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A common trait of current access control approaches is the challenging need to engineer ab-

stract and intuitive access control models. This entails designing access control information in

the form of roles (RBAC), attributes (ABAC), or relationships (ReBAC) as the case may be, and

subsequently, designing access control rules. This framework has its benefits but has significant

limitations in modern systems that are dynamic, complex, and large-scale, due to which it is not

straightforward to maintain an accurate access control state in the system for a human administra-

tor.

This dissertation proposes to exploit the power of machine learning to solve access control

decision-making problems. In particular, we propose Deep Learning Based Access Control (DL-

BAC) by leveraging significant advances in deep learning technology as a potential solution to this

problem. We envision that DLBAC could complement and, in the long-term, even replace classical

access control models with a neural network that reduces the burden of attribute/policy engineer-

ing and updates. Without loss of generality, we implement a candidate DLBAC model, called

DLBACα, using real-world and synthetic datasets. We thoroughly investigate its performance ben-

efits by comparing it with classical ML-based approaches and ABAC models. We demonstrate

the feasibility of the DLBAC by addressing issues related to accuracy, generalization, and explain-

ability. As DLBAC makes access decisions using a black-box neural network, we provide two

approaches for understanding DLBAC decisions in human terms.

Moreover, we discuss administration practices in traditional access control system, which is

managed by human administrators, making the overall administration process error-prone, tedious,

and ineffective. We overcome these challenges and inefficiencies in machine learning-based access

control (MLBAC) by introducing novel techniques. Our experimentation reveals that DLBAC
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is more efficient than classical machine learning-based systems for capturing changes in access

control state across the life of a system.

We also investigate the MLBAC’s adversarial attack problem, focusing on manipulating in-

formation of users and resources to gain unauthorized access. We demonstrate that it is possible

to design adversarial attacks for ML models deployed for access decisions by modifying a subset

of user-resource metadata. Also, we show that there is potential to reduce adversarial attacks to

some extent by utilizing access control-specific constraints. Besides, to demonstrate the efficiency

of MLBAC in complicated real-world settings, we implement DLBAC to decide the permission

decisions of different apps on mobile devices. We show that in over 88% of cases, the DLBAC can

accurately predict access permissions for different apps utilizing the characteristics of the request-

ing apps and the context of the device and its user. Such an outcome signifies that the DLBAC can

recommend permissions and alert and stop users from granting unanticipated permissions.

Finally, we discuss challenges and future research directions related to MLBAC and DLBAC,

including administration, adversarial attack, bias and fairness, verification, etc. Also, we highlight

the potentiality of DLBAC to operate in tandem with traditional access control systems to monitor

and reinforce traditional access control systems’ decisions.
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CHAPTER 1: INTRODUCTION

1.1 Introduction and Motivation

Access Control Lists (ACLs) [58], Role-Based Access Control (RBAC) [118], and Attribute Based

Access Control (ABAC) [64] are some of the mainstream approaches to determine users’ access

to resources. Commercial solutions [46] that cater to organizations employ one or more of these

classical access control functionalities. While tremendous progress has been made in the realm

of classical access control approaches [79], one fundamental issue has remained the same for

over forty years. Skilled security administrators needed to engineer and manage accesses as only

humans could develop detailed policy insights about individuals’ needs within the broader organi-

zation. Clearly, this leads to all types of errors and inefficiencies [16]: there remain plenty of users

with accesses that should not have those accesses (over-provisioned to ease administrative burden)

and plenty of users that lack accesses that should indeed have those accesses (under-provisioned

for the sake of tightened security) [49, 125]. Administrators tactfully perform a balancing act to

maximize security and minimize costs. This complexity is further exacerbated with the prolifer-

ation of cloud-based applications that perform machine-to-machine access through APIs, Internet

of Things (IoT), Bring Your Own Devices (BYOD), etc.

In this dissertation, we propose an automated and dynamic access control mechanism lever-

aging advances in deep learning technology [120] that could complement or potentially replace

existing traditional access control systems. It can significantly reduce the effort and involvement

of a human administrator in maintaining an access control system. This approach denoted as Deep

Learning Based Access Control (DLBAC), addresses four major limitations of classical access

control approaches such as RBAC and ABAC. Without loss of generality, we use the term attribute

to refer to any form of traditional access control information such as roles and relationships.

1. Attribute Engineering. An organization typically holds a vast number of metadata about its

users and resources. However, those metadata are often not meaningful access control attributes.

As a first step, using organizational context often inferred from those metadata, administrators

1



engineer access control specific attributes that could be used to express access control rules sub-

sequently. This is at best an art today involving semi-formal design and requirements engineering

processes [114].

2. Policy Engineering. After access control relevant attributes are engineered, administrators

need to engineer access control rules. This is accomplished through either a manual engineering

process akin to attribute engineering above or automated mining techniques that take as input a

primitive form of access rules such as ACLs and generate approximate ABAC rules (or user-role

assignments, in the case of RBAC) [41, 85]. We will show that, for complex situations, DLBAC

generally captures the access control state of the system with more precision than other approaches

which are based on policy mining and classical machine learning (ML).

3. Policy and Attribute Update. Policies and attributes change during the life of the system.

Administrators constantly update policies, and user and resource attributes in order to maintain

proper authorization in the system. This is both inefficient and insecure. It is inefficient because

administrators will need to manually inspect and update policies to meet the stated change. It is

insecure because the changes made are both: (a) error-prone, since the modifications may or may

not satisfy the intent, and (b) inaccurate, since the modifications could have unintended changes to

the access control state of the system. Another way access control states are changed in the system

is through attribute update, which typically lags the necessary accesses by hours, days or months.

4. Generalization. Most prior approaches [24,105] that mine access control rules from simpler

forms of access control states such as ACLs focus on accurately capturing the access control state

as given in those ACLs. Unfortunately, that leads to poor generalization [37, 143]—that is, the

ability to make better access control decisions on users and resources with attributes that were not

explicitly seen during the mining process. However, this is something machine learning methods,

especially deep learning, are better at. They have an innate ability to make quality predictions as

long as the test sample at prediction time aligns with the training data distribution. We will show

that the engineered rules typically make poor access control decisions for user-resource metadata

that were not explicitly seen by the mining process.
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DLBAC addresses the above issues by exploring a fundamentally different approach to how

access control is designed today. As illustrated in Figure 3.1, DLBAC differs from classical ap-

proaches by making decisions based on the metadata of users and resources and a trained neural

network. (The key distinction between the notions of metadata and attributes albeit semantic has

important practical benefits, which is explained in section 3.2.1.) It accomplishes this (see Fig-

ure 3.2) by first replacing access control policies with a neural network that instead makes access

control decisions. Second, the neural network is trained using raw metadata from the organiza-

tion instead of laboriously engineered access control attributes. Third, in response to a suggested

access control state change by an administrator, the neural network makes additional meaningful

changes that are hard for that administrator to make an informed decision about. Following is a

list of stimulus advantages which motivated us to use deep learning to design an access control

approach:

• Access control decision-making is a classification/clustering problem where an access re-

quest is granted if its respective users and resources attributes fall under a particular clus-

ter [76]. At present, deep neural networks are one of the best techniques to make a robust

and effective classification.

• A deep neural network can learn based on raw metadata [19, 107], and there is no need for

additional efforts such as feature selection, attribute engineering, role engineering, etc. Such

an advantage of metadata-based learning also obviates the burdens related to attributes and

roles management.

• The performance and quality of traditional approaches depends on multiple factors. Other

than access control state of an existing system, the performance also depends on how well

one can design attributes and roles, how accurately one can assign attributes or roles to

respective users, and so on. However, in the case of a deep neural network-based system,

the system’s performance solely depends on how effectively one can train the network based

on existing access control state. Also, there are multiple metrics to quantify the quality and

3



effectiveness of such systems.

Moreover, access control systems are not static—changes in access control state are inevitable.

A user may be granted new permissions, or some of her current permissions could get revoked.

This problem is referred to as access control administration in the access control domain [116].

Administration challenges could vary from model to model, but the problem’s importance remains

unchanged. In the case of RBAC, administration activities include assigning/removing permission

to/from a role, creating a new role, and managing role hierarchy [116]. For ABAC, adminis-

tration activities include updating user/resource attributes and policy modification [122]. In such

traditional approaches, the changes are accomplished by modifying existing configurations such as

written access control policies and attribute and role assignments. However, for a machine learning

based access control (MLBAC) system, there is no notion of a human-readable written policy to

update. If an access control state change is to be made, the existing ML model must be modified.

Such a modification is complicated as, in most cases, an ML model is a highly complex function, a

tree, or even a black box that a human user can not directly access and modify. Therefore, it needs

to investigate the administration problem if an MLBAC is deployed for access control decisions.

Also, neural networks are prevalent for obtaining a generalized and accurate system due to their

ability to capture features from complex input [30, 77, 109]. Such quality of the neural networks

could pose some security concerns as they are highly sensitive to minor changes in the input—

that is, a slight manipulation or introduction of additional information to the input may result in

an unintended output [14]. In ML, this issue is known as an adversarial attack. For instance, in

access control, an attacker could manipulate the user/resource metadata to gain access to a resource

forcibly. As a result, it requires a thorough investigation of adversarial attacks in the context of

MLBAC.
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1.2 Problem and Thesis Statement

1.2.1 Problem Statement

The policy-based classical access control systems are limited in a complex and dynamic envi-

ronment where the access control state may vary with subtle changes in the user and resource

attributes. To tackle such a dynamicity to some degree, system administrators rely on (1) creating

complex rules with many conditions and constraints or roles with a large number of permissions

and (2) making more fine-grained rules or roles leading to rule/ role explosion. While the former

makes access control maintenance very difficult for a human administrator, the latter granulates

the access control state, which is less generalized and maintainable.

Therefore, it is essential to develop an access control system that can accommodate complex

and dynamic access control state and is generalized enough to make accurate decisions for unseen

access control requests.

1.2.2 Thesis Statement

A deep neural network can precisely learn the access control state of a large-scale, complex, and

dynamic system, generalize enough to make accurate decisions for unseen access control requests

and ease access control administration by employing processes with minimal human involvement..

1.3 Summary of Contributions

We make the following contributions to the field of access control:

• This dissertation performs a comprehensive review of existing access control literature that

uses machine learning. We also propose a novel taxonomy of machine learning in access

control, assemble publicly available real-world datasets for studying and solving access con-

trol issues, and highlight research at each stage as the domain evolved.

• We propose Deep Learning Based Access Control (DLBAC) as a potential form of machine
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learning based access control (MLBAC) system. We show that the DLBAC, in the best

case, could replace and operate as a complement to classical access control approaches in

the normal case. We validate the efficacy of DLBAC by implementing a prototype, named

DLBACα, using real-world and synthetic datasets that outperform classical policy mining

and machine learning techniques.

• We address previously highlighted concerns on the explainability of the black-box nature

of neural network-based systems for access control [30]. We propose two unique methods

to understand DLBAC decisions in human terms and confirm that the rationale behind a

DLBAC decision can be understood largely (albeit not with 100% accuracy).

• We explore MLBAC’s administration problem, focusing on capturing changes in the ac-

cess control state. We propose novel methods for efficient DLBAC administration. While

compared with the classical ML-based system’s administration, DLBAC performs better in

adjusting changes in the access control state.

• We investigate vulnerabilities of the MLBAC system in an adversarial setting in the context

of access control. Also, we show that there is potential to reduce adversarial attacks to some

extent by utilizing access control-specific constraints.

• We implement DLBAC to decide the permission decisions of different applications on mo-

bile devices. We show that DLBAC can recommend permission requests on Android devices

with good accuracy. At the very least, one could utilize such a recommendation to warn and

prevent users from granting unanticipated permissions.

1.4 Dissertation Organization

In this chapter, we discuss our motivations for this work. Also, we identify the major problems

in traditional access control systems as a whole and summarize our key contributions to solving

those problems. Chapter 2 thoroughly reviews existing access control literature that uses machine
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learning and proposes a taxonomy of machine learning in access control. This chapter also briefly

discusses different methods and summarizes their application and context.

Chapter 3 presents DLBAC as a potential form of MLBAC and shows how DLBAC fundamen-

tally differs from traditional access control approaches. This chapter also illustrates the synthetic

data generation method for a prototype of the DLBAC model named DLBACα. The same chap-

ter explains the implementation of DLBACα with its performance evaluation. This chapter also

proposes two approaches for understanding DLBACα decisions in human terms.

Chapter 4 discusses administration problems and requirements in MLBAC with formalizing

MLBAC administration architecture. This chapter also implements two MLBAC administration

prototypes. It also discusses various issues that could arise while performing MLBAC adminis-

tration and demonstrates how to overcome such challenges. Chapter 5 investigates the adversarial

attacks in the MLBAC system in an adversarial environment and proposes a novel technique to

tackle these vulnerabilities.

To demonstrate the efficiency of MLBAC in complicated real-world settings, we implement a

DLBAC for the permission decisions of different apps on mobile devices in Chapter 6. Besides,

this chapter identifies and discusses potential applications where a DLBAC can work in tandem

with traditional access control systems. The same chapter also discusses the feasibility of DLBAC

in IoT systems. Finally, Chapter 7 discusses some future research directions and concludes the

dissertation.
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

This chapter explores the current practices of machine learning (ML) in access control and deter-

mines the future perspectives of this fast-growing domain. The outcome of this research has been

submitted for publication to the following journal:

• Mohammad Nur Nobi, Maanak Gupta, Lopamudra Praharaj, Mahmoud Abdelsalam, Ram

Krishnan, and Ravi Sandhu. "Machine Learning in Access Control: A Taxonomy and Sur-

vey." ACM Computing Surveys (CSUR).

2.1 Introduction

The effect of ML in access control is found to be positive and has huge potential to achieve even

more. Since the use of ML for access control purposes is rapidly emerging, several challenges

are encountered in the current ML-oriented access control research practice. We observe that

researchers applied ML methods on a case-by-case basis [6,27,37,50,78,138], thereby, there is no

common strategy for using ML in the access control domain. The lack of an exhaustive overview

of the application of ML in access control makes it even harder to gain in-depth insights into it and

plan accordingly. In addition, limited research efforts to determine the proper ML method for a

distinct access control problem make it challenging to select the best model for a novel problem.

Besides, there are several other limitations, such as a lack of quality datasets from the real-

world organization [45, 61] or the anonymous publicly available datasets may not contain relevant

access control information capable of expressing a complete access control state of a system [102].

Putting all these into perspective, it is essential to have a holistic view of how researchers use

machine learning for access control. Also, such a cohesive picture will help learn under-developed

areas and determine future research in the domain.

In this chapter, we perform a detailed review and summarize existing literature that uses ML

to solve different access control problems, including attribute and role extraction, policy mining,

access control decision making, and policy verification. We also propose a novel taxonomy of
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machine learning in access control and highlight research at each stage as the domain evolved

chronologically. Besides, we summarize the publicly available real-world datasets used for ma-

chine learning-based access control research. In the end, we highlight open challenges and lim-

itations faced by the research community and provide future research directions to thrive in this

critical security domain.

2.2 Overview of Access Control

2.2.1 Access Control Approaches

As the cornerstone of any information system’s security, access control restricts the authorization

of subjects/users to perform operations on system’s resources/objects. Different abstraction, mod-

els and mechanisms have been proposed to govern the access and operations on resources to better

represent the access control state of a system at various granularity levels with better maintainabil-

ity. We briefly discuss some mainstream access control approaches and models in this section.

Access Control List (ACL)

The ACL is the low-level representation of the access control state of a system. An ACL informs

a system of a user’s access privileges to system objects/resources (e.g., a file or a directory) [119].

Each object has a security property that connects it to its access control list. The list has an entry

for every user with access rights to the system. However, as each user and resource is managed

separately based on an identifier, ACLs make it very difficult to administer.

Discretionary Access Control (DAC)

It is an access control model where the Owner or Security Administrator of a system sets policies

defining who can access the system resources [119]. DAC is efficiently implemented using ACL

or capabilities [132]. The security administrator defines a resource profile for each object and

updates the access control list for the profile. In DAC, it is difficult to enforce the principle of least

privilege and separation of duties [44].
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Mandatory Access Control (MAC)

In the MAC model, the administrator makes the policy decision, which is based on the security

labels of subjects (clearance) and objects (classification) [117]. The user does not control, define

or change access rights. A common example of MAC is in military security, where the data owner

does not decide on who has a top-secret clearance, or change the classification from top-secret to

secret [65]. In MAC, configuration and maintenance of the system is a challenging task for the

administrator, along with covert channel attacks.

Role Based Access Control (RBAC)

In RBAC, access permissions depend on users’ roles in the system [118]. An administrator designs

the role defining what permissions a role should have and which users will be assigned what roles.

For example, some users may be assigned to a role that allows them to read and write a file, whereas

others may be assigned a different role, which constrains them to read the file only. A user can be

assigned many roles, and at the same time, many users may share one single role. Roles in RBAC

offer easy permissions administration, as role clusters the abilities a user can hold. RBAC also

offers static and dynamic separation of duties, with the ability to define other constraints such as

mutually exclusive roles, permissions, and cardinality constraints. However, RBAC is vulnerable

to role explosion problems, which can lead to leakage of permissions as the number of users and

roles in an organization expands.

Attribute Based Access Control (ABAC)

In ABAC, a user’s access to a resource is determined based on the attributes of the user, attributes of

the resource, environmental conditions, and a set of pre-defined policies [66]. An ABAC policy de-

fines the combinations of the user, resource, and/or environmental attributes, and eventually, these

attributes are required to allow the user to operate on a resource. For example, to restrict a depart-

ment’s resource to its ‘sales_manager’ only, the ABAC policy could limit the rule so that users with

the ‘job_role’ attribute have the value ‘sales_manager’ can access the respective resource. As the
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access policy is designed with respect to rules, ABAC is one of the most generalized, scalable, and

reliable access control models [122]. However, there are challenges while implementing ABAC as

it involves multiple laborious sub-processes such as attribute engineering, attributes assignment,

policy engineering, etc. Therefore, a skilled human administrator might need to be involved in

designing ABAC rules and related attributes to satisfy overall security policy requirements.

Relationship Based Access Control (ReBAC)

Relationship-based access control defines access decisions based on the relationships between

subjects [27, 48] or objects. The most well-known examples of relationship-based access control

are social networks. On Facebook, for example, the user gives view access to the photos or videos

to friends or friends of friends. But friends of those friends cannot view the photos. Thus, ReBAC

allows access when the user has a certain relationship with other entities in the system. ReBAC

offers more than other access control models because it grants access based on multi-relationship

between entities and takes decisions for certain entities, not entity types. For example, the user can

access a specific photo from the directory, not the total directory.

2.2.2 Access Control Concepts

Policy Mining

Policy Mining is the automation process of access control policy extraction from an existing access

control state. Migration to a new model manually can be an error-prone and time-consuming

task. To reduce the effort and cost of this task, extracting policies from the given access control

information can be partly or completely automated [72]. For example, if an organization had

already an access control model implementation such as ACLs, and wants to migrate to more

flexible, fine-grained access control model such as RBAC, ABAC, or ReBAC. In this case, an

ABAC or ReBAC policy mining approach can be applied to obtain desired policies in automated

and efficient manner [143]. In general, the output of ABAC or ReBAC mining is a set of rules [26],

whereas, the RBAC policy mining approaches produce permission to roles (PA) and user to roles
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(UA) assignments [108, 147]. There are several approaches that use advancements in machine

learning to automate the ABAC [6, 8, 37, 74, 78], RBAC [50, 60, 147], and ReBAC [25–27] policy

mining process.

Policy Verification and Testing

Access control policy verification confirms no flaws within the policy that leaks or blocks access

privileges. As a software test, access control policy verification depends on model proof, data

structure, system simulation, and test oracle to validate that the policy logic functions are working

properly. However, these methods have capability and performance concerns related to inaccuracy

and complexity limited by applied technologies. For instance, model proof, test oracle, and data

structure methods assume that the policy under verification is flawless unless the policy model

cannot hold for test cases. Thus, the challenge of the method is to compose test cases that can

systematically learn all faults.

Moreover, a system simulation method needs to convert the policy to a simulated system. But,

if the policy logic is complex or the number of policy rules is large, the translation between the

system may be difficult or impractical [65]. To overcome these challenges machine learning ap-

proach is used for policy verification which does not require comprehensive test cases, oracle, or

system translation. Rather, it checks the logic of the policy rule directly, making it more efficient

and feasible compared to the traditional method [61, 65].

