INFS 766 Internet Security Protocols

Lectures 1 and 2 Firewalls

Prof. Ravi Sandhu

OPENING REMARKS

COURSE PREREQUISITE

- Must have <u>completed</u> INFS 612 or equivalent
 - concurrent enrollment in INFS 612 does <u>not</u> satisfy prerequisite
 - make your own judgment about equivalence to INFS 612, please don't ask me
- INFS 762 is not required as a prerequisite
- Must be internet, web and pdf capable
- This is a protocols-oriented course
 - without these prerequisites you will have a hard time and will get no sympathy from me

© Ravi Sandhu 2002

CONTACT INFORMATION

- Prof. Ravi Sandhu
 - > Professor of Information and Software Engineering http://www.ise.gmu.edu
 - > Director, Laboratory for Information Security Technology (LIST) http://www.list.gmu.edu
- office: room 457, Science and Technology II
 - > office hours: by appointment
 - email: sandhu@gmu.eduvoice: 703 993 1659fax: 703 993 1638
- class web page: http://www.list.gmu.edu/infs766

1. 2002

SCHEDULE OF CLASSES

01/23/02	1	Firewalls		
01/30/02	2	Firewalls		
02/06/02	3	Cryptography		
02/13/02	4	Cryptography		
02/20/02	5	SSL		
02/27/02	6	review		
03/06/02	exam 1	lectures 1-6		
03/13/02		Spring Break		
03/20/02	7	Digital Certificates		
03/27/02	8	IPSEC		
04/03/02	9	IPSEC		
04/10/02	10	Kerberos		
04/17/02	11	PKCS		
04/24/02	12	to be announced		
05/01/02	13	review		
05/08/02	exam 2	lectures 7-13		

© Ravi Sandhu 2002

5

COURSE MATERIAL

- No text book
 - > No suitable book is available
- Lecture slides are posted on the class web site in pdf format

GRADING

- Two in-class closed book exams
- Equal weightage
- ❖ Each lecture is important

© Ravi Sandhu 2002

7

REFERENCE BOOKS

- Network Security Essentials, William Stallings, Prentice-Hall, 2000
- Security Technologies for the World Wide Web, Rolf Oppliger, Artech House, 2000
- Internet and Intranet Security, Rolf Oppliger, Artech House, 1998
- Building Internet Firewalls, Brent Chapman and Elizabeth Zwicky, O'Reilly and Associates, 1995
- Network Security: Private Communication in a Public World, C. Kaufman, R. Perlman and M. Speciner, Prentice-Hall, 1995

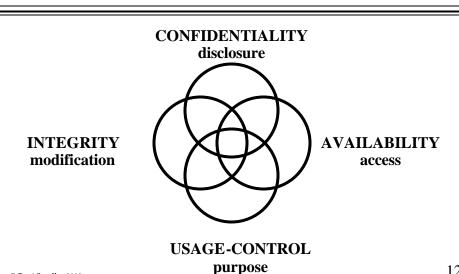
WEB SOURCES

- source for RFCs and IETF
 - > http://www.ietf.org
- * cryptographic sources
 - RSA's frequently asked questions: http://www.rsasecurity.com/rsalabs/faq/index.html
 - > NIST encryption home page: http://csrc.nist.gov/encryption/
- * firewall sources
 - > Firewalls frequently asked questions: http://www.interhack.net/pubs/fwfaq/

© Ravi Sandhu 2002

9

SECURITY COURSES CYCLE


- * Fall
 - > INFS 762 Information Systems Security
 - > INFS 767 Secure Electronic Commerce
- Spring
 - > INFS 766 Internet Security Protocols
 - > INFS 765 Database & Distributed Sys. Security

INTERNET INSECURITY

- Internet insecurity spreads at Internet speed
 - > Morris worm of 1987
 - > Password sniffing attacks in 1994
 - > IP spoofing attacks in 1995
 - > Denial of service attacks in 1996
 - > Email borne viruses 1999
 - Distributed denial of service attacks 2000
- Internet insecurity grows at super-Internet speed
 - > security incidents are growing faster than the Internet (which has roughly doubled every year since 1988)

11 © Ravi Sandhu 2002

SECURITY OBJECTIVES

© Ravi Sandhu 2002

SECURITY TECHNIQUES

- Prevention
 - > access control
- Detection
 - > auditing/intrusion detection
 - > incident handling
- * Acceptance
 - > practicality

