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Cyber defense operators are often confronted with a large amount of data, such as alerts gen-

erated by intrusion detection systems. Much of this data is misleading or even counterproductive

in the pursuit of effective and efficient defense. The field of Cyber Triage aims to pinpoint threats

to a network and provide defenders with the data pertinent to these pursuits. This turns out to

be a challenging task because many cyber attacks are conducted in multiple steps and cannot be

matched by existing cyber defense tools, which tend to focus on specific hosts or network links.

Towards bridging this gap, this Dissertation presents a systematic study on the innovative notions

of alert paths and alert trees, which present a given set of seemingly unrelated alerts in a mean-

ingful structure. Specifically, the Dissertation makes three contributions: (i) it investigates how

to formulate alerts into alert paths to make sense of them; (ii) it investigates how to formulate

alerts into alert tress to most systematically represent the corresponding threats; (iii) it investigates

how to reduce the sizes of these trees without losing useful information, in order to make it more

feasible to visualize alert trees. For these purposes, the Dissertation presents suites of algorithms,

which are validated via real-world datasets.
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CHAPTER 1: INTRODUCTION

1.1 Dissertation Motivation

This research, in the realm of cybersecurity, aims to facilitate the process of cyber triage through

network analysis with a focus on algorithmic efficiency.

1.1.1 Cyber Triage

The field of cyber triage aims to facilitate incident response by collecting information about threat

on the network. Specifically, triage begins when the defender receives intelligence that an attacker

has been active somewhere on the network. This activity could include reconnaissance, exploit

attempts or a confirmed compromise. In any case, the triage team must investigate applicable

resources, such as logs and network monitors, in order to determine the scope and severity of the

attack. This is necessary before the response team can take meaningful action against the threat.

This Dissertation targets the problem of cyber triage from an algorithmic perspective, propos-

ing systems to track threats as they cross the network. Using alerts from security devices, these

systems prepare the defender to diagnose threats by returning alert paths and trees on demand,

showing the scope of a given threat on the network.

1.1.2 A Gap in Cyber Triage

In real-world cyber defense operations, it is well known that defenders are are often overwhelmed

with a large number of alerts, which are generated by the employed defense tools, such as intrusion

detection systems (see, e.g., [1, 2]). Moreover, many of these alerts are erroneous, resulting from

widespread weaknesses of the defense tools in question. As a consequence, defenders become

fatigued by the false positives and begin to simply ignore alerts. When real threats go undefended,

they are given time to embed themselves in systems and propagate further into the network. By the

time active threats are identified, it may be too late to find the original vector of compromise. This

highlights a big gap between what defenders are given and what defenders need. Specifically, it is
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not sufficient to evaluate the current status of systems when they are compromised, but defenders

need to access the history of the system. This Dissertation investigates a new approach to tracking

suspicious activity on the network.

1.1.3 The Challenges

As mentioned, the overwhelming volume of activity on a network makes it difficult to monitor

current threats, let alone past threats. This means that efficiency is of utmost importance when

addressing this problem.

Additionally, the semantics of a particular attack or set of attacks is often highly relevant to

the threat it poses to a network. This makes it difficult to get meaningful results from anomaly

detectors, which often lack interpretability.

Finally, the size and architecture of many networks make it difficult for defenders to intuitively

grasp the meaning of threats as they relate to various network components. This highlights the

need for strong visualization techniques to model such threats.

1.1.4 Existing Approaches to Related Problems

To help defenders leverage the useful but hidden alerts in their cyber operations, there is a need

for techniques that can distill alerts into a meaningful structure that can be immediately used by

defenders. To this end, there have been many studies on fusing alerts, which aim to achieve some

of the following: (i) reduction in the volume of alerts produced, while maintaining the position

and timing with some level of precision, (ii) providing more holistic alerts which establish patterns

of threats on a network, and (iii) identifying anomalous alerts that may have special relevance to

the general state of the network. Other studies form graphs of host-based activity, aiming to: (i)

identify suspicious processes on a computer, and (ii) track known threats on a computer.

These approaches have limited success because, when analyzing, visualizing or modeling at-

tack paths, they investigate specific examples and do not consider the case of hundreds or even

thousands of concurrent, co-located attack/alert paths. As a result, they may be able to form com-
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pelling narratives about a particular threat, but do not see widespread use because of their limited

scope.

In light of this observation, the work in this Dissertation focuses on optimizing the efficiency

of alert path and tree reconstruction, conducting rigorous analysis of the asymptotic complexity of

these systems while maintaining relevance to both the network and individual systems.

1.2 Dissertation Research Methodology

The overall methodology that is used in the Dissertation study is a particular kind of Data An-

alytics for analyzing dynamic data, meaning that the data is collected over a period of time and

the time dimension is explicitly considered rather than assumed away [3–6]. This perspective is

dubbed Algorithmic Data Analytics, and is complementary to other kinds of Data Analytics, such

as: Statistical Data Analytics, which primarily use statistical models and techniques to analyze

data (see, e.g., [7–14]); Machine Learning-based Data Analytics, which primarily use machine

learning techniques to analyze data (see, e.g., [15]).

The Algorithmic Data Analytics approach designs algorithms to analyze data. The design of

algorithms is driven by the needs from a cyber defense perspective, such as application- or purpose-

specific representation or identification of cyber attacks. Since algorithms often deal with context-

specific forms of data, a necessary preprocessing step is to design appropriate data structures to

represent the data in question, which itself may not be trivial. For example, a data structure that is

suitable for representing the kinds of data pertinent to the present Dissertations would be temporal-

spatial graphs. As will be presented in the subsequent chapters, there are various ways to model

such data, each with its own set of strengths and weaknesses. Thus the precise details of the data

structures and algorithms with which they are used is critical in their ability to achieve their goals.

1.3 Dissertation Contributions

The Dissertation makes three contributions, which are centered at helping defenders make sense of

the alerts generated by Network-based Intrusion Detection Systems (NIDSs), by turning intractable
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amounts and orientations of alerts into a structured representation for automated or semi-automated

reasoning.

Chapter 2 introduces the concept of alert trees in order to reconstruct multi-step attack paths.

Named for its purpose in Alert Path Identification in computer Networks (APIN), this model fo-

cuses on cyber triage and prioritizes efficiency and high-yield threats, rather than an exhaustive

search. In this pursuit, it also introduces the concept of threat score, contrasting the existing notion

of vulnerability score. Threat score measures an attacker’s attempts to exploit weaknesses in a

network, rather than the existence of those weaknesses. Combining the path and tree identification

algorithms with the threat score heuristic, APIN is able to quickly model many significant threats

to the network, in order to provide a reliable starting point for incident response teams.

Chapter 3 proposes an alternative model of alert trees, along with its own method for recon-

structing them. This approach conducts Automatic Cumulative Reconstruction of Alert Trees

(AutoCRAT), and offers better network coverage and more consistent runtimes than APIN, but

sacrifices general efficiency. The work also defines a more general form of threat score which is

not specific to a graph structure.

Chapter 4 targets a challenge arising from the previous two chapters, in which some of the

resulting alert trees are too big for defenders to view comfortably. Some trees can be as large

as 8000 nodes, defeating the point of the model. To solve this problem, this chapter explores

three methods for reducing the size of alert trees by removing redundancies and uninteresting

components. These methods are evaluated for their ability to reduce tree size and to maintain the

relevant information embedded in the trees.

The three contributions are coherent in the following sense: APIN and AutoCRAT offer two

methods for constructing alert trees from network alerts, and Chapter 4 offers the means to ensure

that the resulting alert trees are optimized for use by the defender.
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CHAPTER 2: APIN: ALERT PATH IDENTIFICATION IN COMPUTER

NETWORKS

Identifying the scope of a network attack can be difficult with limited information about the na-

ture of the attack. The urgent nature of this problem highlights the importance of automating the

cyber triage process. Because of this, it is important to investigate new methods for mapping and

quantifying the threat posed by an attack, in order to prioritize actions during incident response.

To this end, this chapter proposes a framework for automatic Alert Path Identification in computer

Networks (APIN) by leveraging observable malicious behaviors to quantify the threat score of a

set of attacks. Using two academic datasets, experimental results show that APIN is able to quickly

reconstruct paths that offer meaningful insight into the nature of multi-step threats on the network,

given only reasonable restrictions on network size and structure. These insights would not be pos-

sible with only existing tools, such as IDSs, and human analysts would require significant time and

expertise to obtain the same findings without APIN’s guidance.

2.1 Introduction

In cyber triage, a stage of incident response, the defender needs to identify the location and extent

of damage that an attacker has been able to inflict. Since many cyber attacks are conducted via

multiple steps [16–18], the attack paths that have been exploited by attackers must be identified

quickly and with high certainty. Additionally, it is important that the information provided to

human defenders has clear cyber security meaning and, if possible, suggests a mitigation approach

[19, 20]. For these reasons, this paper aims to identify all potential attack paths (modeled as alert

paths) with respect to a known or suspected target, and to rank the most significant attacks based

on the magnitude of threat to the network and the temporal relationships between attacks.
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2.1.1 Chapter Contributions

This chapter makes the following contributions. First, it introduces the concept of alert paths for

the purpose of cyber triage. Second, it proposes a method for reconstructing alert paths from net-

work intrusion detection system (NIDS) alerts. Named for its purpose in Alert Path Identification

in computer Networks, APIN also quantifies the notion of a threat score, as distinguished from a

vulnerability score, although the two terms have been used interchangeably in some of the liter-

ature. The framework utilizes output from existing network monitors such as intrusion detection

systems (IDSs) and incorporates existing database software for efficiency. This approach achieves

explainability, resistance to some attacks, and can be automated. Third, in order to demonstrate

the effectiveness of the framework, two case studies show APIN’s performance on two widely-

accepted datasets. Experimental results demonstrate the model’s ability to identify paths quickly

and accurately, given reasonable restrictions on network size and architecture.

2.1.2 Related Works

The problem of identifying alert paths is closely related to the formulation of attack narratives [1]

with respect to some cyber attack models (e.g., cyber kill chains [17, 18]) and the formulation of

attack stories [21]. Contrasting these studies, APIN aims to achieve automated formulation and

reconstruction of attacks that are described in diverse collections of data.

There have been studies on reconstructing Distributed Denial-of-Service (DDoS) attacks (via

probabilistic packet marking) [22], malware infections on hosts and command-and-control [23–

25], and network attack paths (via similarities) [26]. Contrasting these studies, APIN seeks to

identify and rank attack paths, since real networks naturally have many discrete paths of various

significance.

Some other works have taken a vulnerability-based approach to analyzing attacks [27–34].

However, vulnerability information is often incomplete or out of date, since new vulnerabilities

are found and published daily [35]. Hoping to avoid this limitation, we instead use a threat-based

approach, which may be better able to identify exposures. The identification of attack paths falls
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into the broader context of cybersecurity data analytics [12, 15, 36–39].

2.1.3 Chapter Outline

The rest of this chapter is organized as follows. Section 2.2 details the proposed solution frame-

work, including pseudocode. Section 2.3 demonstrates the usefulness of the framework using two

research datasets. Section 2.4 discusses implications of the chapter and Section 2.5 concludes the

chapter.

2.2 Framework

The terminology used in this chapter is given in Table 2.1.

Table 2.1: Terms used throughout the chapter on APIN.

Term Meaning / Usage
Attacker A computer which behaves maliciously. This does not imply ownership of the sys-

tem, merely the ability to make it perform some action.
Victim A computer which has been targeted by an attack. This does not imply compromise

of the computer.
Alert
Path

Series of computers on a network which begin at some attacker (the origin) and
terminate at some victim (the target).

Path
Link

A tuple of computers in a network (i.e., an attacker and a victim) which belong to
some alert path and which are connected by at least one edge directed to the victim.

NTS Node Threat Score, corresponding to a specific computer within the network.
PTS Path Threat Score, corresponding to an alert path and denotes the combined threat

against every system in the path.
Origin Node from which an attacker began executing its strategy (or where this was first

observed)
Target Node which is presumed to be the objective of an attacker’s mission. If specified,

this node is always at the end of an alert path.

2.2.1 Problem Statement

In this chapter, a computer network is modeled as a graph G = (V,E), where V is the set of

vertices or nodes (representing IP addresses), E is the set of arcs or directed edges between

nodes (representing suspicious communications). Each edge e ∈ E consists of a unique tuple
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(src, dst, time, SID), which identifies a suspicious communication between a source IP address

(src) and a destination IP address (dst) at a certain time (time) and indicates the type of suspicious

activity via a signature identifier (SID). SIDs may be provided by intrusion detection systems or

other defense tools.

Given a set of security events (e.g., IDS alerts), where an event is represented as an edge, these

security events can formulate a graph G = (V,E) as follows: vertices are extracted from each

event such that both the src and dst represent vertices in the graph. The edge’s SID is added

to the src vertex’s list annotation of SIDsout and the corresponding dst vertex’s list annotation

of SIDsin. The dst address is added to the src vertex’s list annotation of neighborsout, which

contains the set of neighbors against which it has initiated attacks. Likewise, the src vertex is

added to the dst vertex’s corresponding list annotation of neighborsin, which contains the set of

neighbors that have initiated attacks against it. Edges are naturally converted directly from alerts

because each alert indicates an attack waged from src againt dst.

