocols

Prof. Ravi Sandhu

SECRET KEY CRYPTOSYSTEM

- confidentiality depends only on secrecy of the key
 > size of key is critical
- secret key systems do not scale well
 with N parties we need to generate and distribute N*(N-1)/2 keys

* A and B can be people or computers

© Ravi Sandhu 2000-2004

7

MASTER KEYS AND SESSION KEYS

long-term or master keys

> prolonged use increases exposure

* session keys

🖻 Ravi Sandhu 2000-2004

> short-term keys communicated by means of

8

- · long-term secret keys
- public key technology

CRYPTANALYSIS
 ciphertext only
 cryptanalyst only knows ciphertext
 known plaintext
 cryptanalyst knows some plaintext-ciphertext pairs
 chosen plaintext
 chosen ciphertext

KNOWN PLAINTEXT		
	ATTACK	
	uires 2 ³⁹ ≈ 5 * 10 ¹¹ trials on ortable from USA) time required	
1	20,000 years	
10 ³	20 years	
10 ⁶	6 days	
10 ⁹	9 minutes	
10 ¹²	0.5 seconds	
© Ravi Sandhu 2000-2004		10

KNOWN PLAINTEXT ATTACK

\$ 56 bit key requires 2⁵⁵ ≈ 3.6 * 10^{^16} trials on average (DES)
 \$ trials/second time required

 10⁹ years
 10³
 10⁶ years
 10⁶
 10³ years
 10⁹
 1 year
 10¹²
 10 hours

KNOWN PLAINTEXT ATTACK \div 80 bit key requires $2^{79} ≈ 6 * 10^{23}$ trials on average (SKIPJACK) * trials/second time required 10¹⁶ years 1 10³ 10¹³ years 1**0**⁶ 10¹⁰ years 10⁷ years 10⁹ 10¹² 10⁴ years 12 Ravi Sandhu 2000-2004

KNOWN PLAINTEXT
ATTACK

 \div 128 bit key requires $2^{127}\approx 2$ * $10^{38}\,trials$ on average (IDEA)

13

* trials/second	time required
-----------------	---------------

1	10 ³⁰ years
10 ³	10 ²⁷ years
10 ⁶	10 ²⁴ years
10 ⁹	10 ²¹ years
10 ¹²	10 ¹⁸ years
© Ravi Sandhu 2000-2004	

PERFECT SECRECY VERNAM ONE-TIME PAD * known plaintext reveals the portion of the key that has been used, but does not reveal anything about the future bits of the key * has been used * can be approximated

© Ravi Sandhu 2000-2004

19

- solves the key distribution problem provided there is a reliable channel for communication of public keys
- requires reliable dissemination of 1 public key/party
- scales well for large-scale systems

© Ravi Sandhu 2000-2004

PUBLIC KEY ENCRYPTION

- confidentiality based on infeasibility of computing B's private key from B's public key
- key sizes are large (512 bits and above) to make this computation infeasible

RSA	
☆ public key is (n,e)	
<pre></pre>	
♦ encrypt: C = M ^e mod n	
☆ decrypt: M = C ^d mod n	
© Ravi Sandhu 2000-2004	28

26

- * choose 2 large (100 digit) prime numbers p and q
- * compute n = p * q
- * pick e relatively prime to (p-1)*(q-1)
- \Rightarrow compute d, e*d = 1 mod (p-1)*(q-1)
- % publish (n,e)
- * keep d secret (and discard p, q)

© Ravi Sandhu 2000-2004

PROTECTION OF RSA KEYS
 compute d, e*d = 1 mod (p-1)*(q-1)
 if factorization of n into p*q is known, this is easy to do
 security of RSA is no better than the difficulty of factoring n into p, q

29

25

© Ravi Sandhu 2000-2004

RSA KEY SIZE			
	is selected by the		
≻ casual	384 bits		
> "commercial"	512 bits		
≻ "military"	1024 bits		
© Ravi Sandhu 2000-2004		31	

NIST DIGITAL SIGNATURE STANDARD

 signature does not repeat, since r will be different on each occasion

 if same random number r is used for two messages, the system is broken

- * message expands by a factor of 2
- RSA signatures do repeat, and there is no message expansion

38

DIFFIE-HELLMAN **KEY AGREEMENT** y_A=a^xA mod p y_B=a^{xB} mod p Α public key public key В private key private key XA XB $\mathbf{k} = \mathbf{y}_{B}^{\mathbf{x}_{A}} \mod \mathbf{p} = \mathbf{y}_{A}^{\mathbf{x}_{B}} \mod \mathbf{p} = \mathbf{a}^{\mathbf{x}_{A} * \mathbf{x}_{B}} \mod \mathbf{p}$ system constants: p: prime number, a: integer 39 © Ravi Sandhu 2000-2004

ELLIPTIC CURVE CRYPTOGRAPHY

- * mathematics is more complicated than RSA or Diffie-Hellman
- * elliptic curves have been studied for over one hundred years

44

* computation is done in a group defined by an elliptic curve

© Ravi Sandhu 2000-2004

DESIRED CHARACTERISTICS

★ weak hash function
 > difficult to find M' such that H(M')=H(M)
 ★ given M, m=H(M) try messages at random to find M' with H(M')=m
 > 2^k trials on average, k=64 to be safe

50

