INFS 766 Internet Security Protocols

<u>Lectures 3 and 4</u> Cryptography in network protocols

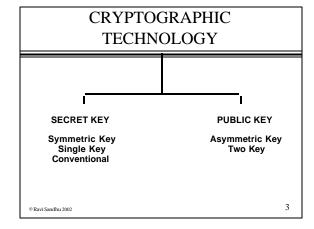
Prof. Ravi Sandhu

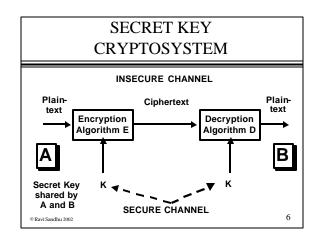
CRYPTOGRAPHIC TECHNOLOGY

- * Secret-key encryption
- * Public-key encryption
- Public-key digital signatures
- · Public-key key agreement
- * Message digests
- * Message authentication codes
- * Challenge-response authentication
- Public-key certificates

© Ravi Sandhu 2002

4


CRYPTOGRAPHY


CRYPTOGRAPHIC SERVICES

- * confidentiality
 - > traffic flow confidentiality
- * integrity
- * authentication
- * non-repudiation

© Ravi Sandhu 2002

5

SECRET KEY CRYPTOSYSTEM

- confidentiality depends only on secrecy of the key
 - > size of key is critical
- * secret key systems do not scale well
 - » with N parties we need to generate and distribute N*(N-1)/2 keys
- * A and B can be people or computers

© Ravi Sandhu 2002

KNOWN PLAINTEXT ATTACK

- 40 bit key requires 2³⁹ > 5 * 10¹¹ trials on average (exportable from USA)
- * trials/second time required

1 20,000 years 10³ 20 years 10⁶ 6 days 10⁹ 9 minutes 10¹² 0.5 seconds

© Ravi Sandhu 2002

10

MASTER KEYS AND SESSION KEYS

- * long-term or master keys
 - > prolonged use increases exposure
- * session keys
 - > short-term keys communicated by means of

8

9

- · long-term secret keys
- public key technology

© Ravi Sandhu 2002

KNOWN PLAINTEXT ATTACK

- ♦ 56 bit key requires 2⁵⁵

 3.6 * 10^{^16} trials on average (DES)
- * trials/second time required

1 10⁹ years 10³ 10⁶ years 10⁶ 10³ years 10⁹ 1 year 10¹² 10 hours

© Ravi Sandhu 2002 11

CRYPTANALYSIS

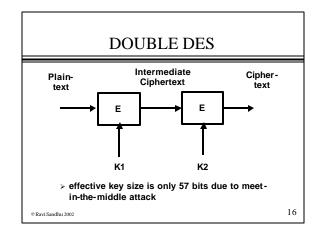
- * ciphertext only
 - > cryptanalyst only knows ciphertext
- * known plaintext
 - > cryptanalyst knows some plaintextciphertext pairs
- chosen plaintext
- * chosen ciphertext

© Ravi Sandhu 2002

KNOWN PLAINTEXT ATTACK

- * trials/second time required

1 10¹⁶ years 10³ 10¹³ years 10⁶ 10¹⁰ years 10⁹ 10⁷ years 10¹² 10⁴ years

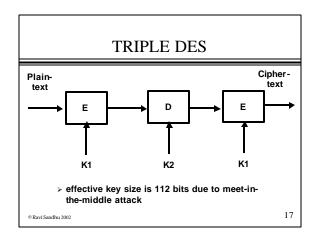

© Rayi Sandhu 2002

* 128 bit key requires 2¹²⁷ ***** 2 * 10³⁸ trials on average (IDEA) ★ trials/second time required 1 10³⁰ years 10³ 10²⁷ years 10⁶ 10²⁴ years 10⁹ 10²¹ years