Policy Administration and Monitoring

Designing the policies is not easy and requires substantial administrative effort to modify the policy

to accommodate changes. Multiple ML-assisted methods support additional adjustments in the

existing access control policy and help detect improper behavior in the access control system. ML-

based techniques can help system administrators to reduce the cost of generating the policies and

adjust them dynamically [4,56]. Besides, to accommodate changes in the system, the system admin

may introduce errors and misconfiguration to the system due to the dependencies on the user, data,
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Table 2.1: Publicly Available Real-world Datasets Used in Access Control Researches

SL. Name Publish
Year

Reference Type Description Application

2.1.1 IBM-CM 2004 IBM [1] Access
Policies

Natural language access
control policy

[7], [8]

2.1.2 University-
Data

2005 Fisler et al. [47] Access
Policy

Central grades repository
system for a university

[95]

2.1.3 Wikipedia 2009 Urdaneta et
al. [134]

Access
Logs

Access request traces
from Wikipedia

[138]

2.1.4 AmazonUCI 2011 UCI
Repository [11]

Access
Logs

Access data of Amazon
employees

[30], [37],
[74], [76]

2.1.5 iTrust 2012 Meneely et
al. [100]

Access
Policies

Natural language access
control policy

[7], [8]

2.1.6 CyberChair 2012 Stadt et al. [136] Access
Policies

Natural language access
control policy

[7], [8]

2.1.7 Collected-
ACP

2012 Xiao et al. [139] Access
Policies

Natural language access
control policy collected
from multiple sources

[7], [8]

2.1.8 Amazon-
Kaggle

2013 Kaggle [10] Access
Logs

Two years historical
access data of Amazon
employees (12000 users

and 7000 resources)

[30], [37],
[77], [76],

[93]

2.1.9 eDocument 2014 Decat et al. [42] Access
Policy

e-document case study [25], [26],
[27]

2.1.10 Workforce 2014 Decat et al. [43] Access
Policy

Workforce management
case study

[25], [26],
[27]

2.1.11 SCADA-
Intrusion

2015 Turnipseed et
al. [133]

SCADA
Data

SCADA dataset for
intrusion detection system

[147]

2.1.12 Dalpiaz 2018 Dalpiaz et
al. [39, 40]

User
Stories

Over 1600 user stories
from 21 web applications

[60]

2.1.13 Incident 2018 Amaral et al. [9] Event Logs Event log from an incident
management process

[30]

functionality, and domain [12,138]. Despite efforts on verification and testing [65] to avoid access

control misconfiguration, it is still difficult to avoid in the real-world system. An automated real-

time monitoring system could help to observe the changes in access control behavior better and act

accordingly [95, 138].
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2006

2022

Time-constraint access control model (TCAC) [33] TCAC SVM
Identifying discrepancies between policy specification and its functionali-
ties [95] Common Prisom
Approximating the user- permission assignments [50] RBAC Gibbs Sampler

2008 Automating role- based provisioning [108] RBAC SVM, RF, DT

2009 Inferring access control policies from logs [101] ABAC SVM, RF, DT,

2015

ABAC policies clustering and classification [20] ABAC KNN

2016

Extracting security policies from natural language documents [104] ABAC
RNN

2017

Extracting attributes from flat ABAC [7] ABAC CNN

2018

Rhapsody: mining ABAC rules from sparse access logs [37] ABAC APRIORI-
SD
Modifying access policies at run-time to prevent threats [12] ABAC K-means,
RF
Automating access control in SCADA [147] ABAC SVM

2019

Extracting attributes from hierarchical ABAC [8] ABAC CNN

Automated constraints extraction [6] ABAC BiLSTM

Inferring ABAC policies from access logs [30] ABAC DT, RF, SVC, MLP

ReBAC policy mining algorithm [27] ReBAC Neural Network

P-DIFF: to monitor access control policy changes [138] ABAC TCDT

Polisma: learning ABAC policies from data [74] ABAC RF, KNN

2020

ReBAC policy mining from an existing lower-level policy [25] ReBAC DT

ReBAC Miner with Unknown values and negation [26] ReBAC DT

Adaptive access control policy framework for IoT [4] ABAC RF, LSTM

Risk adaptive access control (RAdAC) [127] ABAC RF, Neural Network
Extracting access control information from user stories [60] ABAC Transform-
ers based deep learning

2021

EPDE-ML: improving the PDP of the ABAC [93] ABAC RF

Verification of access control policy [65] ABAC RF
Automating ABAC policy extraction based on access logs [76] ABAC K-
modes
Adaptive ABAC Policy Learning [77] ABAC RL

Toward Deep Learning Based Access Control [109] DLBAC ResNet

Figure 2.1: A Timeline of Seminal Works Towards ML in Access Control. In each work, the
first grey highlight indicates the access control model (‘Common’ implies the method is applicable
for any access control model), and the second highlight denotes ML algorithms applied in the
corresponding method.

14



ML in Access Control

Policy Mining

ABAC

Attributes and Policy Extraction from NL [6–8,60,104]

Policy from Logs [37,74,76,78,101]

Policy Optimization [20,45]

RBAC
Role Mining [50,60]

Role/Permission Assignments [108,147]

ReBAC ReBAC Policy Mining [25–27]

Policy Verification and Testing Policy Verification and Testing [61,65]

Policy Administration and Monitoring
Policy Administration [4,12,56]

Policy Monitoring [95,138]

ML for Access Control Access Decision [30,33,77,83,93,127]

Figure 2.2: A Taxonomy of Machine Learning in Access Control Domain. NL indicates Natural
Language.

2.3 Machine Learning in Access Control

2.3.1 Policy Mining

Due to the flexible policies and fewer management burdens, high-level access control models such

as ABAC and ReBAC are adopted to support dynamic and complex security policies. However,

adopting such policies from an existing lower-level policy like ACLs is challenging. Generally,

the policy mining techniques take attributes of users/resources in the system and the current access

control state of the system as input. For ABAC and ReBAC, the algorithm output a set of rules

(policy) that grants the same permissions [27, 74]. In contrast, RBAC mining algorithms output

permission to roles (PA) and user to roles (UA) assignments [108, 147]. Table 2.2 summarizes

access control policy mining approaches using machine learning.

Attribute Based Access Control (ABAC)

Attributes and Policy Extraction from Natural Language. Natural language policies, being the

preferred expression of policy [7], need to be transformed into a machine-readable form. Several
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researchers attempted to process such policies using ML to extract access control-related informa-

tion, including identifying policy sentences, triples of subject-object-action, etc.

Narouei et al. [104] introduce a top-down policy engineering framework for ABAC that au-

tomatically extracts security policies from natural language (NL) documents using deep recurrent

neural networks (RNN). Alohaly et al. [7] propose a deep learning-based automated approach for

extracting ABAC attributes from NL policy. The authors develop a framework to automate the

attribute extraction and related information leveraging natural language processing (NLP), relation

extraction (RE), and CNN.

The primary goal of the Alohaly et al. [7] is to detect values of attributes (attribute extraction)

in ABAC policies with no hierarchy among subject or object elements (flat ABAC). From a prac-

tical perspective, extraction of authorization attributes of hierarchical ABAC system from natural

language artifacts is more needed than the flat counter-part. The authors in [8] extend the frame-

work proposed in [7], built upon recent advancements in NLP and ML techniques, with automatic

attributes extraction ability from NL hierarchical ABAC policies.

In ABAC, the attributes often need to satisfy some constraints, which is critical for comply-

ing with organizational security policy. It requires extraordinary skills and efforts to define the

constraints formally. The process is tedious and error-prone as security architects have to ana-

lyze several documents to develop them manually. The Alohaly et al. [6] proposed a reliable and

automated constraints extraction process exploiting tools in NLP. This automation also enables

trace-ability formal constraints expressions and related policies that will also help to avoid errors

while assigning unauthorized attributes.

The user stories written by software developers better represent the actual code than high-level

product documentation. Such stories can contain access control-related information, and extracting

that information can be used to construct access control documentation. Also, stakeholders can

use this information for access control engineering, development, and review. Authors in [60]

developed an automated process using ML to extract access control information from a set of user

stories that present the behavior of the software product in question. The proposed work takes
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a collection of user stories as input to a transformers-based deep learning model [?] with three

components: access control classification, named entity recognition, and access type classification.

First, it classifies whether a user story contains access control information or not. Then, it identifies

the actors, data objects, and operations in the user story as part of a named entity recognition task.

Policy from Access Logs. Work by Mocanu et al. [101] proposed a deep learning-based approach

to infer policies from logs, which also supports negative authorization (i.e., a subject cannot access

a resource). The proposed approach has two phases. The first phase generalizes the knowledge

from logs providing a set of candidates rules in a binary vector format. In the second phase, this

set of candidate rules is transformed to the format acceptable by Xu-Stoller [143] and compared.

However, such kinds of methods [101,143] are limited where the logs have only a tiny subset of all

possible access requests. Evidently, the access logs in real-world systems only contain about 10%

of all possible access requests [37]. Over time, the developed rules also become highly complex

due to its adoptions to different changes in the system. Hence, the shorter and less-convoluted rules

are better from a maintainability perspective. Cotrini et al. [37] proposed an approach, known as

Rhapsody, for mining ABAC rules from sparse access logs identifying patterns among the autho-

rized requests. Rhapsody also solves various other issues of the existing state-of-the-art, including

the rules size and over-permissiveness nature. The Rhapsody builds upon APRIORI-SD [80],

which the authors modify to overcome its weaknesses of mining overly permissive or unnecessar-

ily large rules.

Cotrini et al. also introduce a novel validation method named universal cross-validation that

evaluates mined rules with requests not present in the dataset. Experiments show that the proposed

evaluation approach validates policies with higher F1 scores (more accurate in deciding requests

outside the log) than the standard cross-validation technique.

Jabal et al. [74] propose a novel framework for learning ABAC policies, named Polisma, com-

bining data mining, statistical, and ML techniques. The methodology of the Polisma approach

works mainly in four different stages. Polisma applies Random Forest (RF) and KNN as the ma-

17



chine learning classifiers on requests not covered by the set of policies learned in the first three

stages and uses the classification result to label these data and generate additional rules. The ap-

proach is evaluated empirically using both the real-world [11] and synthetic datasets. Experimental

results show that Polisma can develop ABAC policies that accurately control access requests.

Many large-scale businesses need to grant authorizations to their users that are distributed

across heterogeneous computing environments. In such a case, the manual development of a sin-

gle access control policy framework for an entire organization is cumbersome and error-prone.

Karimi et al. [76] proposed an automating ABAC policy extraction based on access logs following

their other work on an unsupervised learning-based approach for ABAC policy mining [78]. The

proposed method extracts policy rules containing positive and negative attributes and relationship

filters.

Policy Optimization. Benkaouz et al. [20] presents an approach for ABAC policies clustering and

classification. The proposed approach uses KNN algorithms that help to reduce dimensionality

and achieve higher flexibility for ABAC policies in high-scale systems. A small k implies fine-

grained ABAC model, and a bigger k implies a coarse-grained ABAC model. This is a work in

progress, and several key questions remain unanswered, such as the default value of k, the most

suitable KNN algorithms for policies clustering, and also if the same approach has any uses in

different kinds of applications. El Hadj et al. [45] propose ABAC-PC (ABAC Policy Clustering)

that groups the policy rules according to the decision effects, such as to permit or deny rules. The

method also creates cluster rules based on similarity scores and produces the minimum set of rules

representing each cluster. The proposed work is an extension of the Benkaouz et al. [20] method.

Role Based Access Control (RBAC)

The work in [50] focuses on bottom-up approaches for RBAC role mining where the goal is to

approximate the user-permission assignments by finding a minimal set of roles, user-role and role-

permission assignments. The authors use Gibbs sampler [106] which is a Markov chain Monte
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Carlo algorithm for their proposed Disjoint Decomposition Model.

The authors in [108] propose a machine learning-based automated role maintenance system that

provisions existing roles with entitlements from newly deployed applications and provisions new

users with existing roles. The proposed technique utilizes the attributes of entitlements to simplify

the management of entitlements assignments to roles. Lu Zhou et al. [147] propose two machine

learning-based approaches to automate the role assignment process in the context of the real-time

Supervisory Control and Data Acquisition (SCADA) system. The authors first demonstrate how

SVM can be applied by developing a context-aware RBAC with automated role engineering. They

use different static (job function, job position, etc.) and dynamic attributes (time, location, etc.) of

the SCADA system’s users and devices as input to the SVM and obtain user-role or permission-role

assignments as the output.

Relationship Based Access Control (ReBAC)

Like ABAC policy mining approaches, ReBAC policy mining algorithms can also potentially re-

duce the effort to obtain a high-level policy from lower-level access control data. The author

in [27] propose an efficient and scalable ReBAC policy mining algorithm which is an extension

over the existing evolutionary algorithm [29] for the same problem. This enhancement simplifies

the current approach, facilitating the easier adoption of new policy language features. Due to the

flexibility and scalability of high-dimensional data and large datasets, the authors choose a neural

network over other classification methods for the feature selection algorithm. The algorithm maps

different feature vectors with Boolean values to indicate the authorization for users to act an action

on resources. Each feature in the vector is defined as ‘a subject atomic condition, resource atomic

condition, or atomic constraint satisfying the user-specified limits on lengths of paths in conditions

and constraints’.

The authors in [25] proposed DTRM (Decision Tree ReBAC Miner) and DTRM−, with the

ability to mine policies in any ReBAC language. The decision tree-based DTRM algorithm mines

policies in the recent version of Object-oriented Relationship-based Access-control Language
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(ORAL) that supports two set comparison operators on top of existing operators in the earlier

version. The DTRM− algorithm is an extension of DTRM with the support of negative conditions

and negative constraints. Similar to [27], the decision tree is trained to learn the classification of

feature vectors, which are also mapped with Boolean values indicating the authorization for users

to act on resources.

In most real-world data, information about permissions can be incomplete, or some attribute

values can be missing (or unknown). Authors in [28,37,73] solved different variants of the ABAC

and ReBAC policy mining problem considering incomplete permissions information. However,

all these works assume the attribute (and relationship in the case of ReBAC) information is com-

plete (or known). The authors in [26] proposed decision tree-based algorithms, Decision-Tree

ReBAC Miner with Unknown values and negation (DTRMU− and DTRMU), for mining ABAC

and ReBAC policies from ACLs. The first of its kind, the algorithm can deal with ‘incomplete’

information about entities, where the values of some attributes of some entities are unknown. To

handle the ‘unknown’ values, the authors proposed to reduce the core part of the ReBAC policy

mining problem to the general problem of Kleene’s three-valued logic learning formula. The au-

thors assigned another truth value, ‘U,’ to conditions and constraints with ‘unknown’ values along

with true (T) and false (F) binary logic values.

To deal with a concise three-valued logic formula from a set of labeled feature vectors involving

unknowns, the authors develop an algorithm based on multi-way decision trees as opposed to a

binary decision tree. Identical to [25, 27], the decision tree learns based on a given set of feature

vectors labeled with a permit or deny. The definition of feature is also same as [27] and [25].

2.3.2 Policy Verification and Testing

Traditional policy verification methods are infeasible for many systems as they are error-prone

and time-consuming processes. These methods perform static or dynamic analysis on the access

control system to determine the policy behavior. Such analysis techniques can not specify roles

or permissions-specific code elements, find relations among these codes and associated policy

20



Table 2.2: Summarizing Machine Learning Based Policy Mining. The dataset type ‘RW’, ‘RWA’,
and ‘Syn’ indicates Real-World, Real-World Augmented, and Synthetic dataset, respectively. We
link to Table 2.1 if the respective RW/RWA dataset is public. Also, we follow the same convention
for other summary tables.

Reference Problem Considered Access
Control
Model

ML Approach Dataset Type

Frank et al. 2008 [50] Probabilistic bottom-up
approaches for RBAC role

mining

RBAC Gibbs sampler &
Disjoint

Decomposition

Syn & RW

Ni et al. 2009 [108] Mapping between roles and
new privileges

RBAC SVM (and DT,
RF, etc.)

Syn & RW

Mocanu et al. 2015 [101] Policy inference from logs ABAC RBM Syn
Benkaouz et al. 2016 [20] Clustering of policies ABAC KNN Not Used
Narouei et al. 2017 [104] Policy extraction from

natural language documents
ABAC Recurrent Neural

Network
Syn

El Hadj et al. 2017 [45] Clustering of policies ABAC KNN Syn
Alohaly et al. 2018 [7] ABAC attribute extraction

from natural language
ABAC CNN RWA (Table

2.1.1, 2.1.5,
2.1.6, 2.1.7)

Karimi et al. 2018 [78] Policy extraction ABAC K-modes Syn

Cotrini et al. 2018 [37] Policy mining ABAC APRIORI-
SD [80]

Syn & RW (Table
2.1.4, 2.1.8)

Alohaly et al. 2019 [8] Attribute extraction from
natural language

ABAC CNN RWA (Table
2.1.1, 2.1.5,
2.1.6, 2.1.7)

Alohaly et al. 2019 [6] ABAC constraints extraction
from natural language

ABAC BiLSTM RWA

Zhou et al. 2019 [147] Role and permission
assignments

RBAC SVM &
Adaboost

RWA (Table
2.1.11)

Bui et al. 2019 [27] Policy mining ReBAC Neural Network Syn & RW (Table
2.1.9, 2.1.10)

Bui et al. 2020 [25] Policy mining ReBAC Decision Tree Syn & RW (Table
2.1.9, 2.1.10)

Bui et al. 2020 [26] Policy mining ABAC,
ReBAC

Decision Tree Syn & RW (Table
2.1.9, 2.1.10)

Jabal et al. 2020 [74] Learn ABAC policies from
logs

ABAC RF, KNN Syn & RW
(Table 2.1.4)

Karimi et al. 2021 [76] Policy extraction based on
access logs

ABAC K-modes Syn & RW (Table
2.1.4, 2.1.8)

Heaps et al. 2021 [60] Extracting access control
policy from user stories

RBAC and
ABAC

Transformers,
CNN, SVM

RW (Table
2.1.12)
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Table 2.3: Summarizing Machine Learning Based Policy Verification. ‘Common’: any access
control model.

Reference Problem Considered Access
Control
Model

ML Approach Dataset Type

Heaps et al. 2019 [61] Word embedding technique for
developing automated policy

verification tools

RBAC Neural Network Syn

Vincent C. Hu 2021 [65] Verifying access control policy Common RF Syn

elements, or tackle the case when a mapping is required for a new code and policy element. The

authors in [61] discuss these issues and pretend a potentiality of developing a more robust and

efficient system by leveraging recent advancements in deep learning. The authors propose training

a deep learning model based on the code and policy elements links. Access control policies are

verified based on model proof, data structure, system simulation, and test oracle to ensure the

policy works desirably. By default, it is assumed that the policy under verification is accurate

unless the policy failed to hold for test cases. However, this comprehensive test case generation

is challenging and somewhat impractical. In a NIST Internal Report (IR), Vincent C. Hu [65]

proposes a technique exploiting machine learning algorithm to make the entire verification process

more efficient and straightforward. The proposed method, which is feasible and efficient, can

check the policy logic directly compared to traditional methods. Table 2.3 outlines these works.

2.3.3 Policy Administration and Monitoring

A regular access control policy update a.k.a policy administration is required to accommodate

intermediate access changes. The task is very challenging for system admins and error-prone (e.g.,

over-granting access privilege) due to the lack of proper tools [138]. Manual policy updates are a

laborious and error-prone task and the system becomes vulnerable to different cyber threats [12].

Also, failing to detect such threats (or misconfigurations) in the early stage may cause severe

security incidents. A body of methods have been proposed to automate the policy administration

and policy monitoring processes. Table 2.4 lists related methods. We briefly discuss them below.
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Policy Administration

Authors in [12] present an ML-based approach, named ML-AC, that can update policies at run-time

automatically and prevent such threats. The ML-AC monitor and learn the access behavioral fea-

tures (e.g., frequency of access, amount of data, location, etc.) of a user and adjust existing access

control rules based on learned contextual knowledge. The authors apply this method by adding a

novel Contextual Behaviour Learning component in the Policy Administration Point (PAP) of the

access control system. This new component builds user profiles based on the monitored access

pattern and adjusts access control policies by utilizing those profiles.

The authors in [4] propose an adaptive access control policy framework for IoT deployments.

The framework dynamically refines the access policies based on the access behaviors of the IoT

devices. In parallel to the traditional ABAC authorization server, the authors propose incorpo-

rating a policy management module that implements the access policy adaptation functionalities,

including the access behavior classifier and the policy refinement components.

Gumma et al. [56] propose PAMMELA which is an ML-based ABAC policy administration

method. The PAMMELA creates new rules for the proposed changes and extends existing policy

by adjusting the newly developed rules with the current policy. PAMMELA can also develop

new policies for a system by learning existing policy rules in a similar system. PAMMELA is

a supervised ML-based approach that mainly works in two phases. PAMMELA trains an ML

classifier on ABAC policy rules in the first phase. In the second phase, PAMMELA provides a set

of access requests to the trained classifier and creates a set of rules based on the classifier’s access

decision for respective requests.

Policy Monitoring

Due to the lack of proper tools, standardized policy specifications such as XACML and their im-

plementation can be error-prone. It demands rigorous verification and validation to ensure the im-

plemented policy complies with the desired one. Martin et al. [95] discover that the ML algorithms

could summarize the basic properties of such a policy and help to identify specific bug-exposing
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Figure 2.3: Time-Changing Decision Tree (TCDT).

requests. Especially, their proposed method can efficiently identify the discrepancies between the

policy specification and its intended functionalities.

Authors in [138] develop a tool named P-DIFF to backing system admins to monitor access

control policy changes. P-DIFF also supports investigating any malicious access by backtracking

related changes that help system admins identify the reason behind unwanted access. The authors

adopt a decision tree representation to convert heterogeneous access control behaviors to a standard

rule-based format. However, a regular decision tree is limited in handling time-series information

to consider access concerning time. The authors extend the decision tree algorithm to counter

the challenge and propose a novel Time-Changing Decision Tree (TCDT). Unlike single binary

value outcome (allow or deny), each rule of a TCDT is expressed as a time series as depicted in

Figure 2.3. The TCDT learning algorithm is designed to infer the tree by considering access logs

as a sequence of access events ordered by access time. Then, the TCDT allows modeling access

control behavior at any given time and monitoring changes in the access control rules.
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Table 2.4: Summarizing Machine Learning Based Policy Administration and Monitoring. ‘Com-
mon’: any access control model.

Reference Problem Considered Access
Control
Model

ML Approach Dataset Type

Martin et al. 2006 [95] Identifying
bug-exposing requests

Common Prism [?] RW
(Table 2.1.2)

Argento et al. 2018 [12] Improves the PAP of
the ABAC model

ABAC (and
Common)

RF and K-means
Clustering

Syn

Xiang et al. 2019 [138] Access control
validation and

forensics

Common Time-Changing
Decision Tree

(TCDT)

RW
(Table 2.1.3)

Ashraf et al. 2020 [4] Refines policies based
on access behavior

ABAC RF and RNN RW

Gumma et al. 2021 [56] ABAC policy
administration

ABAC Neural Network,
DT, RF, etc.

Syn

2.3.4 ML for Access Control Decision Making

Contemporary researches also manifest the advantages of using an ML model for more accurate

access control decision-making [30,33,77,93,109,127]. These systems decide accesses based on a

trained ML model instead of a written access control policy. Generally, these models make access

control decisions (grant or deny) using user and resource metadata and attributes. Metadata and

attributes are the user/resource features that an ML model learns for subsequent access decisions.

We briefly discuss these approaches below and summarize them in Table 2.5.

Chang et al. [33] proposed a novel access control system, called time-constraint access control,

that can be applied to access policies constrained with time. The authors apply SVM to the pro-

posed scheme and divide the processes into three phases: (1) the input pattern transforming, (2) the

training phase for SVMs, and (3) the authority decision phase. As part of training data, the system

administrator determines a login time and a password for each user. The trained SVMs can classify

the users into their groups and give them corresponding security access using their passwords and

system login time. Consequently, instead of written access control policies, trained SVMs are used

for access decisions.

Cappelletti et al. [30] experiment with multiple ML techniques, including Decision Tree [113],
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Random Forest (RF) [23], Support Vector Machines (SVM) [36], and Multi-Layer Perceptron

(MLP) [120], for making access control decisions. The authors train the ML models using access

history. The authors suggest using neural networks for complex systems. The experimentation is

performed on two Amazon Datasets [10,11] and the Incident dataset [9]. The details of the datasets

are reported in Table 2.1.4, 2.1.8, 2.1.13.

Khilar et al. [83] propose a trust-based approach that allows access to the cloud resources

based on the accesses history and access behavior of the user. Also, the approach considers other

factors, including user behavior, bogus request, unauthorized request, forbidden request, and range

specifications.

