INFS 766 Internet Security Protocols

<u>Lecture 6</u> Digital Certificates

Prof. Ravi Sandhu

X.509 CERTIFICATE

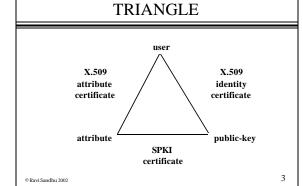
VERSION
SERIAL NUMBER
SIGNATURE ALGORITHM
ISSUER
VALIDITY
SUBJECT
SUBJECT PUBLIC KEY INFO
SIGNATURE

© Ravi Sandhu 2002

© Ravi Sandhu 2002

4

PUBLIC-KEY CERTIFICATES

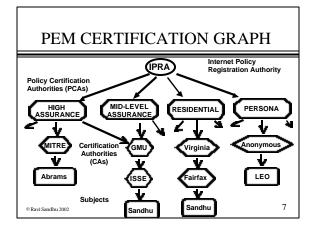

- reliable distribution of public-keys
- * public-key encryption
 - > sender needs public key of receiver
- * public-key digital signatures
 - > receiver needs public key of sender
- * public-key key agreement
 - > both need each other's public keys

© Ravi Sandhu 2002

2

X.509 CERTIFICATE

THE CERTIFICATE

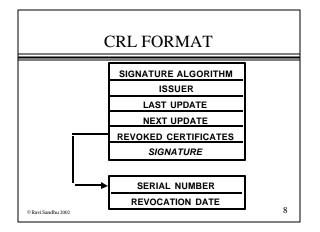


CERTIFICATE TRUST

- how to acquire public key of the issuer to verify signature
- whether or not to trust certificates signed by the issuer for this subject

© Ravi Sandhu 2002

6



X.509 CERTIFICATES

- * X.509v1
 - > very basic
- * X.509v2
 - > adds unique identifiers to prevent against reuse of X.500 names
- * X.509v3
 - > adds many extensions
 - > can be further extended

© Ravi Sandhu 2002

10

SEPARATE KEYS FOR SEPARATE PURPOSES

- RSA is the only known public-key cryptosystem in which the same public-private key pair can be used for
 - > digital signatures
 - > encryption
- perceived as a major advantage

© Ravi Sandhu 2002

11

PGP BOTTOM UP TRUST MODEL

- * How does Alice get Bob's public key
 - > directly from Bob through some secure channel (e.g., post, phone, floppy)
 - > from Chuck, who is known to both Alice and Bob and introduces Bob to Alice
 - > from a trusted certifying authority
- PGP has mechanisms to support these, and related, alternatives

© Ravi Sandhu 2002

SIGNATURE KEYS

- private key: must be private for entire life, may never leave smart card
 - > needs to be securely destroyed after lifetime
 - > no need for backup or archiving (would conflict with above)
 - > no need to weaken or escrow due to law
- public key: must be archive possibly for a long time

© Ravi Sandhu 2002 12

ENCRYPTION KEY

- private key: backup or archive required for recovery
 - > should not be destroyed after lifetime
 - > may be weakened/escrowed due to law
- * public key:
 - > no need to backup RSA or other encryption keys
 - > need to backup Diffie-Hellman key agreement keys

13

© Ravi Sandhu 2002

X.509v3 EXTENSIONS CRITICALITY

- non-critical: extension can be ignored by certificate user
 - > alternate name can be non-critical
- critical: extension should not be ignored by certificate user
 - > limit on use of signatures for further certification

© Ravi Sandhu 2002

X.509 INNOVATIONS

- distinguish various certificates
 - > signature, encryption, key-agreement
- * identification info in addition to X.500 name
- * name other than X.500 name
 - > email address
- * issuer can state policy and usage
 - good enough for casual email but not good enough for signing checks
- limits on use of signature keys for further certification

© Ravi Sandhu 2002 14

X.509v3 EXTENSIONS CRITICALITY

- criticality is flagged by certificate issuer
 - certificate user may consider non-critical extensions more important than critical ones
 - certificate user may refuse to use certificate if some extensions are missing
- critical extensions should be few and should be standard

© Ravi Sandhu 2002

X.509v3 EXTENSIONS

- X.509v3 same as X.509v2 but adds extensions
- provides a general extension mechanism
 - > extension type: registered just like an algorithm is registered
 - standard extension types: needed for interoperability

© Rayi Sandhu 2002

X.509v3 NAMES

- internet email address
- internet domain name
- * web uri (url's are subset of uri)
- * IP address
- * X.400 email address
- * X.500 directory name
- * registered identifier

other name

© Ravi Sandhu 2002 18

X.509v3 STANDARD EXTENSIONS

- Key and policy information
- Subject and issuer attributes
- Certification path constraints
- * Extensions related to CRLs
 - > will be discussed with CRLs

© Ravi Sandhu 2002

CERTIFICATION PATH CONSTRAINTS

- * Basic Constraints
 - > can or cannot act as CA
 - > if can act as CA limit on certification path
 - limit=1 means cannot certify other CAs
- * Name Constraints
 - Iimits names of subjects that this CA can issue certificates for
- Policy Constraints
 - > concerned with CA policies