1018 years

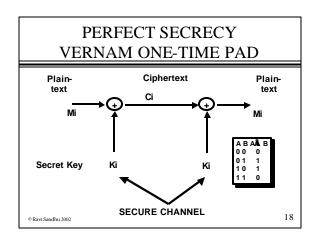
13

14


DICTIONARY ATTACKS

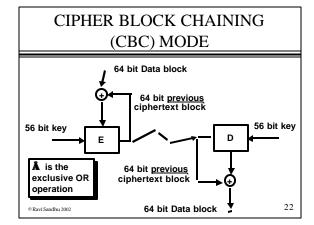
10¹²

© Ravi Sandhu 2002


- if keys are poorly chosen known plaintext attacks can be very simple
- * often the user's password is the key
 - in a dictionary attack the cryptanalyst tries passwords from a dictionary, rather than all possible keys
 - > for a 20,000 word dictionary, 1 trial/second will crack a poor password in less than 3 hours

© Ravi Sandhu 2002

CURRENT GENERATION SECRET KEY CRYPTOSYSTEMS


- * 64 bit data block size
 - > DES: 56 bit key
 - > Triple DES: 112 bit key
 - > Triple DES: 168 bit key
 - > Skipjack: 80 bit key
 - > IDEA: 128 bit key
 - > RC2: variable size key: 1 byte to 128 bytes
 - > many others

PERFECT SECRECY VERNAM ONE-TIME PAD

- known plaintext reveals the portion of the key that has been used, but does not reveal anything about the future bits of the key
- has been used
- can be approximated

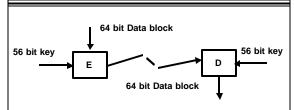
© Ravi Sandhu 2002

ADVANCED ENCRYPTION STANDARD

19

20

- New Advanced Encryption Standard under development by NIST
 - > must support key-block combinations of 128-128, 192-128, 256-128
 - > may support other combinations
- selection of Rijndaehl algorithm announced in 2000
- * will be in place in a couple of years


© Ravi Sandhu 2002

CIPHER BLOCK CHAINING (CBC) MODE

- Needs an Initialization Vector (IV) to serve as the first feedback block
- IV need not be secret or random
- Integrity of the IV is important, otherwise first data block can be arbitrarily changed.
- IV should be changed from message to message, or first block of every message should be distinct

© Ravi Sandhu 2002 23

ELECTRONIC CODE BOOK (ECB) MODE

- * OK for small messages
- * identical data blocks will be identically encrypted

© Rayi Sandhu 2002 21

PUBLIC KEY ENCRYPTION **INSECURE CHANNEL** Plain-Plain-Ciphertext text text Encryption Decryption Algorithm E Algorithm D В B's Private Key B's Public Key RELIABLE CHANNEL 24 © Ravi Sandhu 2002

PUBLIC KEY CRYPTOSYSTEM

- solves the key distribution problem provided there is a reliable channel for communication of public keys
- requires reliable dissemination of 1 public key/party
- * scales well for large-scale systems

© Ravi Sandhu 2002

25

26

RSA

- * public key is (n,e)
- private key is d
- * decrypt: M = Cd mod n

© Ravi Sandhu 2002 28

PUBLIC KEY ENCRYPTION

- confidentiality based on infeasibility of computing B's private key from B's public key
- key sizes are large (512 bits and above) to make this computation infeasible

© Ravi Sandhu 2002

GENERATION OF RSA KEYS

- choose 2 large (100 digit) prime numbers p and q
- * compute n = p * q
- pick e relatively prime to (p-1)*(q-1)
- * compute d, e*d = 1 mod (p-1)*(q-1)
- * publish (n,e)
- * keep d secret (and discard p, q)

© Ravi Sandhu 2002 29

SPEED OF PUBLIC KEY VERSUS SECRET KEY

- * Public key runs at kilobits/second
 - > think modem connection
- Secret key runs at megabits/second and even gigabits/second
 - > think LAN or disk connection
- This large difference in speed is likely to remain independent of technology advances

© Ravi Sandhu 2002 27

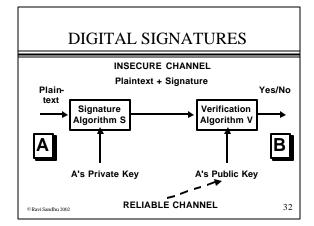
PROTECTION OF RSA KEYS

- * compute d, e*d = 1 mod (p-1)*(q-1)
- if factorization of n into p*q is known, this is easy to do
- security of RSA is no better than the difficulty of factoring n into p, q