Srivastava et al. [127] propose a novel access control framework named risk adaptive access

control (RAdAC), which understands the genuineness of the requester, calculates the risk, and then

acts accordingly. The framework considers many real-world attributes in its design, such as time

of access, location of access, frequency of the requests, and the sensitivity of requested resources.

The proposed approach depends on multiple parameters such as a sensitivity score and relevance,

and the authors used unique strategies to engineer those parameters. The authors developed a

prototype of their proposed method for a Hospital Management System (HMS). They experiment

with a neural network with two hidden layers and an RF algorithm.

The authors in [93] propose an Efficient Permission Decision Engine scheme based on Ma-

chine Learning (EPDE-ML) that improves the policy decision point (PDP) of the ABAC model.

Internally, the EPDE-ML includes an RF algorithm trained based on user attributes and prior ac-

cess control information. For any access control request from a user, the decision engine results

either permit or deny indicating the user has access or not to the corresponding resource.

There are some challenges with supervised learning approaches in the real-world system, such

as limited labeled data, sparse logs holding partial access information, etc. To tackle these issues,

Karimi et al. [77] propose an adaptive access control approach that learns from the feedback pro-

vided by the user. The authors propose a reinforcement learning system in which an authorization

engine adapts an ABAC model, as shown in Figure 2.4. The model depends on interacting with
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Figure 2.4: Overview of Reinforcement Learning Based ABAC Policy Learning.

the system administrator to receive the feedback that helps the model make an authorization de-

cision. The authors suggested four methods for initializing the learning model based on attribute

value hierarchy to speed up the learning process. The authors experiment on multiple data sets,

including synthesized and real ones, to evaluate the proposed method properly. The synthesized

authorization records are produced based on ABAC policies: a set of ABAC policies with man-

ually written policy rules and one with randomly generated policy rules. The real dataset is built

from the records provided by Amazon [10] (Table 2.1.8).
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Table 2.5: Summarizing Machine Learning for Access Control Decision

Reference Application Problem Considered Access
Control
Model

ML
Approach

Dataset Type

Chang et al. 2006 [33] Not specified A novel access control
model with time

constraint

Time-
constraint

Access
Control

SVM Syn

Khilar et al. 2019 [83] Cloud Computing Policy for cloud
resources based on the

access history and
behaviour

Trust-
Based
Access
Control

RF, DT,
SVM,
Neural

Network,
etc.

Not
Specified

Cappelletti et al. 2019 [30] Not specified Inferring ABAC
policies from access

logs

ABAC DT, RF,
SVM, MLP

RW (Table
2.1.4, 2.1.8,

2.1.13)
Srivastava et al. 2020 [127] Defense, airport,

and healthcare
A novel access control
framework to decide
accesses based on the

genuineness of the
requester

Risk
Adaptive
Access
Control

(RAdAC)

Neural
Network, RF

Not
Specified

Liu et al. 2021 [93] Big Data & IoT Improves the policy
decision point (PDP) of

the ABAC model

ABAC RF RW (Table
2.1.8)

Karimi et al. 2021 [77] IoT Adaptive ABAC policy
learning

ABAC Reinforcement
Learning

Syn & RW
(Table 2.1.8)
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CHAPTER 3: OPERATIONAL MODEL OF MACHINE LEARNING

BASED ACCESS CONTROL

This chapter proposes DLBAC, a new approach to automated and dynamic next-generation access

control, and develops a candidate DLBAC model, DLBACα. Experimental results demonstrate that

DLBACαoutperforms classical policy mining and machine learning techniques in many aspects,

including capturing the existing access control state of the system accurately and generalizing well

to situations that were not seen during training time. Also, as DLBAC is a neural network, we

address previously highlighted concerns on the explainability of the black-box nature of neural

network-based systems for access control [30]. We apply deep learning interpretation methods to

confirm that it is possible to understand DLBAC decisions in human terms to a large degree (albeit

not with 100% accuracy). Next, we synthesize several large-scale access control datasets with

a varying number of users and resources. We evaluate the performance of DLBAC on synthetic

and two real-world datasets. The outcome of this research has been published at the following

conference:

• Mohammad Nur Nobi, Ram Krishnan, Yufei Huang, Mehrnoosh Shakarami, and Ravi Sandhu.

"Toward Deep Learning Based Access Control." In Proceedings of the Twelveth ACM Con-

ference on Data and Application Security and Privacy (CODASPY), Baltimore-Washington

DC Area, United States, 2022.

3.1 Introduction and Motivation

There are various mainstream access control models available, including Access Control Lists

(ACLs) [58], Role-Based Access Control (RBAC) [118], and Attribute Based Access Control

(ABAC) [64]. These approaches have dominated the domain with excellent performance and

tremendous progress has been made over time [79]. However, one basic issue has remained the

same for over forty years. Skilled security administrators needed to engineer and manage ac-

cesses as only humans could develop detailed policy insights about individuals’ needs within the
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broader organization. Clearly, this leads to all types of errors and inefficiencies [16]: there remain

plenty of users with accesses that should not have those accesses (over-provisioned to ease ad-

ministrative burden) and plenty of users that lack accesses that should indeed have those accesses

(under-provisioned for the sake of tightened security) [49, 125]. Administrators tactfully perform

a balancing act to maximize security and minimize costs. This complexity is further exacerbated

with the proliferation of cloud-based applications that perform machine-to-machine access through

APIs, Internet of Things (IoT), Bring Your Own Devices (BYOD), etc. Also, the engineered rules

in traditional access control policies typically make poor access control decisions for user-resource

metadata that were not explicitly seen by the mining process.

To solve these problems, we propose an automated and dynamic access control mechanism

leveraging advances in deep learning technology [120] that could complement or potentially re-

place existing traditional access control systems. It can significantly reduce the effort and involve-

ment of a human administrator in maintaining an access control system. This approach denoted

as Deep Learning Based Access Control (DLBAC), addresses four major limitations, including

attribute engineering, policy engineering, policy and attribute update, and generalization, of clas-

sical access control approaches such as RBAC and ABAC. Without loss of generality, we use

the term attribute to refer to any form of traditional access control information such as roles and

relationships.

3.2 Classical Access Control Approaches vs. DLBAC

In this section, we provide a brief overview of DLBAC and explain how it differs from classical

approaches.

3.2.1 Decision Making in Classical Approaches vs. DLBAC

Figure 3.1 illustrates how DLBAC makes a decision as compared to two classical access control ap-

proaches (the discussion applies to other forms of access control approaches such as relationship

based access control or ReBAC [34]). In RBAC, an access control decision is simply a cross-
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Figure 3.1: Decision Making in Classical Approaches vs. DLBAC.

reference between user-role and permission-role assignment relations. In the case of ABAC, an

access control rule is evaluated for a given operation based on the attributes of the user and re-

source in question (sometimes attributes of other entities such as “environment” are used as well).

In DLBAC, a deep neural network makes an access control decision based on the available meta-

data for the user and resource. For example, metadata could include logs of accesses, employee

join date, access time, network access profile, etc. For simplicity, we assume metadata are rep-

resented as name-value pairs. While syntactically they appear to be the same as attributes, which

are often name-value pairs as well, semantically they are very different. Metadata are primarily

different from attributes since they do not go through the access control design and engineering

process. A typical organization could host multiple applications such as email, file storage, human

resources, benefits, and other cloud services. Each of those applications hold metadata about users

and resources in the organization. Metadata are designed inherently as part of the functionality

engineering phase of the system instead of during the access control design phase of the system.

Therefore, they are immediately available to DLBAC once the system is implemented. For exam-

ple, ‘join_date’, ‘spending_history’ and ‘credit_history’ could be metadata of customer, whereas

an engineered attribute could be ‘status’ (such as ‘status = platinum’), determined based on all of

those metadata.
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Figure 3.2: Design Process of Classical Approaches vs. DLBAC.

3.2.2 Policy Engineering in Classical Approaches vs. DLBAC

A conceptual representation of classic access control approaches versus DLBAC is depicted in

Figure 3.2. For simplicity, we assume all approaches obtain the current access control state of the

system as authorization tuples (e.g., ⟨user, resource, operations⟩), and the metadata of users (e.g.,

⟨designation, “employee”⟩) and resources (e.g., ⟨size, “small”⟩) as the input. In ABAC, the first

step of attribute engineering involves designing attributes of users and resources in the system that

are selected and properly assigned based on available metadata. Common to ABAC and RBAC,

the second stage is policy mining/engineering, through which proper policies are developed. Ac-

cess control mining algorithms, including those using machine learning (ML), are summarized in

Section 2.3. The last element in the conceptual representation of models is the output. For the

RBAC approach, the mining process’s output is a set of roles, permission assignment to roles (PA),

and user assignment to roles (UA). For ABAC, the output includes a policy consisting of a set

of access control rules. (Note that most ABAC mining works assume that attributes and attribute

assignments are already available [105,115]). In contrast, DLBAC is an end-to-end access control

approach. It does not need feature engineering since it works directly with the metadata of users

and resources. The DLBAC approach’s output is a trained deep neural network, which takes user

32



and resource metadata as input and makes access control decisions. We note that the DLBAC is

agnostic to any deep neural network architecture.

3.3 DLBACα: A Candidate DLBAC Model

This section presents a prototype of DLBAC, namely DLBACα, which is an access control model

built upon the proposed DLBAC approach in Section 3.2. As illustrated in Figure 3.2, DLBAC

models such as DLBACα need to be fed with authorization tuples and user/resource metadata. We

apply DLBACα to two real-world and eight synthetic datasets. First, we describe how we construct

our synthetic datasets and introduce the real-world datasets. Then, we discuss how the DLBACα

neural network is trained, and access decisions are made.

3.3.1 Synthetic Dataset Generation

An approach to generate synthetic access control datasets was proposed in [143]. We adopt this

approach with minor changes to generate multiple synthetic datasets. We briefly discuss this ap-

proach here.

The algorithm first generates a set of attribute names for users and resources randomly. Next,

it generates a set of synthetic rules based on those attributes and then uses these rules to in-

form user/ resource creation and attribute value assignments. Each rule is a tuple of the form

⟨UAE ,RAE , OP,C⟩, where UAE is the set of user attribute expression, RAE is the set of re-

source attribute expression, C is the set of constraints, and OP is a set of operations. For exam-

ple, rule(title=student; type=document; read; department=department) is a sample synthetic rule

where title=student represents the UAE, type=document represents the RAE, read is the opera-

tion, and constraint is denoted by department=department. A user will be authorized to operate

on a resource if the user satisfies the UAE, the resource satisfies the RAE, and both the user and

resource satisfy the constraint stated in that rule. For each rule, the algorithm generates a set of

users that satisfy the rule and then generates resources where for each resource, there is at least

one user available to satisfy the rule. The following user and resource are created based on the
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above rule: user(student1, title=student, department=cs), resource(document1, department=cs,

type=document). Here, the student1 and document1 are the unique ids of a user and a resource, re-

spectively. The user student1 has two attributes (title and department), and the resource document1

also has two attributes (department and type). Also, student1 satisfies UAE, as the user has the title

student which is part of the title in UAE. Similarly, document1 satisfies RAE for the type attribute.

Both student1 and document1 satisfy the rule’s constraint as they are from the same department.

Thus, according to this rule, student1 has read access to document1.

Finally, once the rules are generated, users and resources are created, and attributes are as-

signed, it is straight-forward to create the authorization tuples. For each user, resource and op-

eration combination that satisfies a rule, an authorization tuple is created or updated with a new

operation, as the case may be.

Syntax of Synthetic Dataset

We adapt this data generation approach by creating many metadata instead of attributes. We main-

tain four operations and various metadata (eight to thirteen) for each user/resource for different

datasets. We define the syntax of DLBACα’s dataset to contain a set of authorization tuples. An

authorization tuple could be illustrated of the form
〈
uid|rid|mu

1 : v1,m
u
2 : v2, ...,m

u
i : vi|mr

1 :

v1,m
r
2 : v2, ...,m

r
j : vj|⟨op1, op2, op3, op4⟩

〉
. The uid and rid in the tuple indicates the unique id

of a user and a resource, respectively. The next part gives the metadata values of all i metadata of

a user and mu
1 indicates the first user metadata name (e.g. umeta0) whereas its value is indicated

by v1. The subsequent part presents the metadata values of all j metadata of a resource, and first

resource metadata name (e.g. rmeta0) and its value are represented by mr
1 and v1, respectively.

The last part is a binary sequence with a ‘1’ meaning ‘grant’ and a ‘0’ meaning ‘deny’ for that

operation. For example,
〈
1011|2021|30 49 5 26 63 129 3 42 | 43 49 5 16 63 108 3 3 |⟨1 1 0 1⟩

〉
is a sample authorization tuple of our dataset where 1011 and 2021 are the user and resource’s

unique number. The next eight numbers indicate the metadata values of a user, the following eight

numbers represent resource’s metadata values, and the final four binary digits signify the user has
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a b c d e

Figure 3.3: Comparing Complexity of Datasets. (a) 1650 users, 320 resources, eight user/resource
metadata, (b) 1000 users, 639 resources, 11 user/resource metadata, (c) 800 users, 656 resources,
11 user/resource metadata, (d) 4500 users, 4500 resources, 11 user/resource metadata, (e) An
Amazon dataset [10] (The dataset has more samples with ‘grant’ access. Therefore, for better
visualization, we considered all the tuples with ‘deny’ access permission and randomly selected a
similar number of tuples with ‘grant’ access permission).

op1, op2, op4 access to the resource. (In the example above, we also skip naming the metadata with

the assumption that it could be inferred from the position of the metadata value.) For simplicity, we

assume the metadata values in our datasets are categorical, and each metadata value is an integer

representation of a category. We anticipate that our results will hold even in cases of metadata with

real numbers.

Dataset Visualization

We use t-SNE plots [135] to visualize the samples in our datasets. A t-SNE plot discovers re-

lationships in the data by identifying analogous clusters of data points with several features and

projecting high dimensional features into a low dimensional feature space, while retaining essen-

tial information of the data. We project each of our samples to a 2-dimensional feature and plot

them. (Note that our datasets have varying numbers of features/metadata ranging from 16 to 26

in total.) Each dot in the plot (Figure 3.3) represents an authorization tuple, where multiple tuples

of the same color indicate that they have the same access permissions. For example, two tuples

with only read and write access permissions will have the same color. It is worth mentioning that a

dataset with n operations will have tuples with 2n different access combinations and can be plotted

with 2n distinct colors. For instance, the authorization tuples of a dataset with two operations (e.g.,

read and write) can be plotted with four different colors (tuples with the read access, tuples with

the write access, tuples with both read and write access, tuples with no access).
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The position of a tuple in the plot is fixed according to the user and resource metadata values.

For instance, two different users with the same metadata values may have access to a resource or

multiple resources having the same metadata values. Therefore, these tuples will have the same

position regardless of their access permissions. Figure 3.3(a) depicts a dataset of 1650 users and

320 resources. The tuples (dots) take the position all over the plot according to their metadata

values. This dataset has four different operations, and thereby, there are tuples with 16 distinct

colors. However, we observe different tuples with the same access permission (same color) are

grouped, and groups are isolated from one another, as shown in the figure with blue circles. Thus, a

simple classifier can easily distinguish them without much difficulty (e.g., making one rule for each

circle). The access control states in real-world situations might be much more complicated [102].

Figure 3.3(e) shows the visualization of a dataset from Amazon. Even though this is not a complete

access control scenario of the entire Amazon enterprise [37], samples with access (green dots)

significantly overlap with other samples without access (red dots) which means tuples with very

similar metadata values have entirely different accesses. A simple classifier would create too many

rules to model such a dataset.

Introducing Complexity into Synthetic Datasets

Informed by t-SNE visualization of the Amazon dataset, we seek to introduce complexity into our

synthetic datatsets to closely reflect real-world situations. We observe that, in practice, the access

privileges of users and resources with somewhat similar metadata could vary. It is also expected

that not all the metadata of a user/resource would contribute equally to their permissions. To reflect

such scenarios in some of our datasets, we determine accesses in tuples by considering all the

metadata values of user and resource but hide a portion of metadata values from the policy miner

(when dealing with mining approaches) and model training phase (when dealing with machine

learning approaches). However, during rule generation, we ensure that the metadata that we will

hide contribute to a lesser extent toward permission decisions by excluding them from being part

of the constraint of the rules. In a nutshell, hiding metadata attempts to simulate a scenario, where
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access decisions are made based on access control attributes that are not fully informed by the

entire metadata set. In a perfect world, access control attributes could capture the relevant metadata

distributed across an organization succinctly. However, it is reasonable to hypothesize that this is

not a practical assumption.

Figure 3.3(b) represents a dataset with 11 user metadata and 11 resource metadata. The autho-

rization tuples were created considering all the eleven metadata. To simulate a similar situation

while visualizing tuples and understand how it looks from a policy mining (or classification) per-

spective, we make only the first eight metadata values of the user and the first eight metadata values

of the resource available for visualization. As depicted in the figure, different dots of other colors

now start to mix, indicating that two tuples with very similar user-resource metadata values may

have very different accesses. Indeed, such proximity of the tuples is challenging for clustering or

rule creation. The more metadata we hide, the more complicated the dataset will be for policy

mining algorithms and machine learning approaches.

Note that we still notice a few portions in the plot where the same colored dots are clustered

together and hence separable, as shown with red circles in Figure 3.3(b). This is because the

dataset generation algorithm [143] creates the metadata values based on a distribution, where the

value range (i.e., number of values for each metadata in the dataset) is sparse. For example, there

are around one hundred different values for specific metadata (e.g., department) in a dataset with

hundred users. One can easily cluster all the users into hundreds of groups based only on the

department. However, there might be the case where metadata values are required to be chosen

from a set of a limited number of values (say, ten departments for hundred users). Evidently, it

is harder to cluster one hundred users into ten groups than a hundred. To reflect this, for each

metadata, we define a fixed and smaller set of values (6 to 20 unique values) following the same

distribution used by Xu et al. [143]. We choose each metadata value from the corresponding list

during user/resource creation and metadata value assignment. This strategy creates datasets with

significantly overlapped samples as depicted in Figure 3.3(c). We also extended the number of

users and resources to simulate a larger organization, which adds more overlaps among samples
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Figure 3.4: t-SNE Visualization of Synthetic and Real-world Datasets from Table 3.1. Figures
a-h corresponds to synthetic datasets #3−#10 and i-j corresponds to real-world datasets #1−#2 in
Table 3.1, respectively.

Table 3.1: List of Datasets.

# Dataset Type Users User
Metadata

Resources Resource
Metadata

Authorization
Tuples

1 amazon-kaggle Real-world 9560 8 7517 0 32769
2 amazon-uci Real-world 4224 11 7 0 4224
3 u4k-r4k-auth11k Synthetic 4500 8 4500 8 10964
4 u5k-r5k-auth12k Synthetic 5250 8 5250 8 12690
5 u5k-r5k-auth19k Synthetic 5250 10 5250 10 19535
6 u4k-r4k-auth21k Synthetic 4500 11 4500 11 20979
7 u4k-r7k-auth20k Synthetic 4500 11 7194 11 20033
8 u4k-r4k-auth22k Synthetic 4500 13 4500 13 22583
9 u4k-r6k-auth28k Synthetic 4500 13 6738 13 28751
10 u6k-r6k-auth32k Synthetic 6000 10 6000 10 32557

and higher complexity to the dataset, as shown in Figure 3.3(d).

Finally, we synthesized eight different datasets (datasets #3-#10 in Table 3.1) used for DLBACα

experimentation and evaluation, with varying numbers of users, resources, user and resource meta-

data, and authorization tuples, each reflecting a varying degree of complexity. We use the fol-

lowing naming convention for our synthetic datasets, as listed in Table 3.1: u⟨approx. number of

users⟩ − r⟨approx. number of resources⟩ − auth⟨approx. number of authorization tuples⟩. We

use ‘u’, ‘r’, and ‘auth’ to indicate users, resources, and authorization tuples, respectively. We also

visualize all the synthetic datasets in Figure 3.4(a-h) using t-SNE plots. As illustrated in the Fig-

ure, each plot has dots with one of 16 different colors (for four operations), and those dots mix
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extensively.

3.3.2 Real-world Dataset

Amazon published two datasets that contain access control information which is widely used in

access control research [30, 37, 76]. We name these datasets as amazon-kaggle and amazon-uci,

and list them in the Table 3.1 (1-2). The amazon-kaggle dataset was released in Kaggle [10]

(a platform for predictive modeling competitions) as a challenge to the community to build a

machine learning model to determine the employees’ accesses. The dataset holds historical access

data where employees were manually allowed or denied access to resources over time. The dataset

has about nine thousand users and seven thousand resources with over 32K authorizations tuples.

Each tuple specifies eight user metadata that depicts a user’s properties, a resource id to identify

the resource, and a binary flag to indicate whether the user has access to the resource or not.

However, the dataset is highly imbalanced, and about 93% of the tuples are with grant access. We

visualize this dataset in Figure 3.4(i). As we see, there are dots from two colors where green and

red correspond to tuples with grant and deny access, each. Notably, a significant number of dots

are from grant accesses.

The amazon-uci dataset was provided by Amazon in the UCI machine learning repository [11].

This dataset contains access information of more than 36,000 users and 27,000 permissions. For

any permission, less than 10% of all users have requested access. The dataset is widely used in

access control researches, and in most of the cases, the experiments are confined to only 5 to 8

most requested permissions [30, 37, 76]. Likewise, we took the seven most requested permissions,

and for each permission, we list users who have access to the selected permissions. However, this

dataset is also imbalanced, around 75% tuples with the deny access. In addition, the dataset is

not ABAC in nature, and there are some tuples in the dataset where users with identical attribute

values do not have the same access permissions. Because of this, policy mining or classification ap-

proaches may suffer while clustering the users for different permissions. We visualize this dataset

in Figure 3.4(j).
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Figure 3.5: Preparing Training Data for DLBACα.

3.3.3 Neural Network Architecture and Training

For DLBACα, the deep neural network takes user/resource metadata values as input. It includes

a classification layer with the number of neurons equal to the number of operations, where each

neuron outputs the probability of granting the permission for a related operation, op. Given a

feature vector x of the user and resource metadata, the neural network can be defined as a prediction

function f such that ŷ = f(x), where ŷ is the predicted label or permission (grant (1) or deny (0)) of

op, obtained from comparing the probability of granting the permission at the output of the network

with a threshold. Note that for all DLBACα experimentation, we consider a threshold of 0.5. To

train the neural network f (i.e. determine the network’s weights), a set of training authorization

tuples X of size N is collected, where (xi, yi) denotes the i-th sample in X, where xi is the feature

vector of the user and resource metadata and yi is the corresponding op or the target label. As

discussed in Section 3.3.1, for some synthetic datasets, we hide a portion of metadata from the

policy mining algorithm to mimic some complex situations. We apply this for the datasets having

more than eight user metadata and eight resource metadata. In such a case, xi represents the feature

vector of the first eight user metadata and the first eight resource metadata. So, for example, for
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Figure 3.6: Decision Making Process in DLBACα.

a dataset with 13 user-resource metadata, we hide five metadata from the user metadata and five

from the resource metadata.

