
USER-TO-DEVICE ACCESS CONTROL MODELS FOR CLOUD-ENABLED IOT WITH

SMART HOME CASE STUDY

by

SAFWA AMEER, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

COMMITTEE MEMBERS:
Prof. Ravi Sandhu, Ph.D., Chair

Prof. Jianwei Niu , Ph.D.
Prof. Xiaoyin Wang, Ph.D.
Prof. Weining Zhang, Ph.D.
Prof. Ram Krishnan, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Science

Department of Computer Science
August 2021

Copyright 2021 Safwa Ameer
All rights reserved.

DEDICATION

I would like to dedicate this dissertation to my mother Dr. Amira Burhan, and my father Dr. Ameer
Adil, who helped me in all things great and small. This work is also dedicated to my husband Mr.
Tareg El-sherif, who motivated and encouraged me through out the most challenging phase of my
life. Finally, I dedicate this work to my lovely prince Ziyad and my little princess Yasmine who are
my source of strength.

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude and respect to my advisor and mentor

Professor Ravi Sandhu for the continuous support through this demanding journey, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of research and

writing of this dissertation. I could not have imagined having a better advisor and mentor for my

PhD study. The knowledge and experience I gained professionally and personally from him will

be remembered, and will set course for my career and life.

A big thank you to Mr. James Benson. I am very fortunate to have worked with him. Mr.

James Benson is an outstanding technology research associate at ICS. His technical support was

absolutely needed to sail through this journey. I am privileged to work with the best research team

and the staff at ICS which together brought me in a position to write my Ph.D. dissertation.

My sincere thanks also go to my committee members, Professor Jianwei Niu, Dr. Weining

Zhang , Dr. Ram Krishnan , and Dr. Xiaoyin Wang for serving as my committee members, for

their thoughtful comments, suggestions and time. Their observations have made this research work

more valuable and interesting.

I would like to acknowledge the faculty members of the Computer Science department for their

wisdom and support. I would like to thank the staff members Suzanne Tanaka, Susan Allen, and

others from the ICS and the CS department for their tremendous kindness, help, and support.

A special thanks to my family. Words cannot express how grateful I am to my role model my

mother Dr. Amira Burhan, father Dr. Ameer Adil, my beloved and supportive husband Tareg El-

sherif, my brothers, and my sister for supporting me throughout writing this dissertation and my

life in general. Your prayers for me was what sustained me thus far. A special thanks to my uncle

Professor Hatim Sharif for his assistance and guidance throughout my career. At the end, I would

like to thank all my friends who supported and motivated me to strive towards my goal.

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance
with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-
toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters
Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements

iv

explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-
sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a
full introduction and literature review, and a final overall conclusion. Additional material (proce-
dural and design data as well as descriptions of equipment) must be provided in sufficient detail to
allow a clear and precise judgment to be made of the importance and originality of the research
reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include
as chapters authentic copies of papers already published, provided these meet type size, margin,
and legibility requirements. In such cases, connecting texts, which provide logical bridges between
different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the
student is required to make an explicit statement in the introductory material to that manuscript
describing the students contribution to the work and acknowledging the contribution of the other
author(s). The signatures of the Supervising Committee which precede all other material in the
Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

August 2021

v

USER-TO-DEVICE ACCESS CONTROL MODELS FOR CLOUD-ENABLED IOT WITH

SMART HOME CASE STUDY

Safwa Ameer, Ph.D.
The University of Texas at San Antonio, 2021

Supervising Professor: Prof. Ravi Sandhu, Ph.D.

The Internet of Things (IoT), sometimes called the Internet of Everything, is a new technology

paradigm envisioned as a global network of physical objects (things) that are embedded with sen-

sors, software, and other technologies for the purpose of connecting and exchanging data with other

devices and systems over the Internet . The concept of IoT has attracted many application domains

including consumer applications (smart homes, elder care), organizational applications (medical

and health care, vehicular communication systems), industrial applications (manufacturing, agri-

culture), infrastructure applications (smart cities, energy management), and military applications

(Internet of Battlefield Things). Soon IoT will affect all industries and everyone’s daily life. This

requires usable authentication and sophisticated access control specification mechanisms that are

currently lacking. It is widely recognized that the potential benefits of IoT can be fully realized

only in combination with cloud computing. Cloud support enables long-term storage of the mas-

sive amounts of data produced by IoT devices and the compute-intensive analysis of this data to

improve overall operations, especially in context of limited capacity of IoT devices. Moreover,

cloud support enables data and analytical sharing. Hence the concept of cloud-enabled IoT (also

sometimes called cloud-assisted IoT).

In rapidly evolving IoT domains, security and privacy of data and information is always at

considerable risk from unauthorized actors and malicious attackers. One of the critical security

services in IoT that mostly all researchers agree upon is access control (AC). Insecure access to

web, backend APIs (Application Programming Interfaces), cloud and mobile interfaces are among

the top vulnerabilities for IoT applications. However, commercial IoT frameworks fall short in

implementing access control to these interfaces.

vi

Soon IoT will be part of every home turning our houses into smart houses, in which we have

multiple users with complex social relationships between them using the same smart devices. Pro-

viding an appropriate access control model for home IoT services is a vital but challenging topic.

Authorization issues have been explored extensively for many different domains. However, home

IoT is significantly different from traditional domains which necessitate a rethinking of access

control and authentication. This dissertation investigates user-to-device access control require-

ments in home IoT, and then develops and demonstrates four different access control models for

user-to-device interaction in smart home IoT.

First, it proposes the extended generalized role-based access control (EGRBAC) model for

smart home IoT. It provides a formal definition for EGRBAC and illustrates its features with a

use case. A proof-of-concept demonstration utilizing AWS-IoT Greengrass is also discussed.

Second, it introduces the smart home IoT attribute-based access control model (HABAC). It

provides a formal definition for HABAC and illustrates its features with a use case. It provides

an analysis of HABAC relative to EGRBAC. It compares the theoretical expressive power of

these models by providing algorithms for converting an HABAC specification to EGRBAC and

vice versa. Moreover, it discusses the insights for practical deployment of these models resulting

from these constructions. This dissertation identifies the need for a combined (role-based and

attribute-based) access control model for smart home IoT.

Third, this dissertation develops a formal role-centric hybrid access control model (HyBACRC).

It further demonstrates the features of HyBACRC through a use case scenario, and a proof of con-

cept implementation.

Fourth, it introduces an attribute-centric hybrid access control model (HyBACAC). It formally

defines the model, and illustrates its features with a use case scenario and a proof of concept

implementation. It analyzes this model relative to HyBACRC , HABAC and EGRBAC models.

Moreover, it provides approaches for converting an HyBACRC specification to HyBACAC and

vice versa. It argues that a role-centric hybrid access control model combining ABAC and RBAC

features may be the most suitable for user-to-device smart home IoT access control.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xii

List of Figures . xiv

Chapter 1: Introduction . 1

1.1 Motivation . 3

1.2 Problem Statement and Solution Approach . 4

1.3 Thesis Statement . 5

1.4 Scope and Assumption . 5

1.5 Summary of Contributions . 6

1.6 Organization of the dissertation . 8

Chapter 2: Background and Literature Review . 9

2.1 Access Control Models . 9

2.1.1 Role-Based Access Control (RBAC) . 11

2.1.2 Attribute-Based Access Control (ABAC) 12

2.1.3 Combining ABAC and RBAC . 13

2.2 IoT Access Control Models . 14

2.2.1 IoT Access Control Models Based On RBAC 14

2.2.2 IoT Access Control Models Based on ABAC 15

2.2.3 IoT Access Control Models Based on CapBAC 16

2.2.4 IoT Access Control Models Based on UCON 16

2.2.5 IoT Access Control Models Based on Blockchains 17

viii

2.2.6 IoT Access Control Models Based on Other Models 17

Chapter 3: Role-Based Access Control Model for Smart Home IoT and Related Criteria

(EGRBAC) . 18

3.1 Criteria for Smart Home IoT Access Control Models 18

3.2 EGRBAC Model for Smart Home IoT . 20

3.2.1 Motivation . 20

3.2.2 Background . 22

3.2.3 EGRBAC Formal Definition . 23

3.2.4 EGRBAC Use Case . 26

3.2.5 EGRBAC Constraints . 28

3.2.6 EGRBAC Analysis and Limitations . 30

3.2.7 Proof-Of-Concept Implementation . 32

Chapter 4: Attribute-based Access Control model for Smart Home IoT (HABAC) . . . 39

