INFS 766 Internet Security Protocols

Lectures 1 and 2 Firewalls

Prof. Ravi Sandhu

CONTACT INFORMATION

- * Prof. Ravi Sandhu
 - Professor of Information and Software Engineering http://www.ise.gmu.edu
 - > Director, Laboratory for Information Security Technology (LIST) http://www.list.gmu.edu
- * office: room 457, Science and Technology II
 - > office hours: by appointment
 - > email: sandhu@gmu.edu
 - > voice: 703 993 1659
- > fax: 703 993 1638
- * class web page: http://www.list.gmu.edu/infs766

© Ravi Sandhu 2002

© Ravi Sandhu 2002

4

OPENING REMARKS

SCHEDULE OF CLASSES

04/00/00		- "
01/23/02	1	Firewalls
01/30/02	2	Firewalls
02/06/02	3	Cryptography
02/13/02	4	Cryptography
02/20/02	5	SSL
02/27/02	6	review
03/06/02	exam 1	lectures 1-6
03/13/02	-	Spring Break
03/20/02	7	Digital Certificates
03/27/02	8	IPSEC
04/03/02	9	IPSEC
04/10/02	10	Kerberos
04/17/02	11	PKCS
04/24/02	12	to be announced
05/01/02	13	review
05/08/02	exam 2	lectures 7-13

5

COURSE PREREQUISITE

- * Must have completed INFS 612 or equivalent
 - concurrent enrollment in INFS 612 does not satisfy prerequisite
 - > make your own judgment about equivalence to INFS 612, please don't ask me
- * INFS 762 is not required as a prerequisite
- * Must be internet, web and pdf capable
- * This is a protocols-oriented course
 - without these prerequisites you will have a hard time and will get no sympathy from me

© Ravi Sandhu 2002

3

COURSE MATERIAL

- * No text book
 - > No suitable book is available
- Lecture slides are posted on the class web site in pdf format

© Ravi Sandhu 2002

6

GRADING

- * Two in-class closed book exams
- * Equal weightage
- * Each lecture is important

© Ravi Sandhu 2002

SECURITY COURSES CYCLE

* Fall

7

- > INFS 762 Information Systems Security
- > INFS 767 Secure Electronic Commerce
- Spring
 - > INFS 766 Internet Security Protocols
 - > INFS 765 Database & Distributed Sys. Security

© Ravi Sandhu 2002

REFERENCE BOOKS

- Network Security Essentials, William Stallings, Prentice-Hall, 2000
- Security Technologies for the World Wide Web, Rolf Oppliger, Artech House, 2000
- Internet and Intranet Security, Rolf Oppliger, Artech House, 1998
- Building Internet Firewalls, Brent Chapman and Elizabeth Zwicky, O'Reilly and Associates, 1995
- Network Security: Private Communication in a Public World, C. Kaufman, R. Perlman and M. Speciner, Prentice-Hall, 1995

© Ravi Sandhu 2002

INTERNET INSECURITY

- Internet insecurity spreads at Internet speed
 - > Morris worm of 1987
 - > Password sniffing attacks in 1994
 - > IP spoofing attacks in 1995
 - > Denial of service attacks in 1996
 - > Email borne viruses 1999
 - > Distributed denial of service attacks 2000
- Internet insecurity grows at super-Internet speed
 - > security incidents are growing faster than the Internet (which has roughly doubled every year since 1988)

© Ravi Sandhu 2002 11

WEB SOURCES

- source for RFCs and IETF
- > http://www.ietf.org
- cryptographic sources
 - RSA's frequently asked questions: http://www.rsasecurity.com/rsalabs/faq/index.html
 - > NIST encryption home page: http://csrc.nist.gov/encryption/
- firewall sources
 - > Firewalls frequently asked questions: http://www.interhack.net/pubs/fwfaq/

© Ravi Sandhu 2002

SECURITY OBJECTIVES

CONFIDENTIALITY
disclosure

AVAILABILITY
access

12

USAGE-CONTROL

© Ravi Sandhu 2002 purpose

INTEGRITY

modification

SECURITY TECHNIQUES

- Prevention
 - > access control
- * Detection
 - > auditing/intrusion detection
 - > incident handling
- * Acceptance
 - > practicality