© Ravi Sandhu 2002

13

THREATS, VULNERABILITIES ASSETS AND RISK

- THREATS are possible attacks
- VULNERABILITIES are weaknesses
- ASSETS are information and resources that need protection
- RISK requires assessment of threats, vulnerabilities and assets

RISK

*Outsider Attack

insider attack

*Insider Attack

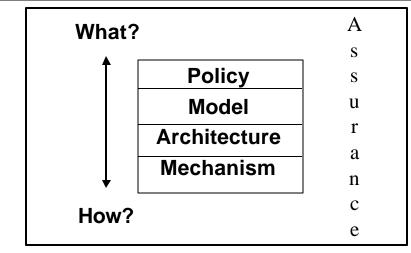
outsider attack

© Ravi Sandhu 2002

PERSPECTIVE ON SECURITY

- * No silver bullets
- * A process NOT a turn-key product
- * Requires a conservative stance
- * Requires defense-in-depth
- * A secondary objective
- * Absolute security does not exist
- Security in most systems can be improved

© Ravi Sandhu 2002 16


PERSPECTIVE ON SECURITY

 absolute security is impossible does not mean absolute insecurity is acceptable

© Ravi Sandhu 2002

17

ENGINEERING AUTHORITY & TRUST 4 LAYERS

© Ravi Sandhu 2002

INTRUSION SCENARIOS

CLASSICAL INTRUSIONS SCENARIO 1

- * Insider attack
 - > The insider is already an authorized user
- Insider acquires privileged access
 - > exploiting bugs in privileged system programs
 - > exploiting poorly configured privileges
- Install backdoors/Trojan horses to facilitate subsequent acquisition of privileged access

CLASSICAL INTRUSIONS SCENARIO 2

- Outsider attack
- Acquire access to an authorized account
- Perpetrate an insider attack

© Ravi Sandhu 2002

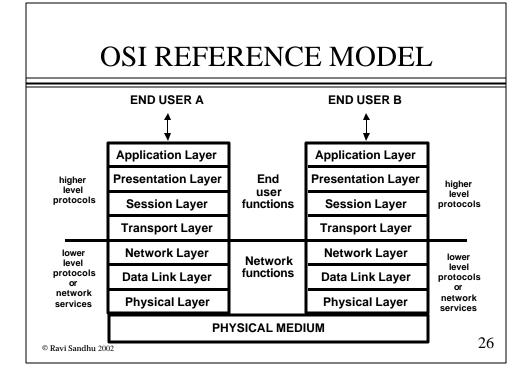
21

NETWORK INTRUSIONS SCENARIO 3

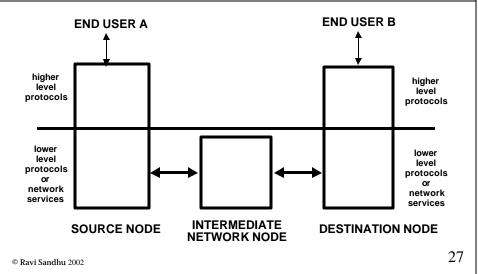
- Outsider/Insider attack
- Spoof network protocols to effectively acquire access to an authorized account

DENIAL OF SERVICE ATTACKS

- Flooding network ports with attack source masking
- TCP/SYN flooding of internet service providers in 1996


© Ravi Sandhu 2002

23


INFRASTRUCTURE ATTACKS

- * router attacks
 - > modify router configurations
- * domain name server attacks
- * internet service attacks
 - > web sites
 - > ftp archives

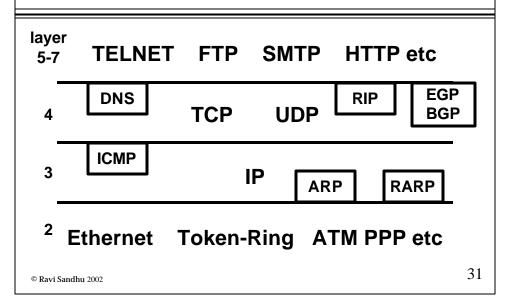
INTERNET ARCHITECTURE AND PROTOCOLS

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

layer 5-7	TELNET	FTP	SMTP	HTTP etc	
4		ТСР	UDP		
3	IP				
2	Ethernet	Token-	Ring A	TM PPP etc	
© Ravi Sandhu 2002					28