4.1 Motivation . 39

4.2 HABAC Model for Smart Home IoT . 40

4.2.1 HABAC Formal Definition . 40

4.2.2 HABAC Use Case . 44

4.3 Constructing HABAC From EGRBAC . 46

4.4 Constructing EGRBAC from HABAC . 49

4.4.1 From Authorization policy to Authorization Array 50

4.4.2 Approach . 51

4.4.3 EGRBAC Users and Environment Roles Constructing Algorithm: 55

4.4.4 Users Roles Merging Algorithm . 58

4.4.5 The output of EGRBAC Constructing Approach on HABAC Use Case . . . 60

4.5 Analysis and Limitations . 60

ix

Chapter 5: Hybrid Attribute and Role Based Access Control Models for Smart Home

IoT

(HyBACRC and HyBACAC) . 64

5.1 Motivation . 64

5.1.1 Combining RBAC and ABAC . 66

5.2 HyBACRC model . 67

5.2.1 HyBACRC Formal definition . 68

5.2.2 Use Case Demonstration . 72

5.3 HyBACAC model . 76

5.3.1 HyBACAC Formal definition . 76

5.3.2 Use Case Demonstration . 78

5.4 Implementation . 82

5.4.1 Enforcement Architecture . 82

5.4.2 Performance Results . 86

5.5 Constructing HyBACAC FROM HyBACRC . 89

5.5.1 Approach . 89

5.5.2 HyBACRC configuration in HyBACAC 91

5.6 Constructing HyBACRC from HyBACAC . 93

5.6.1 Smart Home Use Case Description . 94

5.6.2 From Authorization policy to Authorization Array 94

5.6.3 Approach . 96

5.6.4 HyBACRC Roles and Authorization function Constructing Algorithm . . . 102

5.6.5 Users Roles Merging Algorithm . 105

5.6.6 The output of HyBACRC Constructing Approach on HyBACAC Use Case 107

5.7 A Comprehensive Comparison . 107

5.7.1 Basic and main criteria . 108

5.7.2 Quality criteria . 109

x

5.8 Analysis and Limitations . 111

Chapter 6: Conclusion and Future Work . 115

6.1 summary . 115

6.2 Future Work . 116

Bibliography . 118

Vita

xi

LIST OF TABLES

2.1 Combination Strategies and Options for Integrating Attributes with RBAC

[70] . 13

3.1 Characteristics of IoT Access Control Models 20

3.2 EGRBAC Model Formalization . 24

3.3 One User Sending Requests to Multiple Devices 37

3.4 Multiple Concurrent Instances of One User Sending Request to One Device. 37

3.5 Multiple Users Sending Requests to One Device 37

4.1 HABAC Model Formalization Part I: Basic Sets and Components 41

4.2 HABAC Model Formalization Part II: Attributes Authorization Function . 42

4.3 EGRBAC Configuration in HABAC . 47

4.4 AA for HABAC Use Case . 52

4.5 PDRA array for HABAC Use Case . 53

4.6 UDRAA for HABAC Use Case . 53

4.7 The output of EGRBAC Constructing Approach on HABAC Use Case . . . 63

5.1 HyBACRC Model Formalization Part I: Basic Sets and Dynamic Attributes 71

5.2 HyBACRC Model Formalization Part II: Attributes Authorization Function 72

5.3 HyBACAC Model Formalization Part I: Basic Sets and Components 79

5.4 HyBACAC Model Formalization Part II: Attributes Authorization Function 81

5.5 One User Sending Requests to Multiple Devices 88

5.6 Multiple Concurrent Instances of One User Sending Request to One Device. 88

5.7 Multiple Users Sending Requests to One Device 88

5.8 HyBACRC Configuration in HyBACAC 90

5.9 AA for The Use Case Described in Figure 5.10 97

5.10 PDRA array for The Use Case Described in Figure 5.10 98

xii

5.11 UDRAA for The Use Case Described in Figure 5.10 98

5.12 The output of HyBACRC Constructing Approach on The Use Case De-

scribed in Figure 5.10 . 113

5.13 Evaluating Smart Home IoT Access Control Models Against Basic Criteria 114

xiii

LIST OF FIGURES

1.1 Overview of Contribution . 7

2.1 The Core RBAC Model [48] . 11

2.2 ABACα Model Components [66] . 12

3.1 EGRBAC Architecture (adapted from [51]) 21

3.2 EGRBAC Model Components . 23

3.3 EGRBAC Use Case Configuration . 27

3.4 Local Request Processing . 34

3.5 Remote Request Handling in Our System 35

4.1 HABAC Model . 40

4.2 HABAC Use Case Configuration . 45

4.3 The Authorization Policy of Use Case 1 in DNF Format 51

4.4 Initial Set of Roles Before Running the Role Merging Algorithm 59

5.1 Smart Home IoT HyBACRC Model . 67

5.2 HyBACRC Use Case: Basic Configuration 75

5.3 HyBACRC Use Case: Attributes Authorization Function 76

5.4 Smart Home IoT HyBACAC Model . 77

5.5 Use Case Configuration in HyBACAC : Basic Configuration 80

5.6 Use Case Configuration in HyBACAC : Authorization Function 81

5.7 Enforcement Architecture (adapted from [51]) 83

5.8 Local Request Handling in Our System 86

5.9 The Attribute Authorization Function of The Use Case Described in in Fig-

ure 5.3 in DNF Format . 91

5.10 Smart Home Use Case Configuration in HyBACAC 95

xiv

5.11 The Attribute Authorization Function of The Use Case Described in Figure

5.10 in DNF Format . 96

5.12 Initial Set of Roles Before Running the Role Merging Algorithm 106

5.13 Initial Authorization function Before Running the Role Merging Algorithm 106

5.14 Authorization function After Running the Role Merging Algorithm 107

xv

CHAPTER 1: INTRODUCTION

The Internet of Things (IoT), sometimes called the Internet of Everything or the Industrial Inter-

net, is a new technology paradigm envisioned as a global network of physical objects (things) that

are embedded with sensors, software, and other technologies for the purpose of connecting and

exchanging data with other devices and systems over the Internet [9, 73]. Currently, IoT is one

of the most talked about topics in technology. It has already become an indispensable component

of our lives. It has attracted many applications including consumer applications (smart homes,

elder care, etc.), organizational applications (medical and health care, vehicular communication

systems, etc.), industrial applications (manufacturing, agriculture, etc.), infrastructure applications

(smart cities, energy management, etc.), and military applications (Internet of Battlefield Things).

It is widely recognized that the potential benefits of IoT can be fully realized only in combina-

tion with cloud computing. Cloud support enables long-term storage of the massive amounts of

data produced by IoT devices and the compute-intensive analysis of this data to improve overall

operations, especially in the context of the limited capacity of IoT devices. Moreover, cloud sup-

port enables data and analytical sharing. Hence the concept of cloud-enabled IoT (also sometimes

called cloud-assisted IoT).

One of the most popular domains for deploying smart connected devices is the smart home. A

“smart home” can be defined as a residence equipped with a network of physical objects (things)

that are embedded with sensors, softwares, and other technologies to connect and exchange data

with other devices, users, and systems over the Internet. Smart homes main purposes are to antic-

ipate and respond to the needs of the occupants, working to promote their comfort, convenience,

security and entertainment through the management of technology within the home and connec-

tions to the world beyond [15].

Access control is concerned with limiting the activity of legitimate users [102]. It defines who

has access to what, when and in which conditions. In other words, access control is any mechanism

by which a system grants or revokes the right to access some data or perform some action. In

1

general, access control requires both authentication and authorization techniques. Authentication

is any process by which a system verifies the identity of a user who wishes to access the system.

Authorization determines what an authenticated user can or cannot do in the system. Our focus in

this dissertation is on authorization (also called access control) while authentication is outside the

scope.

Soon IoT will be part of every home turning our houses into smart houses, in which we have

multiple users with complex social relationships between them using the smart devices. Neverthe-

less, surprisingly little attention has been paid to access control policy specification and enforce-

ment in home IoT [59]. As illustrated in [59], the characteristics that make IoT distinct from prior

computing domains necessitate a rethinking of access control and authentication.

In this research, we studied the literature on IoT access control models, analyzed it, and for-

mulated criteria that need to be satisfied in smart home access control models. Moreover, for IoT

access control models that govern user to device access, we analyzed them against our criteria.

Notably, no prior model satisfies all desired specifications.

Our goal is to address the lack of widely adopted access control models for smart home IoT. We

believe the best approach for this purpose is to develop a family (or series) of models ranging from

relatively simple and complete to incorporating increasingly sophisticated and comprehensive fea-

tures. Developing such a family has been successful in the past, most notably in the seminal role-

based access control (RBAC) models of [48, 101]. Other access control model families have been

published in a variety of contexts including usage control [92], role-based delegation [24], on-line

social networks [34,49], attribute-based access control (ABAC) [66] and relationship-based access

control [13]. The complexities of the smart home IoT environment similarly merits development

of a suitable family of access control models.

We followed four different approaches to develop four different access control models for smart

home IoT. Each model is formally defined and illustrated with use cases and proof of concept

implementation. Finally, we analyze and compare these models. Here, one might argue that why

just the home environment, how about the general IoT context? As we mentioned earlier, smart

2

homes have unique characteristics, hence, they require a special access control model. However,

this model can be altered, and adjusted to conform with the access control specifications of other

IoT domains.

1.1 Motivation

Soon IoT will affect all industries and everyone’s daily life. This requires usable authentication

and sophisticated access control specification mechanisms that are currently lacking.

In rapidly evolving IoT domains, stored data and information are always at considerable risk

from unauthorized actors and malicious attackers. Security and privacy in IoT are primary factors

that will enable wide adoption of IoT, especially at the consumer level. It is generally accepted by

most researchers that access control is a critical service in IoT.

Providing an appropriate access control model for IoT services is a vital but challenging topic.

Indeed, authentication and authorization issues have been intensively investigated through existing

protocols for use cases outside constrained environments. The deployment of resource constrained

devices along with the adoption of a plethora of technologies enlarges the attack surface and intro-

duces new security vulnerabilities [89,97]. Insecure access to the web, backend APIs (Application

Programming Interfaces), cloud, and mobile interfaces are among the top vulnerabilities for IoT

applications. Smart devices are typically configured and controlled via vendor apps, which can

have a smartphone-based interface and a web-based interface through a service running on a cloud

infrastructure. Services expose a web-API that allows to query and control user data and devices

from the same vendor and other compliant devices from other vendors. Services from vendors can

be composed with third party services e.g. Facebook, Instagram using IFTTT web service. In this

complex IoT ecosystem access control should be enforced at each of these interfaces. However,

commercial IoT frameworks fall short in implementing access control to these interfaces [97].

The shortcoming in applying access control policies in IoT applications leads to devices and

apps being easily exploited to gain unauthorized access to devices and to users and devices data

[44, 59, 89]. The need arises for dynamic and fine-grained access control mechanisms, where

3

users/resources are constrained [89].