© Ravi Sandhu 2002

13

14

15

PERSPECTIVE ON SECURITY

- * No silver bullets
- * A process NOT a turn-key product
- * Requires a conservative stance
- * Requires defense-in-depth
- * A secondary objective
- * Absolute security does not exist
- * Security in most systems can be improved

© Ravi Sandhu 2002 16

THREATS, VULNERABILITIES ASSETS AND RISK

- * THREATS are possible attacks
- * VULNERABILITIES are weaknesses
- ASSETS are information and resources that need protection
- RISK requires assessment of threats, vulnerabilities and assets

© Ravi Sandhu 2002

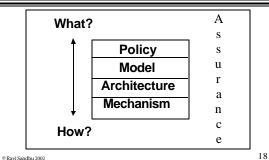
PERSPECTIVE ON SECURITY

 absolute security is impossible does not mean absolute insecurity is acceptable

© Ravi Sandhu 2002

RISK

*Outsider Attack


insider attack

*Insider Attack

outsider attack

© Ravi Sandhu 2002

ENGINEERING AUTHORITY & TRUST 4 LAYERS

INTRUSION SCENARIOS

NETWORK INTRUSIONS SCENARIO 3

- * Outsider/Insider attack
- Spoof network protocols to effectively acquire access to an authorized account

© Ravi Sandhu 2002

CLASSICAL INTRUSIONS SCENARIO 1

- * Insider attack
 - > The insider is already an authorized user
- * Insider acquires privileged access
 - > exploiting bugs in privileged system programs
 - > exploiting poorly configured privileges
- Install backdoors/Trojan horses to facilitate subsequent acquisition of privileged access

© Ravi Sandhu 2002 20

DENIAL OF SERVICE ATTACKS

22

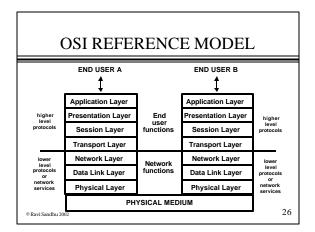
- Flooding network ports with attack source masking
- TCP/SYN flooding of internet service providers in 1996

© Ravi Sandhu 2002 23

CLASSICAL INTRUSIONS SCENARIO 2

- Outsider attack
- Acquire access to an authorized account
- * Perpetrate an insider attack

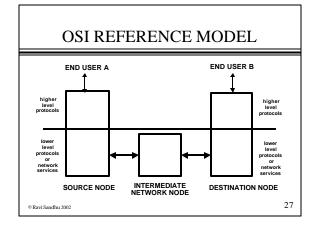
© Ravi Sandhu 2002 21


INFRASTRUCTURE ATTACKS

- * router attacks
 - > modify router configurations
- domain name server attacks
- * internet service attacks
 - > web sites
 - > ftp archives

INTERNET ARCHITECTURE AND PROTOCOLS

TCP/IP PROTOCOL STACK



TCP/IP PROTOCOL STACK BASIC PROTOCOLS

- - > connectionless routing of packets
- UDP (User Datagram Protocol)
 - > unreliable datagram protocol
- * TCP (Transmission Control Protocol)
 - > connection-oriented, reliable, transport protocol

© Ravi Sandhu 2002

29

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

- * TELNET: remote terminal
- * FTP (File Transfer Protocol)
- * TFTP (Trivial File Transfer Protocol)
- * SMTP (Simple Mail Transfer Protocol)
- * RPC (Remote Procedure Call)
- * HTTP (Hyper Text Transfer Protocol)
- * and others

TCP/IP PROTOCOL STACK INFRASTRUCTURE PROTOCOLS layer TELNET FTP SMTP **HTTP etc** 5-7 DNS **EGP** RIP **TCP UDP** BGP ICMP IΡ ARP RARP Ethernet Token-Ring ATM PPP etc 31 © Ravi Sandhu 2002

INTERNET STANDARDS PROCESS

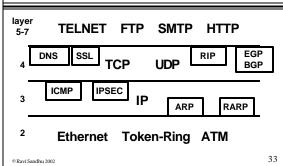
- * IETF: Internet Engineering Task Force
 - > Application Area
 - > General Area
 - > Internet Area
 - > Operational Requirements Area
 - > Routing Area
 - > Security Area
 - > Transport Area
 - > User Services Area