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

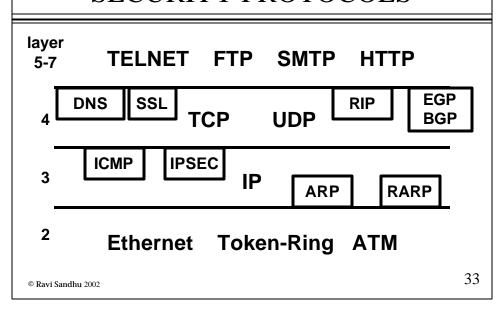
- * IP (Internet Protocol)
 - > connectionless routing of packets
- UDP (User Datagram Protocol)
 - > unreliable datagram protocol
- TCP (Transmission Control Protocol)
 - > connection-oriented, reliable, transport protocol


© Ravi Sandhu 2002

29

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

- * TELNET: remote terminal
- ❖ FTP (File Transfer Protocol)
- * TFTP (Trivial File Transfer Protocol)
- **❖ SMTP (Simple Mail Transfer Protocol)**
- * RPC (Remote Procedure Call)
- HTTP (Hyper Text Transfer Protocol)
- * and others


TCP/IP PROTOCOL STACK INFRASTRUCTURE PROTOCOLS

TCP/IP PROTOCOL STACK INFRASTRUCTURE PROTOCOLS

- * ICMP: Internet Control Message Protocol
- * ARP: Address Resolution Protocol
- * RARP: Reverse Address Resolution Protocol
- * DNS: Domain Name Service
- * RIP: Routing Information Protocol
- * BGP: Border Gateway Protocol
- * EGP: External Gateway Protocol

TCP/IP PROTOCOL STACK SECURITY PROTOCOLS

INTERNET STANDARDS PROCESS

- ❖ IETF: Internet Engineering Task Force
 - > Application Area
 - > General Area
 - > Internet Area
 - > Operational Requirements Area
 - > Routing Area
 - > Security Area
 - > Transport Area
 - > User Services Area

© Ravi Sandhu 2002

IETF SECURITY AREA ACTIVE WORKING GROUPS

- An Open Specification for Pretty Good Privacy (openpgp)
- Authenticated Firewall Traversal (aft)
- Common Authentication Technology (cat)
- IP Security Policy (ipsp)
- IP Security Protocol (ipsec)
- IP Security Remote Access (ipsra)
- Intrusion Detection Exchange Format (idwg)
- Kerberized Internet Negotiation of Keys (kink)
- Kerberos WG (krb-wg)
- * One Time Password Authentication (otp)
- Public-Key Infrastructure (X.509) (pkix)
- S/MIME Mail Security (smime)
- Secure Network Time Protocol (stime)
- Secure Shell (secsh)
- * Securely Available Credentials (sacred)
- Security Issues in Network Event Logging (syslog)
- Simple Public Key Infrastructure (spki)
- Transport Layer Security (tls)
- Web Transaction Security (wts)
- XML Digital Signatures (xmldsig)

© Ravi Sandhu 2002

RFCs AND IETF DRAFTS

- * RFCs
 - > Standards
 - Proposed Standard
 - Draft Standard
 - · Internet Standard
 - > Informational
 - > Experimental
 - > Historic
- IETF drafts
 - > work in progress
 - > expire after 6 months

MUST, SHOULD, MAY

* MUST

mandatory, required of compliant implementations

*** SHOULD**

> strongly recommended but not required

* MAY

- > possibility
- even if not stated a may is always allowed unless it violates MUST NOT

© Ravi Sandhu 2002 37

TCP/IP VULNERABILITIES

BASIC TCP/IP VULNERABILITIES

- many dangerous implementations of protocols
 - > sendmail
- * many dangerous protocols
 - > NFS, X11, RPC
 - > many of these are UDP based

© Ravi Sandhu 2002

39

BASIC TCP/IP VULNERABILITIES

- * solution
 - allow a restricted set of protocols between selected external and internal machines
 - > otherwise known as firewalls

IP PACKET

- * header
- * data
 - > carries a layer 4 protocol
 - TCP, UDP
 - > or a layer 3 protocol
 - ICMP, IPSEC, IP
 - > or a layer 2 protocol
 - IPX, Ethernet, PPP