The research problem is to extract and rank the observed alert paths within a network based on

the perceived threat of each path. The ranking of these paths should be generalizeable so that it can

be used in any network without manual tagging and training, and robust so that attackers cannot

easily force paths to be ranked in the wrong order (i.e., higher ranked alert paths are attacked more

heavily).

2.2.2 Solution Framework

Figure 2.1 highlights the proposed framework, known as APIN, per the title of this work. The

framework has 3 stages. The first stage uses the alerts provided to construct the graph and quantify

the node threat score (NTS) for each node. If no suspected target is provided, this stage will also

select some potential targets or origins based on NTS. The second stage is to identify possible

alert paths with respect to a given node. This stage uses the network communication data from the

aforementioned graph G. The third stage aggregates the NTSs in each path to obtain the path threat

score (PTS). These paths are ranked according to PTS so that the paths with the most significant
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threat can be handled first.

OutputAPINInputs

NTSAlert List

Guided Path 
IdentificationSuspected

Target

Automatic 
Path 

Identification

PTS
Ranked 
Attack 
Paths

Figure 2.1: An overview of the APIN framework. NTS refers to the calculation of node threat
score. PTS refers to the calculation of path threat score.

Node Threat Score

In this stage, APIN parses the security events and builds a database each for nodes and edges.

Nodes are defined by the IP addresses named as the src or dst of the events. They are annotated

with the quantity of incident edges by type (i.e., SID), either outbound or inbound (for the src

and dst, respectively). Within the database, nodes are indexed according to address, ITS, and

number of neighbors in and out. Edges are defined by the tuple described in Section 2.2.1, which

is a representation of the corresponding security event. Within the database, edges are indexed

according to src, dst and time, for each combination of the 3 terms. The combination of all three

is indexed twice, to facilitate both a chronological and a reverse-chronological query, as necessary.

The ‘nodes’ and ‘edges’ databases comprise G = (V,E).

NTS is the first building block in alert path analysis. Intuitively, it measures the scale and

cost of attacks against a node. In this case, attack cost represents the difficulty of generating and
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launching diverse attacks. This value must be calculated for each computer in an alert path. The

parameters used in the NTS formula are chosen as follows:

• Inbound alert diversity (Din). This captures the idea that adaptive attacks by skilled attackers

will result in various alarms being triggered. It is calculated as the number of inbound alert

types, or 1, if there are no inbound alerts.

• Outbound alert diversity (Dout). As with inbound alert diversity, this captures the idea of an

adaptive attacker, but is distinguished in the case of server-side attacks, data exfiltration and

similar alerts. It is calculated as the number of outbound alert types, or 1, if there are no

outbound alerts.

• Inbound alert scale by type (Sin). This provides a generic and intuitive measurement of the

threat against a node. It is calculated as the geometric mean of the number of inbound alerts

of each type present, or 1, if there are no inbound alerts. Alert type is defined by its signature

identifier (SID).

Our initial attempt to formulate NTS also used the metric of outbound alert scale, but this was

found to produce heavily skewed results with the highest values held exclusively by nodes which

had conducted network scans (since these produce an inordinate amount of alerts relative to other

attack types). This not only puts the focus on nodes with relatively routine activity (even though

scans are indeed suspicious), but enables attackers to easily push nodes in their control to the top

of the NTS ranking. Because of these observations, we removed outbound alert scale from the

formula, making it resistant to the “noisy network scan diversion.” For the same reason, we choose

to define Sin using the geometric mean of the number of inbound alerts of each type present,

rather than the arithmetic mean. This is because some attacks are cheaper than others (in terms of

configuration complexity, time of execution, etc.), so attackers could more easily manipulate the

arithmetic mean – inflating the threat score – by producing more cheap attacks (such as scans).

Given this discussion, we define NTS as follows:

Definition 1 (Node Threat Score (NTS)). The NTS of a node is the weighted geometric mean
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of the node’s inbound alert diversity, outbound alert diversity, and inbound alert scale by type.

Specifically,

NTS(x) = W
√

Dw1
in (x) ·D

w2
out(x) · Sw3

in (x), (2.1)

where W = w1 + w2 + w3 and each weight is configurable.

For our case studies, we used the default values of 1 for each weight. If no reference node (i.e.,

suspected target) is provided, the 10 nodes with the highest NTS are selected and used in turn as

reference nodes, as both target and origin (i.e., path identification is run 20 times). This means that

the use of a reference node can significantly improve the runtime of APIN, but that the reliability

of the corresponding results are wholly dependent on the reliability of the reference node.

Identifying Alert Paths

In principle, alert paths can be reconstructed with respect to a time-based or node-based approach.

In the time-based approach, the idea is to parse each arc in reverse-chronological order and add

newly identified nodes to the DAG as appropriate. This process is repeated for each known or

suspected node in V . In the node-based approach, arcs are indexed by their source and destination,

then each victim node’s adjacency list is parsed significantly faster than in the time-based approach.

Indexing needs only to occur once for each arc.

APIN also includes a configurable blacklist for the case that some nodes (e.g., honeypots) need

not be examined. This is also useful for nodes which have a high cardinality of neighbors (such

as DNS servers and broadcast addresses), which can cause an exponential increase in the runtime

of the algorithm. This effect imitates that of attempting to identify all possible alert paths in a

fully-connected graph, as discussed below. Nodes excluded for this reason should be manually

inspected.

Because of its apparent disadvantage to the node-based approach, pseudocode for the time-

based approach is omitted. Similarly, because the origin-centered algorithm follows the same log-

ical flow as the target-centered algorithm (albeit in reverse), it is also omitted. The target-centered

node-based approach is given in Algorithm 1. As shown in the pseudocode, APIN constructs a tree
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Algorithm 1 Target-Centered APIN with Node Indexing
Input: Target_Address, G = (V,E, Z), Blacklist
Output: Alert_Paths = ([V ])

1: root← NewTree
2: root.time← TIME_MAX
3: New_Leaves← {root}
4: while New_Leaves has nodes do
5: Candidates← New_Leaves
6: New_Leaves← ∅
7: for candidate ∈ Candidates do
8: Query edges with dst = candidate and time < candidate.time
9: Sort Query_Result in reverse-chronological order

10: for edge ∈ Query_Result do
11: if edge.src ̸∈ Blacklist ∪ candidate.ancestors ∪ candidate.children then
12: New_Leaf← {src = edge.src, time = edge.time}
13: Add New_Leaf to candidate.children
14: Add New_Leaf to New_Leaves
15: Alert_Paths← ∅
16: for leaf ∈ root.leaves do
17: path← leaf.ancestors
18: Add path to Alert_Paths
19: return Alert_Paths
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of all the nodes which connect to the target, noting the time at which they do so. This preserves the

temporal dependency between two attacks (i.e., a secure node cannot be used to conduct an attack

before that node itself has been attacked). Once the tree has been constructed, the paths extending

down to each leaf are the possible paths the attacker could have taken, with the leaves being the

corresponding origin.

The time complexity of the algorithm is heavily dependent on the connectedness of the graph.

The worst-case complexity is for a graph that is fully-connected such that each node has |V | con-

nections to each other node, with connections interleaved methodically to ensure that, at each

branch of the tree, every node has an edge to every other node. In this case, the complexity is

O(|V |3). Alternatively, the worst case complexity as defined by the number of edges is O(|E|2).

That is, the worst-case complexity is min{O(|V |3),O(|E|2)}, depending on the density of graph

G = (V,E). For sparsely connected graphs, many nodes will likely never enter a given tree, re-

sulting in a significantly better expected runtime. For a reasonably secure network, attacks may be

sparse, or at least concentrated around certain attackers or victims.

Path Threat Score

We introduce the concept of path threat score (PTS) to quantify the threat posed against a given

path as a whole. The purpose of this definition is to gain insight into the attacker’s intent and/or

objective. In part, this can be inferred based on the amount of resources directed at individual com-

puters in a path (given by the NTS). Additionally, the length of a path may be a partial indicator of

how well-defined the attacker’s objective may be (e.g., if their first target is their only target, per-

haps the attacker has some inside knowledge about the location of data they seek to compromise).

Based on these principles, we define PTS as follows:

Definition 2 (Path Threat Score (PTS)). The PTS of an alert path is the sum of the NTS of all nodes

in the given alert path.

Threat score is conceptualized independently of path identification in Figure 2.2. Specifically,

this figure highlights the fact that even though NTS may be calculated for each node individually,
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PTS requires both the path structure and the NTS of each node in that path. For this reason, NTS

may be stored in the database, but PTS may not.

The PTS calculation is designed to rank the paths containing those computers most targeted

by an attacker, even if not all attacks incident to nodes in that path follow the path precisely.

For example, an attacker may conduct some attacks from a variety of external nodes (e.g., using

spoofing or a botnet). In this case, it is more important to model the threat against the target than

to precisely determine which attacker realized the compromise of that node. Because of this, the

measurement of ITS for nodes in a path may be impacted by attacks to/from computers not in the

path.

Path Threat 
Score

Node
Threat Score

Node
Threat Score

Node Threat 
Score

Alert List Alert List Alert List

Node A Node B Node C
Attack Path

Figure 2.2: Threat Score Calculation

2.3 Evaluation with Real Data

This case study evaluates the framework using two research-oriented network traffic datasets,

DARPA99 [40] and CSECICIDS2018 [41]. The former, despite major criticism and age, remains

one of the most-referenced datasets for IDS evaluation today, while the latter offers a significantly
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improved attack landscape, volume of data, and more robust data description.

2.3.1 Configuration

Because the alert paths are derived from the output of an existing IDS (in this case, Suricata

4.0 [42]), it is important that the IDS is properly configured for the network in question. These

experiments make minimal configuration changes, with the hope that APIN will be useful to ana-

lysts even without advanced expertise and the expectation that many enterprise networks already

incorporate their own custom configurations. Specifically, the home_net variable is specified ac-

cording to the architecture given in the datasets, and the well-reputed Emerging Threats ruleset [43]

provides rule specifications for Suricata. However, policy-based rules are not applicable to these

experiments because the datasets do not specify what software use policies were implemented

during the data collection. These rules are thus excluded.

The experiments were processed using an Intel Xeon X5650 (2.67GHz) CPU running ESXi

6.5.0, with two allocated VMS, one for the APIN driver and one for the database. The driver

was allocated 2 cores, 32 GB RAM, and 48 GB HDD and ran Ubuntu 18.04.3 LTS Desktop.

The database was allocated 4 cores, 16 GB RAM, and 100GB HDD and ran Ubuntu 16.04.2 LTS

Server. They were attached to the same virtual subnet.

2.3.2 DARPA99 results

The 16,616 alerts from Suricata’s output for DARPA99 were converted from text to JSON format

in 1.06s. The graph of 431 nodes was constructed and indexed in 8.70s. APIN completed in 0.67s.

This runtime is well within acceptable bounds.

Because of the architecture used to collect the DARPA99 data, APIN produced limited results.

First, the simplicity of many of the attacks limits the ability to identify multi-step attacks. The

attacks conducted in the original experiment seem to consist exclusively of a single link, where

the attacker stopped the attack once the target was compromised and began a new attack, rather

than pivoting between multiple internal nodes. Specifically, all of the paths identified by APIN
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contained one node in the “172.16.112.0/20” subnet and one node from another subnet or external

network. In this case, APIN is not useful. Nevertheless, understanding this limitation leads to the

following insight.

Insight 1. Research datasets designed to model network attacks should include multi-step attacks.

2.3.3 CSECICIDS2018 results

According to the data description provided by its authors, the CSECICIDS2018 dataset contains a

network of 450 benign nodes and a separate network of 50 attacker nodes [41]. Processing revealed

an unusually high connectedness for a network of this size. Specifically, 406 nodes had over 1000

inbound neighbors (i.e., those which produced alerts when processed by Suricata) over the span

of data collection, with the highest reaching 5992. This phenomenon seems to be the result of

either mass spoofing by the attacker network (which is not clearly detailed in the data description)

or of some third-party interference during the experiment. In this particular case, 11 of the 14

documented victims were in the top 406 highly-connected nodes. This complexity prevents the

real-time parsing of the alert trees, which grow cubically. Nevertheless, this limitation offers some

insight:

Insight 2. High-granularity network segmentation is important for the efficient analysis of alert

paths.

Following this observation, a blacklist removed the nodes with over 1000 inbound neighbors,

preferring a partial result over a prohibitive runtime.

The 3,323,426 alerts from Suricata’s output for CSECICIDS2018 converted from text to JSON

format in 3m10s. APIN constructed and indexed the graph of 97,873 nodes in 29m16s, and com-

pleted its queries in 42.08s. Given that alert processing and graph construction can proceed during

data collection (which spanned a week), this runtime is well within reasonable bounds for the size

of the dataset.

Another phenomenon APIN revealed is the frequent occurrence of attempts to probe or exploit

the vulnerability known as EternalBlue (MS17-010). This appeared in 4 of the top 5 paths and
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many besides, and was triggered by several different Emerging Threats signatures: [1:2025649:2],

[1:2025992:1], [1:2025650:2]. Because the publishers of the dataset do not describe any attacks

using EternalBlue or otherwise targeting SMB (the protocol which EternalBlue targets), this sup-

ports the suspicion that some of the traffic in the dataset was produced by external sources. If this

is the case, it may have implications for the validity of ground truth for other experiments (such as

training machine-learning based IDSs). This leads to the following insight:

Insight 3. Datasets collected from networks with internet access should have strict controls over

gateway traffic, on par with those used in production networks.