© Ravi Sandhu 2002

34

TCP/IP PROTOCOL STACK INFRASTRUCTURE PROTOCOLS

- ❖ ICMP: Internet Control Message Protocol
- * ARP: Address Resolution Protocol
- * RARP: Reverse Address Resolution Protocol
- * DNS: Domain Name Service
- * RIP: Routing Information Protocol
- * BGP: Border Gateway Protocol
- * EGP: External Gateway Protocol


© Ravi Sandhu 2002

IETF SECURITY AREA ACTIVE WORKING GROUPS

- © Ravi Sandhu 2002

32

TCP/IP PROTOCOL STACK SECURITY PROTOCOLS

RFCs AND IETF DRAFTS

- * RFCs
 - > Standards
 - · Proposed Standard
 - Draft Standard
 - · Internet Standard
 - > Informational
 - > Experimental
 - > Historic
- IETF drafts
 - > work in progress > expire after 6 months

© Ravi Sandhu 2002

36

35

MUST, SHOULD, MAY

- * MUST
 - mandatory, required of compliant implementations
- * SHOULD
 - > strongly recommended but not required
- * MAY
 - > possibility
 - > even if not stated a may is always allowed unless it violates MUST NOT

© Ravi Sandhu 2002

BASIC TCP/IP VULNERABILITIES

- * solution
 - allow a restricted set of protocols between selected external and internal machines
 - > otherwise known as firewalls

© Ravi Sandhu 2002 40

TCP/IP VULNERABILITIES

IP PACKET

- * header
- * data

37

39

- > carries a layer 4 protocol
 - TCP, UDP
- > or a layer 3 protocol
 - · ICMP, IPSEC, IP
- > or a layer 2 protocol
 - IPX, Ethernet, PPP

© Ravi Sandhu 2002

41

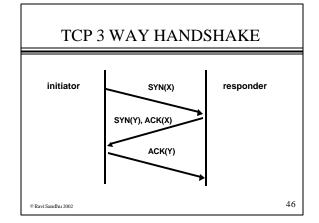
BASIC TCP/IP VULNERABILITIES

- many dangerous implementations of protocols
 - > sendmail
- * many dangerous protocols
 - > NFS, X11, RPC
 - > many of these are UDP based

© Ravi Sandhu 2002

TCP INSIDE IP IP TCP HEADER • Ravi Sandhu 2002 42

IP HEADER FORMAT


- version: 4bit, currently v4
- header length: 4 bit, length in 32 bit words
 TOS (type of service): unused
- * total length: 16 bits, length in bytes
- identification, flags, fragment offset: total 16 bits used for packet fragmentation and reassembly
- TTL (time to live): 8 bits, used as hop count
- Protocol: 8 bit, protocol being carried in IP packet, usually TCP, UDP but also ICMP, IPSEC, IP, IPX, PPP, Ethernet

43

44

- header checksum: 16 bit checksum
- source address: 32 bit IP address
- destination address: 32 bit IP address

© Ravi Sandhu 2002

IP HEADER FORMAT

* options

- > source routing
 - · enables route of a packet and its response to be explicitly controlled
- > route recording
- > timestamping
- > security labels

© Ravi Sandhu 2002

TCP SYN FLOODING ATTACK

- * TCP 3 way handshake
 - > send SYN packet with random IP source address
 - > return SYN-ACK packet is lost
 - > this half-open connection stays for a fairly long time out period
- Denial of service attack
- Basis for IP spoofing attack

47 © Ravi Sandhu 2002

TCP HEADER FORMAT

- * source port number
 - > source IP address + source port number is a socket: uniquely identifies sender
- destination port number
 - > destination IP address + destination port number is a socket : uniquely identifies receiver
- * SYN and ACK flags
- * sequence number
- * acknowledgement number

45 © Ravi Sandhu 2002

IP SPOOFING

- Send SYN packet with spoofed source IP address
- SYN-flood real source so it drops SYN-ACK packet
- * guess sequence number and send ACK packet to target
 - > target will continue to accept packets and response packets will be dropped

48 © Ravi Sandhu 2002

TCP SESSION HIJACKING

- Send RST packet with spoofed source IP address and appropriate sequence number to one end
- * SYN-flood that end
- send ACK packets to target at other end