Since the metadata values in our dataset are categorical, we map them to numerical or binary

values by utilizing embedding or encoding. We encode a tuple’s user/resource metadata value us-

ing one-hot encoding [57] to transform the categorical values into a two-dimensional binary array.

The row in the array represents metadata, and the column holds the encoded binary representation

of the corresponding metadata value. (Amazon dataset’s metadata values are too sparse, and we

use binary encoding for them considering its memory efficiency in such cases [121]). As each

operation is already binary, we apply them directly as the target labels without any processing.

Figure 3.5 illustrates the overall training data preparation for DLBACα. As illustrated, we encode

the metadata values of a user Alice and a resource projectA and apply permissions to the associ-

ated operations without further processing. We train DLBACα based on the training data, and this

trained DLBACα is used in Access Control Decision Engine (discussed below) to produce access

decisions for test data.
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3.3.4 Decision Making Process in DLBACα

Access Control Decision Engine (Decision Engine) is a DLBAC component responsible for re-

ceiving and authorizing any access request. In DLBACα, the Decision Engine (Figure 3.6) takes

three inputs (user, resource, and operation). The Decision Engine retrieves the user and resource

metadata from the internal databases and then encodes them to obtain corresponding binary repre-

sentation. The encoded input is fed into the neural network to predict the corresponding request’s

access permission. The network outputs access information for all the operations. The decision

engine then determines the actual access authorization based on the requested access and the net-

work’s output. For the specific example in Figure 3.6, user Alice wants op2 access on projectA

resource. The output of the neural network for the op2 is 1, which indicates that Alice has op2

access on projectA. Thus, the Decision Engine authorizes this request.

3.4 Evaluation

In this section, we experimentally evaluate the performance of DLBACα using both synthetic and

real-world datasets.

3.4.1 Evaluation Methodology

We experiment and evaluate the performance for all the datasets listed in Table 3.1. We consider

each dataset to represent an organization with its own unique characteristics. We split each dataset

into training (80%) and testing (20%) sets. As the test dataset is entirely unseen during training,

the evaluation shall adequately measure the generalization of any method.

Instances of DLBACα. DLBAC is agnostic to any deep neural network architecture, and we

will show that the performance of deep learning-based models is consistent across datasets. As part

of the demonstration, we implement three instances of DLBACα using three distinct deep neural

network architectures including ResNet [59], DenseNet [69] and Xception [35], and we name the

instances as DLBACα−R, DLBACα−D and DLBACα−X, respectively. For DLBACα−R, we use the

ResNet architecture with depth 8 for the first four datasets in Table 3.1 whereas, for the rest of the
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datasets, we use a ResNet with depth 50. For DLBACα−D, we use the DenseNet architecture with

[6,12,24,16] layers in the four dense blocks. For all the model architecture implementation, we

adopt the source code from Keras application.1

The DLBACα instances were developed in Python using Keras library with a TensorFlow back-

end and trained on Google Colab (a 12GB NVIDIA Tesla K80 GPU). We apply Adam optimizer

with an initial learning rate of 0.001, scheduled to reduce the learning rate by dividing by ten after

every 10 epochs. The epoch and batch size was chosen as 60 and 16, respectively, with an early

stop after 5 consecutive epochs without any performance improvement. As the DLBACα outputs

an access probability between ‘0’ and ‘1’ for each operation, we use binary cross-entropy loss.

We have created a repository in GitHub consisting of all the datasets, source code, and trained

networks.2

Machine learning (ML) algorithms. We compare the performance of DLBACα instances with

classical machine learning approaches such as Support Vector Machine (SVM) [36] and Random

Forests (RF) [23]. We also compare with Multi-Layer Perceptron (MLP) [120] with four hidden

layers (non-deep) to evaluate how significant the performance difference is between a deep and a

non-deep neural network. We use the SVC and RandomForestClassifier class of the Python scikit-

learn library [110] for SVM and RF implementation, respectively, with their default configurations.

We implement MLP using Keras library.

Policy mining algorithms. There is no other existing deep learning-based access control

approach to the best of our knowledge, so a direct comparison of our work results is not currently

possible. Therefore, we compare DLBACα with ABAC policy mining algorithms being one of

the flexible and generalized access control approaches. We compare the performance of DLBACα

instances with the following policy mining algorithms. While a few other works exist as discussed

in our related work, a key decision factor in selecting these works was our ability to readily access

their source codes and our ability to clearly understand, modify/tweak as needed and compile them.

1. The policy mining algorithm proposed by Xu and Stoller [143], which we refer to as XuS-
1https://github.com/keras-team/keras-applications
2https://github.com/dlbac/DlbacAlpha
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toller.

2. Rhapsody [37], a policy mining algorithm built upon an ML algorithm for subgroup discov-

ery named APRIORI-SD [81]. Rhapsody performance has a direct correlation with multiple

parameters. We experimented with different parameter values and selected the policy with

the highest F1 score while maintaining an FPR below 0.05.

3. EPDE-ML [93], a permission decision engine scheme based on machine learning where a

trained RF model makes the access control decision.

Evaluation metrics. For ML algorithms, we compute the F1 score and compare the perfor-

mance with DLBACα instances and show that deep learning based algorithms generally perform

better than traditional ML and MLP techniques. For an extensive comparison against policy min-

ing algorithms, we compute the F1 score, False Positive Rate (FPR), True Positive Rate (TPR), and

Precision. We consider the standard definitions [37, 93] of these evaluation metrics. Policies (or

models) with a higher F1 score lead to better generalization. They can make more accurate access

control decisions on users and resources with attributes not explicitly seen during the mining (or

training) process. Also, the higher TPR and Precision are better as these scores indicate how ac-

curately and efficiently the policies (or models) can grant access. On the contrary, the policies (or

models) with a lower FPR are better as they are less likely to give access to requests, those which

should be denied according to the ground truth access control policy.

3.4.2 Results

Performance comparison with ML algorithms

Figure 3.7 illustrates the overall performance of all ML approaches and DLBACα instances for each

dataset with respect to F1 score. The performance of all the algorithms is consistent and better for

the amazon-kaggle dataset, but it is not the case for amazon-uci dataset. In this case, SVM and

MLP performed significantly lower, and other approaches including DLBACα instances could not

achieve high performance. Such a performance is expected due to the inconsistency in the access
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Figure 3.7: F1 Score Comparison: ML Algorithms vs. DLBACα Instances.

permissions in that dataset. The dataset contains tuples where users with identical attribute values

do not have the same access permissions, as discussed in Section 3.3.2. The advantage of the

DLBAC approach is more evident when the dataset if properly processed. We show this using our

synthetic datasets. For synthetic datasets, DLBACα instances achieved the highest F1 score for all

datasets, while SVM and MLP perform the worst. Also, the instances of DLBACα’s improvements

over RF are significant (for p-value < 0.05; paired T-test (not shown here)) for all the synthetic

datasets except u5k-r5k-auth12k dataset. The performance advantage of DLBACα instances is

particularly pronounced in synthetic datasets with a large number of authorization tuples, where

DLBACα instances report 0.03 to 0.09 improvements over RF as shown in the figure. Notably,

the performances of all algorithms vary with the complexity of the datasets. However, DLBACα

instances show the lowest variation in its performance across the datasets, suggesting that DLBACα

is most robust against changes in data characteristics such as number of hidden metadata, number

of users and resources and authorization tuples counts. Except for the u4k-r6k-auth28k dataset,

all algorithms’ performances drop by increasing the number of hidden metadata (e.g., the u4k-
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Figure 3.8: F1 Score Comparison: Policy Mining Algorithms vs. DLBACα Instances.

r4k-auth22k dataset with 13 metadata where we hide 5 of the metadata from the feature vector

as discussed in Section 3.3.3), suggesting that an increase in data complexity generally impacts

performance. Overall, the experimental results indicate that DLBACα is more effective and robust

than classical machine learning approaches, including MLP, for making accurate access decisions.

While the performance advantages of DLBACα are not apparent in the Amazon datasets, we

emphasize that those datasets are not entirely reflective of the access state complexity of the en-

tire organization but that of a small portion of the company. This is one of the reasons why we

synthesized additional datasets for our experimentation.

Performance comparison with policy mining algorithms

Figures 3.8, 3.9, 3.10, and 3.11 compare the F1 score, FPR, TPR, and Precision, respectively of

policy mining algorithms and DLBACα instances. We could not experiment XuStoller algorithm

for the largest synthetic dataset (u6k-r6k-auth32k) as it took a very long runtime without any

output. We can make the following observations based on all these experimental results.
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Figure 3.9: FPR Comparison: Policy Mining Algorithms vs. DLBACα Instances.

• A deep learning based approach can make more accurate access control decisions and gen-

eralize better. The F1 score of EPDE-ML and DLBACα instances are significantly better

than the rule-based approaches such as XuStoller and Rhapsody. That signifies, in general,

machine learning-based approaches can make better generalization and accurate access con-

trol decisions. As we see in Figure 3.8, the performance improvements of DLBACα instances

over EPDE-ML, which is statistically significant for most datasets, suggest that deep learn-

ing based algorithms make the more accurate decision and have even better generalization

capability than classical ML-based policy mining approaches.

• A deep learning based approach can properly balance both over-provision and under-provision.

XuStoller and Rhapsody achieved the best FPR as shown in Figure 3.9, indicating they are

unlikely to give access to requests that should be denied according to the actual access con-

trol policy. However, that is not the case for denying access. As we see in Figure 3.10, the

TPR for Rhapsody is between 0.2 to 0.85, and for XuStoller, it is from 0 to 0.25. Such a

lower TPR indicates that these algorithms are pretty inefficient while denying access (under-
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Figure 3.10: TPR Comparison: Policy Mining Algorithms vs. DLBACα Instances.

provisioned) even though the requests deserve grant access according to the actual access

control policy. On the other hand, the EPDE-ML performed lowest in terms of FPR (over-

provisioned) across synthetic datasets ranging from 0.06 to 0.23. Their average TPR and

Precision are below 0.9. Such higher FPR and comparably lower TPR and Precision sug-

gest that EPDE-ML could not achieve desirable performance in terms of over-provision and

under-provision. The DLBACα instances obtained a much higher TPR and Precision as il-

lustrated in Figure 3.10 and 3.11. Also, the DLBACα instances reached an FPR which is

comparable to XuStoller and Rhapsody, as shown in Figure 3.9. This suggests that deep

learning based approach can balance better between over- and under-provisioning.

• An imbalanced dataset may affect some performance that could be calibrated. The FPR re-

sult of DLBACα instances for amazon-kaggle dataset is high, and the TPR for amazon-uci

dataset is relatively low, arising due to the characteristics of the dataset [137]. As discussed

in Section 3.3.2, these datasets are imbalanced, one has unreasonably more samples from

the grant class, and the other has more from the deny class. We argue that this is a typi-
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Figure 3.11: Precision Comparison: Policy Mining Algorithms vs. DLBACα Instances.

cal machine learning problem, and EPDE-ML has a similar performance for these datasets.

For balanced datasets, the FPR and TPR of DLBACα instances are consistent, and FPR

is below 0.05 for most of the datasets while TPR is above 0.95, as demonstrated in Fig-

ure 3.9 and 3.10. Evidently, these metrics could be calibrated based on the tolerance to over

vs. under-provisioning of an application context. Specifically, one could favor a particular

metric in DLBACα by modifying the loss function to increase the weight of the minority

class [63] (discussed next), adjusting the threshold for granting permissions as described in

Section 3.3.3, etc. We note that an improvement in one of the metrics will likely negatively

impact one or more of the others and that every work is prone to this issue.

Improving FPR Performance. We apply a well-known technique for performance improve-

ment (or control) of an imbalanced dataset. The idea is to give more weight to the wrong prediction

for samples from minority classes and vice-versa. However, improving in one metrics might affect

the other performances. We experiment with DLBACα−D instance for the amazon-kaggle dataset

where there are two different classes for each sample, deny and grant. In the amazon-kaggle
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Table 3.2: Different Combination of Weight for Different Classes for the Loss Function.

Combination Name Grant Class Weight Deny Class Weight
equal weight 1.0 1.0

wlc-1 0.07 0.93
wlc-2 0.03 1.0
wlc-3 0.01 0.8
wlc-4 0.01 1.0

dataset, there are only below 7% of the samples from denying class. Hence, we modify the loss

function while training the DLBACα−D to add majority weights on loss for the deny class and sig-

nificantly smaller weights for the other one. As reported in Table 3.2, we consider four different

combinations of weight for the loss function for different classes. Figure 3.12 showed, with the

weight decrease for the grant class and increased weight for the deny class, the FPR reduces. It

also positively impact precision which rises consistently. However, the F1 score and TPR are also

affected and decrease gradually.

Figure 3.12: FPR Performance Improvement in DLBACα.

Overall, the DLBACα instances achieved better or comparable performance for all the metrics

across datasets, suggesting that deep learning based approaches generalized better and made more

accurate access control decisions than rule based and classical ML based approaches. These results
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demonstrate the effectiveness of using DLBAC as an access control system.

3.5 Understanding DLBAC Decisions

As the core of a DLBAC system is a neural network, a major challenge is providing insights

into why and how DLBAC makes certain decisions. That is, explainability is a key challenge

for DLBAC. For instance, in Figure 3.6, the Decision Engine received a request that user Alice

wishes op2 access on projectA resource. Based on the result of the neural network, the decision

engine approved the request. However, it is not quite obvious why the neural network made that

prediction for this request. Such a justification is generally straightforward in traditional access

control systems as the decisions are made based on written policies. But, it is challenging for

DLBAC due to the black-box nature of a neural network [124]. As the decisions are made based

on provided user/resource metadata, it is essential to understand why a decision is made and which

metadata influenced that decision. Many techniques have been introduced to help gain insights into

a neural network’s internal details. In this section, we investigate two state-of-the-art approaches

for this purpose: Integrated Gradients [129] and Knowledge Transferring [51]. We experiment on

DLBACα−R instance (as introduced in Section 3.4.1), and for brevity, we refer it to DLBACα in the

following discussion. The related source code is uploaded to GitHub.3

3.5.1 Integrated Gradients

Integrated Gradients is an effective interpretation technique that focuses on attributing the deci-

sions of a neural network to the input features of the prediction samples. It attributes a network’s

decision to its input features in terms of gradient, which specifies the most effective elements

for a decision. To understand the decision of DLBACα for a tuple, it is required to provide the

user/resource metadata values, the decision, and the neural network as input to the Integrated

Gradients. Then, Integrated Gradients outputs the attribution scores of the input metadata that we

normalize in the scale of 0 to 1, denoting the degree of impact on the decision. Such an interpre-

3https://github.com/dlbac/DlbacAlpha/tree/main/understanding_dlbac_alpha
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Figure 3.13: Local and Global Interpretation (blue: local interpretation of a decision in DLBACα.
orange: global interpretation of DLBACα for the grant access of an operation).

tation is known as local interpretation which helps to better understand each decision of a neural

network. It is also helpful to have a global interpretation [54] of a network to understand the net-

work’s overall knowledge. Generally, it takes a set of decisions to generate a global interpretation

of a network.

For DLBACα, we investigate explainability for both specific access control decision and the

overall knowledge learned by the network. For this purpose, we train DLBACα on our u4k-r4k-

auth11k dataset. Then, we request op1 operation access to projectD resource for a user Dave.

In this case, the Decision Engine grants the request. To learn the reason behind this decision,

we perform local interpretation with metadata values of Dave and projectD, the decision (grant

access on op1 operation), and the DLBACα network. As depicted in Figure 3.13 (blue bars), for

this particular request, user’s umeta4 and resource’s rmeta2 metadata play the most critical role in

granting the op1 operation access.

To achieve global interpretation for the grant access to op1 operation, we take the op1 access

information for a set of fifty random samples with grant access from the u4k-r4k-auth11k dataset.
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(Note that the more samples we use, the more precise the result we get. However, Integrated

Gradients is not memory efficient, so we could not test more samples using our workstation with

16 GB of memory). We provide each user/resource metadata and their corresponding decisions

for the op1 operation to Integrated Gradients to determine the global interpretation. Figure 3.13

(orange bars) depicts the global interpretation of DLBACα for the u4k-r4k-auth11k dataset for the

grant access to op1 operation. The result identifies the most influential metadata as the resource’s

rmeta2, and the attribution scores of other metadata. The second most important metadata is

umeta2 metadata of user.

Application of Integrated Gradients based Understanding

Improved explainability could be utilized to achieve other benefits by involving humans in the

decision-making process. For instance, developers can utilize interpretation techniques to de-

bug [107] incorrect decisions from the neural network in decision engine. We demonstrate that

Integrated Gradients based interpretation can be used to grant/deny access permissions by modi-

fying proper metadata.

Impact of Local Interpretation. As illustrated in Figure 3.15 (tuple2), the user Carol doesn’t

have op1 access on projectC resource. Applying local interpretation on another permission tuple

with op1 access (e.g., Dave has the op1 access to projectD resource as shown in Figure 3.15

(tuple1)) revealed the attribution scores of different metadata for op1 operation. As circled in

tuple1, Dave’s ‘umeta1’ and ‘umeta4’ are the most dominant metadata for this specific access. To

grant Carol’s op1 access on projectC resource, we utilize attribution scores of tuple1. Our result

shows that replacing Carol’s ‘umeta1’ and ‘umeta4’ metadata value with Dave’s metadata value

enables Carol’s op1 access to projectC resource. As reported, modifying one or two significant

metadata changes corresponding access.

The opposite holds for least-significant metadata where modifying multiple metadata could

not alter related access. To understand the effect of the metadata having non-significant or low

attribution scores from Integrated Gradients, we take the attribution scores for the tuple that we

53



Figure 3.14: Local Interpretation of a Tuple with Deny Access.

presented in Figure 3.15 (tuple2). There we see that the user Carol has deny access to the projectC

resource for op1 operation. We take the attribution scores for the Carol and projectC tuple and, as

illustrated in Figure 3.14, the rmeta2 and umeta2 are the most influential metadata with the highest

attribution scores. However, umeta4, umeta5, rmeta0, rmeta3, rmeta5 metadata have 0.0 attribution

scores, which indicates that they have no impact on this specific decision, whereas rmeta7 and

umeta7 (along with some other metadata) have less influence (smaller attribution scores). We want

to evaluate the consequence if we change the value of these non or less significant metadata. We

modify the value of all these metadata and replace it with the value of a known tuple (Dave and

projectD) with grant access. We found no change in the access decision.

Impact of Global Interpretation. We also experiment with such a metadata value modifica-

tion across all the samples of a specific decision (e.g., tuples with ‘deny’ access on op1) in the

same dataset to see the impact of a global interpretation. The idea is to alter the metadata values of

influential metadata for a specific decision. For instance, according to Figure 3.13, the rmeta2 has
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Figure 3.15: Applying Integrated Gradients to Grant Access Permission.

the most influence on denying access. If we alter the rmeta2 value of any tuple, say tupleA, with a

rmeta2 value from a known tuple with grant access, say tupleB, the chance of denying access for

tupleA might reduce and increases the chance of getting access. Also, altering the value of multiple

influential metadata of the same tuple may eventually help to get access.

To investigate that we alter different metadata values, one by one, of all the tuples with deny

access (4581 such tuples) on op1 in order of their significance level in the global interpretation.

For example, we first change the value of rmeta2 metadata, next umeta2 metadata, and so on. We

utilize the user/resource metadata values from tuple1 in Figure 3.15 as a known tuple with the

‘grant’ access for op1 operation. As described in Figure 3.16, initially, with no change, no tuple

has been granted access. However, with the change of first metadata (rmeta2), around 5% of the

tuples receive grant access. By changing the second metadata value, around one-third of the tuples

get grant access. A similar surge continues to obtain grant access for over half of all the tuples

before decreasing for sixth metadata (rmeta5) modification, reaching below 40%. It indicates that

some tuples with such a big number of metadata modifications fall under a different distribution

for which they have the ‘deny’ access. Overall, using this technique, a system admin can estimate

the impact of metadata value vs. dependent accesses.
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Figure 3.16: Modifying Metadata Value Based on Integrated Gradients Across Tuples (4581 tu-
ples) with Deny Access.

3.5.2 Knowledge Transferring

Although Integrated Gradients determines the attribution scores of each metadata for a decision, it

does not establish the relationship among metadata or the network’s logic [129]. Knowledge Trans-

ferring could help to identify such relationships. With Knowledge Transferring, we can extract a

decision tree to approximately understand the decision of DLBACα in the form of traditional rules.

While accurate reconstruction of the representation details is infeasible, the generated decision tree

will give an approximate explanation of the underlying logic of DLBACα. Though the decision tree

makes classification decisions understandable [110], it does not generalize as well as deep neural

networks. Interestingly, a neural network’s generalization ability is likely to be transferred to a

decision tree with the help of a method called distillation [62], which has been widely used in ML

literature. In this work, we adopt the idea of distillation. As explained in Section 3.3.3, DLBACα

outputs whether a user has authorization to any resource by giving the probability of granting the

access instead of a direct yes/no answer. Therefore, we can determine those probability outputs

for all the tuples in a dataset and train a decision tree, as shown in Figure 3.17. These probabilities

represent the knowledge of the neural network, and we aim to transfer it to a decision tree.

To explore Knowledge Transferring technique, we train DLBACα for the u4k-r4k-auth11k
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Figure 3.17: Knowledge Transferring Technique.

dataset that we used for the Integrated Gradients experiment. We take op1 access probabilities

for all the samples. Then, we train a decision tree (DT) on the same dataset. However, instead

of giving corresponding ground-truth permissions from the dataset, we provide the probability

outputs of DLBACα. Eventually, we construct a DT with a maximum depth of eight that facili-

tates retrieving underlying rules for any specific decision. We train the tree based on the training

data that contain both user-resource metadata and their corresponding access permission for op1

operation. However, instead of giving permissions from the dataset, we provide corresponding

probabilities acquired from DLBACα. We accumulate op1 access probabilities for the tuples in

(u4k-r4k-auth11k) dataset, as discussed. Then we train the decision tree based on the training

input from the dataset and probabilities as the target output (ground truth).

Figure 3.18 is the decision tree generated from the u4k-r4k-auth11k dataset (with 8772 sam-

ples) based on Knowledge Transferring for op1 operation. We demonstrate how to retrieve a rule

from the tree to understand any specific decision. We cropped the tree for better visualization.