The highest-ranked path (with a PTS of 34.31) contains five nodes (A-E) across four links. Its

detail are below. Alert descriptions have been modified to improved readability, and SIDs have

been included for reference. External IP Addresses have been truncated to preserve anonymity.

1. 103.aaa.aaa.aaa (A) to 172.31.67.46 (B)

• (1:2102465:9) SMB share access

• (1:2102466:9) SMB unicode share access

• (1:2025649:2) ETERNALBLUE Probe MS17-010 (MSF style)

• (1:2025992:1) ETERNALBLUE Probe MS17-010 (Generic Flags)

2. 172.31.67.46 (B) to 103.ccc.ccc.ccc (C)

• (1:2025650:2) ETERNALBLUE Probe Vulnerable System Response MS17-010

3. 103.ccc.ccc.ccc (C) to 172.31.66.112 (D)

• (1:2102466:9) SMB unicode share access

• (1:2102465:9) SMB share access

• (1:2025649:2) ETERNALBLUE Probe MS17-010 (MSF style)

• (1:2025992:1) ETERNALBLUE Probe MS17-010 (Generic Flags)
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4. 172.31.66.112 (D) to 54.eee.eee.eee (E)

• (1:2016149:2) Session Traversal Utilities for NAT (STUN Binding Request)

The attacker probes node B in link 1, which is verified as vulnerable in link 2. This sequence

may be indicative of a reflected attack (in which the response calls back to an IP distinct from the

one used to initiate the attack), of a two-part attack (in which the attacker probes from node A and

launches the full exploit from node C), or of two probes from distinct attackers. APIN does not

determine the precise meaning of this interaction because of the nature of the model. Specifically,

because the model is directional and acyclical, APIN only describes one side of each connection.

In any case, the defender can manually verify the incident now that APIN has ranked its threat

score appropriately. Note that the output given above does not show the temporal relationship

between alerts, except insofar as at least one alert of a given link must precede at least one alert of

all following links.

2.4 Chapter Discussion

The present study has several limitations, which should be addressed in future studies. First, the

path identification algorithms are limited by the ability of existing IDSs to identify malicious and

anomalous traffic. False-negatives from these devices may prevent APIN from identifying certain

links, resulting in paths that are too short. However, because path links require only a single edge

to be included, but are ranked according to threat score, False negatives from IDSs may cause

negligible harm in the APIN model if there are other correctly-identified attacks along the same

link as the missed ones.

Second, false-negatives and false-positives from the IDS(s) used may reduce accuracy in the

calculation of NTS for affected nodes (and therefore PTS for affected paths). However, poor

accuracy in the source data can be mitigated in part by careful configuration of IDS parameters.

During the design and testing of APIN, policy-based rules posed particular difficulty as, prior to

reconfiguration, they imposed a false-positive rate of 82.2% in the CSECICIDS2018 dataset.
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Third, although NTS and PTS are objective standards, they are subject to certain parameters,

such as the timespan of data collection, which must be consistent for the metrics to preserve their

meaning between various samples or datasets. A simple solution to this could be to define a

specific amount of time for which to consider, but at present such a definition would be arbitrary

and unprincipled. This remains for future work.

Fourth, the above also makes it difficult to share precise intelligence between different organi-

zations. However, since the sharing of this sort of intelligence between different networks is often

subject to privacy concerns anyway, and since the alert paths can be abstracted with relative ease

(e.g., replacing an IP address with “DNS server”), this limitation is not prohibitive to the model’s

usefulness.

2.5 Chapter Summary

This chapter introduced an empirical approach for modeling multi-step attacks. The model is

based on the concept of threat score, which includes node threat score and path threat score. The

model also includes algorithms to identify potential alert paths, including the option to specify a

known or suspected target or origin, and alternatively, can automatically identify high-threat nodes

as well as paths targeting or originating from them. The model depends on the assumption of

certain reasonable parameters which must be met in the source network in order for the model

to be useful and efficient. The experiments demonstrated that given those parameters, the model

is capable of identifying significant attacks, including several that had not been identified in the

original dataset. The metrics that are used here to quantify threat score are generalizeable to

many datasets (although not universal to each simultaneously), resistant to some manipulation by

attackers (although possibly not fully robust), and explainable in plain language. The algorithms

for identification and ranking of alert paths are also explainable and can be automated.
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CHAPTER 3: AUTOCRAT: AUTOMATIC CUMULATIVE

RECONSTRUCTION OF ALERT TREES

When a network is attacked, cyber defenders need to precisely identify which systems (i.e., com-

puters or devices) were compromised and what damage may have been inflicted. This process is

sometimes referred to as cyber triage and is an important part of the incident response procedure.

Cyber triage is challenging because the impacts of a network breach can be far-reaching with un-

predictable consequences. This highlights the importance of automating this process. This chapter

introduces AutoCRAT, a system for quantifying the breadth and severity of threats posed by a net-

work exposure, and which can be used to prioritize cyber triage activities during incident responses.

Specifically, AutoCRAT conducts AUTOmatic Cumulative Reconstruction of Alert Trees, which

track network security events emanating from, or leading to, a particular computer on the network.

A case study validates the usefulness of AutoCRAT by using a dataset from a research testbed.

Experimental results show that the prototype system can reconstruct alert trees efficiently and can

facilitate data visualization in both incident response and threat intelligence analysis.

3.1 Introduction

In cyber incident response, the defender needs to precisely identify what happened to the network

in question, including: how did the attacker propagate through the network, what was the attacker’s

intent, and where and how much damage did the attacker inflict? Since attackers may target a large

portion of a network, the defender must quickly and effectively determine the range of their impact.

This includes the possible routes that the attacker used to enter and propagate through the network,

referred to as alert paths and which may be aggregated into alert trees.

This turns out to be a difficult task for two reasons. First, for any amount of incoming alerts,

the number of alert paths that need to be examined grows quadratically. This is the problem of

efficiency. Second, without examining all possible alert paths, it is possible that the defender will

overlook the actual attack path. This is the problem of coverage, which is closely related to false
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negatives in intrusion detection systems. These problems are highly relevant, given the frequency

of cyber attacks throughout the internet. This problem also remains largely open as it often takes

days or even weeks for the defender to properly diagnose a cyber incident.

In order to help defenders effectively and efficiently respond to cyber incidents, the research

community needs to investigate principled solutions to tackling this problem. This motivates the

present study, which aims to automatically facilitate cyber triage.

3.1.1 Chapter Contributions

This chapter offers three main contributions, as follows. First, it more rigorously defines the con-

cept of an alert tree, which is necessary to make certain optimizations to the reconstruction process.

Key differences from existing concepts include the incorporation of name labels for computers and

ID labels for alerts, and the storage of alerts as annotations to endpoints rather than as individual

arcs.

Second, it proposes AutoCRAT, a method for reconstructing alert trees from the output of a

Network Intrusion Detection System (NIDS). The novel features of the method are characterized

as follows: (i) Continuous alert ingress, meaning that it can continuously process streams of alerts

reported by security devices. This is important for real-world employment where security devices

constantly produce alerts, and contrasts existing works which look at all the data at once. (ii)

Efficiency, meaning that it can quickly reconstruct alert paths and trees on demand. Our asymptotic

analysis shows that in the worst-case scenario, graph maintenance scales cubically with the number

of alerts, while tree reconstruction scales quadratically or log-linearly, depending on the type of

tree. (iii) Complete graph coverage, meaning that network analysis is able to include alert paths

across the entirety of the network, which was not possible with existing approaches because of

runtime limitations. This is validated in the case study, as follows.

Third, a case study demonstrates the usefulness of the notion of alert tree and the alert tree

reconstruction method using a dataset which is collected from a realistic cyber attack testbed,

namely CSE-CIC-IDS2018, as published by the University of New Brunswick’s Canadian Institute
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for Cybersecurity. Experimental results show that AutoCRAT was able to analyze the data within

the timeframe which the data was collected, incorporating a larger portion of the data than previous

works.

3.1.2 Related Work

The existing literature can be broken into two categories: cyber attack modeling and attack recon-

struction.

Attack modeling. The problem of attack modeling has been approached using alert correlation

[44, 45] and clustering [46]. The present study moves a step further by aiming to make sense of a

set of alerts through the notion of alert paths, which are more comprehensive than alert correlation

because they explicitly model spatiotemporal relationships. This means they may be useful in

mapping the attack to a particular model (e.g., [18, 47, 48]), many of which have explicit happens-

before dependencies. Similarly, attack paths have been studied for their usefulness in predicting

attack outcomes [49–55]. Attack graphs have also been used to model the propagation of attacks

through a computer network [31–34,56,57]. These studies are focused on static network evaluation

or attack prediction, rather than reconstruction of actual attack patterns.

Reconstruction of multi-step attacks. One work that reconstructs multi-step attacks is MAAC

[58]. This model assumes a four-stage attack model, in which steps of an attack operation can only

be assembled if stage 3 alerts are found. This means that false negatives in alert production are

more likely to induce false negatives in the model. Although MAAC assembles an alert graph, it

only identifies paths of length one with respect to the network. Specifically, there may be many

stages of attacks within a single host, but only one stage may cross the network to another host.

Thus the attack paths identified by MAAC are better described as host-paths than network-paths.

The same observation applies to [59].

Another reconstruction method is MIF [60]. MIF uses a supervised machine learning algo-

rithm to reduce graph size, then produces a risk-state graph to track network attacks. Edges are

ordered by start times only, which may induce false positives when two paths overlap. During

22



reconstruction, the model uses a recursive depth-first-traversal to build paths. MIF achieves high

classification accuracy for attacks, but no complexity analysis is given. On LLDoS 2000 (contain-

ing 60 hosts), MIF processes one million (upsampled) flows in 3m24s. It processed CICIDS2017

for accuracy but did not give runtimes.

Another reconstruction method is APIN [61]. APIN builds an alert graph using raw alerts and

extracts alert paths with respect to a particular node using a chronological traversal. It includes

complexity analysis and runtimes for DARPA 99 and CSE-CIC-IDS2018.

Alert prioritization. The concept of alert trees benefits from relevant studies of alert prioritization

[62–64]. This process ranks alerts according to their severity or associated risk. These rankings

are useful to the concept of alert trees because they enable more intuitive tree interpretation. For

example, visualizing the colors of nodes in a tree based on the ranking (i.e., prioritization) can help

defenders identify hotspots in the network. Alert prioritization does not impact the algorithmic

reconstruction of alerts, just their presentation (at least in this and known works).

Intrusion detection. Alert trees depend on input from intrusion detection systems (IDSs), either

network- or host-based (NIDS and HIDS, respectively). IDSs have been studied extensively, and

have achieved high levels of accuracy in lab settings (e.g., [60, 65]). However, such works have

been criticised heavily on account of the base-rate fallacy, poorly-representative environments,

limited attack scope, and weak ground truth [66–69]. IDSs are ineffective in practice because of

alert volumes, false positives and alert interpretability [20, 70, 71].

3.1.3 Chapter Outline

The rest of the chapter is organized as follows. Section 3.2 discusses the research problem and

formalizes the concepts that are used in the rest of the chapter. Section 3.3 presents the AutoCRAT

system, including its architecture and core functions for solving the research problem. Section

3.4 presents the results of applying AutoCRAT to a real-world dataset. Section 3.5 discusses the

advantages and disadvantages of AutoCRAT and the present study. Section 3.6 concludes the

chapter.
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3.2 Problem Statement

This section formally defines the problem addressed in this chapter. The terms used are given in

Table 3.1.

Table 3.1: Terms used throughout the chapter on AutoCRAT.

Term Meaning / Usage
Defender System operator or network administrator
Security Device NIDS, HIDS, or other network monitor which produces alerts as the input to

the system
Alert Event indicating the presence of an attack
Arc An alert (graph) or pair of computers (alert tree). Denoted α ∈ A, with

A ⊂ A.
Endpoint pair The ordered pair (source, destination) used to refer to a group of arcs. End-

point set denoted E.
Alert Path Sequence of nodes and accompanying arc sets with partial happens-before

ordering. Alert path set denoted P (A) or P .
Origin First node in a path
Target Last node in a path
Alert Tree Model of alert paths with common origin or target. Denoted T (A, v)
AutoCRAT The proposed model for tracking network events.

The rest of the section is organized as follows. First, the problem setting and informal problem

statement are given. Then, concepts are introduced in order to formalize the problem; most notably

alert graph, alert path, and alert tree. Finally, the formal research questions are defined.

3.2.1 Informal Problem Statement

Consider an enterprise network, which consists of computer systems and security devices (e.g.,

Network Intrusion Detection Systems or NIDSs), and is managed by one or more network admin-

istrators, hereafter referred to as the defender. Note that the concept of an enterprise network is

generally applicable to many types of computer networks, including IoT networks, mobile net-

works, etc. Computers on the enterprise network may be the target of cyber attacks from some

attacker, which may come from inside or outside enterprise network. Network traffic is monitored

by security devices, which produce alerts when they observe an attack. A successful attacker may
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conduct secondary attacks (known as lateral movements) against other computers within the net-

work by leveraging previously compromised computers. The term multi-step attack refers to such

a sequence of attacks. These attacks pose threats to the network and must be identified, understood,

and mitigated.

Given the setting discussed above, this chapter aims to develop an understanding of multi-

step attacks as they pertain to a particular network. This naturally leads us to several intuitive

questions, which will form the basis of the Research Questions (RQs). The present focus is on

NIDS-like security devices, leaving potential extensions to future work. These intuitive question

are:

1. What routes could an attacker have taken to get from one computer to another?

2. What is the scope of a given attack operation, as represented by an alert or group of alerts?

3. For some attack, how may the attacker have used lateral movements to traverse the network

and finally set up the attack?