© Ravi Sandhu 2002

49

50

FIREWALLS

SMURF ATTACK

- Send ICMP ping packet with spoofed IP source address to a LAN which will broadcast to all hosts on the LAN
- Each host will send a reply packet to the spoofed IP address leading to denial of service

© Ravi Sandhu 2002

WHAT IS A FIREWALL? FIREWALL external internet or Ravi Sandhu 2002 53

ULTIMATE VULNERABILITY

- IP packet carries no authentication of source address
- * IP spoofing is possible
 - > IP spoofing is a real threat on the Internet
 - > IP spoofing occurs on other packet-switched networks also, such as Novell's IPX
- * Firewalls do not solve this problem
- Requires cryptographic solutions

© Rayi Sandhu 2002 51

WHAT IS A FIREWALL?

- all traffic between external and internal networks must go through the firewall
 - > easier said than done
- firewall has opportunity to ensure that only suitable traffic goes back and forth
 - > easier said than done

ULTIMATE FIREWALL internal network Air external Internet or Ravi Sandhu 2002 55

TYPES OF FIREWALLS

- * Packet filtering firewalls
 - > IP layer
- * Application gateway firewalls
 - > Application layer
- Circuit relay firewalls
 - > TCP layer

© Ravi Sandhu 2002

56

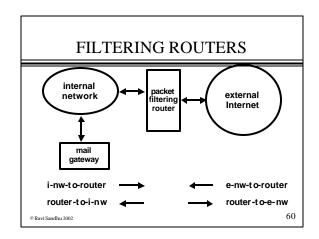
* Combinations of these

BENEFITS

- secure and carefully administer firewall machines to allow controlled interaction with external Internet
- internal machines can be administered with varying degrees of care
- * does work

© Ravi Sandhu 2002

PACKET FILTERING FIREWALLS

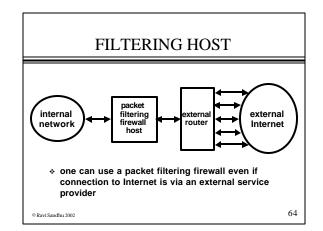

58

- . IP packets are filtered based on
 - > source IP address + source port number
 - > destination IP address + destination port number
 - > protocol field: TCP or UDP
 - > TCP protocol flag: SYN or ACK

© Ravi Sandhu 2002 59

BASIC LIMITATIONS

- connections which bypass firewall
- services through the firewall introduce vulnerabilities
- insiders can exercise internal vulnerabilities
- * performance may suffer
- * single point of failure

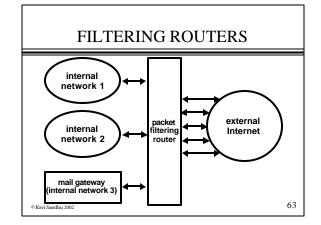

PACKET FILTERING FIREWALLS

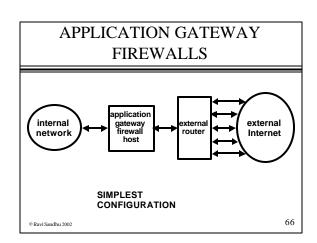
- * drop packets based on filtering rules
- * static (stateless) filtering
 - > no context is kept
- * dynamic (statefull) filtering
 - > keeps context

© Ravi Sandhu 2002

61

62


PACKET FILTERING FIREWALLS

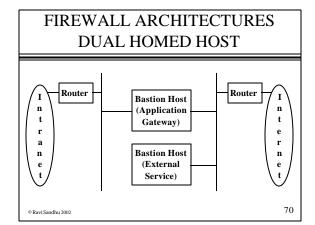

- Should never allow packet with source address of internal machine to enter from external internet
- Cannot trust source address to allow selective access from outside

© Ravi Sandhu 2002

PACKET FILTERING FIREWALLS

- packet filtering is effective for coarse-grained controls
- not so effective for fine-grained control
 - > can do: allow incoming telnet from a particular host
 - > cannot do: allow incoming telnet from a particular user

APPLICATION PROXIES


- have to be implemented for each service
- may not be safe (depending on service)

© Ravi Sandhu 2002

67

68

69

CLIENT-SIDE PROXIES Internal-Client External-Server

- allow outgoing http for web access to external machines from internal users
- * requires some client configuration

© Ravi Sandhu 2002

FIREWALL ARCHITECTURES **SCREENED SUBNET** Router Router Packet Filter r e a r **Bastion Host** n n (External Service) 71 © Ravi Sandhu 2002