To date, IoT security and privacy research has focused on such devices’ insecure software-

engineering practices, improper information flows, and the inherent difficulties of patching net-

worked devices. Surprisingly little attention has been paid to access control policy specification, or

authentication in home IoT [59]. Real world examples of the shortcomings of current access con-

trol policy specification and authentication for home IoT devices have begun to appear as described

in [59], [114], and [61]. On the other hand, authorization issues have been explored extensively

for many different domains. However, home IoT is significantly different from traditional domains

such as enterprise, electronic commerce, and web services in three main ways:

1. In home IoT we have many users who use the same device, for example a smart door lock.

Widely deployed techniques for specifying access-control policies and authenticating users

fall short when multiple users share a device [59].

2. House residents usually have complex social relationship between them, which introduce a

new threat model, e.g. a annoying child trying to control the smart light in a sibling’s room,

a current or ex-partner trying to abuse one or all house residents [59, 78].

3. The majority of IoT devices do not have screens and keyboards making them hands free for

convenience while making authentication and access control more challenging.

The characteristics that make IoT distinct from prior computing domains necessitate a rethink-

ing of access control and authentication [59]. In particular, the need arises for a dynamic and

fine-grained access control mechanism, where users and resources are constrained [89].

1.2 Problem Statement and Solution Approach

In the literature, several access control models have been proposed for IoT in general. The majority

of them are built on ABAC or RBAC. Some researchers argue that RBAC is more suitable for IoT

since it is simpler in management and review, while ABAC is complex [17, 67, 68]. On the other

4

hand, others argue that ABAC models are more scalable and dynamic, since they can capture

different devices and environment contextual information [26, 27, 121].

Hence, when it comes to smart homes, at this point it is not fully clear what is the benefit of

ABAC over RBAC, or vice versa. Our intuitive insight is that a hybrid model will better capture

smart home IoT access control requirements as this was already the case for traditional access

control application domains. In order to further investigate this intuition our approach is to de-

velop pure RBAC and pure ABAC based models explicitly defined to meet smart home challenges,

and compare their benefits and drawbacks. This comparison will provide insights to guide us in

designing adequate hybrid models.

1.3 Thesis Statement

The established paradigms of role-based and attribute-based access control can be utilized, adapted,

and extended to provide fine-grained and dynamic authorization approaches for user to device

access in smart home IoT. A detailed analysis of these approaches, their formal models, and im-

plementation can eventually be utilized to develop hybrid access control models that combine

role-based and attribute-base access control features to meet smart home IoT challenges.

1.4 Scope and Assumption

In smart houses we recognize two types of adversaries [59]. First an outsider hacker who is trying

to get digital or physical access to the house by exploiting system vulnerabilities. Second the

household members themselves, that is insiders who have legitimate digital and physical access to

the house, such as family members, guests, and workers. The intention for legitimate user to break

down the access control system of the smart home may vary from curiosity (e.g. a kid playing

with oven setting), disturbing other family members (e.g. a kid locking his brothers outside the

house), to disobedience (e.g. a kid is trying to watch TV outside the allowed entertainment time),

or robbery (e.g. a worker getting access to the camera system and adjust it to shutdown at a certain

time). Making sure that those legitimate users get access only to what they are authorized to by

5

the house owner, is the central focus of our paper. We emphasize that authorized insiders who try

to hack the access control system, or to break the IoT devices to get an unauthorized access to the

system are outside the scope of our threat model.

Some of the assumptions taken during this work are as follows:

• All developed four modelsEGRBAC,HABAC,EGRBACRC , andEGRBACAC assume

that enforcing constraints should be imposed by the administrative model and is outside the

scope of the developed operational models.

• The EGRBAC model assumes that environment conditions are determined by sensors de-

ployed in the smart home under home owner control. How each sensor get triggered an

hence activate its corresponding environment condition is outside the scope of this model.

• The HABAC and HyBACAC models assume that dynamic attribute functions are deter-

mined by sensors deployed in the smart home under home owner control. The mechanism

by which these attributes get triggered is outside the scope of the access control model.

• HyBACRC model assumes that environment conditions, dynamic attribute functions are

determined by sensors deployed in the smart home under the control of the home owner.

Triggering those sensor mechanisms are outside the scope of the model.

1.5 Summary of Contributions

Figure 1.1 presents an overview of the contributions of this dissertation as discussed below.

1. This dissertation analyzes IoT access control models proposed in the literature, and smart

home IoT access control challenges to formulate criteria that need to be maintained in future

proposed access control models. Furthermore, it evaluates literature on IoT access control

models against this criteria.

2. This dissertation presents EGRBAC, which is a formally defined RBAC based model for

smart home IoT access control. Furthermore, it illustrates the model with a use case scenario,

6

Figure 1.1: Overview of Contribution

and demonstrates its applicability with a proof of concept implementation.

3. This dissertation proposes HABAC, an ABAC based access control model for smart home

IoT. It illustrates the model with a use case scenario.

4. This dissertation proposes approaches for constructingEGRBAC specification fromHABAC

specification and vice versa. It analyzes EGRBAC relative to HABAC. It compares the

theoretical expressive power of these models, and discusses the insights for practical deploy-

ment of these models.

5. This dissertation proposes two hybrid models for smart home IoT access control (HyBACRC

and HyBACAC). While HyBACRC is a role-centric combined ABAC and RBAC model,

HyBACAC is an attribute-centric combined ABAC and RBAC model. These models meet

smart home IoT access control requirements. Moreover, for each model, this dissertation

provides a formal definition, use case demonstration, and a proof of concept implementa-

tion.

6. This dissertation proposes approaches for constructingHyBACRC specification fromHyBACAC

specification and vice versa. It analyzes HyBACRC relative to HyBACAC . It compares the

7

theoretical expressive power of these models, and discusses the insights for practical deploy-

ment of these models.

1.6 Organization of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 provides a brief background on the

topics which form a foundation for this dissertation. Moreover, it discusses relevant related work in

the literature. Chapter 3 proposes a criteria for home IoT access control models. It also introduces

the extended generalized role based access control (EGRBAC) model for smart home IoT. It further

demonstrates the model through a use case scenario and a proof of concept implementation. Chap-

ter 4 introduces the smart home IoT attribute-based access control model (HABAC). Furthermore,

it provides an analysis of HABAC relative to the previously EGRBAC. It compares the theoretical

expressive power of these models by providing algorithms for converting an HABAC specification

to EGRBAC and vice versa. Chapter 5 presents two hybrid models for smart home IoT access

control. It formally defines these models, and illustrates their features through a use case scenario

demonstration. A proof of concept implementation for each model is also provided. Chapter 5

compares the theoretical expressive power of these two hybrid models by providing approaches

for converting between the models. Finally, it provides a comprehensive theoretical comparison

between the four smart home IoT access control models introduced in this dissertation. Finally,

Chapter 6 summarizes and concludes the paper. It also provides a brief overview of potential work.

8

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

This chapter discusses related work along with concepts and required background of prior research

relevant to this dissertation. First it highlights the widely adopted role-based access control model

(RBAC), and attribute-based access control model (ABAC). Moreover, it investigates the concept

of combining ABAC and RBAC models, and the suggested combining approaches in the literature.

Finally, related work in IoT access control is briefly discussed.

2.1 Access Control Models

Access control (sometimes referred as authorization) is concerned with limiting the activity of le-

gitimate users [102]. It defines who has access to what, when and in which conditions. In other

words, access control is any mechanism by which a system grants or revokes the right to access

some data or perform some actions. The Common Criteria defines an organizational security pol-

icy as: a set of security rules, procedures, or guidelines imposed (or presumed to be imposed) now

and/or in the future by an actual or hypothetical organization in the operational environment [60].

Such an organizational security policy usually relies on an access control policy [60]. An access

control model is often used to rigorously specify and reason on the access control policy (e.g., to

verify its consistency). However, the model does not specify how the security policy is enforced.

The enforcement should be realized by technical security mechanisms, such as credentials, cryp-

tographic transformations (e.g., signature, encryption), access control lists (ACLs), and firewalls

among others [89].

Three most significant and widely known access control models are Discretionary Access

Control (DAC) [102], Mandatory Access Control (MAC) [102], and Role-Based Access Control

(RBAC) [?, 100, 101]. While each of them has their advantages, they also have shortcomings.

In DAC, owners of objects control access of users to the objects. When a user requests access

to an object, the request is checked against the defined policy for that object from the owner which

determines either to grant or deny the access request. Access control list (ACLs), capabilities

9

and relations are some ways to implement DAC. It is simple and straightforward model but has

inherent weaknesses, such as copying problem and Trojan horses which can be easily exploited to

gain unauthorized access to sensitive information.

MAC or lattice-based access control (LBAC) model overcomes this underlying limitation of

DAC. It was specifically designed for military applications where confidentiality is the main con-

cern. It has strict information flow policies that assigns subjects and objects with security levels

which restricts unauthorized information flow. The security levels or sensitivity for objects reflects

the kind of information they have and its impact after unauthorized disclosure, whereas the secu-

rity clearance for subjects is based on their ranking and trustworthiness in the enterprise. A user

is allowed to operate or access the information in the objects if certain predefined relationships (or

properties) are satisfied by the two security levels in question.

Both DAC and MAC are based on fixed, predetermined policies. Whereas, RBAC is a more

flexible and administrative friendly access control model [30]. It determines accesses based on

roles assigned to the users and permissions associated with these roles on specific objects. It is the

most popular access control model in the industry. However, it also has some well-known limita-

tions such as role explosion and role-permission explosion [96]. Motivated by the limitations of

the traditional access control models, attribute-based access control (ABAC) has recently received

significant attention in the literature [30]. Some other access control models proposed include

provenance based access control (PBAC) [91], relationship based access control (ReBAC) [34],

and Capability-based access control (CapBAC) [64]. PBAC uses the provenance information at-

tached with the underlying data, which offers utilities as usage information, versioning or pedigree

information, to provide access controls. ReBAC [34] enables permissions based on the relation-

ship among users and primarily used in online social networks (OSNs). Besides user to user (U2U)

relationship, user to resource (U2R) and resource to resource (R2R) relation have also been used

to control usage and administrative activities of the users in OSNs. CapBAC utilizes the concept

of capability as a token, ticket, or key that gives the possessor permission to access an entity or

object in a computer system.