4. What is the most efficient way to achieve each of the above goals?

These questions are intuitive but not precise enough for treatment. In order to answer them, they

must be clarified by formally defining the relevant concepts.

3.2.2 Concept Formalization

In order to formalize the IQs mentioned above, alerts and their relationships to network objects

must be modeled appropriately. This begins with the input of a stream of alerts generated by

security devices, denoted A. In the context of network defense, this is composed of alerts:

Definition 3 (Alert). An alert α is generated by a security device corresponding to a communi-

cation between a source computer and a destination computer and can be described as a tuple

α = (source, destination, time, ID), where source and destination are the endpoints of the

alert, time represents the timestamp at which the communication begins and ID is the alert iden-

tifier given by the security device (e.g., signature identifier or remote logon type).
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Alerts compose more complex objects, namely alert graphs, alert paths and alert trees.

Alert Graph. Given a set of alerts, an alert graph can structure them in a meaningful way. This

alert graph is modeled as a labeled multidigraph, which allows vertices and arcs to have common

labels. This is important because alert (i.e., arc) IDs belong to a pre-defined set, which have spe-

cific cybersecurity meanings, and because alert tree construction will expand loops into branches

(later in this section), which formally requires that distinct nodes have common identifiers. Specif-

ically, an alert graph is defined as:

Definition 4 (Alert Graph). Given a set of alerts A, an alert graph is a labeled multidigraph

G(A) = (ΣV ,ΣA, V, A, s, t, ℓV , ℓID, ℓtime), where vertex v ∈ V represents a computer on the

network, arc a ∈ A represents an alert produced by a security device, ΣV denotes the set of

computer labels (such as IP addresses), ΣA denotes the set of alert labels (i.e., α’s ID), s : A→ V

maps arcs to their source vertex (i.e., α.source), t : A → V maps arcs to their target vertex (i.e.,

α.destination), ℓV : V → ΣV maps vertices to their labels, ℓID : A → ΣA maps arcs to their

alert labels, and ℓtime : A→ N maps alerts to the set of natural numbers, representing the time at

which they occurred.

Alert graphs can be used to identify alert paths and trees.

Alert Path. Given an alert graph G(A), the concept of alert path describes a sequence of vertices

through which an attack is observed (as indicated by alerts). However, it is important to realize that

the standard definition of path in graph theory does not sufficiently represent a multi-step attack.

This is because the alerts representing a multi-step attack may consist of multiple repeated arcs

between a pair of vertices (for example, when an attack must make multiple connections before it

succeeds, thus resulting in multiple arcs). Thus, the requirement for arcs belonging to an alert path

are as follows.

A path is associated with a set of arcs rather than a sequence. The arc set is composed of all

arcs traversing between adjacent nodes in the alert path. This arc set is subdivided into subsets

which form a sequence, where subsets are grouped according to the ordered endpoints along path.
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Within the arc set, there must be a valid sequence of arcs, one each from consecutive arc subset,

such that they appear in chronological order.

This divergence from the standard usage of path leads us to define alert paths based on their

vertices rather than their arcs, which instead result from the defined sequence of vertices. This

leads to the following definition:

Definition 5 (Alert Path). Given an alert graph G(A), an alert path is denoted p = (V p, Ap),

where V p = (vp1, . . . , v
p
n) is a sequence of unique vertices in V ; Ap is a corresponding set of arcs

in A, for which there must exist a sequence of arc sets (Ap
1, . . . , A

p
n−1) such that Ap

i = {α ∈ A :

s(α) = vpi ∧ t(α) = vpi+1}, and Ap =
∪n−1

i=1 Ap
i , and there must exist some sequence (α1, . . . , αn−1)

such that for each i ∈ [1, . . . , n− 1], αi ∈ Ap
i ∧ i < n− 1→ ℓtime(αi) < ℓtime(αi+1).

Given an alert path p with Vp = (vp1, . . . , v
p
n), define vp1 as the origin and vpn as the target. Given

A, let P (A) denote the set of all alert paths in G(A). A path p ∈ P (A) may be uniquely identified

by V p, allowing Ap to be inferred from context.

Alert Tree. An alert tree represents a set of alert paths P (A) (where A ⊂ A) with a common

reference vertex. With respect to these paths, the reference vertex is either the origin or the target,

but not both. Trees with a common origin are called forward trees and trees with a common target

are called backward trees, because of the partial happens-before relationship of alerts in the tree.

Because the graph G(A) is a labeled multidigraph, it is possible that cyclical subgraphs will result

in sets of paths P (A) such that they cannot naturally be combined to form trees under graph theory.

For example, the graph constructed from the set of paths P = {(a, b, c), (a, c, b)} contains a cycle

(b, c, b) and is therefore not a tree. However, if duplicate nodes are replaced by unique nodes with

the same identifier (in ΣV ), this loop formation can be artificially prevented. Consider the previous

example. The second path might become (a, c′, b′) such that ℓV (c′) = ℓV (c) and ℓV (b
′) = ℓV (b).

This results in a tree with the arcs (a, b), (b, c), (a, c′), (c′, b′), such that the modified graph forms

a tree, which can be used to extract the relevant computer identifiers. The advantage of the tree

structure over an arbitrary graph is that one can visualize the temporal dependence of the arcs based

on their height within the tree. Since temporal dependence is an important feature of alert paths,
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it is thus natural to visualize sets of alert paths using alert trees rather than alert graphs. Formally,

alert trees are:

Definition 6 (Alert Tree). Given an alert graph G(A), a reference vertex v̂ ∈ V , and a set of

paths P ′ = {p ∈ P (A) : vp1 = v̂}, an alert tree is a labeled digraph denoted T (A, v̂) =

{ΣV,T , VT , AT , ℓV,T}, where ΣV,T = V , VT = V × P ′,a ∈ AT = (v, v′) ∈ VT such that

∃p ∈ P ′, i ∈ [1, . . . , |V p|] for which v = vpi ∧ v′ = vpi+1, and ℓV,T : VT → ΣV,T maps vertices to

their corresponding nodes in V .

A forward alert tree is rooted at reference vertex v̂ and represents paths p ∈ P ′, such that every

vertex in p has a corresponding vertex v ∈ VT for which all of the ascendants of v (denoted asc(v))

are labeled with the vertices in the path. Specifically, ∀i ∈ [1, . . . , |asc(v)|], ℓV,T (asc(v)i) = vpi .

A backward alert tree Tbwd is a reversed forward tree in the following sense: reference vertex v̂

is the target rather than the origin of all of the corresponding alert paths, while the vertex identifiers

must match vertex descendants rather than ascendants.

3.2.3 Research Questions

Given the preceding formalisms, the intuitive questions can be transformed into RQs as follows.

1. What routes could an attacker have taken to get from one computer to another? This question

asks for the set of all alert paths with a specified origin and target. This leads to:

RQ1: Given a set of alerts A, a known attack origin vorigin, and a known attack target

vtarget, produce the set of attack paths P ′ = {p ∈ P (A) : vp1 = vorigin ∧ vp|V p| = vtarget}.

2. What is the scope of a given attack operation, as represented by an alert or group of alerts?

This question asks for the depth and breadth of access that an attacker achieved correspond-

ing to an alert (or attack). This naturally suggests that one must design an algorithm to build

a forward alert tree that is rooted at the given alert. This leads to:

RQ2: Given a set of alerts A and a known attack origin vorigin, produce the forward alert

tree Tfwd(A, vorigin).
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3. For some attack, how may the attacker have used lateral movements to traverse the network

and finally set up the attack? This question asks for the set of multi-stage attacks that may

have led to the compromise of a computer. This naturally suggests that one must design an

algorithm to identify a backward alert tree that is rooted at the given alert.

RQ3: Given a set of alerts A and a known attack target vtarget, produce the backward alert

tree Tbwd(A, vtarget).

4. What is the most efficient way to achieve each of the above goals? Of course, this is a

significant optimization problem. However, the asymptotic complexity and practical runtime

efficiency of the proposed algorithms can give insight when compared to those of existing

models. This leads to:

RQ4: Analyze the asymptotic runtime and storage complexities of the proposed methods

with respect to their input alerts A.

3.3 The AutoCRAT System

In order to address the research questions formalized in Section 3.2.3, we propose the AutoCRAT

system, with its architecture highlighted in Figure 3.1. It has four components: the database, the

core functions, and the data management and data retrieval interfaces.

3.3.1 Database

The database stores the edges, alerts, and paths derived from G as follows. The vertices v ∈ V do

not require indexing, so they are not stored explicitly in the database.

Arcs and Alerts: The arc collection of the database stores pairs of arc endpoints. Arcs are stored as

annotations to the arc endpoints. This enables more efficient retrieval of alerts, which are always

considered in the context of the other alerts with the same endpoints. This is demonstrated in

Section 3.2.2.

Alert Paths: Alert paths are stored in their own collection. Each path p ∈ P (A) contains a list of
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Figure 3.1: The architecture of the AutoCRAT system

nodes, the corresponding node pairs (to facilitate retrieval via pairwise indexing), the path’s PTS,

and a list of child vertices (denoted Childrenp) that have been used to produce lengthened copies

of the path, {v ∈ V : (∃p′ ∈ P (A),∀vpi ∈ V p)vpi = vp
′

i ∧|V p′| = |V p|+1∧v = vp
′

|V p′ |}. This list is

used to facilitate path validation, as discussed later in this section. Every time a path is lengthened,

the new path is added as its own object in the database, in order to facilitate indexing.

Indexing: Each collection is indexed so that its objects may be efficiently found and retrieved

from the database. Our approach uses multiple types of indices, including individual indexes

(on a single field), compound indexes (on two or more fields) and multikey indexes (on a set or

sequence). Some of these index types are only available in certain kinds of databases, such as

MongoDB, which is used in our implementation. This limits the interoperability of our approach,

or risks compromising the efficiency of accessing some objects in the database.

The arc collection is indexed by arc endpoints (each individually as well as together in a com-

pound index), and by the arc’s threat score (discussed later in this section). The path collection has

individual indices on the origin, the target, and the path’s threat score (also discussed later). It also
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has multikey indexes on the vertex sequence and the arc endpoint sequence. Additionally, the path

collection has one compound index, covering the target and the list of child vertices (as a multikey

index).

Duplicate paths are prevented by validating new arcs against this list of children in the path’s

so-called parent (i.e., p′ ∈ P such that V p′ = V p − (vp|V p|) ∧ vp|V p| ∈ Childrenp′ . Subpaths are

stored as their own objects because this allows them to be more efficiently indexed. Specifically,

we index the path’s origin and target, because multikey indexes do not preserve order. This means

that, if a multikey index was used on the path nodes, then an attempt to retrieve paths with a certain

origin and target would need to parse all paths containing both the origin and target in any position,

then trim the path appropriately. In this case, the runtime optimization of multikey indexing of path

vertices trades off with storage complexity (i.e., storing more paths).

On the other hand, it is efficient to use a multikey index to index to children of a particular path,

because queries that search for children need only find a single child (i.e., the destination of the

alert being inserted). This means that the ordering of children in a multikey index is unimportant.

3.3.2 Core Functions

Alert Graph and Path Maintenance

As new security events arrive, AutoCRAT needs to incorporate them into the relevant databases.

Algorithm 2 presents the pseudocode of this functionality as follows: (i) It first checks if the new

arc includes existing endpoints. If so, it adds the arc to the endpoint object as an annotation;

otherwise, it inserts a new endpoint object annotated with the arc (lines 1-13). (ii) It queries the

database to find paths which end at the source of the event (line 14). (iii) The algorithm copies

the paths found, appending the alert’s destination onto the copies. If the new paths already exist

in the database or are cyclical, they are discarded. The original paths are annotated with a list of

children to facilitate this check on future inserts, and the new paths are inserted (lines 15-27).

Storage complexity. In the worst-case scenario, every insertion of a new alert α will add a new

endpoint object and path, and lengthen the set of existing paths that terminate at the source of
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Algorithm 2 Alert Graph and Path Maintenance
Input: α,G(A), P, Childrenp∈P

Output: G(A ∪ {α}), P, Childrenp∈P

1: if ̸ ∃α′ ∈ A : s(α) = s(α′) ∧ t(α) = t(α′) then
2: V p̂ ← (s(α), t(α)) ▷ Create p̂ via V p̂

3: Childrenp̂ ← ∅
4: P ← P ∪ {p̂}
5: A← A ∪ {α}
6: V ← V ∪ {s(α), t(α)}
7: Candidate_Paths← {p ∈ P : V p

|V p| = s(α)} ▷ Find paths to lengthen using “end” index
8: for c ∈ Candidate_Paths do
9: if t(α) ̸∈ V c then ▷ Prohibit cycles

10: if t(α) ̸∈ Childrenc then ▷ Prohibit identical twins
11: p′ ← {V c, Ac}
12: V p′ ← V p′ ∪ (t(α))
13: Ap′ ← Ap′ ∪ {α}
14: Childrenp′ ← ∅
15: Childrenc ← Childrenc ∪ {t(α)}
16: P ← P ∪ {p′}
17: return G = (V,A), P, Childrenp∈P

the inserted arc. This will give us a storage complexity in O(|E| + |A| + |P |). Now suppose

one inserts the first arc, with endpoints (v1, v2), into a database. This will produce a single path:

(v1, v2). A second insertion of (v2, v3) adds a new path and lengthens the existing path, resulting

in three paths: (v1, v2), (v2, v3), and (v1, v2, v3). Clearly, each arc adds at most one new endpoint

object (exactly one in this case), leading to |E| ∈ O(|A|). This means that each new arc adds up to

|E| new paths of length |E| or less, leading to |P | ∈ O(|A|2). This is demonstrated in Table 3.2.