SERVER-SIDE PROXIES External-Client Internal-Server

- allow incoming telnet for access to selected internal machines from selected external users
- requires some cryptographic protection to thwart sniffing and IP spoofing
- * becoming increasingly important for
 - > electronic commerce
 - > VPN
 - > remote access security

© Ravi Sandhu 2002

INTRUSION DETECTION

RELATED TECHNOLOGIES

- * Intrusion detection
- * Vulnerability assessment
- * Incident response
- * Honey pots
- Sniffer probes

© Ravi Sandhu 2002

73

ATTACKER

- * Outsider
 - > easier
- * insider
 - > harder

© Ravi Sandhu 2002

76

INTRUSION DETETCION TECHNIQUES

- Policy detection (or knowledge-based)
 - > default permit
 - · attack-signature based detection
 - also called misuse detection
 - > default deny
 - · specification-based detection
- * Anomaly detection (or behavior-based)
 - · requires user profiling
 - requires some learning capability in the system
- * Combinations of these

© Ravi Sandhu 2002

74

75

INTRUSION DETECTION ISSUES

- * effectiveness
- « efficiency
- * security
- * inter-operability
- * ease of use
- * transparency

© Ravi Sandhu 2002 77

INTRUSION DETECTION DATA SOURCE

- * network-based intrusion detection
 - > multiple sensor points
- host-based intrusion detection
 - > multi-host based
- application-based intrusion detection
- * combinations of these

© Ravi Sandhu 2002

INTRUSION DETECTION CHALLENGES

- * False alarm rate
- * Performance and scalability

BASE RATE FALLACY

- * Test for a disease is 99% accurate
 - > 100 disease-free people tested, 99 test negative
 - > 100 diseased people tested, 99 test positive
- ❖ Prevalence of disease is 1 in 10,000
- Alice tests positive
- * What is probability Alice has the disease?

© Ravi Sandhu 2002

79

80

BASE RATE FALLACY 99.99% ACCURACY

⇒ population: 1,000,000

* diseased: 100

disease free: 999,900false positive: 99.99true positive: 99.99

Alice's chance of disease:99.99/(99.99+99.99) = 1/2

© Ravi Sandhu 2002 82

BASE RATE FALLACY

- * Test for a disease is 99% accurate
 - > 100 disease-free people tested, 99 test negative
 - > 100 diseased people tested, 99 test positive
- ❖ Prevalence of disease is 1 in 10,000
- Alice tests positive
- * What is probability Alice has the disease? 1 in 100
- False alarm rate: 99 in 100 !!!!!

© Ravi Sandhu 2002

NETWORK-BASED INTRUSION DETECTION SIGNATURES

- * port signatures
- header signatures
- * string signatures

© Ravi Sandhu 2002 83

BASE RATE FALLACY BAYE'S THEOREM

⇒ population: 1,000,000

* diseased: 100

disease free: 999,900false positive: 9,999true positive: 99

* Alice's chance of disease: 99/(9,999+99) = 1/100

© Ravi Sandhu 2002 81

NETWORK-BASED INTRUSION DETECTION ADVANTAGES

- Complements firewalls
- broad visibility into network activity
- * no impact on network performance
- transparent installation

NETWORK-BASED INTRUSION DETECTION DISADVANTAGES

- * False positives
- * miss new unknown attacks
- * scalability with high-speed networks
- passive stance
- * emergence of switched Ethernet

© Ravi Sandhu 2002

85

INTRUSION DETECTION

- Needs to integrate with other security technologies such as cryptography and access control
- one component of defense-in-depth layered security strategy
- incident-response and recovery are important considerations

© Ravi Sandhu 2002

88

HOST-BASED INTRUSION DETECTION

- * host wrappers or personal firewalls
 - > look at all network packets, connection attempts, or login attempts to the monitored machine
 - · example, tcp-wrapper
- * host-based agents
 - monitor accesses and changes to critical system files and changes in user privilege
 - example, tripwire

© Ravi Sandhu 2002

86

INTRUSION DETECTION STANDARDS

- * None exist
- ongoing efforts
 - > CIDF: common intrusion detection framework
 - for sharing information
 - > IETF Intrusion Detection Working Group just started

© Ravi Sandhu 2002

87