10

Figure 2.1: The Core RBAC Model [48]

In the following two subsections we give brief overview of RBAC and ABAC since they are

central components in this dissertation.

2.1.1 Role-Based Access Control (RBAC)

The basic concept of role based access control (RBAC) model [48, 100] is that permissions are

associated with roles, and users are made members of appropriate roles, thereby acquiring the

roles’ permissions. operation. In this approach, an administrator creates roles that represent spe-

cific tasks and assigns permissions to those roles (permission-role assignment), and these roles

are then assigned to users (user-role assignment). RBAC is capable of enforcing both DAC and

MAC models [87]. Major cloud platforms such as Amazon AWS [3], Microsoft Azure [10], and

OpenStack [1] utilize role-based access control model as their authorization foundation.

The NIST standard of RBAC [48] comprises of these four components: Core RBAC, Hierar-

chical RBAC, Static Separation of Duty Relations, and Dynamic Separation of Duty Relations.

Amongst them, Core RBAC model with five basic elements (users (USERS), roles (ROLES), ob-

jects (OBS), operations (OPS), and permissions (PRMS)) is shown in Figure 2.1. RBAC is policy-

neutral [101], auditable, offers permission and user-level abstraction, and provides operational and

administrative scalability through roles. However, it also has some well-known limitations such as

11

Figure 2.2: ABACα Model Components [66]

role explosion and role-permission explosion [96]. Furthermore, in RBAC, access control policies

can only be defined on basis of roles which restricts access control flexibility.

2.1.2 Attribute-Based Access Control (ABAC)

RBAC has been a de facto standard access control model for over the last quarter century. How-

ever, motivated by the limitations of the traditional access control models, attribute-based access

control (ABAC) has recently received significant attention in the literature [30]. The basic idea

of attribute-based access control is to employ attributes (characteristics or properties) of different

entities to make access control decisions regarding a subject’s (e.g., user, process, etc.) access on

an object (e.g., file, printer, database, etc.) in a system. The access control decisions are evaluated

based on authorization policies specified by an administrator using a policy specification language.

Authorization policies are defined using policy language which includes attributes that the users

and objects should have to satisfy the policy and determine access control decision. Moreover, to

further fine grain the access decision, other contextual and environment attributes can be used.

The concept of ABAC has been around for close to three decades in the literature with attribute

based access control models designed for specific applications [106, 117] and attribute-based en-

cryption [52, 83] for securely sharing objects or data. However, recently academia and standards

12

bodies like National Institute of Standards and Technology (NIST) have gained interest in ABAC

and are considering it as the Next generation Access Control (NGAC) [47]. Jin et al [66] proposed

a unified ABAC model called ABACα which can be configured to enforce DAC, MAC and RBAC

models. Figure 2.2 shows the ABACα model. The core components are users (U), subjects (S),

objects (O), user attributes (UA), subject attributes (SA), object attributes (OA), permissions (P),

authorization policies, and constraint checking policies for creating and modifying subject and

object attributes.

2.1.3 Combining ABAC and RBAC

Table 2.1: Combination Strategies and Options for Integrating Attributes with RBAC [70]

Option U R A Model Permission Mapping
0 0 0 0 undefined -
1 0 0 1 ABAC-basic A1, ..., An → perm

2 0 1 0 undefined -

3 0 1 1
ABAC-RBAC

hybrid
R,A1, ..., An → perm

4 1 0 0 ACLs U → perm

5 1 0 1 ABAC-ID U,A1, ..., An → perm

6 1 1 0 RBAC-basic U → R→ perm

7 1 1 1
RBAC-A, dynamic

roles
U,A1, ..., An → R→

perm

8 1 1 1
RBAC-A,

attribute-centric
U,R,A1, ..., An → perm

9 1 1 1
RBAC-A,

role-centric
U,R,A1, ..., An → perm

The authors in [70] proposed different approaches for combining ABAC and RBAC by adding

attributes to role-based access control policies. The main purpose was to combine the two mod-

els advantages, and to overcome their limitations. Table 2.1 summarizes possible combination

strategies and options for integrating attributes with RBAC suggested by [70]. Options 0 and 2

are undefined but included for completeness; options 1 and 3, which have no user ID in the access

decision, might appear unusual but could be used in public facilities where attributes or roles de-

termine anonymous users’ access. Options 0 and 2 are undefined but included for completeness;

13

options 1 and 3, which have no user ID in the access decision, might appear unusual but could be

used in public facilities where attributes or roles determine anonymous users’ access.

Broadly speaking, there are three RBAC-A approaches to handle the relationship between roles

and attributes, all retaining some of the administrative and user permission review advantages

of RBAC while allowing the access control system to work in a rapidly changing environment:

dynamic roles, attribute-centric, and role-centric. Dynamic roles uses user and context attributes

for assigning roles to users dynamically, similar to attribute-based user-role assignment. Attribute-

centric approach assume roles as another attribute of users. Role-centric approach curtails the

permissions of a role based on user attributes

2.2 IoT Access Control Models

IoT has been extensively studied by security experts. Many researchers have focused on identify-

ing IoT security and privacy vulnerabilities [21, 37, 39, 53, 86, 107, 116]. Moreover, to analyze IoT

security challenges and security design issues in specific, many researchers have conducted studies

of IoT frameworks (e.g. [44, 45, 57, 62, 80, 86]). One of the critical security services in IoT that

mostly all researchers agree upon is access control. Ouaddah et al [89] have extensively investi-

gated access control in IoT environments. He et al [59] have recently proposed a new perspective

of access control policies specifications for home IoT. However, few solutions in the literature are

proposed specifically to meet smart home IoT challenges

The rest of this section provides an analysis of IoT access control models from the literature.

The models are categorized according to their foundational model, viz., RBAC, ABAC, UCON

and CapBAC.

2.2.1 IoT Access Control Models Based On RBAC

Covington et al [36] developed GRBAC for aware homes which introduced the notion of environ-

ment and device roles, to capture environmental conditions and to enable devices categorization

respectively, but did not give a formal model. Subsequently they provided a brief but incomplete

14

formalization without implementation [35]. In [122] the authors extended RBAC by introduc-

ing context constraints. However, they mainly focused on the environment of web services. Re-

searchers in [25, 67] proposed two different solutions, but both of them are focused on Web of

Things [38, 110]. Their models are not adequate for smart homes. In the first solution, the archi-

tecture is completely centralized in a central access control decision facility coupled to a database,

whereby access control decisions are taken outside the house requiring a live connection and in-

creasing the attack surface. On the other hand, the main drawback of the second solution is the

strong attachment to Social Network Services (SNS). Resource owners and requesters must have

an SNS profile or account to interact with each other which is unsuitable in case of smart homes

where we have kids that may not have a social network account, and we may have workers with

whom one may not want to connect in social networks, like a plumber who should access the house

for one time. Moreover, this solution introduces the SNS provider as a trusted third party. In [68]

an attribute-role based hybrid access control model was introduced for IoT in general and not spe-

cific to smart homes. Also, no implementation was provided. The RBAC model for IoT was also

adopted in [74]. However, the authors focus on providing an authentication protocol, while they

only gave a high level overview of their RBAC model.

2.2.2 IoT Access Control Models Based on ABAC

In [26], the authors introduced an ABAC-based model that focuses on device to device access

control in smart homes. However, use cases and performance evaluation are lacking. Other access

control models that are based on ABAC for IoT were proposed in [23, 81, 119, 121]. However, as

observed by [17], it is not simple to design and implement an adequate ABAC model for IoT given

that the implementation of ABAC usually requires heavy computation, which cannot be supported

by constrained smart things. Furthermore, increasing the number of attributes can significantly

increase the chance of conflict among the access policies, and it is not easy to detect and resolve

these conflicts. Finally, identifying a set of sufficient attributes is critical, but also challenging. We

should mention here that in [81], and [119] the authors focused on providing sophisticated attribute

15

based encryption (ABE) models for smart grids, while they did not discuss the ABAC models that

they consider. Moreover, an ABE model for smart grids may not be suitable for computationally

constrained smart home things. In [56] the authors introduced a formalized dynamic, and fine

grained ABAC model for smart cars, which is not applicable to the smart home case. Recently,

Bhatt et al [28] proposed a conceptual attribute based access control and communication control

model for IoT. However, their access control model doesn’t capture environment attributes.

2.2.3 IoT Access Control Models Based on CapBAC

Much work has been done in the literature using CapBAC in IoT. The major drawback in CapBAC

model is that it requires that all devices must implement CapBAC, which is unlikely given the

heterogeneity of a home smart things. Moreover, in CapBAC individual devices or gateways should

act as policy decision points, which can be inconvenient on computationally and power constrained

devices. Authors in [89] gives a survey on solutions proposed using CapBAC model.

2.2.4 IoT Access Control Models Based on UCON

The distinguishing properties of usage control (UCON) beyond traditional ABAC are the conti-

nuity of access decisions and the mutability of subject and object attributes [90, 92, 123]. A few

solutions have been proposed in the literature that are based on UCON. However, these models

cannot be adopted yet for various reasons. In [54], the model is proposed as a Device to Services

(D-S) access control model, moreover, no implementation was provided, instead, only two theoret-

ical experiments were introduced and assessed. In [71], the authors mainly focused on providing a

distributed Peer-to-Peer (P2P) architecture. They did not consider how to use their system to grant

users access to different smart things in the house. Finally in [77], the authors did not consider

justifying and illustrating the fitness of their model for smart home IoT access control challenges.