RSA KEY SIZE

key size of RSA is selected by the user

casual 384 bits"commercial" 512 bits"military" 1024 bits

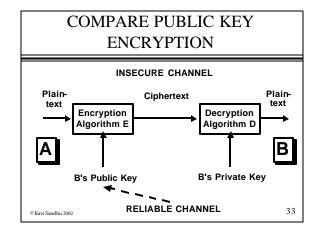

© Ravi Sandhu 2002

31

DIGITAL SIGNATURES IN RSA

- RSA has a unique property, not shared by other public key systems
- * Encryption and decryption commute
 - > (Me mod n)d mod n = M encryption
 - > (Md mod n)e mod n = M signature
- Same public key can be use for encryption and signature

© Ravi Sandhu 2002 34



EL GAMAL AND VARIANTS

- encryption only
- * signature only
 - > 1000's of variants
 - > including NIST's DSA

© Ravi Sandhu 2002

35

NIST DIGITAL SIGNATURE STANDARD

- System-wide constants
 - > p 512-1024 bit prime
 - > q 160 bit prime divisor of p-1
 - > g g = $h^{((p-1)/q)} \mod p$, 1<h<p-1
- * El-Gamal variant
 - > separate algorithms for digital signature and public-key encryption

NIST DIGITAL SIGNATURE STANDARD

- * to sign message m: private key x
 - > choose random r
 - \succ compute v = (g^r mod p) mod q
 - > compute s = (m+xv)/k mod q
 - > signature is (s,v,m)
- * to verify signature: public key y
 - > compute u1 = m/s mod q
 - > compute u2 = v/s mod q
 - > verify that $v = (g^{u1*}y^{u2} \mod p) \mod q$

© Ravi Sandhu 2002

37

38

DIFFIE-HELLMAN KEY ESTABLISHMENT

 security depends on difficulty of computing x given y=ax mod p
 called the discrete logarithm problem

© Ravi Sandhu 2002

NIST DIGITAL SIGNATURE STANDARD

- signature does not repeat, since r will be different on each occasion
- if same random number r is used for two messages, the system is broken
- * message expands by a factor of 2
- RSA signatures do repeat, and there is no message expansion

© Ravi Sandhu 2002

MAN IN THE MIDDLE ATTACK

40

41

© Ravi Sandhu 2002

DIFFIE-HELLMAN KEY AGREEMENT

y_A=a^xA mod p public key y_B=a^{xB} mod p public key

private key

private key

 $k = y_B^{x_A} \mod p = y_A^{x_B} \mod p = a^{x_A \cdot x_B} \mod p$

system constants: p: prime number, a: integer

© Ravi Sandhu 2002

CURRENT GENERATION PUBLIC KEY SYSTEMS

- * RSA (Rivest, Shamir and Adelman)
 - the only one to provide digital signature and encryption using the same public-private key pair
 - > security based on factoring
- * ElGamal Encryption
 - > public-key encryption only
 - > security based on digital logarithm
- DSA signatures
 - > public-key signature only
 - > one of many variants of ElGamal signature
 - > security based on digital logarithm

CURRENT GENERATION PUBLIC KEY SYSTEMS

- * DH (Diffie-Hellman)
 - > secret key agreement only
 - > security based on digital logarithm
- ECC (Elliptic curve cryptography)
 - > security based on digital logarithm in elliptic curve field
 - > uses analogs of
 - · ElGamal encryption
 - DH key agreement
 - DSA digital signature

© Ravi Sandhu 2002

43

ELLIPTIC CURVE CRYPTOGRAPHY

- ECDSA: Elliptic Curve digital signature algorithm based on NIST Digital Signature Standard
- ECSVA: Elliptic Curve key agreement algorithm based on Diffie-Hellman
- ECES: Elliptic Curve encryption algorithm based on El-Gamal

© Ravi Sandhu 2002

ELLIPTIC CURVE CRYPTOGRAPHY

- mathematics is more complicated than RSA or Diffie-Hellman
- elliptic curves have been studied for over one hundred years
- computation is done in a group defined by an elliptic curve

© Ravi Sandhu 2002

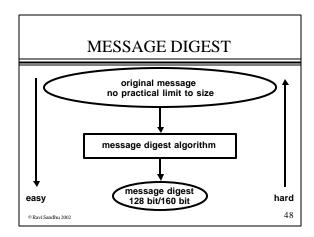
44

45

PKCS STANDARDS

 de facto standards initiated by RSA Data Inc.