Table 3.2: Worst-case storage complexity after i arc insertions. As each new arc αi can add as
many as i paths, the worst-case number of paths is |P | = 1

2
|A|2 + 1

2
|A| ∈ O(|A|2).

Arcs 1 2 3 4 |A|
Endpoint pairs 1 2 3 4 |A|

Paths 1 3 6 10
∑|A|

i=1(i)

Runtime complexity. Under the same worst-case scenario, the insert algorithm must access every

path in the database, |P |, copy each, adding one endpoint, and insert the copies, plus one new path

with two nodes. Then the worst-case runtime (in terms of the number of accesses to the database)
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is 2 · |P |+ 1 ∈ O(|P |) ∈ O(|A|2).

Threat Score

The threat posed by a given set of alerts A ⊂ A can be measured according to its threat score (TS).

There can be many definitions for TS, and identifying the “best” definition is orthogonal to the

focus of the present chapter. Since any “good” definitions can be incorporated into AutoCRAT in a

plug-and-play fashion, one example definition is sufficient to demonstrate the idea. This example

of TS is the geometric mean of the number and diversity of alerts in a set, and is used to estimate

the risk posed by the associated attacks. It can be naturally extended to specify the TS of a pair of

endpoints (Endpoint Threat Score — ETS) or a path (Path Threat Score — PTS). Specifically:

Definition 7 (Threat Score (TS)). The TS of a set of alerts is defined as:

TS(A) =
√
|{σ ∈ ΣA : (∃α ∈ A), σ = ℓID(α)}| · |{α ∈ A}|. (3.1)

The ETS of an endpoint pair (source, destination) can be calculated as TS({α ∈ A : s(α) =

source ∧ t(α) = destination}). The PTS of a path p can be calculated as TS(Ap).

In order to identify the endpoints and paths in the database with the highest threat, AutoCRAT

must periodically update ETS and PTS for endpoints and paths, respectively. In order to do this,

the defender submits an update query on demand. The update function is simple: first, it calculates

ETS for every endpoint object, then it calculates PTS for every path. To reduce the number of

accesses to the database, a copy of each endpoint object’s arc annotations is cached during the ETS

calculations, in order to facilitate the PTS calculations.

Runtime complexity analysis. The runtime of this approach is based on the following: (i) cal-

culating ETS for all endpoints requires the parsing of each arc (which each belong to exactly one

endpoint annotation), meaning the runtime of updating is in Ω(|A|); (ii) calculating PTS for all

paths requires the parsing of each endpoint object a number of times equal to the number of paths

in which it appears. This is analyzed in Table 3.3, which shows that the worst case number of
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appearances of an endpoint object in the set of paths is in O(|E2|). Since there are |E| endpoint

objects, this results in a worst-case combined runtime in O(|A|+ |E|3).

Table 3.3: Worst-case number of paths that contain a particular endpoint. The ith endpoint can
only belong to i · (|E| − i + 1) = i · |E| − i2 + i paths. Then the worst-case is in O(|E|2) , and
the worst-case number of endpoint objects across the set of all paths is

∑|E|
i=1 i · (|E| − i + 1) =

1
6
|E|(|E|+ 1)(|E|+ 2) ∈ O(|E|3) .

Endpoint i Insertion 1 2 3 4 5 |E|
1 1 2 3 4 5 |E|
2 0 2 4 6 8 2 · (|E| − 1)
3 0 0 3 6 9 3 · (|E| − 2)
4 0 0 0 4 8 4 · (|E| − 3)
5 0 0 0 0 5 5 · (|E| − 4)

|E| 0 0 0 0 0 |E|
i 0 0 0 0 0 i · (|E| − i+ 1)

ETS is also used in the visualization of attack paths. Specifically, the color of an alert tree

node n represents the normalized ETS of (parent(n), n) for forward trees or (n, parent(n)) for

backward trees. Vertex colors range from red to black, where the vertex in the tree with the highest

ETS is red and the root is black (along with any other vertices with ETS = 1). In RGB (i.e.,

hexadecimal) notation, colors range from 0x000000 (black) to 0xFF0000 (red), such that colors

may be compared ordinally to mimic the comparison of ETS. This is demonstrated in figure 3.2,

showing the value of the ETS measurement in presenting salient information to the defender.

Reinsertion

In some cases, the defender may need to find paths that were unavailable at the time of data

collection (e.g., if the NIDS produces a false negative which is later corrected). Because alerts

are otherwise inserted chronologically (by assumption), a different algorithm must perform such a

retroactive insertion (“reinsert”). This algorithms is given in Algorithm 3.

Runtime Complexity. The asymptotic runtime is dominated by |ppre| · |ppost|. Because cycles

about α are removed (lines 2,4), P pre ∩ P post = ∅. This is bounded by (δ · |P |) · ((1 − δ) · |P |),

where δ < 1 is the proportion of the larger of the two path sets relative to |P |. This simplifies to
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Figure 3.2: Example alert tree coloring, where the root is black, the child is red (ETS 179.10), and
the grandchild is very nearly black (color code 0x0D0000 and ETS 10.49).

Algorithm 3 Alert Reinsertion
Input: α,G(A), P
Output: G(A ∪ {α}), P

1: P pre ← {p ∈ P : V p
|V p| = s(α)}

2: P pre ← P pre \ {p ∈ P pre : t(α) ∈ V p}
3: P post ← {p ∈ P : V p

1 = t(α)}
4: P post ← P post \ {p ∈ P post : s(α) ∈ V p}
5: V ← V ∪ {s(α), t(α)}
6: A← A ∪ {α}
7: V p̂ ← (s(α), t(α)) ▷ Create p̂ via V p̂

8: P ← P ∪ {p̂}
9: for p ∈ P pre do

10: for p′ ∈ P post do
11: if V p ∩ V p′ = ∅ then ▷ Prohibit Cycles
12: V New_Path ← V p ∪ V p′ ▷ Create New_Path via V New_Path

13: if New_Path is valid given A then
14: P ← P ∪ {New_Path}
15: return G,P
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(δ − δ2) · |P |2, for which the maximum value of the first term (when δ = 1
2
) is 1

4
. Finally, the

worst-case runtime is 1
4
|P |2 ∈ O(|P |2) ⊆ O(|A|4).

Storage Complexity. The storage complexity is the same as for the regular maintenance function,

O(|A|2).

3.3.3 Data Management

This interface is responsible for feeding a stream of alerts into the AutoCRAT system. The streams

of alerts are produced by, and received from, security devices such as NIDSs. They are processed

by the Graph and Path Maintenance module, which belongs to the Core Functions component and

incorporates the newly arrived alerts into the alert graph and paths.

3.3.4 Data Retrieval

In order to identify paths and trees, one makes the appropriate query. Paths are stored in the

database themselves, while trees must be reconstructed using the stored paths.

Path Retrieval

Path retrieval requires that the graph and path databases have been properly maintained. Refer

to section 3.3.2 for the detailed maintenance function. The path retrieval process then involves

a simple query to the database, which stores each path individually. This query leverages the

(source, destination) compound index, which efficiently retrieves the appropriate paths from the

database. The retrieval function executes with a runtime efficiency ofO(|P |), where P ⊆ P (A) is

the set of paths to be retrieved.

Tree Reconstruction

Tree reconstruction requires reassembly of many paths into a tree which represents either the attack

surface exposed to an attacker or the attack vectors exposing a target, depending on the type of

query. In either case, the user must specify a node to act as the root of the tree and the tree’s
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direction, and the module handles the rest.

The tree reconstruction algorithm takes as input a reference node to act as the tree’s root, a

direction (i.e., forward or backward), G, and P . It begins by selecting all paths which have the

reference node as their origin (for forward trees) or target (for backward trees), using the approach

described above. It then parses each path, adding each edge as a node of the tree if it was not

already added from a previous path.

Runtime complexity. The worst-case scenario for the tree reconstruction algorithm is the

same as the insert algorithm as discussed above, in which each subsequent alert produces a new

endpoint which extends that of the previous alert. Specifically, at most |E| paths are rooted at a

given node, and their maximum path length is |E|. This results in a final worst-case runtime of

O(|E|2) ⊆ O(|A|2).

3.4 Case Study

Our experiments were run using Ubuntu 20.04 with 192GB of RAM, 2 cores of an Intel Xeon

Gold 6242 CPU @2.80 GHz, and a 200GB HDD. These resources were shared among AutoCRAT

functions and the corresponding MongoDB database, which was installed on the same computer

to eliminate variability imposed by network conditions.

3.4.1 Dataset

The dataset chosen for the case study was published by the University of New Brunswick, and is

referred to as CSE-CIC-IDS2018 [41]. It contains data collected over the course of 9 days, during

which multiple distinct attack scenarios were executed against the network. The environment was

connected to the internet during the experiments, thus real-world attacks can also be observed in

the data. Suricata 4.0 [42] preprocessed the packet capture (PCAP) files from the dataset using the

corresponding Emerging Threats signature set [43], to produce a set of 3,323,426 alerts, of which

19,921 were strictly internal to the network. Alerts were converted into JSON objects to conform

to AutoCRAT’s expected format and sorted chronologically before being fed into the database.
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3.4.2 Experimental Results

Database construction for CSE-CIC-IDS2018 took 35h14m07s, resulting in 1,053,710 edges and

3,591,217 paths. Efficiency and accuracy (in terms of graph coverage, which may impose false

negatives) are analyzed relative to the model from the preceding chapter, APIN. Path selection for

APIN was done using its relevant heuristics. The comparison is shown in Table 3.4.

Table 3.4: Comparison of the proposed AutoCRAT model with APIN. Query runtimes are the
average of 10 runs. *APIN only ranks nodes, while AutoCRAT scores endpoints and paths. The
models do not directly rank these objects, so they are selected based on applicable node and end-
point rankings. These inherited rankings may not be accurate with respect to other metrics but
offer a reasonable baseline.

APIN AutoCRAT
Build DB 29m43s 13h42m41s

Rank Objects* 49s 1h00m29s
Top 100 paths 52s 32ms
Top 20 trees 52s 2m42s

Coverage (nodes) 99.6% 100%
Coverage (events) 3.4% 100%

DB size 637 MB 1.1 GB

APIN sacrifices coverage in order to improve runtime. This is necessary because its tree

retrieval time suffers extraordinary slowdown in the presence of highly connected nodes. Even

though APIN only excludes .4% of the vertices in the graph, 96.6% of the arcs in the graph are

adjacent to these vertices, and are effectively blacklisted from tree reconstruction, meaning that the

set of paths (and trees) that can be reconstructed is incomplete. In AutoCRAT, the connectedness

slowdown problem is solved by shifting the bulk of the work into the pre-processing stage. This

results in a much faster path retrieval time and full graph coverage at the cost of maintenance time.

However, this pre-processing time remains feasible in practice since 9 days of data (constituting

approximately 164 hours of activity) are processed in under 14 hours. Graph coverage is important

because low coverage induces false negatives in the path and tree reconstruction. This means that

APIN is vulnerable to DoS attacks, which may allow an attacker to conceal their attack paths.

In order to compare the two models under comparable conditions, the original dataset was
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Table 3.5: Comparison of the proposed AutoCRAT model with APIN, using only the internal
events. Query runtimes are the average of 10 runs. *APIN only ranks nodes, while AutoCRAT
scores endpoints and paths. The models do not directly rank these objects, so they are selected
based on applicable node and edge rankings. These inherited rankings may not be accurate with
respect to other metrics but offer a reasonable baseline.

APIN-internal AutoCRAT-internal
Build DB 9s 35s

Rank Objects* 0.28s 5s
Top 100 paths 3s 23ms
Top 20 trees 3s 1.97s

Coverage (nodes) 0.6% 0.6%
Coverage (events) 0.6% 0.6%

DB size 2.9 MB 2.4 MB

reduced by filtering nodes outside the network as well as edges which crossed the border of the

network, and each model was ran again with the reduced version. This resulted in only 1994 edges

and 3019 paths. Details are shown in Table 3.5 This resulted in a coverage of 0.6% for both nodes

and paths, much closer to the effective coverage of APIN for the full graph (i.e., one sixth of

the original coverage). Given the intuition that internal nodes are far more relevant to defenders,

the loss of node coverage is not important in this case (although one may note that some of the

nodes originally filtered by APIN were in fact internal nodes). This reduction greatly improved the

performance of AutoCRAT, resulting in query times and storage efficiency that outperformed the

competition.

These experimental observations are consistent with the asymptotic analysis given in Sections

3.3 and 2.2. This is shown in Table 3.6.

Table 3.6: Comparison of the proposed AutoCRAT model with APIN, on the basis of asymptotic
complexity. V is vertices, A is alerts, E is endpoints, and P is paths. *APIN only ranks nodes,
while AutoCRAT scores endpoints and paths.