16

2.2.5 IoT Access Control Models Based on Blockchains

Some solutions built on blockchain technology have been proposed (e.g. [41, 84, 88]. However,

as [84] described, the blockchain technology has some technical characteristics that could limit

its applicability. First, cryptocurrency fees are typically a fundamental part of blockchain-based

platforms. All the transactions include a fee. Second, processing time, transactions take time to

get accepted into the blockchain.

2.2.6 IoT Access Control Models Based on Other Models

In the literature, several other access control models for IoT have been proposed. The authors

in [17, 89, 94, 97, 125] provide surveys on these. However, none of them provided an access con-

trol model that meet smart home IoT challenges and at the same time formalized, justified and

implemented.

17

CHAPTER 3: ROLE-BASED ACCESS CONTROL MODEL FOR SMART

HOME IOT AND RELATED CRITERIA (EGRBAC)

In this chapter, we propose a criteria for smart home IoT access control models. Moreover, we

introduce the extended generalized role based access control (EGRBAC) model for smart home

IoT. EGRBAC is a dynamic and fine-grained model, suitable for constrained home environments.

We provide a formal definition of the model and illustrate its features by a use case scenario.

We further provide an analysis of the beneficial attributes of EGRBAC as well as its limitations.

Finally, we provide a proof-of-concept implementation in Amazon Web Services (AWS) IoT plat-

form, followed by discussion of future enhancements. Significant portion of this chapter build on

the following publication [19] with some revisions and updates.

S. Ameer, J. Benson and R. Sandhu, "The EGRBAC Model for Smart Home IoT," 2020 IEEE

21st International Conference on Information Reuse and Integration for Data Science (IRI), 2020,

pp. 457-462.

3.1 Criteria for Smart Home IoT Access Control Models

He et al [59] have recently proposed a new perspective of access control policies specifications

for home IoT. They identify four access control policy characteristics that need to be maintained

in smart homes, as follows. (i) Access control should be fine-grained at the level of individual

operations on devices (called capabilities in [59]) rather than at the device level. (ii) The complex

social relationships between the house members play an important role in access control policies.

(iii) Smart home IoT access control policies are highly impacted by contextual factors. (iv) There

are some commonly occurring preferences amongst home users that can be configured as a default

setting.

Here, we introduce our specifications for smart home IoT access control models. The first two

characteristics are inspired by He et al [59] perspective. We believe that a smart home IoT access

control model (whether it is device to device (D-D), user to device (U-D) or both) should exhibit,

18

at least, the following characteristics.

1. The model should be dynamic so as to capture environment and object contextual informa-

tion.

2. The model should be fine-grained so that a subset of the functionality of a device can be

authorized rather than all-or-nothing access to the device.

3. Smart things in homes are usually limited in term of computational power, and storage.

Furthermore, a generic interoperability standard among IoT devices is still missing. Accord-

ingly, the model should be suitable for constrained smart home devices. In other words, it

should not require extensive computation or communication by those constrained devices.

4. The model should be constructed specifically for smart home IoT, or otherwise be interpreted

for the smart home domain such as by appropriate use cases, to ensure that the model is

suitable for smart home different specifications such as, social relationships between house

members, cost effectiveness, usability, and so on.

5. The model should be demonstrated in a proof-of-concept to be credible using commercially

available technology with necessary enhancements.

6. The model should have a formal definition, so that there is a precise and rigorous specifica-

tion of the intended behavior.

We analyzed IoT access control models proposed in the literature based on these six characteris-

tics. A summary of the analysis is provided in Table 3.1. In this table we only included access

control models that govern user to device access, since this is the scope of our research. The IoT

access control models in Table 3.1 are based on RBAC [48, 69, 100], ABAC [63, 66], UCON [93]

or CapBAC [89]. Going beyond the models in this table, some approaches based on blockchain

technology have been proposed (e.g. [41,84,88]. However, as [84] described, the blockchain tech-

nology has some technical characteristics that could limit its applicability such as, cryptocurrency

fees and slow processing time. The authors in [17, 89, 125] provide surveys on additional models

19

Table 3.1: Characteristics of IoT Access Control Models

Model Type Model U-D or D-D Dynamic Fine Grained

Suitable for
constrained

home
environment

Designed or
interpreted for

smart home
IoT

Implemented
Provides a

formal Access
Control Model

RBAC Model Covington et al [36] U-D yes no yes yes no no
RBAC Model Zhang et al [122] U-D and D-D yes yes yes no no yes

RBAC Model Barka et al [25] U-D and D-D no yes no no no
utilizes

RBAC [101]
RBAC Model Jindou et al [67] U-D no yes no no yes yes
RBAC Model Kaiwen et al [68] U-D yes yes yes no no yes
RBAC Model Liu et al [74] U-D no yes yes no no no
ABAC Model Ye et al [121] U-D and D-D yes no no no no yes

ABAC Model Bandara et al [23] U-D no yes yes no yes
utilizes

XACML [98]
ABAC Model Mutsvangwa et al [81] U-D N/A N/A no no no no
ABAC Model Xie et al [119] U-D and D-D N/A N/A no no no no

UCON Model Martinelli et al [77] U-D yes yes yes no yes
utilizes

U-XACML
[31, 72]

CapBAC Model A survey is provided in [89] Not adequate for the constrained environment of smart homes as explained in Section 2.2.3.

beyond Table 3.1 such as focused on D-D only. From the table we can notice that, no model satis-

fies all desired characteristics. Furthermore, surprisingly, except for [36], no model was designed

or interpreted explicitly for smart home environment.

3.2 EGRBAC Model for Smart Home IoT

In this section we define the EGRBAC (Extended Generalized Role-Based Access Control) model.

3.2.1 Motivation

Smart homes have been a vision of future society. IoT plays an important role to make home

smarter by introducing smart devices and sensors that are capable of interacting together and to

end users.

Providing an appropriate access control model for IoT services is a vital but challenging topic.

The deployment of resource constrained devices along with the adoption of a plethora of technolo-

gies enlarges the attack surface and introduces new security vulnerabilities [89,97]. The shortcom-

ing in applying access control policies in IoT applications leads to devices and apps being easily

exploited to gain unauthorized access to devices and to users and devices data [44, 59, 89]. Real

world examples of the shortcomings of current access control policy specification and authentica-

20

Figure 3.1: EGRBAC Architecture (adapted from [51])

tion for home IoT devices have begun to appear as described in [59], [114], and [61]. Security and

privacy in IoT are primary factors that will enable wide adoption of IoT especially at the consumer

level. It is generally accepted by most researchers that access control is a critical service in IoT.

To date, IoT security and privacy research has focused on such devices’ insecure software-

engineering practices, improper information flows, and the inherent difficulties of patching net-

worked devices. Surprisingly little attention has been paid to access control policy specification,

or authentication in home IoT [59]. Authorization issues have been explored extensively for many

different domains. However, as discussed in Section 1.1, the characteristics that make IoT distinct

from prior computing domains necessitate a rethinking of access control. In particular, the need

arises for a dynamic and fine-grained access control mechanism, where users and resources are

constrained [89].

21

3.2.2 Background

In this section we introduce GRBAC (Generalized Role Based Access Control) model [36]. EGR-

BAC is in part inspired by this model. We also present an IoT based smart home architecture [51],

which we adopted to enforce EGRBAC.

The GRBAC Model

Covington et al introduced the Generalized Role-Based Access Control (GRBAC) model [36]. In

addition to the usual concept of User Roles, GRBAC incorporates the notion of Object Roles and

Environment Roles. A user role is analogous to the traditional RBAC role. An object role is defined

as the properties of the resources in the system, such as images, source code, streaming videos,

devices. An environment role is defined as the environment state during access. Covington et

al [35] subsequently described an architecture to support environment roles activation according

to the current environment conditions. They also provided a high level but incomplete formal

definition of environment role based access control model, building upon [101]. They did not

consider formalizing the object role part of GRBAC. In this paper, we provide a more fine grained

model with a detailed formalization. However, we used devices instead of objects since it is more

appropriate for smart homes.

IOT Based Smart Home Architecture

The smart home IoT architecture that we adopted for EGRBAC enforcement was introduced by

Geneiatakis et al [51]. It is illustrated in Figure 3.1. The IoT devices are connected to a corre-

sponding hub and are not directly accessed by other devices or by users. The intermediate hub is

responsible for providing Internet connectivity, since the majority of commercial sensors do not

provide direct Internet connectivity. The communication between the smart hub and the IoT de-

vices is usually wireless, through different protocols such as Zigbee, Z-Wave and WiFi. In order to

connect the smart IoT devices optionally, to the outside world, the hub is connected to the home’s

routers via an Ethernet or a Wi-Fi interface. In general there are two types of access. In local

22

Figure 3.2: EGRBAC Model Components

access users directly interact with the IoT devices through the connectivity services provided by

the hub. In remote access users access IoT devices via cloud services, which in turn communicate

with the smart hub via the Internet to access these devices.

3.2.3 EGRBAC Formal Definition

Figure 3.2 depicts the components of EGRBAC, and Table 3.2 formally defines these. Sets are

shown as ovals in Figure 3.2, while the binary relations amongst them are shown as directed ar-

rows with the single arrow indicating “one” and the double arrow “many.” An arrow ending in a

dot indicates a subset rather a single element of that set (as in one end of EA and RPEA). A solid

arrow represents assignment, a dashed arrow indicates a derived relation via mathematical defini-

tions, for example, RPRA and RPEA relations are determined by definition from RP and hence

are derived relations rather than independent assignments. Dotted arrows represent constraints.