41 © Ravi Sandhu 2002

TCP INSIDE IP

ΙP **TCP HEADER HEADER**

© Ravi Sandhu 2002

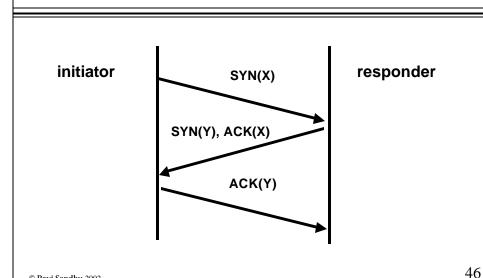
IP HEADER FORMAT

- version: 4bit, currently v4
- * header length: 4 bit, length in 32 bit words
- * TOS (type of service): unused
- * total length: 16 bits, length in bytes
- identification, flags, fragment offset: total 16 bits used for packet fragmentation and reassembly
- * TTL (time to live): 8 bits, used as hop count
- Protocol: 8 bit, protocol being carried in IP packet, usually TCP, UDP but also ICMP, IPSEC, IP, IPX, PPP, Ethernet
- header checksum: 16 bit checksum
- * source address: 32 bit IP address
- * destination address: 32 bit IP address

© Ravi Sandhu 2002

IP HEADER FORMAT

* options


- > source routing
 - enables route of a packet and its response to be explicitly controlled
- > route recording
- > timestamping
- > security labels

TCP HEADER FORMAT

- * source port number
 - > source IP address + source port number is a socket: uniquely identifies sender
- * destination port number
 - > destination IP address + destination port number is a socket: uniquely identifies receiver
- * SYN and ACK flags
- * sequence number
- * acknowledgement number

45 © Ravi Sandhu 2002

TCP 3 WAY HANDSHAKE

© Ravi Sandhu 2002

TCP SYN FLOODING ATTACK

- *TCP 3 way handshake
 - > send SYN packet with random IP source address
 - > return SYN-ACK packet is lost
 - this half-open connection stays for a fairly long time out period
- Denial of service attack
- Basis for IP spoofing attack

© Ravi Sandhu 2002 47

IP SPOOFING

- Send SYN packet with spoofed source IP address
- SYN-flood real source so it drops SYN-ACK packet
- guess sequence number and send ACK packet to target
 - target will continue to accept packets and response packets will be dropped

TCP SESSION HIJACKING

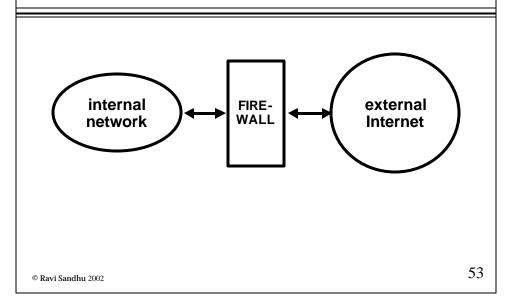
- Send RST packet with spoofed source IP address and appropriate sequence number to one end
- * SYN-flood that end
- send ACK packets to target at other end

© Ravi Sandhu 2002

49

SMURF ATTACK

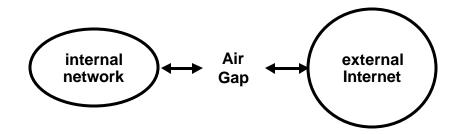
- Send ICMP ping packet with spoofed IP source address to a LAN which will broadcast to all hosts on the LAN
- Each host will send a reply packet to the spoofed IP address leading to denial of service


ULTIMATE VULNERABILITY

- IP packet carries no authentication of source address
- ❖ IP spoofing is possible
 - > IP spoofing is a real threat on the Internet
 - IP spoofing occurs on other packet-switched networks also, such as Novell's IPX
- * Firewalls do not solve this problem
- Requires cryptographic solutions

© Ravi Sandhu 2002 51

FIREWALLS


WHAT IS A FIREWALL?

WHAT IS A FIREWALL?