© Ravi Sandhu 2002 22

KEY AND POLICY INFORMATION

- * key usage
 - > critical: intended only for that purpose, limits liability of CA
 - non-critical: advisory to help find the correct key, no liability implication
- * private-key usage period
 - > certificate valid for 2 years for verifying signature
 - > key valid only for one year for signing
- certificate policies

© Ravi Sandhu 2002

© Ravi Sandhu 2002

20

19

CERTIFICATE REVOCATION LISTS

- CRLs issued periodically as per CA policy
 - > off-cycle CRLs may also be needed
 - > blank CRLs can be issued

© Ravi Sandhu 2002 23

SUBJECT AND ISSUER ATTRIBUTES

- Subject alternative names
- Issuer alternative names
- * Subject directory attributes
 - > whatever you like
 - > position, phone, address etc.

CERTIFICATE REVOCATION LISTS

- * CRL distribution
 - > pull method
 - > push method
- DMS example
 - pull method with push for compromised key list (CKL) which is broadcast via secure email, single CKL for entire system

21 © Ravi Sandhu 2002 24

CERTIFICATE REVOCATION LISTS

- * immediate or real-time revocation
 - > needs query to CA on every certificate
 - > maybe ok for small closed communities

25

27

© Ravi Sandhu 2002

SHORT-LIVED CERTIFICATES

- Authorization certificates can be short lived
 - > minutes, hours, days instead of
 - > months, years

© Ravi Sandhu 2002

REVOCATION TIME-LINE Issue Of Revocation CRL 2 CRL 1 Request CRL 2 Compromise Revocation Time Perard Sandhu 2002

X.509 CRL EXTENSIONS

28

29

- * General Extensions
- CRL distribution points
- * Delta-CRLs
- * Indirect-CRLs
- Certificate Suspension

© Ravi Sandhu 2002

OCSP ON-LINE CERTIFICATE STATUS PROTOCOL

- * consult authoritative server
- * the server in turn can look up CRLs

GENERAL EXTENSIONS

- * Reason Code
 - > Key Compromise
 - > CA Compromise
 - > Affiliation changed
 - > Superseded
 - > Cessation of operation
 - > Remove from CRL: defer till Delta-CRL
 - > Certificate hold: defer
- Invalidity Date

© Ravi Sandhu 2002 30

© Ravi Sandhu 2002

CRL DISTRIBUTION POINTS

- * CRLs can get very big
 - > version 1 CRL (1988, 1993)
 - · each CA has two CRLs: one for end users, one for CAs
 - · end user CRL can still be very big
 - > version 2 CRL
 - can partition certificates, each partition associated with one CRL
 - · distribution point
 - also can have different distribution points for different reversation reasons.

© Ravi Sandhu 2002

31

32

33

INDIRECT-CRL

- CRL can be issued by different CA than issuer of certificate
 - > allows all compromise revocations to be one list
 - allows all CA revocations to be on one list (simplify certificate chasing)

© Ravi Sandhu 2002

34

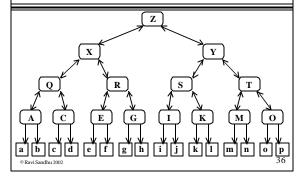
CRL DISTRIBUTION POINTS

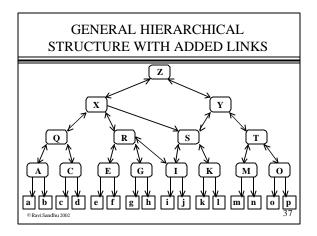
- certificate extension field, says where to look
- * CRL extension field
 - distribution point for this CRL and limits on scope and reason of revocation
 - > protects against substitution of a CRL from one distribution point to another

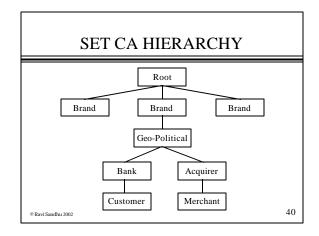
© Ravi Sandhu 2002

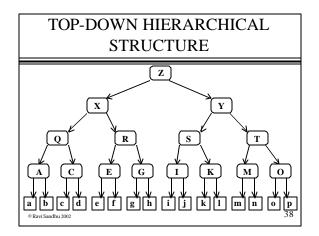
CERTIFICATE SUSPENSION

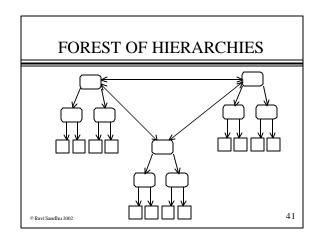
- * Certificate hold reason code in CRL
- Supporting CRL entry extension
 - Instruction code: instructions on what to do with held certificate
 - · call CA, repossess token


© Ravi Sandhu 2002 35


DELTA-CRLs


- ❖ Delta CRL indicator
 - > only carries changes from previous CRL
- Remove from CRL reason code causes purge from base CRL (stored at certificate user)
- removal due to expiry of validity period or restoration of suspension


© Ravi Sandhu 2002


GENERAL HIERARCHICAL STRUCTURE