Users (U), Roles (R), and Sessions (S) are familiar sets in RBAC systems. A user is a hu-

man being who interacts with smart home devices as authorized. In context of smart homes, a

role specifically represents the relationship between the user and the family, which encompasses

parents, kids, neighbors and such [59]. The many-to-many UA relation specifies the assignment

23

Table 3.2: EGRBAC Model Formalization

Users, Roles and Sessions
−U and R are sets of users and roles respectively (home owner specified)
−UA ⊆ U ×R, many to many user role assignment relation (home owner specified)

We define the derived function roles(u) : U → 2R, where: roles(ui) = {rj | (ui, rj) ∈ UA}
−S is the set of sessions (each session is created, terminated and controlled by an individual user)
−SU ⊆ S × U , many to one relation assigning each session to its single controlling user

We define the derived function user(s) : S → U , where: user(si) = uj such that (si, uj) ∈ SU
−SR ⊆ S ×R, many to many relation that assigns each session to a set of roles that can be changed by the controlling user

We define the derived function roles(s) : S → 2R, where: roles(si) = {rj | (si, rj) ∈ SR}
It is required that roles(s) ⊆ roles(user(s)) at all times

Devices, Operations, Permissions and Device Roles
−D is the set of devices deployed in the smart home (home owner deployed)
−OP and P ⊆ D ×OP are sets of operations and permissions respectively (device manufacturers specified)
−DR is the set of device roles (home owner specified)
−PDRA ⊆ P ×DR, many to many permissions to device roles assignment (home owner specified)

We define the derived function droles(p) : P → 2DR, where: droles(pi) = {drj | (pi, drj) ∈ PDRA}
Environment Conditions and Environment Roles
−EC is the set of boolean environment conditions (determined by sensors deployed in the smart home under home owner
control)

At any moment each eci ∈ EC is either True or False depending on the state of the corresponding sensor
−ER is the set of environment roles (home owner specified)
−EA ⊆ 2EC × ER, many to many environment role activation relation (home owner specified)

At any moment, er ∈ ER is activated iff (∃(eci1, eci2, . . . , ecin), er) ∈ EA)[eci1 ∧ eci2 ∧ . . .∧ ecin = True] at that moment
Role Pairs
−RP ⊆ R× 2ER, many to many role pairings of user role and subsets of environment roles (home owner specified)

For rp = (ri, ERj) ∈ RP , we define rp.r = ri and rp.ER = ERj
We define the derived relation RPRA ⊆ RP ×R where: RPRA = {(rpm, rn) | rpm ∈ RP ∧ rpm.r = rn}
We define the derived relation RPEA ⊆ RP × 2ER where: RPEA = {(rpm, ERn) | rpm ∈ RP ∧ ERn = rpm.ER}

Role Pair Assignment
−RPDRA ⊆ RP ×DR, many to many RP to DR assignment (home owner specified)
Constraints
−PRConstraints ⊆ 2P × 2R, many to many permission-role constraints relation (home owner specified)

For each (Pi, Rj) ∈ PRConstraints it is required that
(∀pm ∈ Pi)(∀rn ∈ Rj)(∀(rpp, drq) ∈ RPDRA)[(pm, drq) /∈ PDRA ∨ rpp.r 6= rn]
−SSDConstraints ⊆ R× 2R, many to many static separation of duty constraints relation (home owner specified)

For each (ri, Rj) ∈ SSDConstraints it is required that (∀u ∈ U)(∀r ∈ Rj)[(u, r) ∈ UA =⇒ (u, ri) /∈ UA]
−DSDConstraints ⊆ R× 2R, many to many dynamic separation of duty constraints relation (home owner specified)

For each (ri, Rj) ∈ DSDConstraints it is required that (∀s ∈ S)(∀r ∈ Rj)[(s, r) ∈ SR =⇒ (s, ri) /∈ SR]
CheckAccess Predicate
−CheckAccess is evaluated when session si attempts operation opk on device dj while the environment conditions in ECl
are True
−CheckAccess(si, opk, dj , ECl) evaluates to True or False using the following formula:

(∃(rpm, drn) ∈ RPDRA) [((dj , opk), drn) ∈ PDRA ∧ (si, rpm.r) ∈ SR ∧
rpm.ER ⊆ {er ∈ ER | (∃EC ′l ⊆ ECl)[(EC ′l , er) ∈ EA]}]

24

of users to roles. An example of a user with two different roles is a neighbor who is assigned the

neighbor role, but also happens to be a plumber who needs temporary access to repair an appliance

and so should have different set of privileges for that purpose in a worker role. Users establish

sessions during which they may activate a subset of the roles they are assigned to. A user might

have multiple sessions active simultaneously. SU is a many to one relation that maps each session

to its unique controlling user. SR is a many to many relations that maps each session to the set of

roles associated with it. The function roles maps each user to the set of roles assigned to it. The

function user maps each session to its unique user creator.

A Device (D) is a smart home device such as a smart TV. Operations (OP) represent actions on

devices as specified by device manufacturers. A permission is an approval to perform an operation

on one device, i.e. it is a device, operation pair. The set of permissions P is a subset of D ×

OP . In EGRBAC, Device Roles (DR) are means of categorizing permissions of different devices

(different from GRBAC where Device Roles categorize devices including all their permissions).

For example, we can categorize the dangerous permissions of various smart devices by creating a

device role called dangerous devices and assigning dangerous permissions (such as, turning on the

oven, turning on the mower, and opening and closing the front door lock) to it. The many-to-many

PDRA relation specifies this assignment. The function droles maps each permission to the set of

device roles assigned to it.

Environment Roles (ER) are a GRBAC innovation representing environmental contexts, such

as daytime/nighttime, and winter/summer. Environment roles are turned on/off (i.e., triggered) by

Environment Conditions (EC) such as daylight, or weather. The environment activation assign-

ment relation EA maps each environment role to a subset of EC. Suppose Entertainment_Time

should be active on weekend evenings. We can use weekends, active during weekends, and

evenings, active during evenings, and assign ({weekends, evenings}, Entertainment_Time)

to EA. Each role pair is a combination of a role and currently active environment roles. A role

pair rp has a role part rp.r that is the single role associated with rp, and an environment role part

rp.ER that is the subset of environment roles associated with rp. The permissible role pairs RP

25

are specified as a subset of R× 2ER, since some ER subsets may not be meaningful. The derived

relation RPRA associates each role to one or more role pairs. Similarly, RPEA associates each

role pair to a subset of ER. RPDRA brings all these components together by assigning device

roles to role pairs, and hence, for each role pair rp, the single role associated to it through RPRA

can get access to all device roles assigned to it through RPDRA, when the set of environment

roles which are associated to rp through RPEA are active.

The main idea in EGRBAC as a whole is that a user is assigned a subset of roles and, according

to the current active roles in one of his sessions and the current active environment roles, some

role pairs will be active, whereby in that same session the user will get access to the permissions

assigned to the device roles which are assigned to the current active role pairs.

Table 3.2 also formalizes the component Constraints which is discussed in Section 3.2.5.

The bottom part of Table 3.2 formalizes the authorization check access predicate of EGRBAC.

Consider a session si which attempts to perform an operation opk on a device dj when the subset

of environment conditions ECl are active. This operation will succeed if and only if there is a

role pair rpm and a device role drn assigned to each other in RPDRA such that the following

conditions are true. (i) drn is assigned to the permission (dj, opk) in PDRA. (ii) rpm.r is one of

the active roles of si (as given in SR). (iii) Each environment role er ∈ rpm.ER is active because

it is activated by a subset of the currently active environment conditions ECl.

3.2.4 EGRBAC Use Case

We present a use case to illustrate the components and configurations of EGRBAC. The objectives

are: (a) Allow kids accesses to a subset of capabilities (On, Off, PG, but not R) in entertainment

devices (TV, DVD, and PlayStation) during weekend evenings only. (b) Authorize parents to use

dangerous capabilities of dangerous devices (i.e lock and unlock the door lock, switch on and off

the oven) at any time. (c) Authorize parents, babysitter, guests, and neighbors to use entertainment

devices any time unconditionally.

EGRBAC can be configured as shown in Figure 3.3 to achieve these objectives. The five users

26

U = {alex, bob, susan, james, julia}
R = {kids, parents, babySitters, guests, neighbors}
UA = {(alex, kids), (bob, parents), (susan, babySitters),

(james, guests), (julia, neighbors)}

D = {TV,DV D,P layStation, FrontDoorLock,Oven}
OP = OPTV ∪OPDVD ∪OPPlayStation ∪OPFrontDoorLock ∪OPOven, where

OPTV = {OnTV ,OffTV , GTV , PGTV , RTV },
OPDVD = {OnDVD,OffDVD, GDVD, PGDVD, RDVD},
OPPlayStation = {OnPlayStation,OffPlayStation, GPlayStation, PGPlayStation, RPlayStation},
OPFrontDoorLock = {LockFrontDoorLock, UnlockFrontDoorLock},
OPOven = {OnOven,OffOven}

P = PTV ∪ PDVD ∪ PPlayStation ∪ PFrontDoorLock ∪ POven, where
PTV = {TV } ×OPTV ,
PDVD = {DVD} ×OPDVD,
PPlayStation = {PlayStation} ×OPPlayStation,
PFrontDoorLock = {FrontDoorLock} ×OPFrontDoorLock,
POven = {Oven} ×OPOven
Let P1 = {TV } × {OnTV ,OffTV , GTV } ∪ {DVD} × {OnDVD,OffDVD, GDVD}∪

{PlayStation} × {OnPlayStation,OffPlayStation, GPlayStation}

DR = {Dangerous_Devices,Entertainment_Devices,Kids_Friendly_Content}
PDRA = (PTV ∪ PDVD ∪ PPlayStation)× {Entertainment_Devices}∪

P1 × {Kids_Friendly_Content}∪
(POven ∪ PFrontDoorLock)× {Dangerous_Devices}

EC = {weekends, evenings, TRUE}
ER = {Entertainment_Time,Any_Time}
EA = {({weekends, evenings}, Entertainment_Time), (TRUE,Any_Time)}

RP = {(kids, {Entertainment_Time}), (parents, {Any_Time}),
(babySitters, {Any_Time}), (guests, {Any_Time}),
(neighbors, {Any_Time})}

RPDRA = {((parents, {Any_Time}), Dangerous_Devices),
((kids, {Entertainment_Time}),Kids_Friendly_Contents),
((parents, {Any_Time}), Entertainment_Devices),
((babySitters, {Any_Time}), Entertainment_Devices),
((guests, {Any_Time}), Entertainment_Devices),
((neighbors, {Any_Time}), Entertainment_Devices)}

Figure 3.3: EGRBAC Use Case Configuration

27

alex, bob, susan, james, and julia, are respectively assigned to roles kids, parents, babysitters,

guests and neighbors. The devices comprise TV , DVD, PlayStation, FrontDoorLock, and

Oven. Each device has different permissions as indicated in PTV , PDVD, PPlayStation, PFrontDoorLock

and POven. Also P1 is a subset of PTV ∪ PDVD ∪ PPlayStation.