© Ravi Sandhu 2002


47

46

ELLIPTIC CURVE CRYPTOGRAPHY

- 160 bit ECC public key is claimed to be as secure as 1024 bit RSA or Diffie-Hellman key
- good for small hardware implementations such as smart cards

© Ravi Sandhu 2002

MESSAGE DIGEST

- for performance reasons
 - > sign the message digest
 - > not the message
- * one way function
 - > m=H(M) is easy to compute
 - > M=H-1(m) is hard to compute

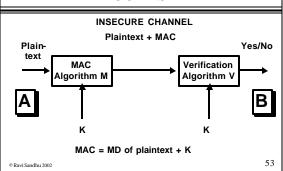
© Ravi Sandhu 2002

49

50

CURRENTT GENERATION MESSAGE DIGEST ALGORITHMS

- * MD5 (Message Digest 5)
 - > 128 bit message digest
 - > falling out of favor
- * SHA (Secure Hash Algorithm)
 - > 160 bit message digest
 - > slightly slower than MD5 but more secure


© Ravi Sandhu 2002 52

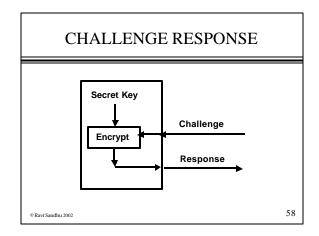
DESIRED CHARACTERISTICS

- * weak hash function
 - > difficult to find M' such that H(M')=H(M)
- given M, m=H(M) try messages at random to find M' with H(M')=m
 - > 2k trials on average, k=64 to be safe

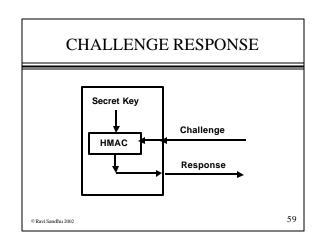
© Ravi Sandhu 2002

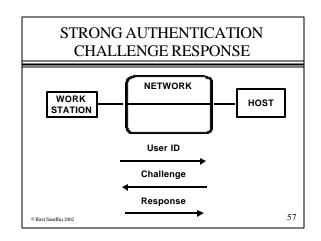
MESSAGE AUTHENTICATION CODES

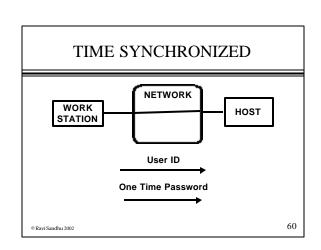
DESIRED CHARACTERISTICS

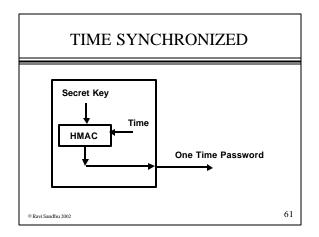

- * strong hash function
 - > difficult to find any two M and M' such that H(M')=H(M)
- * try pairs of messages at random to find M and M' such that H(M')=H(M)
 - > 2k/2 trials on average, k=128 to be safe
 - > k=160 is better

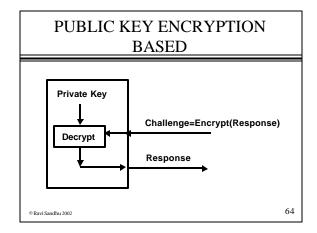
© Rayi Sandhu 2002 51

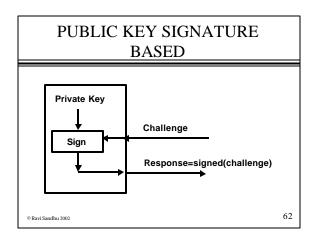

CURRENT GENERATION MAC ALGORITHMS

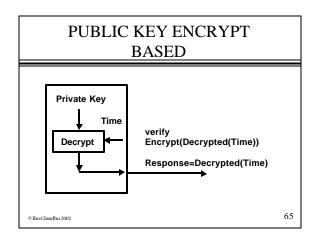

- * HMAC-MD5, HMAC-SHA
 - > IETF standard
 - general technique for constructing a MAC from a message digest algorithm
- Older MACs are based on secret key encryption algorithms (notably DES) and are still in use
 - > DES based MACs are 64 bit and not considered strong anymore

