INFS 766 Internet Security Protocols

<u>Lecture 1</u> Firewalls

Prof. Ravi Sandhu

INTERNET INSECURITY

- * Internet insecurity spreads at Internet speed
 - > Morris worm of 1987
 - Password sniffing attacks in 1994
 - > IP spoofing attacks in 1995
 - > Denial of service attacks in 1996
 - > Email borne viruses 1999
 - > Distributed denial of service attacks 2000
 - > Fast spreading worms and viruses 2003
 - > Spam 2004
 - > ... no end in sight
- * Internet insecurity grows at super-Internet speed
 - > security incidents are growing faster than the Internet (which has roughly doubled every year since 1988)

THREATS, VULNERABILITIES ASSETS AND RISK

- ***** THREATS are possible attacks
- *** VULNERABILITIES are weaknesses**
- ASSETS are information and resources that need protection
- RISK requires assessment of threats, vulnerabilities and assets

5

© Ravi Sandhu 2000-2004

CLASSICAL INTRUSIONS SCENARIO 1

* Insider attack

> The insider is already an authorized user

* Insider acquires privileged access

- > exploiting bugs in privileged system programs
- > exploiting poorly configured privileges
- Install backdoors/Trojan horses to facilitate subsequent acquisition of privileged access

*** Outsider attack**

- Acquire access to an authorized account
- * Perpetrate an insider attack

- * Outsider/Insider attack
- Spoof network protocols to effectively acquire access to an authorized account

© Ravi Sandhu 2000-2004

- Flooding network ports with attack source masking
- TCP/SYN flooding of internet service providers in 1996

13

INFRASTRUCTURE ATTACKS

* router attacks

> modify router configurations

- * domain name server attacks
- * internet service attacks
 - > web sites
 - > ftp archives

© Ravi Sandhu 2000-2004

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

- > connectionless routing of packets
- *** UDP (User Datagram Protocol)**
 - > unreliable datagram protocol
- *** TCP (Transmission Control Protocol)**
 - > connection-oriented, reliable, transport protocol

19

TCP/IP PROTOCOL STACK		
INFRASTRUCTURE PROTOCOLS		
layer 5-7	TELNET FTP SMTP HTTP etc	
4	DNS TCP UDP RIP EGP BGP	
3	ICMP IP ARP RARP	
² Ethernet Token-Ring ATM PPP etc		
© Ravi Sandhu 2000-2004 2		

TCP/IP PROTOCOL STACK	
SECURITY PROTOCOLS	
layer 5-7 TELNET FTP SMTP HTTP	
4 DNS SSL TCP UDP RIP EGP BGP	
3 ICMP IPSEC IP ARP RARP	
² Ethernet Token-Ring ATM	
© Ravi Sandhu 2000-2004 23	

INTERNET STANDARDS PROCESS * IETF: Internet Engineering Task Force > Application Area > General Area > Internet Area

- > Operational Requirements Area
- > Routing Area
- > Security Area
- > Transport Area
- > User Services Area

25

- ٠ Transport Layer Security (tls)
- Web Transaction Security (wts)
- XML Digital Signatures (xmldsig) ۰

BASIC TCP/IP VULNERABILITIES

* solution

- allow a restricted set of protocols between selected external and internal machines
- > otherwise known as firewalls

IP HEADER FORMAT

- * version: 4bit, currently v4
- * header length: 4 bit, length in 32 bit words
- * TOS (type of service): unused
- * total length: 16 bits, length in bytes
- identification, flags, fragment offset: total 16 bits used for packet fragmentation and reassembly
- * TTL (time to live): 8 bits, used as hop count
- * Protocol: 8 bit, protocol being carried in IP packet, usually TCP, UDP but also ICMP, IPSEC, IP, IPX, PPP, Ethernet

33

- header checksum: 16 bit checksum
- * source address: 32 bit IP address
- destination address: 32 bit IP address

PACKET FILTERING FIREWALLS

- Should never allow packet with source address of internal machine to enter from external internet
- Cannot trust source address to allow selective access from outside

INTRUSION DETETCION TECHNIQUES

- * Policy detection (or knowledge-based)
 - > default permit
 - attack-signature based detection
 - also called misuse detection
 - > default deny
 - specification-based detection
- Anomaly detection (or behavior-based)
 - · requires user profiling
 - requires some learning capability in the system
- * Combinations of these

INTRUSION DETECTION DATA SOURCE

* network-based intrusion detection

- > multiple sensor points
- * host-based intrusion detection
 - > multi-host based
- * application-based intrusion detection
- * combinations of these

© Ravi Sandhu 2000-2004

66

INTRUSION DETECTION CHALLENGES

* False alarm rate

* Performance and scalability

- * diseased: 100
- * disease free: 999,900
- * false positive: 9,999
- * true positive: 99
- * Alice's chance of disease: 99/(9,999+99) = 1/100

© Ravi Sandhu 2000-2004

BASE RATE FALLACY 99.99% ACCURACY

- * population: 1,000,000
- * diseased: 100
- * disease free: 999,900
- * false positive: 99.99
- * true positive: 99.99
- * Alice's chance of disease: 99.99/(99.99+99.99) = 1/2

© Ravi Sandhu 2000-2004

NETWORK-BASED INTRUSION DETECTION SIGNATURES

73

NETWORK-BASED INTRUSION DETECTION ADVANTAGES

- ***** Complements firewalls
- * broad visibility into network activity
- * no impact on network performance
- * transparent installation

© Ravi Sandhu 2000-2004

NETWORK-BASED INTRUSION DETECTION DISADVANTAGES

***** False positives

- * miss new unknown attacks
- * scalability with high-speed networks
- * passive stance
- * emergence of switched Ethernet

HOST-BASED INTRUSION DETECTION

- * host wrappers or personal firewalls
 - look at all network packets, connection attempts, or login attempts to the monitored machine
 - example, tcp-wrapper
- * host-based agents
 - > monitor accesses and changes to critical system files and changes in user privilege
 - example, tripwire

© Ravi Sandhu 2000-2004

None exist

* ongoing efforts

- > CIDF: common intrusion detection framework
 - for sharing information
- > IETF Intrusion Detection Working Group just started

77