APIN AutoCRAT
Build DB O(1) O(|A|2)

Rank Objects* O(|V |+ |A|) O(|A|A+ |E|3) ⊆ O(|A|3)
Retrieve paths O(|V |3 + |A|2) O(1)
Retrieve trees O(|V |3 + |A|2) O(|A|2)

Reinsert O(1) O(|P |2) ⊆ O(|A|4)
DB size O(|V |+ |A|) O(|E|+ |P |) ⊆ O(|A|2)
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The above discussion demonstrates trade-offs between pre- and post- processing times and

between processing time and accuracy. Specifically, Insights 4 and 5 state:

Insight 4. While attaining the same accuracy as APIN, AutoCRAT front-loads its processing time

into building and maintaining paths so that it can retrieve them more quickly.

Insight 5. For both models, reducing the volume of data processed improves both processing time

and database size, but sacrifices accuracy (as measured by coverage).

To demonstrate how the alert tree structure and threat score heuristic may be useful in practice,

example forward and backward trees are shown in Figures 3.4 and 3.3, respectively. These trees

were selected for their size; some trees produced had well over 1000 vertices and would not be

legible in the present format. This problem is a challenge left to future work, as the present focus

is efficiency of reconstruction.

92.45.52.78-BWD

172.31.66.22 172.31.64.54

123.249.24.175 186.95.228.126 47.91.158.245 92.63.197.12 5.188.11.25

Figure 3.3: A backward tree containing eight vertices. Of the six leaves (i.e., path origins), the
reddest vertex, which represents the endpoint (92.63.197.12, 172.31.66.22) scored an ETS of 7.35
with 54 alerts sharing a single ID.

Answering RQ1

In order to answer RQ1, one must retrieve a set of paths corresponding to a known attack origin

and a known attack target. Assuming the database maintenance has kept up with the alert stream,

this can be accomplished with a query to the database utilizing the (source, destination) index.
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2.187.100.84-FWD

172.31.65.125 172.31.64.112 172.31.66.101

172.31.0.2 172.31.0.2 (1) 52.87.201.4 54.172.47.69

Figure 3.4: A forward tree containing eight vertices. Of the four leaves (i.e., path targets), the
reddest vertex, which represents the endpoint (172.31.66.101, 52.87.201.4) scored an ETS of 5.92
with 35 alerts sharing a single ID.

Because subpaths are also stored in the database, it only needs to retrieve paths that start and end

with the origin and target, respectively. This efficiently returns a list containing exactly the required

corresponding paths, without the need to parse the paths to truncate them at the proper destination.

The path retrieval function is described in Section 3.3.4.

Answering RQ2

In order to answer RQ2, one must reconstruct the forward alert tree corresponding to a particu-

lar origin. This process begins with retrieving all of the paths beginning at the specified node,

leveraging the source index, then proceeds by passing these paths to the tree reconstruction func-

tion, which arranges them based on their relationships to each other. This function is described in

Section 3.3.4.

Answering RQ3

In order to answer RQ3, one must reconstruct the backward alert tree corresponding to a particular

target. Similar to RQ2, this process retrieves the appropriate paths from the database and passes
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them to the tree reconstruction function. This function is described in 3.3.4.

Answering RQ4

The asymptotic runtime efficiency of each AutoCRAT function is as follows. alert insertion:

O(|A|2), threat calculation: O(|A| + |E|3) ⊆ O(|A|3), alert reinsertion: O(|P |2) ⊆ O(|A|4),

path retrieval: O(|P |) ⊆ O(|A|2), tree construction: O(|E|2) ⊆ O(|A|2).

Likewise, the storage efficiency of each function. alert insertion: O(|A|2), threat calculation:

O(|E|) ⊆ O(|A|), alert reinsertion: O(|A|2), path retrieval: O(|P |) ⊆ O(|A|2), tree construction:

O(|E|2) ⊆ O(|A|2).

3.5 Chapter Discussion

Now we discuss the assumptions, limitations, and novel features of AutoCRAT. This discussion

presents a roadmap for future studies in improving AutoCRAT.

Assumptions. The present study makes the following assumptions:

1. IDS Correctness. AutoCRAT’s correctness will be impacted by mistakes in the IDS, includ-

ing false positives and false negatives. In extreme cases, these will result in corresponding

errors in AutoCRAT’s output, but in the case where errors occur along paths with true posi-

tives, the penalty will only reduce the accuracy of the TS calculations.

2. Server-Side Attacks. The model assumes that attacks are always initiated by the malicious

node, and that the exposure flows in the same direction as the initial connection. This as-

sumption may be violated in client-side attacks, such as drive-by downloads. In this case,

an advanced security device may be able to reverse the order of nodes in the alert during

preprocessing, preserving attack semantics.

3. Serialization. AutoCRAT’s path maintenance algorithm assumes that events are inserted

sequentially. This means that it may be difficult to parallelize its execution. Since paral-

lelization is a powerful tool of efficiency, this problem may impact viability of the methods
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in practice. However, it may be possible to parallelize some alert insertions if the adjacent

nodes are disparate relative to sequential alerts. This investigation is left to future work.

4. TS Semantics. Because TS has not been studied robustly, the quality of trees produced

based on its usage is difficult to evaluate. However, as long as the above assumption of IDS

correctness remains within reasonable bounds, all paths produced are real paths, but ranking

and reference node selection may not result in the “best” tree possible. The problem of

ranking alerts remains an open research problem, and the alert tree model can be adapted to

many such methods.

Limitations. The present study has the following limitations.

1. Addressing. AutoCRAT assumes that each computer has a single, unique, and static address.

It may be extensible to accommodate computers with multiple IP addresses (e.g., by aliasing

node names before inserting them into the database or when preprocessing alerts). In the case

of a segmented network with private subnets, some computers on disparate subnets may have

matching addresses (e.g., 192.168.1.1). This case may be harder to accommodate.

2. Multi-key Indexing. The efficiency of the path maintenance algorithm depends on the as-

sumption that the database is capable of efficiently indexing elements of an array. This re-

stricts the interoperability of the framework to certain kinds of databases (or risks efficiency

loss during some operations).

3. Experiment Scope. The experimental environments applied AutoCRAT to NIDS alerts. Al-

though it can be used with any address-based events, this should be evaluated more thor-

oughly in other use cases (such as process and file system tracking).

Novel Features. The AutoCRAT model incorporates multiple features that have not previously

been combined in the study of network defense.

1. The model incorporates multi-step attacks, which include lateral movements secondary to

a compromise. This is important because attacker objectives often cannot be accomplished

after a single compromise.
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2. The model incorporates muti-target attacks, in which a single attacker produces multiple at-

tack paths with different targets. This is important because it does not require the assumption

that an attacker has a single target.

3. The model incorporates multi-source attacks, in which a single victim belongs to paths pro-

duced by different attackers. This is important because it does not require the assumption

that a single attacker is active on the network.

4. The model incorporates alerts as a multigraph, which allows multiple instances of an edge

to exist in the graph. This is important because it allows alert trees to show the temporal

relationship between its edges without using a dynamic animation.

5. The TS metric provides the property of monotonicity, meaning that a set of alerts will always

yield a higher TS than its subsets. Specifically, A ⊂ A′ → TS(A) < TS(A′). This is

important because it means that for any of the alert structures used in this study, the TS of

that structure will only grow over time and is resistant to manipulation by a crafty attacker.

3.6 Chapter Summary

This chapter introduced the AutoCRAT system for modeling and tracking multi-step network at-

tacks as indicated by alerts generated by security devices. The key concepts behind AutoCRAT are

those of alert graphs, alert paths, and alert trees. The technical contributions include data structures

and algorithms for efficiently representing and constructing alert paths and alert trees, as well as

asymptotic storage and runtime complexity analysis. This study is useful to cyber defenders be-

cause it quantifies threats against a network and its components and presents them in an intuitive

form that is easy to understand. The case study based on an implementation of AutoCRAT and a

research dataset shows that AutoCRAT can efficiently reproduce alert paths and trees, keeping pace

with alerts produced on a testbed network. The chapter is a significant step towards automating

cyber triage with and risk quantification, which remains an important and elusive problem.
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CHAPTER 4: ALERT TREE REDUCTION AND VISUALIZATION

Alert trees are used to show the collection of possible routes that may have been used by a cyber

attacker or attackers to compromise a computer or set of computers. In real networks, these trees

can become unmanageable in size, containing as many as 8,000 nodes. With such overwhelming

amounts of data, it is difficult for cyber defenders to pinpoint network hotspots in order to prioritize

defensive maneuvers. This raises the need to reduce strain on defenders by minimizing the amount

of non-critical information that is presented to them. To this end, this chapter proposes several

methods, as well as a novel data structure, for modifying alert trees in order to reduce visual strain

on defenders. The methods are evaluated using a real-world dataset, which demonstrates that they

are effective at reducing redundancy while limiting collateral information loss.

4.1 Introduction

Alert trees give a spatiotemporal representation of observed attack activity on a network. This

visualization technique allows defenders to track threats and identify hotspots in a network. How-

ever, when alert trees become to large and complex, they become difficult to interpret, inhibiting

the process of cyber triage and thereby incident response. In order to mitigate this limitation, this

work investigates several methods for for reducing the size of alert trees. Although this process

inherently results in the loss of information in the tree, this trade-off may be necessary for the sake

of usability of the tree. This work measures this trade-off with respect to the reduction methods

proposed.

4.1.1 Related Works

Alert and Attack Trees. Alert trees are closely related in structure of attack trees [49–51, 72].

While attack trees are predictive, alert trees are retrospective, showing paths that have already

been accessed. Attack trees have been studied fairly broadly, while alert trees still have much to

study.
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The term hypotree has been used to refer to an altered subtree structure in [73], but is other-

wise absent from the literature. The present usage is not inconsistent with this one. However, it

may seem to imply that its inverse is a hypertree, which has been used to denote an unrelated con-

cept [74–77]. For the purposes fo the present work, it is sufficient to exclusively use the one-way

relationship of hypotree.

Graph Visualization. Network visualization has been used to present data to defenders for the

purposes of cyber triage [72,78–80]. These visualizations use various types of chart, including pie,

line, and spiral charts. Metrics used to rank and color graphs vary, as alert trees contain multiple

types of data such as the type, number of attacks observed, vertex connectedness, and number of

paths [72, 81]. Some libraries used for graph visualization include Tulip [82], Graphviz [83], and

Pajek [84].

In the context of graph visualization, an important property of visualizations is scalability [85],

which is the focus of the present work. Another desireable property is planarity, in which no edges

in a graph overlap [86]. This is important because it makes it easier to follow links. Planarity is

guaranteed in alert trees but not alert graphs.

Alert Aggregation. Visualization reduction is closely related to alert aggregation [59,87,88]. Alert

aggregation can be used to reduce alert cardinality, improving efficiency with the potential trade-

off of accuracy. Contrasting these, the present work aims to optimize efficiency without sacrificing

precision.

Information Loss. Information loss in graphs has not been studied in depth. During data anonymiza-

tion, information loss has been studied in [89]. This work used a statistical approach, measuring

changes incurred during the anonymization process. Another approach used perturbation cost to

estimate information loss [90]. Note that information loss is not the same as data loss, which

measures the compromise of data by cyber attackers.
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4.1.2 Chapter Contributions

Contributions of this chapter include several methods for optimizing the visualization of alert trees,

as well as the definition of a novel data structure related to alert trees. This data structure may also

have independent value with respect to other types of trees. Specifically, this work describes and

provides pseudocode for the following optimizations:

1. Merging Sibling Leaves

2. Merging Similar Sibling Branches

3. Truncating Hypografts (a novel data structure)

Finally, a case study demonstrates the usefulness of each algorithm by applying them to a well-

known dataset. Metrics measured include the reduction in visual strain as well as its trade-off in

lost information.

4.1.3 Chapter Outline

The rest of the chapter is organized as follows. Section 4.2 introduces the research problem and

defines important terms. Section 4.3 details the methods used. Section 4.4 gives details of the

case study. Section 4.4.3 presents the results of the case study. Section 4.5 discusses strengths and

weaknesses of the work, and Section 4.6 concludes the work.

4.2 Problem Formalization

This section introduces concepts and terms used to frame the problem at hand.

4.2.1 Setting and Terminology

This chapter investigates the problem of intuitive and efficient threat tracking. Consider an en-

terprise network, which consists of computers, networking devices, and security devices (e.g.,

intrusion detection systems), and is managed by an administrator or administrators, referred to as
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the defender. A cyber attacker may come from inside or outside the enterprise network, conduct-

ing malicious actions. Once the attacker establishes a foothold in the network (through exploits

or other means), the attacker conducts lateral movements to compromise more computers in the

enterprise network. These attacks leave footprints that can be detected by security devices, to form

alert paths. The first computer in an alert path is known as the origin and all other computers are

considered victims. The final computer may also be called the path’s target.

When multiple paths branch out from a single node, these can be formulated into an alert

tree. Using graph theory terminology, computers in an alert tree are referred to as vertices. Each

connection between computers forms an arc (or directed edge) within the tree. Alert trees may

be forward-looking or backward-looking, such that the root of the tree belongs to all of the tree’s

paths as either the origin or target, respectively.