Each node in the tree represents a binary decision point where the samples are split based on the

condition in the corresponding node. For example, the tree’s root node is rmeta2 that splits all the

8772 samples based on the ‘rmeta2<=17.5’ condition. As specified, the metadata values of our
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Figure 3.18: Decision Tree Generated for u4k-r4k-auth11k Dataset. Part of the tree has been
cropped for better illustration.

datasets are categorical, where values are integer representations of different categories. Therefore,

we can round the value in each node’s condition to the next integer without any issue. For instance,

we can round the value of rmeta2<=17.5 to rmeta2<18 as there is no metadata value of 17.5. The

MSE (mean-squared error) indicates the error that measures the quality of a split. Also, the value

of the node determines the probabilities for related decisions. As we build this tree for op1 oper-

ation, we have a binary decision point — whether or not the user has access to the corresponding

resource for this operation. We round the probabilities to the grant if the value is >0.5, otherwise

deny. As shown in the figure, the value in the root node is 0.478 indicates that initially, all the

requests are considered ‘denied’.

We assume Dave is a user and projectD is a resource of the system we considered. We will

walk through an access request for user Dave’s access to the projectD resource for op1 operation

as described in Section 3.5.2. The metadata value of Dave and projectD is available in Figure 3.15

(tuple1). However, the value of rmeta2 metadata is 5 for projectD; hence the root condition is true,

and the next node is the left node with condition umeta2<20. This condition is also successful for
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Dave’s umeta2=5 and checks the next left node to see the value of umeta0. As the value of umeta0

is 61, it can directly come to the node where umeta6 is verified. This condition is passed with

umeta6=6, and the next left condition is also satisfied for the rmeta0=30. The following condition

is true as the value of umeta0 is 61. Finally, the tree checks for the value of rmeta5 before making

the access decision for Dave to the projectD. This condition is also successful for rmeta5=105. We

see the green shaded node is the final decision node for this request. The decision is grant based

on the value 0.82 (>0.5).

While the tree serves the global interpretation, a rule for any specific decision represents the

local interpretation. We retrieve the access rules from the DT for Dave’s op1 access request to

projectD resource. We observe that Dave obtained grant access to projectD for op1 based on

following rule:
〈 〈

⟨ umeta0 > 31 ∧ umeta0 < 63 ⟩ ∧ ⟨ umeta2 < 20 ⟩ ∧ ⟨ umeta6 < 50 ⟩
〉
∧〈

⟨ rmeta0 < 72 ⟩ ∧ ⟨ rmeta2 < 18 ⟩ ∧ ⟨ rmeta5 < 111 ⟩
〉 〉

. It is worth mentioning that the

decision tree should be generated with unlimited depth to obtain more precise rules. Note that the

Integrated Gradients and Knowledge Transferring techniques are orthogonal in terms of insights

they each provide into the neural network and do not substitute each other. For better insights, one

could use both methods.

3.6 Conclusion

In this chapter, we propose DLBAC, a deep learning based access control approach, to deal with

issues in classical access control approaches. As DLBAC learns based on metadata, it obviates

the need for attribute/role engineering and updates, policy engineering, etc. We also implement

DLBACα, a prototype of DLBAC, using both real-world and synthetic datasets with varying com-

plexities. We demonstrated DLBACα’s effectiveness as well as its generalizability across different

datasets. As the core of DLBAC is a neural network, we applied two different state-of-the-art

techniques to understand DLBAC decisions in human terms.
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CHAPTER 4: ADMINISTRATION OF MACHINE LEARNING BASED

ACCESS CONTROL

This chapter investigates the administration problem of Machine Learning Based Access Control

(MLBAC). In particular, we consider the situations where a trained ML could be either from

symbolic (e.g., RF) or non-symbolic (e.g., neural network) types. The symbolic ML methods

represent knowledge in the form of logic or a tree that distinguishes them from non-symbolic ones,

either statistical or neural [30]. To the best of our knowledge, our proposed method is the first

work towards administration in an ML-based access control system. The outcome of this research

has been accepted for publication at the following conference:

• Mohammad Nur Nobi, Ram Krishnan, Yufei Huang, and Ravi Sandhu. "Administration of

Machine Learning Based Access Control." In European Symposium on Research in Com-

puter Security, ESORICS 2022, Copenhagen, Denmark, 2022.

4.1 Introduction and Motivation

Machine Learning (ML) is used in the field of access control for different purposes such as policy

mining [74], attribute engineering [7] and role mining [108]. In traditional access control systems

such as RBAC [118] and ABAC [64], the access control decision engine decides accesses based

on a written policy (or role assignments, in the case of RBAC). In recent years, researchers have

proposed utilizing a trained ML model to make access control decisions, possibly supplementing

or even eventually replacing rule-based access control systems. We refer to such systems as ma-

chine learning based access control (MLBAC) [30, 33, 77, 93, 109, 127]. We thoroughly discuss

these methods in Section 2.3.4. These works have demonstrated that, for a given ground truth of

an access control state represented in the form of authorization tuples, MLBAC models could cap-

ture that access control state with significantly higher accuracy than the traditional access control

models such as ABAC. In addition, some works also demonstrate that MLBAC generalizes better

than traditional approaches [30, 33, 77, 109]. (Note that generalization is the ability of a model to
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Figure 4.1: Administration Problem in ML-based Access Control System.

make accurate decisions on users and resources not explicitly seen during policy mining or ML

model training.) Even if MLBAC does not replace traditional forms of access control in practice,

it could serve as an effective approach for access control monitoring/auditing or operate in tandem

with traditional systems [95, 109, 138].

However, access control systems are not static—changes in access control state are inevitable.

A user may be granted new permissions, or some of her current permissions could get revoked. As

shown in Figure 4.1, ‘Alice’ has access to the ‘service1’ resource. To revoke her access, the learned

access control state in MLBAC will need to be correspondingly updated such that it can react

accordingly to the applied change. This problem is referred to as access control administration

in the access control domain [116]. Evidently, administration problems have been thoroughly

investigated for traditional approaches [75,116,128], but the issue remains entirely unexplored for

MLBAC.

Administration challenges could vary from model to model, but the problem’s importance

remains unchanged. In the case of RBAC, administration activities include assigning/removing

permission to/from a role, creating a new role, and managing role hierarchy [116]. For ABAC,

administration activities include updating user/resource attributes and policy modification [122].

In such traditional approaches, the changes are accomplished by modifying existing configurations
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Figure 4.2: Overview of MLBAC Administration.

such as written access control policies, and attribute and role assignments. However, in MLBAC,

there is no notion of a human-readable written policy to update. If an access control state change

is to be made, it requires modification of existing model. Such a modification is complicated as, in

most cases, an ML model is a highly complex function, a tree, or even a black-box that a human

user can not directly access and modify. Often, to capture changes, one must go through a process

similar to the initial training process.

In this chapter, we define MLBAC administration problem and propose a methodology to au-

tomate and systematize the MLBAC administration process. Also, we develop two prototypes of

administration in a system where access control decisions are made based on either symbolic or

non-symbolic ML approaches. Next, we thoroughly evaluate both prototypes for the efficacy of

symbolic and non-symbolic ML approaches from an access control administration perspective. Fi-

nally, we demonstrate that administration in an MLBAC poses additional challenges and propose

different techniques to overcome them.

4.2 MLBAC Administration

Figure 4.2 illustrates the overview of MLBAC administration. As depicted in the figure, the Admin

Engine, the administration framework, takes a change request as the input, which we refer to as a

Task. We aim to incorporate the requested Task in MLBAC administration. We assume that the

Admin Engine has access to the user and resource metadata databases and the ML model, which
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is currently being used for decision making. We refer to this ML model as Current ML Model and

denote as Fcurrent. The objective of administration in MLBAC is to modify Fcurrent to capture the

requested Task and generate an updated model. We also refer to this updated model as Updated

ML Model and designate as Fupdated.

4.2.1 Requirements

For the purpose of this chapter, we generalize MLBAC as follows. An MLBAC model is trained

using the existing access control state of a system, along with various pieces of available metadata

values such as those of users and objects. Since the decision engine in MLBAC is an ML model,

modifying its access control state is not as obvious as that of, say, ABAC, where a rule is typically

adjusted to grant or deny existing accesses. It is often required to modify the model itself to ac-

commodate any authorization-related changes. Consequently, the administrative tasks in MLBAC

are somewhat simplified since we no longer need to worry about policy and attribute updates. In

this chapter, we focus on basic administrative tasks for MLBAC, including granting/revoking the

access of one or multiple users to one or more resources.

Over time, by learning from proposed changes and observing the metadata of users and objects,

MLBAC could intelligently adjust other “similar” accesses in the system. We believe smarter

access control administration is one of the most significant benefits of MLBAC in practice, hence

the focus of this work.

4.2.2 Problem Statement and Approach

In an ML model, to modify a piece of learned information, it is required to iteratively update the

weights of its neurons (in the case of neural network) or parameters (for classical ML) starting

with random initialization [131]. Consequently, we state the MLBAC administration problem as:

‘Given an administrative task, update the MLBAC model’s weights and/or parameters such

that the updated model captures the desired changes in the access control state.’

By desired changes, we mean both the given administrative task and additional administrative
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tasks that are similar to the given task. The challenge specifically, then, is: what is the best ap-

proach to accurately learn to accommodate the given task and perform additional changes that are

similar to the proposed task while keeping the existing access control state unchanged for all other

users and resources that are vastly dissimilar? We indicate similar changes as changing access to

other users and resources similar to the user and resource given in the proposed task. However,

determining whether two users (or resources) are similar or not depends on the type of their meta-

data. If the metadata is real-valued (e.g., age, salary, etc.), it is possible to automatically determine

other similar users and resources using distance measurement or clustering approaches [146]. This

is also applicable for ordinal categorical values, where there is a notion of order among its values

(e.g., degrees, clearances, job roles, etc.). However, in the case for nominal categorical values (e.g.,

department, expertise, etc.), there is no notion of order among them, and therefore one could only

perform an equality check based on their values.

In practice, one could anticipate a mix of real-valued, ordinal categorical, and nominal categori-

cal data. The model would automatically find additional similar administrative tasks for real-valued

and ordinal categorical metadata values. For nominal categorical metadata values, we seek input

from the system administrator (sysadmin) to determine the similarity between the user(resource)

involved in the proposed task and other users(resources) in the system. We assume sysadmin will

provide some ‘similarity measurement criteria’ in terms of user and resource metadata, which we

refer to as Criteria. We further illustrate its syntax in Section 4.2.3.

4.2.3 Terminologies

This section introduces some terminologies that we repeatedly use for the explanation of adminis-

tration in MLBAC.

• Authorization Tuple. An Authorization Tuple is user-permissions tuple
〈
user, resource, permissions

〉
that specifies the permissions of a user to a resource. For example, an Authorization Tuple〈
u1, r1, {op1, op3}

〉
indicates that a user u1 has operations op1 and op3 access to a resource

r1.
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• Task. A Task is a change request which is expressed through a tuple of four elements〈
user, resource, operation, access

〉
, where the access could be either permit or deny. For

example, a Task
〈
u1, r1, op3, deny

〉
is a request to revoke the op3 access of the user u1 to

the resource r1.

• AAT (Admin Authorization Tuple). AAT is an updated Authorization Tuple generated

from an existing one based on a Task. For example,
〈
u1, r1, op3, deny

〉
is a given

Task. Suppose that the existing Authorization Tuple in the system for user u1 and re-

source r1 is
〈
u1, r1, {op1,op3, op4}

〉
. The AAT with respect to the given Task would be〈

u1, r1, {op1, op4}
〉
. AAT, in effect, is the change that the admin seeks to make.

• Criteria. Criteria is defined as a tuple of user metadata name and value pairs and resource

metadata name and value pairs that is expressed as:

〈〈〈{
umeta0∈{val0, . . . , vali}, . . . , umetam∈{val0, . . . , valj}

}
,{

rmeta0∈{val0, . . . , valk}, . . . , rmetan∈{val0, . . . , vall}
}〉〉〉

where {umeta0, . . . , umetam} is a set of user metadata names, {rmeta0, . . . ,

rmetan} is a set of resource metadata names, and {val0, . . . , valq} indicates possible val-

ues for respective metadata name. For example, a sample Criteria could be
〈
umeta1 ∈

{val0, val1}, rmeta4 ∈ {val2}
〉
. In this Criteria, the possible values of umeta1 are val0

and val1, and the possible value of rmeta4 is val2.

• Additional AAT. The Additional AAT is a set of similar AAT determined based on users

and resources similar to the user and resource in the Task. This chapter determines similar

users/resources based on the input Criteria. Section 4.2.4 discusses Additional AAT genera-

tion.

• OATs (Other Authorization Tuples). The OAT is a set of Authorization Tuples in the

access control system that excludes AAT and Additional AAT.
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Figure 4.3: Administration Process Flow in MLBAC.

4.2.4 Methodology

As shown in Figure 4.3, the Admin Engine generates an Admin Authorization Tuple (AAT) for

the given Task as described in Section 4.2.3. The AAT is the Authorization Tuple that we aim

to integrate into the current ML model, Fcurrent. Next, the Admin Engine generates Additional

AAT based on the Task and Criteria. Both AAT and Additional AAT are independent of each other

hence it is not required to maintain any specific order for their generation.

We generate Additional AAT based on a set of similar users and resources determined using

Criteria, as discussed in Section 4.2.2. The Criteria consist of user and resource metadata names

and value pairs. For each user, we compare their metadata values with respective metadata val-

ues stipulated in the Criteria. If it matches, we call the corresponding user as the similar user.

Eventually, we determine all the similar users and follow the same approach for finding similar re-

sources. These similar users and resources are the candidate users and resources for the Additional

AAT generation. Next, we iterate over the list of candidate users and candidate resources to make

user-resource pairs and determine a list of operations for each pair that the user has access to the

resource. The user-resource pair with their access operation is an Additional AAT. Eventually, we

obtain all the Additional AAT for the given Task and Criteria by repeating the same process. We

depict the pseudo-code of Additional AAT generation in Algorithm 4.1. Collectively both AAT

and Additional AAT are stored in a set that we refer to as AATs. Note that the ‘size of AATs’

indicates the number of elements in the set.
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Algorithm 4.1 Additional AAT Generation
inputs: Task, Criteria
output: Additional AAT
data: uList[ ] and rList[ ] are the list of all users and resources, respectively, with their metadata

values in the system
generateAdditionalAAT (Task, Criteria)

additionalAAT[ ] = Ø//An empty list of Additional AAT
//The extractOperationAccess is a utility function that takes a Task,
//and returns operation and access from the Task

operationt, accesst = extractOperationAccess(Task)
//getSimilarUsers and getSimilarResources are the utility functions
//that take list of all users and resources, respectively,
//and the Criteria, and return similar users and resources

candidateUsers[ ] = getSimilarUsers(uList, Criteria)
candidateResources[ ] = getSimilarResources(rList, Criteria)
//getAccessOperations is a utility function that takes a user and
//resource, returns user’s set of access operations to the resource

foreach userc in candidateUsers do
foreach resourcec in candidateResources do

Opc[ ] = getAccessOperations(userc, resourcec)
if Opc ̸= ∅ then

if (accesst = permit AND operationt not in Opc) OR (accesst = deny AND
operationt in Opc) then

cAAT [ ] = Ø
cAAT.append(userc)
cAAT.append(resourcec)
if accesst = permit then

Opc.append(operationt)
else

Opc.remove(operationt)
end
cAAT.append(Opc)
additionalAAT.append(cAAT)

end
end

end
end
return additionalAAT

At this point, the Admin Engine has the input (AATs) to accommodate in its Fcurrent model

and adjust the weights/ parameters to react accordingly for the newly added changes and produce

the Fupdated model. This accommodation is not straightforward, and there are multiple underlying

challenges. A naive solution to this problem could be to retrain an ML model based on newly gen-

67



erated AATs and original training data that we used to train the Fcurrent. While this approach has

its benefits, there are multiple shortcomings. For example, to retrain an ML model, one always has

to maintain the original training dataset and the AATs of each administration. Also, retraining is

expensive in terms of training time and resource consumption. Therefore, it might not be practical

nor feasible for many systems to retrain an ML model to accommodate new changes.

A potential solution could be to update the weights/ parameters of the Fcurrent. However,

the process of updating the weights/ parameter values in an ML model has a direct correlation

with the type of model in question. Suppose the underlying model is a classical ML algorithm

such as SVM and Ensemble Methods. In that case, an incremental machine learning (a.k.a online

learning) technique could be a prospective solution [17]. If the model is a neural network, a

possible technique could be to use fine-tuning [82]. Fine-tuning performs internal adjustments to

a trained neural network’s (e.g., Fcurrent in MLBAC) weight based on a set of given examples

(AATs in the case of MLBAC).

4.3 MLBAC Administration Prototype

This section implements two prototypes of MLBAC administration using ML models from sym-

bolic and non-symbolic classes. We experiment with MLBAC administration to assess how well it

reacts to the administrative changes. We apply MLBAC administration in a synthetically generated

extensive system with thousands of users and resources. The following sections briefly introduce

the simulated system, the ML models, and different administration strategies.

4.3.1 System for MLBAC Administration Experimentation

Access control administration is a continuous process where one can expect many change requests

during the life of a system. A limited number of real-world access control-related datasets are

available from Amazon [10, 11]. These datasets have been used extensively in the literature for

ML model training and ABAC policy mining and evaluating how accurately the trained model

or mined policy can make access decisions [30, 74, 109]. For any access control administration
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experiment, we need a system where we will have continuous change requests during the system’s

life. The Amazon datasets in themselves do not provide such administrative tasks. We generate

eight different datasets using the data generation algorithm proposed by Xu et al. [143] and briefly

discuss them in Section 3.3.1. Out of eight datasets, we experiment with the administration on the

u5k-r5k-auth12k dataset. The simulated system has around five thousand users and five thousand

resources. Also, there are eight user and eight resource metadata values for each user and resource,

respectively, and four operations. The dataset contains nominal categorical metadata values, as

integers, of which each value represents a category. (We briefly discussed nominal and ordinal

categorical data in Section 4.2.2.) When visualizing the dataset using t-SNE [135], we found that

the samples overlap significantly and are not easily separable, indicating the simulated system is

fairly complex [30, 109]. Figure 4.4 illustrates the visualization of u5k-r5k-auth12k dataset. We

train ML models for MLBAC using this dataset.

Figure 4.4: t-SNE Visualization of the u5k-r5k-auth12k Dataset.

4.3.2 Symbolic and Non-Symbolic ML Models

Among symbolic approaches, the RF algorithm got special attention in the access control domain

due to its expressiveness of a decision in the form of a rule [30, 93, 127]. RF can achieve excellent

performance in capturing the access control state of a system. However, if the access control state

of the underlying system is complicated, a non-symbolic method such as a neural network-based

system shows superior performance compared to the symbolic ones [30, 109]. In this work, we
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develop an MLBAC administration prototype with an RF from the symbolic class to determine

its efficiency from an administration perspective, which we refer to as RF-MLBAC. We also

investigate another prototype with the neural network from the non-symbolic type. In particular,

we consider ResNet [59] as our candidate neural network and refer to it as ResNet-MLBAC. We

note that one could use other neural networks, including MLP [120], DenseNet [69], etc., although

we do not anticipate any significant changes in our results.

Both RF and ResNet in MLBAC take user/resource metadata values as input to make corre-

sponding access control decisions. Since the metadata values in our dataset are categorical, we

encode them before applying them to the model [57]. Our experiment’s ResNet architecture has

a depth of 8, and the RF has 100 estimators (decision trees in the forest). As the dataset has four

different operations, both models output the probability of granting the permission for a related

operation. Given a feature vector x of the user and resource metadata, the ML model is defined as

a prediction function f : ŷ = f(x), where ŷ is the predicted label or permission (grant (1) or deny

(0)) of the operation op, obtained from comparing the probability of granting the permission from

the output of the ML model with a threshold. We consider a threshold of 0.5 for our experiment.

4.3.3 Administration Strategies in MLBAC

We follow multiple strategies for accommodating a given Task in MLBAC. From a Task perspec-

tive, we propose single-Task and multi-Task administration approaches. Also, we examine two

learning strategies that include retraining and sequential learning. We discuss them below.

Single-Task Administration. We administer each Task individually and replace the current ML

model (Fcurrent) with the updated model (Fupdated). In this case, we simulate that the sysadmin

updates the underlying ML model after receiving any new Task. For single-Task administration,

the Admin Engine determines AATs (i.e., both AAT and Additional AAT) for the given Task and

then apply the generated AATs for the administration. Figure 4.3 is an illustration of single-Task

administration.
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Figure 4.5: Multi-Task Administration Process Flow in MLBAC.

Multi-Task Administration. In practice, sysadmin may receive multiple unique Tasks together,

or they may wait for additional Tasks to accumulate before initiating an administrative operation.

To simulate this, we investigate administrations with multiple Tasks simultaneously in MLBAC,

which we refer to multi-Task administration. In this case, Admin Engine determines AATs for each

Task individually and combines them. Then, the combined AATs are used for the administration.

We use the term Task count to refer to the number of Tasks we consider for a multi-Task adminis-

tration. Figure 4.5 illustrates multi-Task administration process for n-Tasks. We experiment with

2-Tasks, 3-Tasks, and 6-Tasks administration for multi-Task administration with Task counts 2, 3,

and 6.

Retraining. A naive solution to the administration problem could be to retrain an ML model based

on newly generated AATs and initial training data that we used to train the Fcurrent. The idea is

to train a fresh model from scratch with the dataset that combines both initial training data and

the samples generated for the respective Task (AATs in case of MLBAC)), as shown in Figure 4.6

(left). The trained model will replace the existing Fcurrent model.

Retraining may not be feasible or practical for many systems due to some reasons. For in-

stance, this process requires storing the entire initial training data for future administration. Also,

retraining is expensive in terms of computation time and resource consumption. Model training

is one of the most time-consuming parts of ML-based applications. One needs to spend the same

amount of time to accommodate any new change in an existing system. Besides, retraining an ML

model produces a new model that does not hold any previous history of access change and only
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Figure 4.6: Retraining (left) vs. Sequential Learning (right) Strategies.

portrays the data provided during retraining.

Sequential Learning. Sequentially learning Tasks is vital for developing an autonomous system.

It reflects how a human learner identifies the materials to be learned [68, 97]. We also embrace

this learning phenomenon to administer MLBAC, as illustrated in Figure 4.6 (right). As shown,

for Task-1, the Admin Engine utilizes the Fcurrent and AATs of Task-1 to update the existing

model and generate Fupdated model. This Fupdated model replaces the Fcurrent model for deciding

accesses and acts as input for the Task-2 administration.

