INFS 766 Internet Security Protocols

<u>Lectures 3 and 4</u> Cryptography in network protocols

Prof. Ravi Sandhu

CRYPTOGRAPHY

CRYPTOGRAPHIC TECHNOLOGY

- Secret-key encryption
- * Public-key encryption
- * Public-key digital signatures
- * Public-key key agreement
- * Message digests
- * Message authentication codes
- * Challenge-response authentication
- * Public-key certificates

CRYPTOGRAPHIC SERVICES

confidentiality
 traffic flow confidentiality
 integrity
 authentication
 non-repudiation

© Ravi Sandhu 2002

SECRET KEY CRYPTOSYSTEM

confidentiality depends only on secrecy of the key

- > size of key is critical
- * secret key systems do not scale well
 - > with N parties we need to generate and distribute N*(N-1)/2 keys
- * A and B can be people or computers

© Ravi Sandhu 2002

MASTER KEYS AND SESSION KEYS

- * long-term or master keys
 - > prolonged use increases exposure
- * session keys
 - > short-term keys communicated by means of
 - long-term secret keys
 - public key technology

© Ravi Sandhu 2002

KNOWN PLAINTEXT ATTACK		
	ires 2 ³⁹ » 5 * 10 ¹¹ trials on rtable from USA)	
	time required	
1	20,000 years	
10 ³	20 years	
10 ⁶	6 days	
10 ⁹	9 minutes	
10 ¹²	0.5 seconds	
© Ravi Sandhu 2002		10

ΚΝΟΨΝ ΡΙ ΔΙΝΤΕΧΤ		
ATTACK		
average (SKIP	PJACK)	
* trials/second time required		
1	10 ¹⁶ years	
10 ³	10 ¹³ years	
10 ⁶	10 ¹⁰ years	
10 ⁹	10 ⁷ years	
10 ¹²	10 ⁴ years	
© Ravi Sandhu 2002		12

PERFECT SECRECY VERNAM ONE-TIME PAD

* known plaintext reveals the portion of the key that has been used, but does not reveal anything about the future bits of the key

- * has been used
- * can be approximated

19

ADVANCED ENCRYPTION STANDARD

- New Advanced Encryption Standard under development by NIST
 - > must support key-block combinations of 128-128, 192-128, 256-128
 - > may support other combinations
- selection of Rijndaehl algorithm announced in 2000
- * will be in place in a couple of years

© Ravi Sandhu 2002

CIPHER BLOCK CHAINING (CBC) MODE

- Needs an Initialization Vector (IV) to serve as the first feedback block
- * IV need not be secret or random
- Integrity of the IV is important, otherwise first data block can be arbitrarily changed.
- IV should be changed from message to message, or first block of every message should be distinct

23

- Secret key runs at megabits/second and even gigabits/second
 - > think LAN or disk connection
- This large difference in speed is likely to remain independent of technology advances

© Ravi Sandhu 2002

© Ravi Sandhu 2002

NIST DIGITAL SIGNATURE STANDARD

- > p 512-1024 bit prime
- > q 160 bit prime divisor of p-1
- > g $g = h^{((p-1)/q)} \mod p, 1 < h < p-1$

& El-Gamal variant

> separate algorithms for digital signature and public-key encryption

NIST DIGITAL SIGNATURE STANDARD

- > choose random r
- > compute v = (g^r mod p) mod q
- > compute s = (m+xv)/k mod q
- > signature is (s,v,m)
- * to verify signature: public key y
 - > compute u1 = m/s mod q
 - > compute u2 = v/s mod q
 - > verify that $v = (g^{u1*}y^{u2} \mod p) \mod q$

37

NIST DIGITAL SIGNATURE STANDARD

- signature does not repeat, since r
 will be different on each occasion
- if same random number r is used for two messages, the system is broken
- * message expands by a factor of 2
- * RSA signatures do repeat, and there is no message expansion

© Ravi Sandhu 2002

CURRENT GENERATION PUBLIC KEY SYSTEMS

* RSA (Rivest, Shamir and Adelman)

- > the only one to provide digital signature and encryption using the same public-private key pair
- security based on factoring

* ElGamal Encryption

- > public-key encryption only
- > security based on digital logarithm
- - > public-key signature only
 - > one of many variants of ElGamal signature
 - > security based on digital logarithm

CURRENT GENERATION PUBLIC KEY SYSTEMS

- > secret key agreement only
- > security based on digital logarithm

ECC (Elliptic curve cryptography)

- > security based on digital logarithm in elliptic curve field
- > uses analogs of
 - ElGamal encryption
 - DH key agreement
 - DSA digital signature

© Ravi Sandhu 2002

ELLIPTIC CURVE CRYPTOGRAPHY

- mathematics is more complicated than RSA or Diffie-Hellman
- elliptic curves have been studied for over one hundred years
- computation is done in a group defined by an elliptic curve

© Ravi Sandhu 2002

ELLIPTIC CURVE CRYPTOGRAPHY

* 160 bit ECC public key is claimed to be as secure as 1024 bit RSA or Diffie-Hellman key

good for small hardware implementations such as smart cards

© Ravi Sandhu 2002

ELLIPTIC CURVE CRYPTOGRAPHY

- ECDSA: Elliptic Curve digital signature algorithm based on NIST Digital Signature Standard
- * ECSVA: Elliptic Curve key agreement algorithm based on Diffie-Hellman
- * ECES: Elliptic Curve encryption algorithm based on El-Gamal

© Ravi Sandhu 2002

- * reliable distribution of public-keys
- * public-key encryption
 - > sender needs public key of receiver
- * public-key digital signatures
 - > receiver needs public key of sender
- * public-key key agreement
 - > both need each other's public keys

67

© Ravi Sandhu 2002

 VERSION

 VERSION

 SERIAL NUMBER

 SIGNATURE ALGORITHM

 ISSUER

 VALIDITY

 SUBJECT PUBLIC KEY INFO

 SIGNATURE

X.509v3 CERTIFICATE INNOVATIONS

© Ravi Sandhu 2002