- all traffic between external and internal networks must go through the firewall
 - > easier said than done
- firewall has opportunity to ensure that only suitable traffic goes back and forth
 - > easier said than done

ULTIMATE FIREWALL

© Ravi Sandhu 2002

55

BENEFITS

- secure and carefully administer firewall machines to allow controlled interaction with external Internet
- internal machines can be administered with varying degrees of care
- * does work

BASIC LIMITATIONS

- connections which bypass firewall
- services through the firewall introduce vulnerabilities
- insiders can exercise internal vulnerabilities
- * performance may suffer
- * single point of failure

© Ravi Sandhu 2002 57

TYPES OF FIREWALLS

- Packet filtering firewalls
 - > IP layer
- * Application gateway firewalls
 - > Application layer
- Circuit relay firewalls
 - > TCP layer
- Combinations of these

PACKET FILTERING FIREWALLS

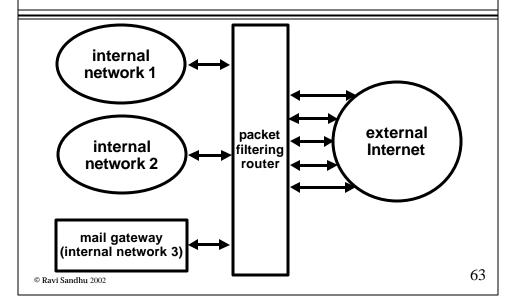
- IP packets are filtered based on
 - > source IP address + source port number
 - destination IP address + destination port number
 - > protocol field: TCP or UDP
 - > TCP protocol flag: SYN or ACK

© Ravi Sandhu 2002 59

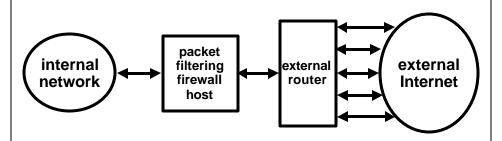
FILTERING ROUTERS internal packet external network filtering Internet router mail gateway i-nw-to-router e-nw-to-router router-to-i-nw router-to-e-nw 60 © Ravi Sandhu 2002

PACKET FILTERING FIREWALLS

- * drop packets based on filtering rules
- * static (stateless) filtering
 - > no context is kept
- dynamic (statefull) filtering
 - > keeps context


© Ravi Sandhu 2002

61

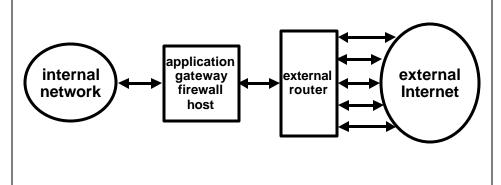

PACKET FILTERING FIREWALLS

- Should never allow packet with source address of internal machine to enter from external internet
- Cannot trust source address to allow selective access from outside

FILTERING ROUTERS

FILTERING HOST

 one can use a packet filtering firewall even if connection to Internet is via an external service provider


© Ravi Sandhu 2002

PACKET FILTERING FIREWALLS

- packet filtering is effective for coarse-grained controls
- not so effective for fine-grained control
 - can do: allow incoming telnet from a particular host
 - cannot do: allow incoming telnet from a particular user

© Ravi Sandhu 2002 65

APPLICATION GATEWAY FIREWALLS

SIMPLEST CONFIGURATION

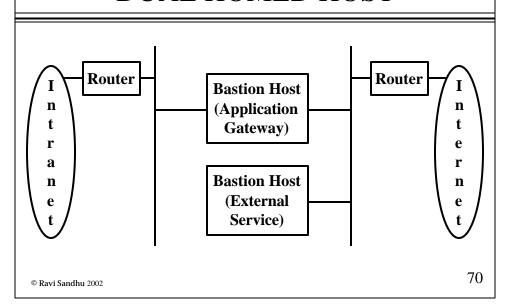
APPLICATION PROXIES

- have to be implemented for each service
- * may not be safe (depending on service)

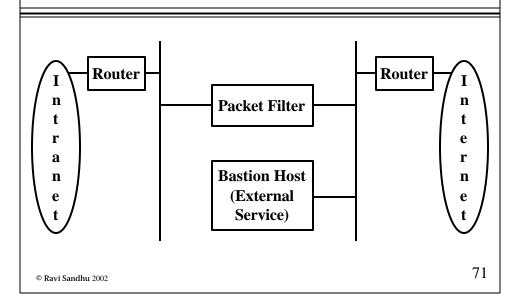
© Ravi Sandhu 2002

67

CLIENT-SIDE PROXIES Internal-Client External-Server


- allow outgoing http for web access to external machines from internal users
- * requires some client configuration