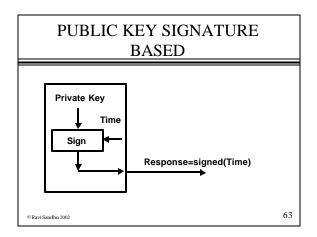

HMAC HMAC computation HMAC_K(M) = h(K♣ opad || h(K♣ ipad || M)) h is any message digest function M message K secret key opad, ipad: fixed outer and inner padding HMAC-MD5, HMAC-SHA




SAFE CRYPTOGRAPHY Secret-key encryption 128 bit or higher Public-key 1024 bit or higher Message digests 160 bit or higher A large portion of what is deployed is much weaker





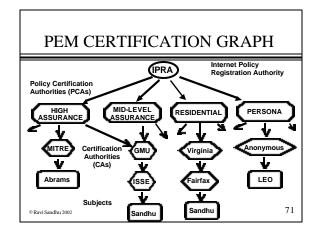


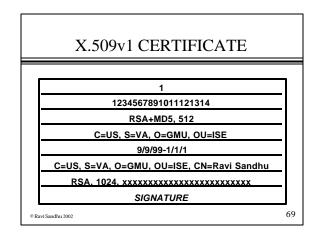
PUBLIC-KEY INFRASTRUCTURE

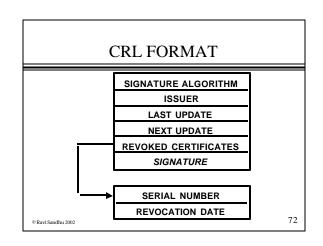
PUBLIC-KEY CERTIFICATES

- reliable distribution of public-keys
- * public-key encryption
 - > sender needs public key of receiver
- * public-key digital signatures
 - > receiver needs public key of sender
- * public-key key agreement
 - > both need each other's public keys

© Ravi Sandhu 2002

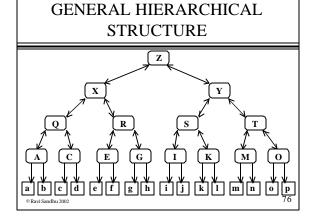

67


CERTIFICATE TRUST


- how to acquire public key of the issuer to verify signature
- whether or not to trust certificates signed by the issuer for this subject

© Ravi Sandhu 2002 70

VERSION SERIAL NUMBER SIGNATURE ALGORITHM ISSUER VALIDITY SUBJECT SUBJECT PUBLIC KEY INFO SIGNATURE

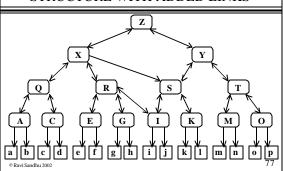


X.509 CERTIFICATES

- * X.509v1
 - > very basic
- * X.509v2
 - > adds unique identifiers to prevent against reuse of X.500 names
- * X.509v3
 - > adds many extensions
 - > can be further extended

© Ravi Sandhu 2002

73

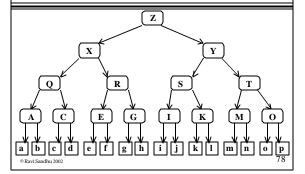

X.509v3 CERTIFICATE INNOVATIONS

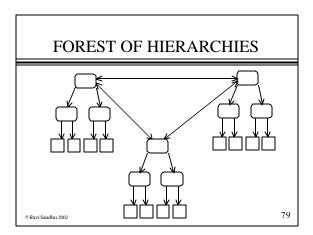
- * distinguish various certificates
 - > signature, encryption, key-agreement
- * identification info in addition to X.500 name
 - > internet names: email addresses, host names, URLs
- * issuer can state policy and usage
- > good enough for casual email but not for signing checks
- limits on use of signature keys for further certification
- * extensible
- > proprietary extensions can be defined and registered
- attribute certificates
 - > ongoing work

© Ravi Sandhu 2002

74

GENERAL HIERARCHICAL STRUCTURE WITH ADDED LINKS


X.509v2 CRL INNOVATIONS


- * CRL distribution points
- * indirect CRLs
- * delta CRLs
- * revocation reason
- * push CRLs

© Ravi Sandhu 2002

75

TOP-DOWN HIERARCHICAL STRUCTURE