The concept of alert trees is important because they serve a critical role in facilitating incident

response. Specifically, alert trees help defenders intuitively understand the scope of an attack in

terms of the breadth of network impact and focal points thereof. Note that that an alert path does

not necessarily give a precise account of an attacker’s activity. This is for the following reasons:

(i) some attacks will undoubtedly fail, leaving links that merely show the effort of the attacker

against a particular target; (ii) some attacker addresses may be spoofed or reflected, such that the

source of the connection is some tertiary node not visible to network monitors; (iii) security devices

may have false positives or negatives; and (iv) lastly, some exploits may target client applications

such as web browsers, resulting in attack links that are effectively inverted (i.e., the source of the

attack may be compromised rather than the destination). Because of these phenomena, the precise

meaning of arcs in an alert tree is that the target has been exposed to the origin, which may or may

not indicate compromise.

The visualization of alert trees has presented some significant limitations. Firstly, alert trees

have been shown to be particularly large, with some cases resulting in over 5000 nodes, in under a

week of attacks [61]. Obviously, it is difficult for a defender to look at such a tree and immediately

zero in on its hotspots. At the same time, simply pruning elements of tree in a naïve attempt
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to simplify it may result in significant information loss (i.e., the defender does not readily see

some portion of the relevant data). Thus, the focus of this chapter is reducing visual strain while

minimizing information loss.

4.2.2 Intuitive Problems

The above discussion naturally leads to several intuitive needs regarding alert tree visualization.

Specifically;

1. Trees must be reasonably sized for viewing by defenders.

2. Valuable information must be preserved.

3. Relevant information must stand out.

These problems highlight some of the limitations in the literature, and inspire us to design and

implement the methods proposed in this chapter. First, the concepts used in this chapter must be

formally defined.

4.2.3 Alert Path and Alert Tree

The core of this work is the reduction operations on alert paths and trees. These concepts are used

throughout the chapter, while the novel concept of hypotree is used only for one reduction type.

As such, alert paths and trees are defined here, and hypotree will be defined in Section 4.3.

Alert path. Intuitively, an alert path describes a series of attacks traversing one or more edges,

which may have been used by an attacker to conduct a multi-step attack against a network.

Definition 8 (Alert Path). Given a graph G = (V,E), an alert path p = (nodes, edges); where

p.nodes= (v1, v2, . . . , vℓ) ⊆ V , such that ∀v, v′ ∈ p.nodes, v = v′; and p.edges= ((v1, v2), (v2, v3), . . . , (vℓ−1, vℓ)),

such that e ∈ p.edges→ e ∈ E

Alert Tree. An alert tree is composed of nodes with parent/child relationships. Each node has a

name and a color that represents some metric used to show the importance of a node. This metric
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could be any of a variety of measurements, which may include asset value, asset vulnerability,

threat score, etc. This chapter will use the threat score (TS) metric, although the model is metric

agnostic. It is sufficient to note that node colors range from red to black (i.e., in hexadecimal nota-

tion: 0xFF0000 to 0x000000), where red indicates a higher value of the relevant metric, denoting

a higher importance. This is demonstrated in Figure 4.1, and will be elaborated further in Section

4.3. These nodes are used to construct an alert tree based on the following definition.

Figure 4.1: An example alert tree. Threat scores are indicated by the node’s color, where red is
the highest score.

Definition 9 (Alert Tree). An alert tree t is an arborescence (i.e., a rooted directed acyclic graph

(DAG) where each node is accessible from the root by a unique sequence of ancestors), rooted at

a particular node t.root, and for which each node n is annotated by name (denoted n.name) and

color (denoted n.color). Sibling nodes (i.e., nodes which are adjacent to a common ancestor) may

not share the same name, and nodes may not share a name with any of their ancestors.

Alert trees come in two logical forms: forward and backward. For any node nf in a forward

tree, an edge (nf .parent, nf ) indicates an attack from nf .parent to nf . Conversely, for any node

nb in a backward alert tree, an edge (nb.parent, nb) indicates an attack from nb to nb.parent.

These are formulated respectively to show the scope of victims that a particular attacker may have

targeted, and the scope of attackers that may have targeted a particular victim.

It is also worth noting that alert paths can be reconstructed from the alert tree by extracting a

node’s ancestors. Note that in the case of backward alert trees, the ancestors must be reversed to

retrieve the proper alert path.
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4.2.4 Formalizing Intuitive Problems as Research Questions

Based on the preceding formalisms, the intuitive problems become rigorous Research Questions

(RQs) as follows.

1. Given an alert tree, modify the tree to reduce visual strain.

2. Given a potential tree modification, minimize the amount of information lost.

3. Given an alert tree, identify salient information and highlight it for defenders.

Extraneous nodes may have names or substructures that are identical to others in the alert tree,

and thus represent redundant data. Removing this redundant data can improve usability of the alert

tree. This motivates RQ1 and RQ2.

Research Question 1: How much can one reduce alert tree size by merging similar nodes?

Research Question 2: How much can one reduce alert tree size by removing duplicate nodes?

While modifying an alert graph, the removal and merging of nodes can reduce the amount of

information available to the defender. Specifically, when merging nodes, one should maximize the

ratio of complexity reduction to information loss. Similarly, when removing duplicate nodes, one

should preserve to location information of the nodes that were removed. This motivates RQ3.

Research Question 3: How can one preserve the information lost in the solutions to RQ1 and

RQ2?

Salient information can represent a wide variety data, such as threat score, asset value, etc. One

way to represent such data is to color-code the relevant graph elements. This motivates RQ4.

Research Question 4: How can one highlight salient information in an alert graph without in-

creasing visual strain on the user?

4.3 Methods

Many portions of a given alert tree can present duplicate or extraneous information to the viewer,

overwhelming their ability to extract meaningful insights. This chapter proposes several methods
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for modifying the tree’s presentation in order to focus on the most salient information within it.

Specifically, these are merging sibling leaves, merging similar sibling branches, and truncating

hypotrees, as highlighted in Figure 4.2.

Each of the three base functions can be used on its own to reduce a given alert tree. These

represent reduction schedules one, three and five, respectively. However, because the nodes they

merge or remove may overlap, it is generally unsafe to apply more than one reduction at a time.

The only exception is the merge sibling leaves reduction, which may be applied after either of the

other two base reductions because it does not create conflicts with them. This forms reduction

schedules two and four. Once the trees have been reduced, they are exported and rendered into

images. The remainder of this section describes the base functions.

Input
Alert 
Trees

Output 
Reduced 

Trees

Merge 
Similar 
Sibling 

Branches

Truncate
Internal 

Hypotrees

Merge 
Sibling 
Leaves

Annotate 
Tree

AVR

Reduction 1

Reduction 2

Reduction 3

Reduction 4

Reduction 5

Figure 4.2: Reductions overview. Each of the primary-colored boxes represents a reduction mod-
ule, while colored arrows represent a reduction schedule. Alert trees are passed through modules
as specified by the reduction schedule.
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4.3.1 Model Inputs

The model requires alert trees as inputs, as defined in Section 4.2. Specifically, it reads JSON

objects from a file in the appropriate format. Once the trees are imported, it annotates them to

facilitate the reduction algorithms and sends them to the appropriate functions.

4.3.2 Merging Sibling Leaves

High volume, low yield information can be reduced by merging sibling leaves, preserving infor-

mation about the severity of attacks against the merged leaves according to the TS of the merged

leaves. This also adopts the color of that specific node.

This approach uses a breadth-first traversal to iterate over the tree, parsing the list of children

for each internal node in order to identify and remove its leaves. While parsing the leaves, it

documents the highest TS within the set of leaves, then replaces the leaves with a single node,

showing the number of leaves merged and applying coloring according to the TS selected above.

Algorithm 4 gives pseudocode for the merge sibling leaves function.

Algorithm 4 Merge Sibling Leaves
Input: Root
Output: Root, Archives

1: Node_Queue← (Root)
2: while Node_Queue ̸= () do
3: Current_Node← Node_Queue.next()
4: Colors← ∅
5: To_Be_Merged← ∅
6: for each Child ∈ Current_Node.children do
7: if Child.children = ∅ then ▷ This is a leaf
8: Colors← Colors ∪ {Child.color}
9: To_Be_Merged← To_Be_Merged ∪ {Child}

10: Node_Queue← Node_Queue ∪ Current_Node.children
11: New_Name← |To_Be_Merged|+ “ Merged Nodes”
12: New_Color ← maxcolor∈Colors

13: if |To_Be_Merged| > 1 then
14: Current_Node.children← {(New_Name,Current_Node, ∅, New_Color)}
15: return Root
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4.3.3 Merging Similar Sibling Branches

Duplicate information can be reduced by merging similar sibling branches. This allows the viewer

to more quickly identify common patterns within the tree. The method for merging similar sibling

branches is given in Algorithm 5.

In order to merge identical branches, the algorithm conducts a breadth-first traversal of the tree,

recursively comparing sibling branches. When it identifies two siblings with identical subtrees, it

combines them into a single node, preserving the shared form of the subtree. It then labels the new

node with the number of siblings that were merged, applying the same color from the sibling with

the highest ETS.

Branches are compared using a hash function, which produces a tuple

H(root) = (root, (H(node)|node ∈ root.children)),

which incidentally produces H(leaf) = (leaf, ()) for leaf nodes. For comparison purposes, each

group of siblings is assumed to be sorted consistently throughout the tree. This allows for easier

comparison of subtree hashes and is trivially enforced in the implementation.

4.3.4 Truncating Hypotrees

Intuitively, a hypotree is a tree which resembles a portion of another tree (i.e., its hypertree), where

the two trees have identical roots. This relationship is distinct from the concept of a subtree, which

constitutes a branch of its supertree. By contrast, a hypotree may be missing individual nodes or

branches relative to its hypertree.

Recall that each node n in a tree is annotated with a name and a color. These are denoted

by n.name and n.color, respectively. Additionally, the concept of a node’s ancestry (denoted

n.ancestors) is derived from its relationship to other members of the tree. This intuitively results

in a sequence of nodes, starting with the root, followed by each successive child leading toward

n, and ending with n’s parent. In any given tree, each node has a single ancestry. Furthermore, if
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Algorithm 5 Merge Similar Sibling Branches
Input: Root
Output: Root

1: Node_Queue← (Root)
2: while Node_Queue ̸= () do
3: Current_Node← Node_Queue.next()
4: Unique_Hashes← ()
5: New_Children← ()
6: for each i ∈ [1, 2, . . . , |Current_Node.children|] do
7: if Current_Node.childreni.children ̸= ∅ then ▷ Only check siblings that are not

leaves
8: Current_Hash← H(Current_Node.childreni)
9: if ∃Hash ∈ Unique_Hashes : Hash2 = Current_Hash2 then

10: Hash3 ← Hash3 + 1
11: Hash1.name← Hash3 + “ Merged Nodes”
12: if Current_Hash1.color > Hash_1.color then
13: Hash1.color ← Current_Hash1.color

14: for each j ∈ [1, 2, . . . , |Current_Hash2.children|] do
15: if Current_Hash2.childrenj.color > Hash2.childrenj.color then
16: Hash2.childrenj.color ← Current_Hash2.childrenj.color

17: else
18: Unique_Hashes ← Unique_Hashes ∪

(Current_Hash1, Current_Hash2, 1) ▷ Here the third element stores the number of
merged nodes

19: New_Children← New_Children ∪ (Current_Node.childreni)

20: Current_Node.children← New_Children
21: Node_Queue← Node_Queue ∪ Current_Node.children

22: return Root
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there are no identical siblings in the tree, each node’s ancestry is unique in the tree. Based on this,

we define hypotree in Definition 10.

Definition 10 (Hypotree). A tree Thypo is a hypotree relative to a tree Thyper if ∀n ∈ Thypo,∃n′ ∈

Thyper : n′.ancestors = n.ancestors

Denote “Thypo is a hypotree of Thyper” as Thypo ⪨Thyper. Similarly, denote hypertree (⪩);

proper hypertee (⪧), a hypertree that is not also a hypotree; and proper hypotree (⪦), a hypotree

that is not also a hypertree. Recall that “hypertree” is an existing concept in other contexts, so

“hypotree” is preferred where possible. Where necessary, the symbol (⪩) can be used to avoid

confusion, as this is specific to the current usage.

Because all nodes in hypotrees are duplicated in their respective hypertrees, they are redun-

dant. For this reason, hypotrees are truncated in order to reduce visual strain on the viewer. This

preserves the most amount of information since all edges are preserved, even if their location and

number are lost. The method for truncating hypotrees is given in Algorithm 6.

This algorithm parses the tree using a breadth-first traversal, marking all nodes that share the

same name. It then compares the subtrees of each set of identical nodes, preserving trees which

have no proper hypertrees and truncating the rest. In the case of two equivalent hypotrees (i.e., A

⪨B ∧ B ⪨A), it preserves only the one appearing first in the traversal (i.e., the one closer to the

root). Truncated trees contain annotations to show viewers that a hypotree of the trunk is available

for reference at another part of the tree. Archives are saved in case precise information about a

particular hypotree needs to be retrieved later.

4.4 Case Study

This section describes the experimental environment and results.