SERVER-SIDE PROXIES External-Client Internal-Server


- allow incoming telnet for access to selected internal machines from selected external users
- requires some cryptographic protection to thwart sniffing and IP spoofing
- becoming increasingly important for
 - > electronic commerce
 - > VPN
 - > remote access security

© Ravi Sandhu 2002

FIREWALL ARCHITECTURES DUAL HOMED HOST

FIREWALL ARCHITECTURES SCREENED SUBNET

INTRUSION DETECTION

RELATED TECHNOLOGIES

- Intrusion detection
- Vulnerability assessment
- * Incident response
- * Honey pots
- Sniffer probes

© Ravi Sandhu 2002

73

INTRUSION DETETCION TECHNIQUES

- Policy detection (or knowledge-based)
 - > default permit
 - · attack-signature based detection
 - · also called misuse detection
 - > default deny
 - · specification-based detection
- Anomaly detection (or behavior-based)
 - · requires user profiling
 - · requires some learning capability in the system
- Combinations of these

INTRUSION DETECTION DATA SOURCE

- * network-based intrusion detection
 - > multiple sensor points
- * host-based intrusion detection
 - > multi-host based
- application-based intrusion detection
- * combinations of these

© Ravi Sandhu 2002

75

ATTACKER

- * Outsider
 - > easier
- * insider
 - > harder

INTRUSION DETECTION ISSUES

- * effectiveness
- * efficiency
- * security
- * inter-operability
- * ease of use
- * transparency

© Ravi Sandhu 2002

77

INTRUSION DETECTION CHALLENGES

- * False alarm rate
- ❖ Performance and scalability

BASE RATE FALLACY

- Test for a disease is 99% accurate
 - > 100 disease-free people tested, 99 test negative
 - > 100 diseased people tested, 99 test positive
- ❖ Prevalence of disease is 1 in 10,000
- * Alice tests positive
- What is probability Alice has the disease?

© Ravi Sandhu 2002

79

BASE RATE FALLACY

- * Test for a disease is 99% accurate
 - > 100 disease-free people tested, 99 test negative
 - > 100 diseased people tested, 99 test positive
- ❖ Prevalence of disease is 1 in 10,000
- * Alice tests positive
- What is probability Alice has the disease?1 in 100
- False alarm rate: 99 in 100 !!!!!

© Ravi Sandhu 2002

BASE RATE FALLACY BAYE'S THEOREM

* population: 1,000,000

* diseased: 100

disease free: 999,900false positive: 9,999

* true positive: 99

* Alice's chance of disease:

99/(9,999+99) = 1/100

© Ravi Sandhu 2002

81

BASE RATE FALLACY 99.99% ACCURACY

♦ population: 1,000,000

* diseased: 100

disease free: 999,900false positive: 99.99

* true positive: 99.99

* Alice's chance of disease: 99.99/(99.99+99.99) = 1/2

NETWORK-BASED INTRUSION DETECTION SIGNATURES

- * port signatures
- * header signatures
- * string signatures

© Ravi Sandhu 2002

83

NETWORK-BASED INTRUSION DETECTION ADVANTAGES

- Complements firewalls
- broad visibility into network activity
- * no impact on network performance
- * transparent installation

NETWORK-BASED INTRUSION DETECTION DISADVANTAGES

- * False positives
- * miss new unknown attacks
- * scalability with high-speed networks
- * passive stance
- * emergence of switched Ethernet

© Ravi Sandhu 2002

85

HOST-BASED INTRUSION DETECTION

- host wrappers or personal firewalls
 - look at all network packets, connection attempts, or login attempts to the monitored machine
 - · example, tcp-wrapper
- host-based agents
 - monitor accesses and changes to critical system files and changes in user privilege
 - · example, tripwire

INTRUSION DETECTION STANDARDS

- None exist
- * ongoing efforts
 - CIDF: common intrusion detection framework for sharing information
 - IETF Intrusion Detection Working Group just started

© Ravi Sandhu 2002 87

INTRUSION DETECTION

- Needs to integrate with other security technologies such as cryptography and access control
- one component of defense-in-depth layered security strategy
- incident-response and recovery are important considerations