Sequential learning process and its effect

For sequential administration in RF, we append additional estimators that learn new changes while

keeping existing estimators untouched. Even though this method is not as efficient as incremental

learning in other classical approaches, we did not find any better strategy for RF in the literature.

For each single-Task administration, we append two estimators in the RF model. We append 5,

8, and 10 estimators for 2-Tasks, 3-Tasks, and 6-Tasks administration, respectively. Note that we
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performed trial and error with more estimators; however, increasing this number of estimators was

efficient in performance and model size. On the other hand, for ResNet, we employ the fine-tuning

technique (discussed in Section 4.2.4) to incrementally learn new changes and update the network’s

weights accordingly.

However, one of the major challenges of sequential learning is maintaining the existing ac-

cess control state unchanged. An ML model could forget previous knowledge while learning new

information. For example, Alice has read and write access to a resource projectA, and Bob has

only read access to another resource projectB. Sysadmin received a Task ‘to permit Bob with the

write access to projectB’. After administering the requested Task, the system correctly updates the

access control state such that Bob has both read and write access to the projectB. However, there

might be a case that the updated system could not make the correct access decision for Alice to the

projectA. In other words, the system forgot Alice’s access to projectA. Formally, in ML arena, this

phenomenon is known as catastrophic forgetting [84, 144]. In the case of RF, this is not a prob-

lem as the technique we followed does not modify existing estimators in the model but append

new ones. However, this is a significant challenge for neural networks since the knowledge of the

previously learned Task(s) starts decaying with the incorporation of the new Task [84].

Overcoming Catastrophic Forgetting in MLBAC. Catastrophic forgetting is a well-known prob-

lem in machine learning while updating the model, especially when dealing with a neural network.

Fortunately, this is a well-studied problem in ML literature, and different approaches have been

proposed to overcome this hurdle [68, 123, 144]. One of the common strategies is to replay previ-

ous knowledge in the form of training data (the dataset used to train the network) with new samples

(AATs in MLBAC) during fine-tuning [123]. It may not be practical to store the training data in

many applications if the samples are too large (e.g., image, video, etc.). However, this is not an

issue for MLBAC as it works based on numerical user and resource metadata and attributes values.

In our simulated system, each training sample is a vector of user and resource numerical metadata.

Other real-world datasets reported in [10] and [11] are also similar, which indicates the feasibility

of storing the prior training data for MLBAC. To minimize the required storing space, we reserve
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Table 4.1: List of Task and Criteria.

Task Id Task Criteria Size of
AATs

t-1
〈
uid = 259, rid = 112, op3, permit

〉 〈
umeta0 ∈ {9}, umeta6 ∈ {6}, rmeta0 ∈ {9}, rmeta3 ∈ {46}

〉
43

t-2
〈
uid = 4624, rid = 4634, op4, deny

〉 〈
umeta2 ∈ {58, 49}, umeta3 ∈ {39}, rmeta3 ∈ {39}

〉
94

t-3
〈
uid = 1992, rid = 1858, op1, permit

〉 〈
umeta2 ∈ {11}, rmeta2 ∈ {11}, rmeta3 ∈ {48, 91}

〉
92

t-4
〈
uid = 5049, rid = 5177, op4, permit

〉 〈
umeta1 ∈ {6}, umeta4 ∈ {47, 71}, rmeta1 ∈ {6}

〉
215

t-5
〈
uid = 2034, rid = 2041, op2, deny

〉 〈
umeta4 ∈ {10}, rmeta1 ∈ {6, 10}, rmeta4 ∈ {10}

〉
75

t-6
〈
uid = 1348, rid = 1083, op2, permit

〉 〈
umeta3 ∈ {46, 50, 53}, umeta5 ∈ {13}, rmeta3 ∈ {46, 50, 53}, rmeta5 ∈ {13}

〉
187

t-7
〈
uid = 1345, rid = 1092, op4, permit

〉 〈
umeta0 ∈ {24, 64}, umeta6 ∈ {7}, rmeta0 ∈ {24, 64}, rmeta6 ∈ {7}

〉
139

t-8
〈
uid = 442, rid = 580, op3, permit

〉 〈
umeta3 ∈ {49}, umeta5 ∈ {47, 111}, rmeta5 ∈ {47, 111}, rmeta7 ∈ {49}

〉
134

t-9
〈
uid = 2599, rid = 2593, op1, permit

〉 〈
umeta0 ∈ {11}, umeta1 ∈ {17}, rmeta0 ∈ {11}, rmeta1 ∈ {17}

〉
66

t-10
〈
uid = 4112, rid = 1241, op2, permit

〉 〈
umeta1 ∈ {18}, rmeta1 ∈ {18}, rmeta3 ∈ {45, 47, 113}

〉
75

t-11
〈
uid = 2135, rid = 4875, op3, deny

〉 〈
umeta2 ∈ {13}, umeta4 ∈ {71, 96}, rmeta2 ∈ {13}, rmeta4 ∈ {71, 96}

〉
118

t-12
〈
uid = 660, rid = 560, op1, permit

〉 〈
umeta3 ∈ {88}, umeta5 ∈ {48, 111}, rmeta5 ∈ {48, 111}, rmeta7 ∈ {88}

〉
107

t-13
〈
uid = 2019, rid = 2056, op2, deny

〉 〈
umeta4 ∈ {12}, rmeta1 ∈ {78, 82}, rmeta4 ∈ {12}

〉
121

t-14
〈
uid = 1228, rid = 1088, op1, permit

〉 〈
umeta2 ∈ {11, 63}, umeta5 ∈ {20}, rmeta5 ∈ {20}

〉
97

t-15
〈
uid = 2825, rid = 3044, op2, permit

〉 〈
umeta6 ∈ {8}, rmeta1 /∈ {6, 10}, rmeta2 ∈ {61, 62}, rmeta6 ∈ {8}

〉
107

t-16
〈
uid = 965, rid = 861, op4, permit

〉 〈
umeta3 ∈ {45}, umeta7 ∈ {20}, rmeta3 ∈ {45}, rmeta6 ∈ {20}

〉
63

t-17
〈
uid = 3745, rid = 3843, op3, permit

〉 〈
umeta0 ∈ {31}, umeta6 ∈ {2, 5, 9, 18}, umeta7 ∈ {4, 13}, rmeta0 ∈ {31}

〉
83

t-18
〈
uid = 2488, rid = 2495, op3, permit

〉 〈
umeta1 ∈ {58}, rmeta1 ∈ {58}, rmeta2 ∈ {58, 61}

〉
116

a quarter of all the original training samples instead of keeping the entire training dataset, which

we refer to as Replay Data. The Admin Engine can access the Replay Data and add them during

administration along with AATs for the correspondent Task. After performing an administration,

we append a quarter of AATs to the Replay Data, which reflects the information of the current

Task during the next administration. Admin Engine always ensures the AATs and Replay Data are

mutually exclusive.

4.4 Evaluation

This section measures the performance for our simulated system to determine the feasibility and

efficacy of the proposed strategies for MLBAC administration.

4.4.1 Evaluation Methodology

We experiment and evaluate administration performance in RF-MLBAC and ResNet-MLBAC pro-

totypes on u5k-r5k-auth12k dataset. The dataset has around twelve thousand samples (Authoriza-

tion Tuples). We use 80% of the samples for training and 20% for testing the ML models. After

initial training, the trained models’ (RF and ResNet) performances are above 99% for the test

samples, respectively, implying that Fcurrent is highly accurate in making access decisions.
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We create a set of Tasks to simulate that the sysadmin received all those Tasks one by one

during the system’s life span. To that extent, we construct eighteen (considered randomly) distinct

Tasks from the u5k-r5k-auth12k dataset with different kinds of Criteria. Table 4.1 reports all

the simulated Tasks and respective Criteria. For example, the Task Id t-1 indicates the first Task

and a Task:
〈
uid = 259, rid = 112, op3, permit

〉
means a user with uid=259 needs op3 access

to a resource with rid=112. Also, the Criteria:
〈
umeta0 ∈ {9}, umeta6 ∈ {6}, rmeta0 ∈

{9}, rmeta3 ∈ {46}
〉

specifies the user whose umeta0 and umeta6 metadata values are 6 and 9,

respectively, could have op3 access to resources with rmeta0 and rmeta3 metadata values 9 and

46, respectively. Besides, based on the Task and Criteria, number of generated Additional AAT

is 42 and combining the AAT gives a AATs of size 43. We ensure that every Task is independent

concerning its change request and purpose. While updating the model, we use 80% of the AATs

for training and 20% for testing the updated ML model. We have created a repository on GitHub

consisting of the source code, dataset, and respective AATs, OATs, and ReplayData for each Task1.

We evaluate the administration performance in terms of accuracy. We define the accuracy as

the measure (in percentage) of correct access authorization for a user to a resource with respect to

the actual access control state (ground truth).

4.4.2 Results

To evaluate the administration performance in RF-MLBAC and ResNet-MLBAC, we assess how

accurately the Fupdated model can capture the AATs (both AAT and Additional AAT). We also

evaluate how well it can preserve the access control state of all other users and resources (OATs as

described in Section 4.2.3).

We experiment and evaluate the performance for all eighteen Tasks with single-Task and multi-

Task administrations. For multi-Task administration, we consider 2-Tasks, 3-Tasks, and 6-Tasks.

For example, a 3-Tasks administration indicates, we use three different Tasks together for an ad-

ministration. In the single-Task administration, it requires eighteen different administration to

1https://github.com/dlbac/MLBAC-Administration
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Figure 4.7: Administration performance in RF-MLBAC: Retraining

accomplish all the 18 Tasks as it administer one Task at a time. For multi-Task administration,

the number of administration reduces with an increase in Task count. For example, for 3-Tasks

administration, it requires six different multi-Task administrations to finish all the eighteen Tasks.

Administration performance in RF-MLBAC

Retraining. As discussed, retraining is a naive approach and inefficient for both data and compu-

tation. We evaluate the retraining performance in the Fupdated model. We assess both AATs and

OATs performance for single-Task and multi-Task (2, 3, and 6 Tasks) administrations. For OATs,

the Fupdated model is as accurate as of the initial trained model with more than 99% accuracy.

This performance is consistent across all the single and multi-Tasks administrations. However, in

the case of AATs, as demonstrated in Figure 4.7, the accuracy range is 40% to 80%. In almost

all the circumstances, the accuracy is inconsistent except for six-Tasks administration that shows

a better and more persistent result across administrations with 60% accuracy. Overall, the low

AATs performance indicates that the RF model can capture only a portion of new changes while
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Figure 4.8: Administration performance in RF-MLBAC: Sequential Learning

accommodating the proposed Task.

Sequential Learning. We perform the same evaluation for sequential learning and apply both

single and multi-Tasks administrations. Similar to retraining, the OATs performance is over 99%

across administrations and consistent, indicating that the RF model could preserve the existing

access control state better. This excellent result indicates that the RF model did not forget the

initial access control state. This result is anticipated because RF-MLBAC appends new estimators

to comprehend proposed changes instead of modifying their existing estimators while learning new

changes.

However, we see a very opposite scenario in AATs performance. As shown in Figure 4.8, the

accuracy of AATs varies in the range of 40% to 70%. For single-Task and two-Tasks adminis-

trations (green and orange lines in the figure), the AATs performance seems highly inconsistent

compared to what we see for six-Tasks administration (blue line). However, the accuracy of six-

Tasks administration is about 55%, which indicates that considering many Tasks together for a

single administration may not provide a better result. On the contrary, the three-Tasks administra-

77



Figure 4.9: Administration Performance in ResNet-MLBAC: Without Replay Data

Figure 4.10: Administration Performance in ResNet-MLBAC: With Replay Data

tion shows a consistent performance with around 60% accuracy across Tasks, suggesting an RF

model’s multi-Tasks administration with around three Tasks could be a potential administration to

consider.

Administration performance in ResNet-MLBAC

Sequential Learning. Training a neural network from scratch is computationally costly, which is

neither efficient nor feasible in access control. As a result, we did not take the naive (retraining)

approach for this prototype. To begin with administration in ResNet-MLBAC, we administer the
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first three Tasks (t-1 to t-3) as a single-Task administration without providing any Replay Data to

see the impact of sequential learning in the existing access control state. As shown in Figure 4.9,

the updated network captures the authorization for AATs with excellent accuracy, as opposed to

what we observed in RF-MLBAC. However, for OATs, we see a lower accuracy (below 90%) in

all three cases, indicating the network forgot (catastrophic forgetting) the access control state of a

good amount of existing users and resources while learning new information. To overcome that,

we apply Replay Data (as discussed in Section 4.3.3) along with AATs during administration. Fig-

ure 4.10 illustrates that combining Replay Data with AATs helps ResNet-MLBAC administration

to significantly reduce the catastrophic forgetting. As shown in the figure, the accuracy of OATs

is now above 99% across all three Tasks. Such a significant increase in OAT performance implies

the remarkable impact of Replay Data in overcoming catastrophic forgetting.

Further, we experiment with all eighteen Tasks for single and multi-Task administrations. Fig-

ure 4.11 and Figure 4.12 demonstrate the performance of AATs and OATs, respectively. As il-

lustrated, the AATs performance range is 96% to 99% accuracy, significantly better than what

we observed in the RF-MLBAC. As we see in the figures, for both AATs and OATs, the per-

formance of 6-Tasks administration is low compared to other multi-Task administrations. Such

inferior results indicate the infeasibility of using many Tasks under a multi-Task administration

in ResNet-MLBAC administration. Similarly, the performance of AATs in single-Task adminis-

tration is inconsistent across all the Tasks, which signifies that using single-Task administration

in ResNet-MLBAC may produce very unstable performance. However, for both 2-Tasks and 3-

Tasks multi-Task administrations, the result is persistent and progressing for both AATs and OATs,

thereby proving feasible and better for ResNet-MLBAC administration.

Summary of Performance in RF-MLBAC and ResNet-MLBAC. Based on AATs and OATs

performance in both prototypes, it is evident that the RF-MLBAC shows better results in preserv-

ing the existing access control state. It was expected as we did not change the estimators of the

initial RF model. However, the AATs performance in RF-MLBAC is extremely low, indicating it
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Figure 4.11: AATs Performance

could not well capture proposed changes. Besides, it has other drawbacks from model size and

optimization perspectives. The size of the trained model gradually grows with the addition of new

estimators in it. Also, each administration needs trial and error to determine an optimal number

of new estimators to append that correlates with how many Task one consider for a multi-Task

administration. On the other hand, ResNet-MLBAC administration shows a better accuracy for

AATs and comparable performance in OATs, indicating it could better capture proposed changes

while retaining the existing access control state intact.

4.4.3 Administration cost evaluation in RF-MLBAC and ResNet-MLBAC

We evaluate administration costs for both administration prototypes concerning computation time

for an administration. We observe that RF-MLBAC administration generally takes less than a sec-

ond to complete an administration (considering a maximum of 18 Tasks for an administration).

On the contrary, ResNet-MLBAC administration is slower than RF-MLBAC and varies with the

increase of Tasks count for each administration, as depicted in Figure 4.13. We measure the com-
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Figure 4.12: OATs Performance

putation cost of single-Task and multi-Task administrations in ResNet-MLBAC to identify how

administration time varies with the increase in Task count and how many Tasks are feasible for

a single administration. We consider different sizes (1, 3, 6, 9, 12, 15, and 18 Tasks) multi-Task

administration.

As shown in Figure 4.13, it needs 10 seconds for a single-Task administration, which is the

same for 3, 6, and 9-Tasks administrations, and becomes double for 12, 15, and 18-Tasks admin-

istrations. From a performance perspective, for 3 and 6-Tasks administrations, we see a balanced

accuracy in AATs and OATs. Such results suggest the feasibility of using multi-Task administration

in ResNet-MLBAC. However, considering many Tasks together (e.g., 12 or 15-Tasks administra-

tion) decreases the OATs performance, justifying the infeasibility of administering too many Tasks

together under a single administration.
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Figure 4.13: Administration Cost in ResNet-MLBAC for Sequential Learning.

4.5 Conclusion

This chapter explores the access control administration problem for MLBAC. We review admin-

istration requirements in the same context and propose an administrative framework for MLBAC

administration. We implement two prototypes, RF-MLBAC and ResNet-MLBAC, on a simulated

system applying ML algorithms from symbolic and non-symbolic classes. Due to the uniqueness

of the MLBAC administration problem, there are many underlying challenges, such as insufficient

learning of the proposed changes and forgetting existing access information. We propose different

strategies to overcome them. Also, we thoroughly evaluate both prototypes. Our empirical results

summarize that the non-symbolic approach performs better than the symbolic one while adjusting

for new changes in MLBAC administration.

82



CHAPTER 5: ADVERSARIAL ATTACKS IN MACHINE LEARNING

BASED ACCESS CONTROL

This chapter investigates adversarial attacks in MLBAC. In particular, we consider an MLBAC

where the ML model is a deep neural network. The outcome of this research has been accepted for

publication at the following conference:

• Mohammad Nur Nobi, Ram Krishnan, and Ravi Sandhu. "Adversarial Attacks in Machine

Learning Based Access Control." In the 1st Italian Conference on Big Data and Data Science

(ITADATA), Milan, Italy, 2022.

5.1 Introduction and Motivation

With advances in Big data, the Internet of Things (IoT), cloud computing, etc., the demand for a

more dynamic and efficient access control system is escalating. The traditional systems, such as

RBAC [118], ABAC [64], ReBAC [48], etc., have demonstrated their effectiveness in the access

control arena for a long time. However, with the increased complexity of computing systems, their

generality, flexibility, and usability come at a higher cost and are somewhat inadequate [15, 30,

77]. To deal with such large-scale access control systems, the use of Machine Learning (ML) is

becoming common in different areas such as policy mining [37, 74, 76], attribute engineering [7],

role mining [108], etc. Contemporary researches also manifest the advantages of using an ML

model for more accurate access control decision-making [30, 33, 77, 93, 109, 127]. These systems

decide accesses based on a trained ML model instead of a written access control policy. We refer to

such systems as machine learning based access control (MLBAC). In MLBAC, the access control

decisions (grant or deny) are made using user and resource metadata and attributes. Metadata and

attributes are the user/resource features that an ML model learns for subsequent access decisions

in MLBAC. For simplicity, we refer to both metadata and attributes as ‘metadata’. These metadata

could be expressed in categorical (e.g., ‘security_level,’ ‘designation’) and continuous (e.g., ‘age,’

‘salary’) data.
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Figure 5.1: The Adversarial Attack Problem in MLBAC.

Among different ML models, neural networks are prevalent for obtaining a generalized and

accurate MLBAC system due to their ability to capture features from complex input [30, 77, 109].

Such quality of the neural networks poses some security concerns as they are highly sensitive

to the minor changes in the input— that is, a slight manipulation or introduction of additional

information to the input may result in an unintended output [14]. In ML, this issue is known

as an adversarial attack, and the manipulated data is an adversarial example. For instance, in

MLBAC, an attacker could perturb the user/resource metadata to gain access to a resource forcibly.

Figure 5.1 demonstrates the adversarial attack problem in MLBAC. An MLBAC is deployed in a

system where a user requests to access a resource at time ‘t1’, which the system denies. At time

‘t2’, the user by itself or a third-party adversary purposefully manipulates the respective user and

resource metadata to gain access. As illustrated in the figure, system administrators (sysadmin)

may store metadata in the databases with different levels of security restrictions, e.g., Tier 1, Tier

2, etc. Therefore, the adversary may or may not equally access and modify each metadata. For

example, an adversary may not have access to the ‘job_role’ metadata as a more restricted database

could store them. On the contrary, the adversary may manipulate (e.g., ‘expertise’ metadata) or
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influence (e.g., login_frequency) some metadata to which the user may have direct or indirect

access. As shown in the figure, after the manipulation, the user requests the same access at the

time ‘t3’, which is eventually granted by the MLBAC system.

This area is studied carefully and comprehensively in the domains where inputs are generally

images [53, 141], e.g., computer vision. However, this problem is equally important in the access

control domain, especially for MLBAC, where the input data is non-image. There are a few works

where adversarial have been studied where input is a categorical tabular data. For example, Ballet

et al. [14] propose an imperceptible adversarial attack for the tabular data domain. The authors

manipulate less important features to a greater extent, adding a minimal perturbation to the more

important features to ensure imperceptibility. Also, Cartella et al. [32] present an adversarial attack

for imbalanced tabular data for fraud detection. The proposed method obtains adversarial exam-

ples that are less perceptible when analyzed by humans. Recently, Kumar et al. [87] propose an

adversarial attack for a payment system, focusing on generating adversarial examples on the tabu-

lar dataset with limited resources (the least number of queries used). The authors experiment with

a gradient-free approach in black-box settings. Mathov et al. [96] also propose a framework for

adversarial examples in heterogeneous tabular data, including discrete, real-number values, cate-

gorical, etc. The proposed framework defines a distribution-aware constraint and then incorporates

them by embedding the heterogeneous input into a continuous latent space.

As discussed, in MLBAC, the input is the user/resource’s metadata which is tabular data ex-

pressed in terms of a set of both categorical and continuous values. Also, in access control domain,

metadata may have different levels of restrictions, as shown in Figure 5.1. Therefore, the adver-

sarial attack needs to be investigated concerning the access control domain. In this chapter, we

define adversarial attack problems in the MLBAC context. We also propose to customize objective

functions imposing additional accessibility constraints. Also, we simulate the adversarial attack

cases in the deep neural network-based MLBAC with two complex and large-scale systems. Also,

we consider underlying user/resource metadata in both systems contain a mix of categorical and

continuous data. Finally, we evaluate the performance of our experimentation and demonstrate
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that applying accessibility constraints makes it harder for the adversarial attack generation.

5.2 Adversarial Attack in MLBAC

5.2.1 Adversarial Attack Problem

This section discusses the MLBAC adversarial attack problem. For any access request to the

MLBAC, the input to the model is both user and resource metadata, and the MLBAC decides

whether the user has access or not. Given the ground truth of an access decision of a request

and respective user/resource metadata, we can express them as a tuple of user metadata, resource

metadata, and an access decision. We refer to such tuple as an authorization tuple. For example,

an authorization tuple
〈
u1, r1, {grant}

〉
indicates that a user u1 has access to the resource r1. The

u1 and r1 also represent the set of their respective metadata and metadata values.

We consider X represents a set of authorization tuples where user and resource metadata are

denoted by xa with a∈ [ 1. . .N ] and associated with a binary access decision ya representing either

grant (1) or deny (0). Also, xa is defined by a ‘vector’ of user and resource metadata values and

expressed as: xa =
〈
mu

1 : v1 , m
u
2 : v2 , . . ., m

u
i : vi , m

r
1 : v1 , m

r
2 : v2 , . . ., m

r
j : vj

〉
. The pair

mu
i : vi indicates vi is the value of ith user metadata mu

i . Similarly, the pair mr
j : vj indicates vj is

the value of jth resource metadata mr
j .