We have three device roles with PDRA assigning PTV , PDVD, and PPlayStation permissions

to Entertainment_Devices, P1 to Kids_Friendly_Content, and POven and PFrontDoorLock to

Dangerous_Devices.

Three environment conditions, weekends, evenings and TRUE are defined to be respectively

active on weekends, evenings and always. EA specifies that the environment role

Entertainment_Time is active when both environment conditions weekends and evenings are

active while Any_Time is always active.

RPDRA has the following assignments. The role pair (parents, {Any_Time}) is assigned to

the device roleDangerous_Devices, whereby parents can use permissions POven and PFrontDoorLock

without environmental restrictions. The role pair (kids, {Entertainment_Time}) is assigned to

the device role Kids_Friendly_Content, so that kids are restricted to P1 permissions and only

when the environment role Entertainment_Time is active. The role pairs

(parents, {Any_Time}), (babySitters, {Any_Time}), (guests, {Any_Time}),

(neighbors, {Any_Time}) are assigned to the device roleEntertainment_Devices so that users

with these roles can use all permissions on Entertainment_Devices at any time.

3.2.5 EGRBAC Constraints

An important component in EGRBAC is Constraints. A constraint is an invariant that must be

maintained at all times. Constraints are an integral part of RBAC and ABAC models [29, 48, 101].

In EGRBAC, we define three types of constraints, as follows.

Permission-role constraint. These constraints prevent specific roles from getting access to specific

permissions. In the use case above, the permissions embodied in theDangerous_Devices role are

assigned to the (parents, {Any_Time}) role pair in RPDRA. However, this does not prevent as-

28

signment of Dangerous_Devices to other role pairs, perhaps even to (kids, {Any_Time}). The

latter assignment could happen inadvertently or maliciously. Permission-role constraints prevent

such situations.

Formally, PRConstraints ⊆ 2P × 2R constitute a many to many subset of permissions to

subset of roles relation. Each prc = (Pi, Rj) ∈ PRConstraints specifies the following invariant

for every pm ∈ Pi and every rn ∈ Rj:

(∀(rpp, drq) ∈ RPDRA)

[(pm, drq) /∈ PDRA ∨ rpp.r 6= rn]

Thus, it is forbidden to assign any device role that pm is assigned to, to any role pair with rn as

the role part. EGRBAC use case shown in Figure 3.3 can be augmented with the constraint shown

below.

PRConstraints = {(PFrontDoorLock ∪ POven), R \ {parents})}

This will prevent the assignment of any permissions in PFrontDoorLock or POven to role pairs with

the role part being any role except for parents.

Static Separation of Duty (SSD). This is the familiar SSD in RBAC. It enforces constraints on the

assignment of users to roles. In other words, if a user is authorized as a member of one role, the

user is prohibited from being a member of a second conflicting role [99].

Formally, SSDConstraints ⊆ R × 2R constitute a many to many role to a subset of mutu-

ally exclusive roles relation. Each ssdc = (ri, Rj) ∈ SSDConstraints specifies the following

invariant:

(∀u ∈ U)(∀r ∈ Rj)[(u, r) ∈ UA⇒ (u, ri) /∈ UA]

Thus, it is forbidden to assign any role that is in Rj to any user to whom ri is assigned.

Dynamic Separation of Duty (DSD). This is the familiar DSD in RBAC. With DSD it is permis-

sible for a user to be authorized as a member of a set of roles which do not constitute a conflict

29

of interest when acted in independently, but produce policy concerns when allowed to be acted

simultaneously [99] in the same session.

Formally, DSDConstraints ⊆ R × 2R constitute a many to many role to a subset of ac-

tive mutually exclusive roles relation. Each dsdc = (ri, Rj) ∈ DSDConstraints specifies the

following invariant:

(∀s ∈ S)(∀r ∈ Rj)[(s, r) ∈ SR⇒ (s, ri) /∈ SR]

Thus, it is forbidden for any session that has role ri active to also have any role rn ∈ Rj active.

3.2.6 EGRBAC Analysis and Limitations

Model Analysis

In the following we analyze EGRBAC against our criteria for smart home IoT which proposed

in Section 3.1. According to our criteria, a smart home IoT access control model (whether it is

device to device (D-D), user to device (U-D) or both) should be fine grained, dynamic, suitable for

constrained home environment, designed and interpreted for smart home IoT, Implemented and

tested, and formally defined.

Dynamic We consider our model as a dynamic model. Environment conditions and environment

roles allow us to give different users access rights to different capabilities under specific environ-

ment contextual factors. Moreover, device roles enable our model to give users access to some

permissions, or to some devices based on different contextual characteristics.

Fine grained As illustrated in EGRBAC use case Figure 3.3, our model is able to give users access

to some permissions within a single device without the need to give them the access to the entire

device, which makes it a capability centric model instead of a device centric model.

Suitable for constrained home environment Our model is suitable for constrained smart home

environment for two main reasons: (a) It is built on top of RBAC model, which is considered as

a simple model. EGRBAC exploits the organizational power of roles for grouping environment

states and objects, in addition to subjects. It authorizes or revokes access based on roles instead

30

of on an individual basis. Establishing a set of roles in a small or medium-sized environment such

as houses is not a challenging task. (b) The enforcement architecture that we adopt (see Section

3.2.2) includes the component smart hub, which facilitates transferring the policy decision engine

to a trusted local device. This enables devices to collect and analyze data externally, but closer

to the source of information, react autonomously to local events, and communicate securely with

each other on local networks. Having such setting allows smart homes to enforce EGRBAC model

without the need to incorporate advanced or computationally intensive smart things. Moreover,

mediating each request through smart hub instead of directly accessing the smart devices solves

the heterogeneity problem of IoT devices.

Designed and interpreted for smart home IoT Our model is developed to fit smart home IoT access

control challenges. This model is dynamic, fine grained , and captures the complex relationships

between home users.

Implemented and tested Our model is demonstrated with an illustrative use case, an AWS imple-

mentation that captures local, and remote access for smart home devices as described in Section

3.2.7, and a performance analysis.

U-D or D-D Our model ia a U-D access control model.

Provides a formal Access Control Model Our model is formally structured, and defined as illus-

trated in Table 3.2.

Policy Conflicts

Conflicting policies may occur when you have negative policies, where you prevent specific roles

from accessing specific permissions. In EGRBAC model our policies are positive policies where

you give roles access to specific permissions by assigning appropriate role pairs to appropriate

device roles. Instead of negative policies, EGRBAC uses constraints to prevent a specific role rn

from accessing a specific permission pm during configuration time. (see Section 3.2.5).

31

Usability and Expressiveness

One of the important aspects that need to be considered in smart home access control models is

usability, since smart home residents are usually constrained, and not willing to deal with compli-

cated systems. We believe that at this point it would be premature to conduct a usability study for

EGRBAC. This model is our first step toward building a set of models ranging from relatively sim-

ple and complete to incorporating increasingly sophisticated and comprehensive features. It still

needs to be further developed and extended. Another important aspect is expressiveness, wether

the system is capable of expressing policies that depict users requirements. Our smart home IoT

access control model criteria which is introduced in Section 3.1 incorporates the new perspective of

access control specifications recently introduced by He et al [59]. He et al validated the expressive-

ness of their specifications by conducting an online survey-based user study of 425 participants.

As we discussed earlier in Section 3.2.6 our model meets our criteria which implies that it meets

He et al perspective. However, in order to deploy this model for commercial uses, a more general

sophisticated expressiveness study should be conducted.

Limitations

EGRBAC does not handle device to device communication. Furthermore, it doesn’t consider con-

tinuous verification for access control authorized policies, where the authorization predicate is only

examined at the time of request but does not support ongoing controls for relatively long-lived op-

erations or for immediate revocation.

3.2.7 Proof-Of-Concept Implementation

Here, we describe a proof-of-concept implementation of EGRBAC. We simulated the use case

provided in Figure 3.3 using AWS (Amazon Web Services) IoT service [4]. The simulation illus-

trates how the access control model and policies can be configured to establish the applicability of

our model utilizing commercially available systems. Moreover, we executed multiple test cases to

measure the processing time in different scenarios.

32

An AWS account is required to configure and deploy the AWS IoT service known as Green-

grass. The Greengrass SDK (Software Development Kit) extends cloud capabilities to the edge,

which in our case is the smart home. This enables devices to collect and analyze data closer to

the source of information, react autonomously to local events, and communicate securely on local

networks [6].

In our system Greengrass serves as a smart hub and a policy engine. It runs on a dedicated

virtual machine with 1 virtual CPU and 2 GB of RAM running ubuntu server 16.04.5 LTS. Through

AWS IoT management console, one virtual object (aka digital shadow) is created for each physical

device and the two are cryptographically linked via digital certificates with attached authorization

policies. Each simulated device is running on a separate virtual machine. These devices use

MQTT protocol to communicate to the AWS IoT service with TLS security. Since the environment

conditions in our use case are time based, they are directly sensed by Greengrass.