4.4.1 Dataset

The case study utilized CSE-CIC-IDS2018 [41], a well-known dataset collected from a testbed

with both injected and wild attacks. From the network traffic, Snort [91] produced 3.3M alerts.
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Algorithm 6 Truncate Hypotrees
Input: Root
Output: Root, Archive

1: Candidates← ∅
2: Unique_Names← ∅
3: for each Node ∈ Root.descendants do
4: if ∃Name_List ∈ Unique_Names : Name_List1 = Node.name then
5: Name_List← Name_List ∪ (Node)
6: Candidates← Candidates ∪ {Node.name} ▷ Nodes sharing a name become

candidates
7: else
8: Unique_Names← Unique_Names ∪ {(Node.name,Node)} ▷ Here elements 2

onward are nodes with the same name
9: Trunks← (∅|Unique_Nodes|)

10: Trunk_Colors← (()|Unique_Nodes|)
11: for each n ∈ [1, 2, . . . , |Unique_Names|] do
12: if Unique_Namesn ∈ Candidates then
13: for each i, j ∈ [2, 3, . . . , n), i < j] do ▷ Compare pairs of candidates
14: if Unique_Namesn,i⪦Unique_Namesn,j then
15: if |Unique_Namesn,i.descendants| > 1 then
16: Trunksn ← Trunksn ∪ (Unique_Namesn,i) ▷ Mark hypotree i for

truncation
17: Trunk_Colorsn ← Trunk_Colorsn ∪

(maxd∈Unique_Namesn,i.descendants(d.color))

18: else
19: if |Unique_Namesn,j.descendants| > 1 then
20: Trunksn ← Trunksn ∪ (Unique_Namesn,j) ▷ Mark hypotree j for

truncation
21: Trunk_Colorsn ← Trunk_Colorsn ∪

(maxd∈Unique_Namesn,j .descendants(d.color))

22: Archives← ∅
23: for i ∈ [1, . . . , |Trunks|] do
24: for j ∈ [1, . . . , |Trunksi| do
25: trunk_archive← copy(Trunksi,j.parent)
26: trunk_archive.parent← ∅
27: new_trunk ← copy(Trunksi,j)
28: new_trunk.color ← Trunk_Colorsi,j
29: Trunki,j.parent← trunk_archive
30: Archives← Archives ∪ {trunk_archive}
31: return Root, Archives
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These were converted into a network graph and assembled into trees using an adaptation of APIN

[61]. Nodes were ranked according to threat score, calculated as the geometric mean of the volume

and diversity of alerts incident to the node. Trees were ranked according to the threat score of their

root node.

From the resulting trees, 15 were selected to be reduced: 5 each from the top ranked, bottom

ranked, and randomly selected trees. Statistics for the selected trees are given in Table 4.1.

Table 4.1: Dataset statistics for selected alert trees. Numbers given are averages. Top and bottom
5 refer to TS.

Full size Unique nodes Unique edges
Top 5 9.80 7.6 8.8

Random 5 1999.0 234.4 825.6
Bottom 5 15.0 10.6 14.0

4.4.2 Evaluation Metrics

The effectiveness of the methods is demonstrated using a total of 4 metrics, including three atomic

metrics and one aggregate metric. The atomic metrics are visual strain reduction (VSR), node

retention (NR) and threat score retention (TSR). The latter two are derived from the notion of

information loss, as its additive inverse (i.e., 1 − loss). These three metrics are also combined to

create a reduction index.

The first metric measures VSR as the number of nodes in the reduced tree relative to the full

tree. The formula for VSR is given in Equation.VSR has a range of [0,1] (as a percentage) relative

to the full graph (which has a VSR of 0) and is measured for each of the five reductions. 100%

VSR is ideal.

In order to measure the amount of information loss for the following two, one must specify

what types of information are present in the alert tree and relevant to the problem at hand. Given

the present goal of intuitively visualizing cyber attack traffic in a network, the following types

of information will form the basis of the metrics used: Node presence in tree and threat score

information.
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These metrics measure information retention as the number of nodes or threat scores from

the full tree that remain after the reduction. These are referred to as “node retention” (NR) and

“threat score retention” (TSR), respectively. Both of these measurements have a range of [0,1] (as

a percentage) relative to the full graph (which has both an NR and TSR of 1) and are measured for

each of the five reductions. 100% information retention is ideal.

Note that NR is not necessarily 1− V SR, since some reductions add supplemental nodes after

pruning (e.g., merged leaves). These merged nodes increase visual strain but do not increase node

retention, since they do not belong to the full tree. However, they may increase TSR, since some

of the supplemental nodes inherit color codes (i.e., threat score) from the node(s) they replaced.

Naturally, one may conceive of naïve approaches to manipulate these metrics. For example, an

empty tree has 100% VSR, and a full tree has 100% NR and TSR. In light of this, these metrics

are combined into a reduction index using the harmonic mean of the three atomic metrics. The

harmonic mean is most appropriate here because it is most significantly impacted by low values,

favoring models that produce good results in all metrics rather than those with one excellent value

and many poor values. This results in both of the above naïve approaches scoring a reduction index

of 0. Contrast this with arithmetic mean, for which the naïve models would score a reduction index

of 33% and 66%, respectively. This demonstrates that, compared with arithmetic mean, harmonic

mean produces scores that better represent the intuitive meaning of the reduction index.

4.4.3 Results

Results of the experiments are given in Table 4.2. The merge leaves reduction consistently per-

formed the best, with its RI leading by margins of 0.17, 0.15 and 0.33 for the top 5, random 5 and

bottom 5 categories, respectively.

All reductions performed best against low-ranking trees. In this category, merge leaves saw

an RI improvement of 0.25, merge branches 0.08, and truncate 0.08, relative to their next highest

category.

Merge leaves tended to perform better at information retention than VSR. Merge branches
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performed better in node retention than VSR or TSR. Truncate retained all node information and

nearly all threat score information in every case, but struggled to reduce visual strain. In some

cases, it was unable to reduce any visual strain at all.

Table 4.2: Performance of each method on trees selected by TS. VSR is average visual strain
reduction, NR is average node retention, TSR is average threat score retention, and RI is reduction
index, as the harmonic mean of VSR, NR and TSR.

Algorithm VSR NR TSR RI
Merge Branches (top 5) 0.243 0.539 0.278 0.313

Merge Branches (random 5) 0.352 0.553 0.254 0.349
Merge Branches (bottom 5) 0.433 0.493 0.360 0.421

Merge Leaves (top 5) 0.363 0.577 0.611 0.489
Merge Leaves (random 5) 0.282 0.824 0.799 0.499
Merge Leaves (bottom 5) 0.791 0.744 0.730 0.754

Truncate (top 5) 0.009 1.0 0.999 0.026
Truncate (random 5) 0.0 1.0 1.0 0.0
Truncate (bottom 5) 0.037 1.0 0.983 0.103

4.4.4 Answering Research Questions

Research Question 1: How much can one reduce alert tree size by merging similar nodes? By

merging leaves, tree size can be reduced by as much 79%, and by merging branches tree size can

be reduced by as much as 43%.

Research Question 2: How much can one reduce alert tree size by removing duplicate nodes? By

truncating hypotrees, tree size can be reducecd by as much as 3.7%.

Research Question 3: How can one preserve the information lost in the solutions to RQ1 and

RQ2? The best way to preserve information is to truncate hypotrees, which contain almost ex-

clusively redundant information. Otherwise, merging leaves tends to retain more information than

merging branches.

Research Question 4: How can one highlight salient information in an alert graph without in-

creasing visual strain on the user? Color-coding salient information allows the tree to highlight

important data such as network hotspots and threat activity. Color can be used for both nodes and

edges, so NR and TSR are the metrics to look at when one needs information salience.
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The novel reductions had a broad range of performance, with each one having a different

strength. Since user needs will vary, it will be important to consider these differences when choos-

ing how to handle alert trees. Meanwhile, these results are only preliminary and warrant further

study.

4.5 Chapter Discussion

The methods used in this study are restrictive in that they have some areas of overlap depending on

the input alert tree. Specifically, merging branches and truncating hypotrees are not independent

of each other. In other words, the results of doing one before the other do not match those of

the opposite ordering. This can have significant impact on the performance, although it may be

reasonably to try both in alternating order and selecting the better result on a case-by-case basis.

This is left to future work.

The case study is limited in that the dataset utilizes threat score to rank edges and paths. This

metric has not been robustly analyzed and may not produce the best scores relative to a particular

attack. However, the methods proposed in the present study need not use threat score, but could

easily be adapted to rank nodes according to monetary value, vulnerability score, or other related

metrics.

4.6 Chapter Summary

This work introduced several methods for reducing the size of alert trees while retaining as much

information as possible. The three core functions can be used independently or combined in a total

of five reduction schedules. One of the reductions includes the use of a novel data structure, the

hypotree. These reductions were applied to alert trees from a research testbed dataset, and were

evaluated for information retention and visual strain reduction. Results show that the reductions

have varied performance relative to each other for different types of trees. This finding warrants

more research into how the application of the reductions may be optimized.
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CHAPTER 5: CONCLUSION

This section presents a discussion on the research reported in the Dissertation, explores future

research directions, and describes the conclusions drawn from the Dissertation work.

5.1 Further Discussion

The methods contained in this Dissertation approach the problem of alert tree reconstruction from a

variety of algorithmic perspectives. These algorithms have various trade-offs among them. These

include a coverage/efficiency trade-off and a pre-/post- processing-time trade-off. Additionally,

the assumptions that one makes about underlying data has significant impact on these trade-offs

relative to the given models.

Specifically, APIN tends to prioritize efficiency and storage but not coverage. On the other

hand, Autocrat tends to prioritize coverage but not efficiency. APIN has better reinsertion and

pruning performance, but has difficulty handling highly-connected networks. AutoCRAT can re-

trieve paths immediately but takes longer on average to assemble trees. Defenders that have a

strong understanding of their network environments can make good use of these trade-offs in order

to optimize their system performance for their specific needs.

The reconstruction methods are dependent on incoming threat intelligence in order to begin

building alert trees. This is because they start building from the root of the tree (i.e., the reference

node). Building complete alert trees for every node in the network would be computationally

infeasible, although some more restrictive data structure may be appropriate for this task.

5.2 Future Research Directions

There are several exciting future research directions. The first research direction is to automatically

detect potential incidents in order to preemptively build the relevant alert trees. This could improve

the monitoring process by freeing up the defender to prioritize other defensive actions.

The second research direction is to incorporate host-based activity into the models. The ability
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to reliably link network and host activities would give highly precise information to defenders,

allowing them to perceive threats at every applicable level.

The third research direction is to incorporate the studies presented in the Dissertation, and

Cyber Triage in general, into the Cybersecurity Dynamics framework [3–6], which inspired the re-

search presented in this Dissertation. The Cybersecurity Dynamics framework is driven by the need

for cybersecurity quantification, which is fundamental to many applications such as cyber defense

command-and-control and cyber risk management (including cyber insurance). An important con-

sideration in the framework is the cybersecurity metrics problem, which has been challenging the

community for decades [92–94]. Fortunately, there has been significant progress towards tackling

this problem [36, 95–108]. This explains why Cybersecurity Metrics is one pillar of Cybersecu-

rity Dynamics, on par with (i) the Cybersecurity First-Principle Modeling pillar for the purposes of

seeking cybersecurity laws that govern the evolution of the global cybersecurity state under various

kinds attack-defense interactions [28–30,109–119] (with notable recent results in [109–111,119]),

and (ii) the Cybersecurity Data Analytics pillar [7–14].

As mentioned above, the present Dissertation falls under the Cybersecurity Data Analytics

pillar, or more specifically Algorithmic Data Analytics. It also intersects with the Cybersecurity

Metrics pillar because it defines and utilizes several metrics, such as threat score, which measures

the scale and diversity of attacks against a target; and information loss metrics, which measure the

effect of a transformation on a graph insofar as it accurately models a phenomenon.

The research presented in this Dissertation, and Cyber Triage in general, can be incorporated

into the Cybersecurity Dynamics framework to enrich it as follows.

• Pertinent to the Cybersecurity Metrics pillar, it is important to systematically define a suite of

metrics that are necessary and sufficient for the purposes of Cyber Triage. This would require

us to, for example, define metrics to quantify the attributes that are involved in the Cyber

Triage process (e.g., under what circumstances on alert can be triaged with high confidence

if not certainty?). How would these new metrics enrich the SARR cybersecurity metrics

framework [95] towards a more comprehensive metrics framework?
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• Pertinent to the Cybersecurity Data Analytics pillar, it is important to investigate the con-

ditional relevance of the proposed Algorithmic Data Analytics if attack event details are

omitted. For example, what if alerts represent uncertain events (e.g., unreliable threat intel-

ligence which only suspects that some activities are attacks)? What if side-channel exploits

are used? Can Cyber Triage be improved by leveraging the threat prediction or forecasting

(as in [8–14]?

• Pertinent to the Cybersecurity First-Principle modeling pillar, one important question is how

to mathematically model the triage process so that it can be incorporated into the broader

Cybersecurity Dynamics equations? How can one build models to quantify the effective-

ness of Cyber Triage as a defense mechanism, for example in a fashion similar to what are

described in [28–30, 108–119]?

Accomplishing the research outlined above will enhance the usefulness of the Cybersecurity

Dynamics framework while deepening our understanding of cybersecurity from a holistic perspec-

tive rather than a building-blocks perspective.

5.3 Conclusion

This Dissertation discussed the notion of cyber triage, including multi-step attack reconstruction

via alert paths and trees, and the reduction and visualization thereof. These problems are critical to

mission assurance and cyber security practice because the complexity of modern computer systems

demands a high level of expertise and many hours of diligent monitoring in order to maintain the

security of mission resources. The solutions discussed in this paper have made significant progress

toward formalizing and addressing this problem insofar as it applies to incident response. The

models produced in this work have brought novel perspectives to these problems and will hopefully

inspire many future works, propelling the field of Algorithmic Data Analytics to greater scientific

advancement.
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