Also, we consider f :X −→ { 0, 1 }, a binary classifier mapping to access decisions where the

grant is represented by ‘1’ and deny as ‘0’, which is obtained from comparing the probability of

access at the output of the classifier with a threshold.

For a given user-resource metadata values x, the access decision y = f(x), and target access

decision t ̸= y, we aim to generate an optimal perturbation xp such that

f(x) = y ̸= f(x+ xp) = t

Our goal is to generate an adversarial example such that we can minimize the amount of per-

turbation (xp) and gain the desired access t. To accomplish that, we define our objective function
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as the accumulation of access change constraint and minimization of xp:

g(xp) = L(x+ xp, t) + ω ∥xp ∥

Where L(x, t) is the value of loss of the binary classifier f calculated for the input x and

target access decision t. Also, ∥xp ∥ measures the lp norm of perturbation and ω>0 is the weight

associated to the amount of perturbation.

5.2.2 Accessibility Constraint

The objective function we discussed above considers that the attacker has the flexibility to modify

any user/resource metadata to obtain their desired access. In MLBAC, there are metadata with

different levels of restrictions, as discussed in Section 5.1 and illustrated in Figure 5.1. Therefore,

an adversary can not access and modify every metadata equally. A sysadmin could explicitly

impose such restrictions, and the adversary could not directly access and modify some of the

metadata. For example, a user’s ‘job_role’ information comes from the system, which is difficult,

if not impossible, to modify and will take more effort. On the other hand, the adversary could

influence some metadata, such as ‘expertise’, and maybe modify it with less effort. Without loss of

generality, we refer to such notion of restrictions and the ability to access them as the accessibility

constraint.

To impose the accessibility constraint while generating perturbation (xp), we extend our objec-

tive function as below:

g(xp) = L(x+ xp, t) + ω ∥xp◦c ∥

Where c is the accessibility constraint expressing the magnitude of restrictions with respect to each

metadata, ◦ is the element-wise product operator, and ω > 0 is the weight for the penalty of per-

turbing metadata with higher accessibility constraint. We hypothesize that exploiting accessibility

constraint with the proposed objective function will make the perturbation generation harder.
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5.2.3 Adversarial Attack Approach

After formulating objective functions, we aim to develop an approach to optimize the objective

function minimization problem and generate perturbed examples. Researchers have proposed nu-

merous approaches, such as the Fast Gradient Sign Method (FGSM) [130], Projected Gradient

Descent (PGD) [89], Carlini & Wagner Attacks [31], etc., to generate adversarial attacks that can

deceive a trained deep neural network with higher accuracy. However, most of the algorithms have

been proposed for the image domain. Due to the data characteristics in the access control do-

main, these algorithms may not readily mislead the ML model in MLBAC. A few works consider

the non-image tabular data domain [14, 32, 88]. These works have demonstrated their potential

in generating adversarial attacks for ML models applied in multiple use-cases such as financial

services [14], fraud detection [32], etc.

Ballet et al. [14] propose the LowProFool algorithm to solve the optimization problem for

the continuous tabular data using a gradient descent approach. As MLBAC input is tabular data

containing both categorical and continuous metadata, and we have a similar optimization problem,

we adopt their algorithm for minimizing our objective function g. We customize the algorithm and

adjust the parameters such that we can optimize our objective function and supports continuous

and categorical data. We further discuss this in Section 5.3.5.

5.3 Methodology

5.3.1 Determining Accessibility Constraint

In MLBAC system, the access decisions are made based on user/resource metadata. In practice,

this metadata could come from different sources, where some sources are more secured than oth-

ers. For example, a highly restricted database may store a user’s sensitive information, such as

‘job_role.’ In contrast, a less secured database may store less sensitive data such as ‘expertise.’

Also, not every metadata/attributes equally influences the access decisions [109]. Therefore, the

sysadmin may restrict influential and sensitive metadata/attributes with more security. We uti-
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lize the notion of accessibility constraint (as discussed in Section 5.2.2) to simulate such security

restriction levels for each of the metadata.

Instead of randomly determining some metadata as more restricted and others as less restricted,

we measure the correlation for each user and resource metadata for a decision. More concretely,

we calculate the absolute value of Pearson’s [18] correlation coefficient of each metadata with re-

spect to the access decision. For this purpose, we could utilize other methods crafted specifically

for the access control domain, such as the global interpretation-based method developed by Nobi

et al. [109], where they determine the influence of each metadata for a specific decision for an

ML model. However, we rely on Pearson’s correlation as it can better simulate human intuition

through a linear correlation based on the data [14]. For our proposed objective function, we gen-

erate accessibility constraint values in the range of 0 to 1 for each metadata. A higher constraint

value of metadata indicates the respective metadata is more secured, thereby less accessible by the

adversary while generating perturbation.

5.3.2 Dataset for MLBAC Adversarial Attack Experimentation

MLBAC makes access control decisions based on user and resource metadata and attributes val-

ues. Before that, MLBAC needs training with available ground truth to decide on subsequent

access control requests. Generally, the ground truth could be access history, existing authorization

information, etc., communicated through authorization tuples [30, 93, 109]. (We discussed the au-

thorization tuple in Section 5.2.1.) We call such a collection of authorization tuples a dataset that

represents the current access control state of a system.

Each dataset represents the metadata information of users and resources and their access control

state. However, metadata values could be a mix of continuous (e.g., ‘age,’ ‘salary’) and categor-

ical (e.g., ‘security_level,’ ‘designation’) data. We are unaware of any publicly available access

control dataset representing mixed metadata values. There are two access control datasets from

Amazon [10, 11]. Both of these datasets contain only categorical metadata/attributes values. As

discussed in Section 3.3.1, we generate eight different datasets using the data generation algorithm
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proposed by Xu et al. [143]. Out of eight datasets, for this work, we experiment with u5k-r5k-

auth12k and u5k-r5k-auth19k datasets.

We introduce different complexities to simulate some real-world scenario. Each dataset has

around five thousand users, five thousand resources, and four different operations. The u5k-r5k-

auth12k dataset, we refer to as System-1, has around 12K authorization tuples. Each user has eight

user metadata (umeta0, umeta1, . . . , umeta7), and each resource has eight resource metadata

(rmeta0, rmeta1, . . . , rmeta7). On the other hand, the u5k-r5k-auth19k dataset has around

19K authorization tuples, whereas a user has ten metadata (umeta0, umeta1, . . . , umeta9) and a

resource has ten metadata (rmeta0, rmeta1, . . . , rmeta9). We refer to this dataset as System-2.

However, both datasets contain categorical metadata values, as integers, of which each value

represents a category. In practice, one could anticipate a mix of continuous and categorical

data [96]. To simulate the notion of mixed data, we consider metadata values of both datasets

as mixed data. In particular, we assume that the first half of the user and resource metadata are

continuous and consider an integer a real value. We also consider the rest of the metadata as

nominal categorical data, where each integer represents a category, and the order of the category

does not matter. As the metadata contains mixed data, they need to be processed efficiently such

that the underlying ML model can properly consume the training data [57]. The following section

discusses their preprocessing.

5.3.3 Data Preprocessing

This section explains the processing of the System-1, which is equally applicable to System-2.〈
1011|2021|30 49 5 26 63 129 3 42 | 43 49 5 16 63 108 3 3 |⟨1 1 0 1⟩

〉
is a sample authorization

tuple of the System-1 dataset where 1011 and 2021 are the user and resource’s unique numbers.

The next eight elements indicate the metadata values of a user, the following eight elements repre-

sent the resource’s metadata values, and the final four binary digits (1 for grant, 0 for deny) signify

four different operation’s access to the resource.

For our experiment, we consider the first four user metadata (umeta0 to umeta3) and the first
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Figure 5.2: Input Preprocessing in System-1 Dataset.

four resource metadata (rmeta0 to rmeta3) to be continuous, and the rest of the metadata are cate-

gorical. Also, we utilize only one operation (out of four operations) that indicates whether the user

has access to the respective resource or not (grant/deny). Figure 5.2 illustrates the data preprocess-

ing of System-1 dataset. We normalize continuous data using the MinMaxScaler approach [145]

and apply one-hot encoding [57] for the categorical portion of the metadata. As shown in the

figure, we merge continuous normalized data, a vector, with the one-hot encoded categorical data

matrix. The merged matrix, holding values between 0 and 1, acts as the ML model’s input.

5.3.4 Candidate ML Model for MLBAC

A deep neural network has significant benefits for controlling access in dynamic, complex, and

large-scale systems [109]. Considering the scale of our datasets and data characteristics, we uti-

lize a deep neural network for MLBAC. In particular, we consider ResNet [59] as our candidate

ML model. We note that one could use other deep neural networks, including Xception [35],

DenseNet [69], etc., although we do not anticipate any significant changes in our results.

For System-1 and System-2 datasets, we exploit the ResNet ML models with 8 and 50 residual

layers, respectively, as suggested in [109]. There is a convolution, a batch normalization opera-
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tion [70], and a ReLU [103] activation function in each layer. The final activation layer’s output

is flattened and fed into a dense layer with a sigmoid activation function as the MLBAC needs to

make a binary access decision (grant or deny).

5.3.5 Customization of LowProFool Algorithm

As discussed in Section 5.2.3, we exploit the LowProFool [14] algorithm for generating adversarial

examples for the MLBAC. We modify the algorithm and parameters to support continuous and

categorical data and help minimize our proposed objective functions discussed in Section 5.2.1

and 5.2.2. We replace the objective function with our proposed one and take accessibility constraint

(c) as input. We define the loss function L as the binary cross-entropy function. Also, we guide the

perturbation to the positive of the gradient if our target access is a ‘grant (1)’. Otherwise, we guide

to the negative of the gradient. As discussed, our experiment’s preprocessed input holds values

between 0 and 1. Therefore, we modify the clip (x) function to control the value of each metadata

such that it does not cross the range. We floor the value to 1 if it exceeds one, and we ceil it to zero

if the value becomes negative.

In addition, the algorithm controls the growth of the perturbation using the scaling factor pa-

rameter α. Also, we need to provide a weight parameter ω that helps to minimize perturbing

the metadata with higher accessibility constraints. For the System-1, we choose the parameters

α and ω as 0.2 and 6, respectively. These values are 0.7 and 5.7 for the System-2. We follow a

trial-and-error process for choosing them. We have created a GitHub repository consisting of our

experimentation’s source code1.

5.4 Evaluation

5.4.1 Evaluation Metrics

The efficiency of an adversarial attack is measured as the ratio of successfully crafted adversarial

examples, and the total number of samples attempted to prepare the adversarial example. This

1https://github.com/dlbac/MLBAC-AdversarialAttack
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ratio is known as the Success Rate [14]. Let us consider X as the number of samples attempted

for the adversarial example creation. We also consider A containing every tuple (x, xa) such that

x∈X and xa a successfully crafted adversarial examples from x with f(x) ̸=f(xa). We define the

Success Rate as follows:

SuccessRate =
|A|
|X|

5.4.2 Evaluation Methodology

We propose two different objective functions for the MLBAC system, as discussed in Section 5.2.1

and 5.2.2. In one case, we consider that adversary has equal access to every metadata and, thereby,

could change any metadata at any level. In another case, we consider a scenario where each meta-

data may have been stored in places with different levels of restrictions (accessibility constraint).

As a result, an adversary could not access and modify every metadata equally. In such a case,

the adversarial example generation would be harder, and we anticipate a lower Success Rate. We

evaluate both cases and refer to the first as the ‘Without Accessibility Constraint’ and the latter as

the ‘With Accessibility Constraint.’

As discussed, we experiment with two datasets System-1 and System-2, having a different

number of samples and data characteristics. We evaluate the performance of both of the datasets.

Also, we create a different subset of samples measured by sample count and eventually determine

the average performance for the respective dataset.

5.4.3 Results

Figure 5.3 demonstrates the performance of System-1. As shown in the figure, the success rate

of adversarial attacks without imposing any additional constraint is above 95%. However, when

we restrict the system considering accessibility constraint, the success rate reduces to an average

of 75%. We observe a similar result in the System-2 case, as demonstrated in Figure 5.4. In this

case, without any constraint, the success rate is above 98%. We observe an identical trend for the

scenario when we apply the constraint. The average success rate goes down to 79%. In both cases,
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Figure 5.3: Performance Evaluation of System-1.

we observe that the proposed adversarial method could successfully design adversarial examples

at a higher success rate. However, by restricting the flexibility of the adversary by limiting their

access to different metadata at a different level, we see a dramatic reduction in the performance,

justifying our hypothesis made in Section 5.2.2.

5.5 Conclusion

This chapter defines the adversarial attack problem in the MLBAC context where a trained ML

model decides access. We customize objective functions by imposing additional accessibility con-

straint to reflect the access control context. We experiment with adversarial attack cases in the deep

neural network-based MLBAC with two complex, large-scale systems. Also, we consider systems

where underlying user/resource metadata contains both categorical and continuous data. We thor-

oughly evaluate the performance of MLBAC adversarial attack experimentation and demonstrate

that it is possible to restrict an adversarial attack to some extent by introducing a security constraint.

In this work, we measure accessibility constraint using the correlation method. Exploring other

methods to simulate such restrictions and accessibility would be interesting. Also, the adversarial
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Figure 5.4: Performance Evaluation of System-2.

attack and the proposed objective functions depend on multiple parameters. The performance of

the attack method has a strong connection with these parameter values, which we determine using

a trial-and-error approach. A further investigation is needed to minimize dependencies and find

their values more systematically. Besides, we consider the white-box attack scenario, where we

assume the adversary has access to the ML model in MLBAC. It would be interesting to explore

a black-box scenario where the adversary cannot access the MLBAC model. Also, the proposed

accessibility constraint exhibits its prospect of safeguarding against adversarial attacks, which may

not be sufficient in some cases. A thorough investigation is needed to determine defense techniques

in the access control context.
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CHAPTER 6: IMPLEMENTATION AND EVALUATION OF DLBAC

Prior chapters of this dissertation thoroughly depict Machine Learning Based Access Control (ML-

BAC). As part of the operational model, Chapter 3 experiments with both classical ML-based ap-

proaches and DLBAC. As reported, the performance of DLBAC is significantly higher than the

classical ML approaches and traditional access control systems. Further, Chapter 4 investigates an

administrative model for MLBAC. The empirical results suggest that DLBAC has more advantages

from an administration perspective. As a result, due to the performance benefits of a DLBAC for an

access control system, we further implement DLBAC for recommending application permissions

in mobile devices. Besides, we also explore how DLBAC could run in parallel with traditional

access control systems.

6.1 DLBAC Assisted Permission Recommendation in Mobile Devices

6.1.1 Introduction and Motivation

Smartphones and wearable devices can perform very personalized tasks due to their high comput-

ing capability and access to numerous data collected from the user activities, various sensors of the

device, online sources, etc. By combining this information, such as location, photos, messages,

call log, contacts, calendar, etc., it is possible to extract high-level information about the potential

activities of the respective user. While most of these data are very personal, the widespread adop-

tion of smart devices reduces the protection-ability, and adversaries could collect this information

for malicious use cases, which is a security and privacy concern [22].

Interestingly, without the help from the installed application (app) and proper access permission

to information, collecting these data from smart devices is nearly impossible. Therefore, to restrict

the access of devices’ data, the first step is to avoid unauthorized apps, and the immediate next

step would be to control the permissions. However, due to numerous sensors and services, the

number of permission requests is very high, making it harder for users to choose and restrict them

efficiently. The devices follow Ask-On-Install (AOI) or Ask-On-First-Use (AOFU) strategies to
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ease the permission management process at the app level. In the case of AOI, the user has to

allow all the permissions to install the app or deny the installation. For AOFU, the app asks for

permission for the first use. In either case, once approved, the app uses the earlier agreement for

all future cases.

However, a permission decision is subjective and depends on the situation and actual needs

(context). Due to the abundant permission requests from different apps and services, the users

could not efficiently decide considering all these contexts, nor is it even practical to do for a hu-

man. As a result, human users either grant without knowing its further consequences or deny the

request those maybe needed that may be required for a subsequent task. For automated permis-

sion decisions, researchers are actively studying this area to improve the efficiency of permission

managers while considering users’ personal preferences.

Generally, these automated processes work based on creating a set of profiles and assigning

each user to a specific profile with respect to the user’s preferences, device context, etc. For

instance, authors in [3] and [111] develop methods to automate privacy decisions based on crowd-

sourcing. The proposed methods collect all the users’ permission choices in a centralized domain

and create one profile to recommend to users about their permission decision. Xie et al. [140] de-

veloped a location permission recommendation system for the Facebook 1 app using collaborative

filtering. Ismail et al. [71] develop a privacy settings recommender system through various clusters

in the context of Instagram 2. The authors in [92] create a method with four different clusters that

can predict a user’s mobile app privacy settings. Also, for location-sharing apps, Ravichandran

et al. [112] created profiles to predict the user’s permission preferences that demonstrated better

performance compared to the system without profiles.

Also, some approaches train an ML model based on prior preference, and the model could

recommend granting or denying a permission request. Liu et al. [94] implemented a personalized

permission manager (PPA) for recommending app permissions, and its recommendations were

perceived as useful and usable. The authors evaluate the performance of the PPA with actual

1www.facebook.com
2www.instagram.com
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mobile users using their own Android devices. The evaluation results suggest that users adopted

approximately 79% of the recommendations made by the PPA, and they only changed 5% of the

permission settings previously adopted based on the PPA’s recommendations.

Recently, Brandão et al. [22] developed a privacy-aware permission preference system for mo-

bile devices. The proposed system builds privacy profiles and predicts privacy decisions using the

ML model while ensuring user privacy. The authors create privacy profiles exploiting the privacy-

preserving clustering technique. In the proposed method, a server creates the profile without direct

access to the user’s data. Also, the authors apply the federated learning phenomenon for training

the respecting ML model keeping user’s data in user’s device locally.

However, many of these research efforts generally focus on generating a single or a set of

profiles based on the prior history of users’ preferences (the dataset). While these approaches’ per-

formance looks promising, there is still a gap between actual preferences and the recommendation.

As a result, this area needs more studies to develop a better recommendation system. This chapter

investigates the potentiality of DLBAC for recommending permission decisions for mobile devices

considering both users’ and devices’ contexts.

6.1.2 Dataset Characteristics

Mendes et al. [99] collected the permission preference data 3 from the Android users in the NGI

Trust project COP-MODE4 through COP-MODE’s Naive Permission Manager 4. A sample in

the dataset represents the user’s permission decision (grant/deny) for a specific permission request

from apps, stored as a JSON object. Each sample contains user id, permission dialog data, and

context data. The user id represents the unique identification number of the human user and the

id of the respective device. The permission dialog data represent the information of the requesting

apps, such as whether the app is a foreground app or not, the app is a system app or not, the category

of the apps, etc. Also, the permission dialog data contain the name of the requested permission,

e.g., LOCATION permission, users’ decision to the respective request, users’ location, etc. On the

3https://cop-mode.dei.uc.pt/dataset
4https://cop- mode.dei.uc.pt/cm-npm
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Table 6.1: List of Features.

# Name Data Type HasMissingValues
1 callState Categorical no
2 screenIsInteractive boolean no
3 networkStatus Categorical no
4 plugState Categorical no
5 selectedSemanticLoc Categorical no
6 category Categorical no
7 isTopAppRequestingApp boolean yes
8 isForeground boolean yes
9 isInEvent boolean yes
10 hour Categorical no
11 isWeekend boolean no
12 permission Categorical no

other hand, the context data includes foreground and background running apps, network status,

screen status, call state, etc. We refer to all these data as the feature.

The dataset comprises 93 users and 2180302 permissions requests, of which 65261 were man-

ually decided (grant or deny) by the users. Of the 65261 permission requests, two-thirds of the

requests were granted, whereas the rest of the requests were denied. The dataset contains requests

from almost all the Android permissions. However, among all the permissions, there are two

main permissions groups, LOCATION, and CONTACTS, representing approximately 50% of the

requests. The PHONE and STORAGE permissions account for around 37% of the requests [22].

Data Preprocessing

For this experiment with DLBAC, we experiment with the manually decided requests (65261 per-

mission requests). Also, context and permission dialog data contain a good number of features,

some of which are not usable. For example, user id, device id, bootTime, answerType, etc., are

static information that does not relate to permission decisions (e.g., bootTime, answerType) or is

not helpful to generalize them across requests (e.g., user id, the device id). As a result, we consider
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a subset of features, e.g., callState, screenIsInteractive, networkStatus, permission name, permis-

sion decision (1 for grant, 0 for deny), etc. We finally transform a sample, which is stored as a

JSON object, into the tuple of features and their values (permission is also part of the feature) and

respective decision (
〈

feature-value pairs, decision
〉
). Note that we aim to train a model such that

the trained model could predict the permission decision. In addition, each feature contains nominal

categorical data. Note that some features contain boolean data (TRUE, FALSE). For simplicity,

we consider them as categorical (two categories). We summarize all these features in Table 6.1.

Privacy Profiles. Prior research suggests that we can build some privacy profiles by exploiting

the user and device’s context. These profiles could help to identify privacy preferences at the user

level [22, 94]. Also, such a profiling technique would help cluster like-minded users under the

same group. We create nine such profiles across users using a hierarchical clustering algorithm

and apply those profiles as part of the features. We will show that extracting this profile informa-

tion and adding to the features help obtain better performance.

Conflict Resolution. Apparently, there are scenarios where there might have a entirely oppo-

site permission decision for the same feature-value pairs. For example, user Alice once grant for

CONTACTS permission requested by an apps, say Xapps, and deny for CONTACTS permission for

another apps, say Yapps, having same features (e.g., category, isSystemApp, etc.). Even though,

the requests are from two independent apps, as the apps have same features and same user Alice is

once granting and later denying the same permission, the decision is contradictory. We term this

as a conflict. In such a case, we resolved this using the permit-overrides strategy [91] that is– if

the Alice grants for a permission at any episode, we consider Alices’ decision as the grant for that

permission even if there are cases where Alice denies for the request comes from different apps

with same features.

Missing Data. Some features contain missing values, e.g., isTopAppRequestingApp. In practice,
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this is very likely that all the apps may not have the same number of features. Also, there might

be limitations in collecting some features, e.g., the calendar may not be synced to collect event

data. Therefore, it is required to consider such requests while training and evaluating the model’s

performance. Standard techniques are available in the literature to fill these missing values, such

as imputation strategy [5], considering missing values as missing or unknown, etc. For this piece

of work, we replace missing values with a new category as ‘unknown’ that better reflects the actual

scenario.

ML Model Training

For a given feature vector x of the feature-values pair, the DLBAC access control decision making

can be defined as a prediction function f such that ŷ = f(x), where ŷ is the predicted decisions

(grant (1) or deny (0)) for the requested permission.

Since the feature values in our dataset are categorical, we need to map them to binary values

before providing them as input to DLBAC, as discussed in Section 3.3.3. We encode feature-

value pairs using one-hot encoding [57] to transform the categorical values into a two-dimensional

binary array. The row in the array represents features, and the column holds the encoded binary

representation of the corresponding value.

Evaluation Methodology

As evaluated in Section 3.4.1 for the DLBAC, for this evaluation, we also created three instances of

DLBAC for this experiment using three deep neural networks, including ResNet [59], DenseNet [69],

and Xception [35]. Also, we use the same architectures, parameters, and configurations suggested

in the same section.

Besides, we follow the same evaluation metrics (F1 Score, True Positive Rate (TPR), False

Positive Rate (FPR), Precision, and accuracy) discussed in Section 3.4.1. For details of the metrics,

we refer to the respective section.

Using the same dataset, Brandão et al. [22] developed a privacy-aware permission preference
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Figure 6.1: Performance of DLBAC ResNet Instance Without Privacy Profiles.

system for mobile devices. As the current state-of-the-art, they reported the model’s accuracy as

0.88 and F1-score as 0.90. We compare our experiment’s performance with theirs.

Results

First, we evaluate the performance of the DLBAC ResNet instance. In this experiment, we did not

consider privacy profiles. Our experiment shows that, on average, DLBAC obtains an accuracy

of 74.02% and the average F1 Score of 0.82. We also determine the FPR, TPR, and Precision, as

shown in Figure 6.1. As we see in the figure, the FPR is quite high (> 0.5), indicating the model

is over-privileged [109]. Though the TPR is reasonable, the Precision is quite low. Such a result

indicates the model is not efficient in granting the permissions [109].

Next, we consider the privacy profile information as part of the features and create three DL-

BAC instances using the same features. Figure 6.2 demonstrates the accuracy of different instances.

The accuracy is consistent across instances with an average of 88.5%, a significant improvement

from the model without the privacy profiles. Also, we determined the F1 Score, FPR, TPR, and

Precision for all the instances and reported in Figure 6.3. The F1 Score sees a substantial improve-

ment. Also, the TPR and Precision increased significantly while the FPR decreased to, on average,

0.177. Such an improvement with higher TPR and lower FPR indicates that these instances can

efficiently balance both over- and under-privilege [109].
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Figure 6.2: Accuracy Comparison Among DLBAC Instances.

Overall, the performance results demonstrate the efficiency of DLBAC in recommending (or

even automatically deciding) mobile devices’ permissions.

6.2 Other Potential Applications of DLBAC

6.2.1 DLBAC in Tandem with Traditional Access Control System

In practice, we do not advocate that DLBAC will immediately substitute traditional access control

forms. On one side, DLBAC shows promising results compare to traditional access control sys-

tems. On the other side, the operation of DLBAC is entirely different than existing access control

practices. System administrators are used to functioning access control states in terms of written

policies, which is quite acceptable considering the sensitivity of the domain. One obvious issue

is that DLBAC is a black-box neural network-based system. The administrator can not observe

the underlying policy to know how DLBAC controls its access control states. They might raise

different concerns about the usability, practicality, or trustworthiness of DLBAC, which is entirely

rational. Even though DLBAC provides extensive tools and techniques to configure and manage

access control states of a system and understand access control decisions, it might not be sufficient

for many applications. Therefore, it is not unusual to be skeptical about the applicability or practi-

103



Figure 6.3: F1 Score, Precision, TPR, and FPR Comparison Among DLBAC Instances.

cality of the DLBAC. A direct resolution could be to apply DLBAC in parallel with the traditional

access control system, which could be a research challenge.

This section discusses two unique approaches to how DLBAC could be effectively integrated

to operate in tandem with traditional access controls such as RBAC or ABAC. Note that they are

not mutually exclusive and can be deployed simultaneously.

Reinforcing Access Control Decision

We have already demonstrated that DLBAC can make better access control decisions than the

traditional access control model through experimentation and evaluation. In addition, traditional

policy-based systems are not as generalized as DLBAC, which is also proven through our experi-

ments. Things worsen with– (1) the change in access control policy and user/ resource attributes

and (2) when it is required to make access control decisions for unknown users or resources that

were not explicitly seen during mining. The former is an administration issue in a traditional access

control system, whereas the latter is a generalization problem.

We discussed in previous chapters that the traditional access control systems’ administration
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Figure 6.4: Reinforcing Access Control Decision.

is quite error-prone as a human manages them. Besides changing the access control policy, the

administration may modify multiple dependent elements such as attributes assignment, role as-

signment, etc. Such a process is burdensome and quite challenging due to the lack of proper

tools or techniques to control the process [138]. Eventually, human administrators ended up with

a system that approves unauthorized access or denies legit requests. That makes overall policy

maintenance inefficient and ineffective and introduces many errors in the policy. Therefore, after

each policy maintenance, the system may expect a lot of unauthorized or unreasonably restricted

access.

Parallel deployment of DLBAC, being a more generalized access control model, can help to

improve performance in a traditional system, say ABACa. Each access control request will go

through DLBAC and the ABACa for a decision. This can be seen as a two factors authorization of

access control decision. While the ABACa may make initial access control decisions, the DLBAC

can be plugged as the second factor. A request would be granted or denied without any question if
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both factors agreed to do so. However, if their decisions do not match, a conflict arises, indicating

a mismatch between DLBAC and the ABACa method. Ideally, an expert’s (e.g., a system admin)

intervention is required to resolve such conflict. Resolving every conflict with a human admin-

istrator might not be practical as, even in a medium-sized system, there might be many conflicts

between DLBAC and other traditional models.

To minimize such human intervention to a large degree, we proposed establishing a meta-

policy to automate such conflict resolution on how these two independent approaches will work

together. The policy will act as an expert here and determine in what circumstances what should

get preference or when to notify the system administrator to resolve a conflict, if not possible,

according to the current meta-policy. For example, a straightforward meta-policy could be to

accept any decision made by the ABACa. Another example could be to take the DLBAC decision

only if it is decided with more than 99% confidence (probability of DLBAC output is 0.99).

As shown in Figure 6.4, DLBAC is deployed in parallel with a traditional access control system,

ABACa, to reinforce access decisions. The figure illustrates two different scenarios. In the first

case, both DLBAC and the ABACa made the ‘permit’ decision for a request, and the user is

permitted to access the desired resource. The ABACa made a ‘permit’ decision in the second

case, whereas the DLBAC denied the request, creating a conflict. Then, to resolve the conflict, the

request goes through the meta-policy. The meta-policy takes the access request, decisions made

by both ABACa and DLBAC, and then determines that the request should be permitted.

Evidently, a conflict in the system indicates that the decision in both DLBAC and ABACa is

not consistent with the actual access control states. Therefore, adjusting the DLBAC and ABACa

is equally important to minimize these conflicts. The system communicates a conflict with the

traditional approach and DLBAC by providing a feedback. This feedback phenomenon can be

considered a human-in-the-loop for strengthening underlying approaches capability.

Feedback For DLBAC. Feedback is an authorization tuple made from the access request and

the access determined by the meta-policy in the case of conflict. As a result, feedback can be

considered as reward from the DLBAC perspective if the authorization tuple is made from the
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access request and DLBAC’s decision. On the contrary, feedback can be regarded as a penalty if

the authorization tuple is made from the access request and the decision made by the ABACa.

Suppose the meta-policy asserts that DLBAC made the correct decision for a request. In that

case, the administrator will reward DLBAC and add feedback to a Feedback Buffer. If the conflict

were to be resolved against DLBAC, the administrator would penalize DLBAC and add the tuple

to the buffer. The feedback stored in the feedback buffer is incorporated into the DLBAC network

during the DLBAC administration to reinforce the learning such that the DLBAC can decide with

more confidence for any future request. Figure 6.4 illustrates that meta-policy accepted the ‘permit’

decision made by the ABACa, and it provides feedback to the Feedback Buffer. In this case, the

feedback is a penalty as the conflict resolution went against the DLBAC’s decision. Eventually, all

the stored feedback from the buffer is incorporated into DLBAC.

Feedback For Traditional System. The system administrator could also analyze the feedback

from the buffer to determine any potential changes in the traditional system. For example, for some

requests, DLBAC always denies access while the ABACa permits it. This might happen due to

any access leaks (unauthorized access) in ABACa policy that probably occurred due to any recent

changes in ABACa. Then, the system administrator might consider adjusting the policy of ABACa

to avoid related unauthorized access.

Overall, such a dual-authorization system will help build a reliable system that can make access

decisions with more confidence. As there is a feedback mechanism for the conflicts, both DLBAC

and traditional methods can improve their capacity, eventually helping to make better access con-

trol decisions. Also, the System administrator’s active involvement in the process could back up to

minimize the system’s error and improve efficiency over time.

Facilitating Access Control Administration

As discussed in the previous section, traditional access control administration suffers from numer-

ous inefficiencies due to the lack of proper tools and techniques. This section proposes DLBAC as

a candidate administration tool for the traditional access control system that can effectively guide
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Figure 6.5: Facilitating Traditional Access Control Administration.

and ease the administration process.

For example, the user Alice doesn’t have access to the sub-project-list-api resource. Due to

the business policy, the system administrator wants to grant read access for Alice to this resource.

Suppose no additional tools have been applied in a traditional access control system. In that case,

it is hard to determine other affected users/resources due to the mandated change, and they are

impacted by either losing existing accesses or gaining unauthorized accesses. In a traditional

access control system, part of this problem is considered the side effect of access policy changes

and is widely known as access-denied issue where deserving access is denied falsely [142]. A

human administrator is not alone sufficient to tackle such an issue as it might create additional

errors. DLBAC can help in this circumstance if deployed in parallel. The admin engine of the
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DLBAC can identify and suggest other impacted users or resources due to a projected change in

the system.

In addition, the access of sub-project-list-api resource may have dependencies to other re-

sources, say, main-project-list-api which is, say, a gateway API before accessing underlying APIs.

Without having read access to this resource, the newly added access will have no impact for Al-

ice. In such a case, DLBAC can recommend what other accesses should be considered before

committing the new change. Indeed, the system administrator may entirely or partially accept

the recommendation or completely deny what DLBAC recommended. Besides, to make DLBAC

more efficient and make more accurate recommendations in the future, the system administrator

will provide feedback to the DLBAC. The idea of the feedback here is similar to what we dis-

cussed in Section 6.2.1. The only difference is instead of a single authorization tuple, in this case,

feedback could be multiple tuples depending on what DLBAC recommends. As illustrated in Fig-

ure 6.5, DLBAC Admin Engine suggests additional changes beyond the proposed changes, and the

system administrator accepts the recommendation. As a result, the administration process of the

ABACa system received both proposed and recommended changes, eventually incorporating them

while adjusting the policy. Also, the feedback is reinforced in DLBAC to improve its confidence

for future recommendations.

Overall, such tooling support will make the administration process in a traditional access con-

trol system more intelligent, generalized, and efficient. Also, with experts’ feedback, DLBAC can

make more efficient recommendations.

6.2.2 DLBAC in Internet of Things (IoT)

With the proliferation of smart devices, the need for IoT ecosystems like Samsung SmartThings,

Google smart home, Amazon echo plus voice assistant, etc., are also in high demand. One of the

main goals of these human-centered IoT devices is to improve human awareness of their surround-

ing environment, improve user experience, and save cost in terms of time and money [126]. The

primary communication happens between machines vs. humans through client-server interactions.
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Figure 6.6: Typical Industrial Internet of Things (IIoT) Pipeline.

Thus, managing such a small setup is trivial in many aspects.

In the current world, the IoT goes beyond the typical consumer-level use cases and is exten-

sively adopted in industrial sectors and applications in the name of industrial IoT (IIoT). In short,

the Industrial Internet of Things (IIoT) can be defined as the use of IoT technologies in manufac-

turing [2]. In IIoT, as shown in Figure 6.6, thousands of sensors, instruments, and devices are con-

nected with multiple cloud services and dependent on numerous communication protocols, WiFi,

Bluetooth, LoRa (Long-Range), etc [21]. The consistent capturing and transmitting data among

smart devices and machines generate large and varied data giving industries considerable oppor-

tunities to make decisions by analyzing all those information. Constant communication among

these smart things allows for data and information exchange and analysis to improve productivity

and operational efficiency. The manufacturer can combine machine data from a single device to a

group of devices such as assembly facilities and manufacturing plants, which helps to identify the

faults in the devices, lacking in the production processes and predict quality issues. Also, by de-

ploying IIoT, the industries predict potential maintenance of the instruments to enhance the overall

effectiveness and reduce maintenance costs.
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The IoT includes connecting heterogeneous networks through various communication tech-

nologies and devices, complicating the ecosystem. While the most general communication re-

quirements of IoT and IIoT are similar, issues like scalability, availability, reliability, and security

and privacy are specific challenges for IIoT [126]. Also, to ensure more efficient production and

unique services, the current design of IIoT emphasizes the possible unification and interconnection

of manufacturing plants and machinery that may not be physically connected. With the invention

and faster adaptation of the fifth-generation cellular (5G) network, it is envisioned that the 5G

technology could be a potential solution to ensure the availability of IIoT services apart from other

technologies.

However, the acceptance and success of all the efforts in IIoT technology are highly depen-

dent on how well it can manage the information security and data privacy protection of all of its

components [38]. One of the critical security aspects of IIoT is to ensure efficient identification

and authorization mechanisms in the IIoT ecosystem so that only authorized users or entities can

access the IIoT resource. Due to the dynamic entities and complicated communication, existing

access control and authorization solution may not be applicable or efficient for the modern IIoT.

For example, it is pretty difficult for a traditional access control system to analyze such a compli-

cated system and design a comprehensive access control policy to manage the access authorization

of all these heterogeneous entities. Over time, these IIoT devices will become more smart and

intelligent to work with more significant memory, processing, and rationalizing inclinations in the

future [55]. To tackle such a dynamic, creating artificial intelligence-enabled Internet of Intelligent

Things could be one of the potential solutions [13]. DLBAC, being a deep neural network-based

solution, has the power to observe, learn, and react against any access request, even if it is not

explicitly seen during the training of DLBAC. As demonstrated in Section 3.4.2 of Chapter 3,

DLBAC’s performance is particularly pronounced in complex systems with a large number of au-

thorization tuples. Such outstanding results of DLBAC justify the potentiality of DLBAC in an

IIoT setup. DLBAC could learn underlying access relationships and access dependencies among

entities in IIoT and provide access authorization decisions more intelligently.
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6.3 Conclusion

This chapter discusses the application and implementation of DLBAC to solve real-world prob-

lems. First, we exploit DLBAC to recommend mobile devices’ permission requests automatically.

The performance evaluation suggests that DLBAC can effectively recommend required permis-

sions while considering users’ privacy preferences. Next, we discuss other potential use cases of

DLBAC in a complex real-world system where a classical access control system may not be fea-

sible (e.g., IIoT). Also, we demonstrate the potentiality of DLBAC that could help run in tandem

with classical systems to manage them efficiently.
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CHAPTER 7: FUTURE DIRECTIONS AND CONCLUSION

7.1 Future Research Directions

In this section, we discuss some of the challenges for MLBAC and explore some ideas of how

those could be addressed.

• Verification. A reliable system design is usually ensured through a rigorous testing and

verification. Testing evaluates a system in several conditions to observe underlying behavior

and detect errors. In contrast, the verification ensures that the system will not demonstrate

any misbehavior under more general circumstances [52]. Likewise, in access control, the

implemented policy is verified and tested [65, 67, 86] akin to verifying the correctness of

software functionality (i.e., testing). It is required to ensure that the engineered access control

rules make correct access control decisions, which is complex and needs expensive effort.

Unlike many domains, failing to verify the access control system’s correctness to a large

extent may have serious consequences, including but not limited to over-provision, under-

provision, adversarial attacks, etc.

The MLBAC system’s performance is measured based on an unseen test dataset to test the

learned policies’ correctness to some degree. Evidently, this testing method cannot find

all possible cases that may be misclassified. As a result, a comprehensive verification of

MLBAC is essential to deploy in security-critical systems. Interestingly, MLBAC testing

and verification can be defined as a machine learning model’s verification and testing prob-

lem. There are methods to verify a machine learning model automatically [90]. Also, each

method has merits and demerits, and no one method will work for all the domains. Conse-

quently, further research is needed to design a systematic verification and testing framework

for MLBAC from machine learning and access control perspectives.

• Bias and Fairness. As MLBAC systems learn based on metadata distributed across various

parts of an enterprise, there might be different types of human biases or errors in training
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data. As such, the MLBAC network trained based on such data can inadvertently be biased,

favoring some decisions. For example, as we observed in the amazon-kaggle dataset, most

of the authorization tuples were with ‘grant’ decision, and DLBACα instances were biased to-

wards the same decision. Moreover, data preprocessing could unknowingly introduce some

biases. For instance, as discussed in Section 6.1.2, we rely on the permit-overrides strategy

while resolving a conflict. One could follow the opposite method by adopting the deny-

overrides strategy. Both are standard approaches [91]; however, the former could bias the

model toward permitting access while the latter could bias toward denying access. There-

fore, to obtain a fair and trustworthy MLBAC system, it is critical to audit training data,

evaluate decisions for fairness, and establish a proper feedback loop [98].

• Adversarial Attack. Section 3.5.1 in Chapter 3 demonstrates that one could exploit Inte-

grated Gradient-based understanding to change users’ accesses by modifying metadata val-

ues that are influential for a specific decision. On the one hand, this is an advantage from

an administrator’s perspective to understand a decision and use its power to change others’

access. On the other hand, it could be a security issue if a third party or an adversary has the

information of influential metadata and access to respective metadata. Also, Chapter 5 dis-

cusses adversarial attack issues in MLBAC. The experimentation shows that it is possible to

gain unauthorized access by slightly modifying the metadata values. However, experiments

demonstrate that ensuring access restrictions for the metadata could significantly reduce the

adversarial attack.

Therefore, the first step toward minimizing or stopping the adversarial attack is to secure

the metadata. It needs to study further vulnerabilities in MLBAC. Also, in our experiments,

we only considered the DLBAC system. Exploring the potentiality of adversarial attacks is

required if the ML model in question is a classical ML model such as Random Forest.

• Understanding Access Control Decisions. In Chapter 3, we investigate classical ML ap-

proaches and DLBAC. The accuracy and generalizability of DLBAC are significantly higher
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Figure 7.1: Trade-off Between Performance and Understandability in ML-based Systems.

than other ML-based approaches such as Random Forest (RF) and traditional access control

systems such as ABAC. Along with accuracy performance, it is equally important to under-

stand why an access control system decides for a specific request. Traditional access control

systems, e.g., ABAC, have very well-written rules justifying the rationale of an access deci-

sion. In the case of a symbolic ML-based system (e.g., RF), one can dig down its underlying

tree to extract logical rules and learn why a particular model makes a decision [30]. In con-

trast, in non-symbolic ML model-based systems, e.g., DLBAC [109] or Karimi et al. [77],

a ‘black box’ function makes access control decisions and is not in a human-understandable

form [30, 124]. Even though the use of ML models for access control decisions is steadily

emerging, a lack of understandability could hinder the growth of this potential direction.

As illustrated in Figure 7.1, as we go from the written policy to the non-symbolic approach,

the performance goes up, though with the cost of a lack of understanding of decisions. This

is one of the major limitations when choosing a non-symbolic ML model for access control.

This issue applies to other domains, including computer vision, malware analysis, financial

systems, etc. The understanding issue, also known as interpretation or explainability in the

typical ML arena, is a very active research area [?]. In many cases, it is observed that the

115



solutions are domain-specific. For example, a computer vision specific interpretation method

would not directly work in the access control domain.

In Section 3.5, we explore this issue for the first time from access control perspectives and

provide two methods for understanding neural network-based access control decisions in

human terms to a large degree [109]. However, the proposed methods do not guarantee the

understanding of decisions with 100% accuracy. Also, the proposed methods may not be

well suited across applications/ systems and may require more accurate and useful under-

standing. Therefore, a gap between understanding and performance needs to be minimized

and further explored.

• DLBAC in Tandem. Section 6.2.1 thoroughly discusses the different use cases of DLBAC

working in parallel with a traditional access control system such as ABAC. As discussed,

while reinforcing access control decisions in ABAC, there might have conflicts. In such a

case, we propose to develop a meta-policy that could help overcome such a conflict. In this

case, the overall success of such settings will rely on designing a better meta-policy. Also,

developing an efficient feedback system is critical in this scenario. Therefore, it needs to

investigate further in a real-world setting to determine the feasibility of operating DLBAC in

tandem with traditional access control systems.

In addition, the current proposal entangles a human in the loop in the case of classical systems’

administration use. For larger systems, e.g., IIoT, such human involvement may not be practical.

As a result, it needs to examine such applications further to determine a feasible system.

7.2 Conclusion

In this dissertation, we propose DLBAC, a deep learning based access control approach, as part

of machine learning based access control. DLBAC shows the potential to deal with issues in

classical access control approaches. As DLBAC learns based on metadata, it obviates the need

for attribute/role engineering and updates, policy engineering, etc. We implement DLBACα, a
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prototype of DLBAC, using both real-world and synthetic datasets with varying complexities. We

demonstrate DLBACα’s effectiveness and generalizability across different datasets. We propose

two unique techniques to understand DLBAC decisions in human terms. Moreover, we investigate

MLBAC administration issues and propose novel methods to perform access control changes in

the system. We validate the effectiveness and quality of MLBAC administration by implementing

two prototypes. There are some challenges related to the administration, and we propose various

strategies to overcome them. Overall, the administration experimentation results suggest that a

DLBAC could capture access control changes effectively while retaining the existing access control

state.

Besides, we investigate the vulnerabilities in MLBAC in an adversarial setting and design a

method to defend against malicious attacks in the context of access control. We demonstrate that

it is possible to reduce adversarial attacks to some extent by employing access control related con-

straints. Moreover, we demonstrate the efficiency of DLBAC in complicated real-world settings.

In particular, we implement DLBAC to recommend the permission decisions of different apps on

mobile devices. We experiment with a real-world dataset collected from real Android phone users.

Our evaluation results suggest that a DLBAC could recommend granting or denying permission

with 88.5% accuracy. In addition, we also demonstrate the potentiality of DLBAC to operate in

tandem with traditional access control systems and discuss how effective a DLBAC system could

be in critical scenarios like Industrial IoT (IIoT). Finally, we discuss how to address current chal-

lenges in MLBAC and DLBAC and highlight future research directions.
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