To enforce EGRBAC, we utilized two Json files UserRoleAssignment.json and policy.json,

where UserRoleAssignment.json defines the assignments of users to their corresponding roles

while policy.json defines all other EGRBAC components relevant to the use case. We also uti-

lized the lambda function service in AWS IoT platform [7] to receive the operation requests of

users to access the smart devices in the house, analyze each request according to the content of

the policy.json and UserRoleAssignment.json files, and finally trigger the desired actions on the

corresponding simulated devices. Code was in Python 2.7 and running on a long-lived lambda

function with 128 MB Memory Limit, 30 second timeout. The lambda function, the UserRoleAs-

signment.json file, and the policy.json file are all configured in the Greengrass. We should mention

that our system is a default deny system.

Figure 3.4, illustrates how the communication is handled in our implementation when the user

tries to send operation request to turn on a smart TV through his mobile phone while he is inside

the house. In this case, a request is sent via MQTT protocol to the virtual object (or local shadow)

corresponding to his phone in Greengrass. There is a publish/subscribe relation between the user’s

phone, and the local shadow through the user’s private topic User/Shadow/Update. The user’s

33

Figure 3.4: Local Request Processing

phone publishes to the topic User/Shadow/Update, and the local shadow gets notified with the re-

quest. After that, the local shadow publishes to the user’s private topic User/Shadow/Update, and

then since the lambda function is subscribed to this topic it analyzes the request according to the

policy.json and UserRoleAssignment.json files and makes a decision wether to allow the user to

turn on the TV or not. At this point, there are two cases, either permission is granted or denied. If

permission is denied, the lambda function publishes to the user’s public topic User/Status/Update,

the local shadow gets notified and updates the user’s phone that the permission was denied. The

smart TV in this case does not get an indication that a user attempted to access it. If permis-

sion is granted, the smart TV local shadow is notified through the device’s private topic De-

vice/Shadow/Update and updates the smart TV with the turn on command. After the smart TV

is turned on, it publishes to the device’s private topic Device/Shadow/Update and the TV local

34

Figure 3.5: Remote Request Handling in Our System

shadow is notified which further notifies the lambda function by publishing to the device’s pub-

lic topic Device/Status/Update. The lambda function then notifies the user phone’s local shadow

which in turn updates the user’s phone that the TV was turned on successfully.

Figure 3.5, illustrates how the communication is handled in our implementation in case of re-

mote access. If a user Bob is trying to turn on the oven using his smart phone from a remote

place. First, a request is sent through the HTTP send protocol to the cloud’s synchronized shadow

state of the user device, in this case the user’s phone. Once the user’s phone state is changed on

the cloud, the cloud forwards the message to the local Greengrass lambda by publishing to the

user’s private topic User/Shadow/Update, the lambda receives the request, analyzes it according

35

to the access control policies defined in the policy.json file and the UserRoleAssignment.json file

and makes a decision to allow the user to turn on the oven or no. If the access is granted, the

lambda function will send the request to the smart device Greengrass’s local shadow by publish-

ing to the device’s private topic Device/Shadow/Update, the local shadow will get the request and

will automatically update the smart device (smart oven in this case) to turn on. When the smart

device perform the operation, it notifies its local shadow by publishing to the device’s private topic

Device/Shadow/Update, the local shadow then notifies the lambda by publishing to the device’s

public topic Device/Status/Update, the lambda then updates the user’s phone local shadow by pub-

lishing to the user’s public topic User/Status/Update. The user’s phone local shadow automatically

synchronizes this state to the cloud shadow which in turn notifies the user’s phone that the request

has been served. On the other hand, if the decision was not to allow this operation to be per-

formed, the lambda function would publish to the user’s public topic User/Status/Update, the local

shadow would get notified and would automatically synchronize this state to the cloud’s synchro-

nized shadow state of the device. The cloud’s shadow would then update the user’s phone through

the http send protocol that the permission was denied and the user has no right to turn on the oven.

The smart oven, in this case, would never get an indication that a user attempted to access it.

Performance results

We executed multiple test cases to measure the processing time in different scenarios. In our

performance testing, we implemented the configuration of Figure 3.3. In the following test cases,

we measure the average lambda function execution time under different conditions. Table 3.3

shows the average lambda function execution time when we send multiple requests from one user

to multiple devices. The first, second, and third rows show the average time when the parent Bob

requests to unlock the door lock, the average time when Bob requests to turn on the oven, the TV,

and the DVD at the same time, and the average time when Bob requests to unlock the door lock,

turn on the oven, the TV, the DVD, and the playStation at the same time respectively. All the

requests were approved as they were supposed to according to our configured policies. Table 3.4

36

Table 3.3: One User Sending Requests to Multiple Devices

Number of Users Number of devices Lambda Processing Time in ms. Total Number of requests

1 1 1.029138 1000
1 3 1.236029 3000 (1000 per request)
1 5 1.202856 5000 (1000 per request)

Table 3.4: Multiple Concurrent Instances of One User Sending Request to One Device.

Number of Users Number of devices Lambda Processing Time in ms. Total Number of requests

1 1 1.029138 1000
3 3 1.796938 3000 (1000 per request)
5 5 2.833097 5000 (1000 per request)

Table 3.5: Multiple Users Sending Requests to One Device

Number of Users Number of devices Lambda Processing Time in ms. Total Number of requests

1 1 1.029138 1000
3 1 0.955529 3000 (1000 per request)
5 1 0.956221 5000 (1000 per request)

shows the average lambda function execution time when we send multiple requests from multiple

users to multiple devices (one user per device) at the same time. The first, second, and third row

show the average time when the parent Bob requests to unlock the door lock, the average time when

Bob requests to unlock the door lock, the kid Alex requests to turn on the oven, and the babysitter

Susan requests to turn on the TV at the same time, the average time when the three access requests

tested in the second row are carried again in addition to, the guest James requests to turn on the

DVD, and the neighbor Julia requests to turn on the playStation. The system responded correctly

where all the requests were approved except for when the kid Alex requests to turn on the oven.

We can conclude that when the number of requests for different users and different devices (one

user per device) increases, the lambda processing time also increase. Finally, Table 3.5 shows

the average lambda function execution time when we send multiple requests from multiple users

to one device at the same time. The first, second, and third rows show the average time when

the parent (1 user), the parent, the kid, and the babysitter (3 users), or the parent, the kid, the

babysitter, the guest, and the neighbor (5 users) respectively all request to unlock the door at the

37

same time. The system responded correctly where all the requests were denied except for when

the parent Bob requests to unlock the door lock. Here, we can see that the average of the lambda

processing time decreases when we have more denies. This result is expected since in order to

approve a request, our policy checking engine (the lambda function) implemented to check for the

authorization predicate explained in Table 3.2 need to verify each condition in the authorization

predicate. On the other hand, if only one of the authorization predicate conditions is violated

the lambda function will deny the request without the need to check the rest of the authorization

predicate. To conclude, our system takes more time when approving a request than when denying

it. Overall, our model is functional, and can be easily applied. Moreover, we can notice that the

execution time is generally low.

38

CHAPTER 4: ATTRIBUTE-BASED ACCESS CONTROL MODEL FOR

SMART HOME IOT (HABAC)

In this chapter, we introduce the smart home IoT attribute-based access control model (HABAC).

HABAC is a dynamic and fine-grained model that is developed specifically to meet smart home

IoT challenges. This chapter provides an analysis of HABAC relative to the previously introduced

EGRBAC (extended generalized role based access control) model. It compares the theoretical ex-

pressive power of these models by providing algorithms for converting an HABAC specification

to EGRBAC and vice versa, and discuss the insights for practical deployment of these models

resulting from these constructions. Major sections of this chapter are based on the following pub-

lication [20] with some revisions and modifications.

Safwa Ameer, and Ravi Sandhu. "The HABAC Model for Smart Home IoT and Comparison to

EGRBAC." Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical

Systems. 2021.

4.1 Motivation

In the literature, several access control models have been proposed for IoT in general. The majority

of them are built on ABAC or RBAC. Some researchers argue that RBAC is more suitable for IoT

since it is simpler in management and review, while ABAC is complex [17, 67, 68]. On the other

hand, others argue that ABAC models are more scalable and dynamic, since they can capture

different devices and environment contextual information [26, 27, 121]. However, RBAC models

can be extended, such as the recent EGRBAC model [19] for smart home IoT which can express

environment and device characteristics. RBAC enforcement may also be more lightweight for

constrained home environment.

Hence, when it comes to smart homes, at this point it is not fully clear what is the benefit of

ABAC over RBAC, and vice versa. Our intuitive insight is that a hybrid model will better capture

smart home IoT AC requirements as this was already the case for traditional access control appli-

39

Figure 4.1: HABAC Model

cation domains. In order to further investigate this intuition our approach is to develop pure RBAC

and pure ABAC based models explicitly defined to meet smart home challenges, and compare their

benefits and drawbacks. This comparison will provide insights to guide us in designing suitable

hybrid models.

4.2 HABAC Model for Smart Home IoT

ABAC models utilize attributes of users, sessions (subjects), objects, operations and environment

to specify flexible, dynamic, and fine grained authorization policies. These characteristics arguably

make ABAC suitable for deployment in complex domains such as smart home IoT. In this section,

we introduce our HABAC (Home-IoT Attribute Based Access Control) model developed for user

to device interaction in smart home IoT.

4.2.1 HABAC Formal Definition

The HABAC model is inspired by the ABAC model of Xin et al [66], extended to include envi-

ronment attributes. Figure 4.1 depicts HABAC components. Users (U), Operations (OP), Devices

(D), and Environment States (ES) are sets and shown in ovals. User/Session Attributes (USA),

40

Table 4.1: HABAC Model Formalization Part I: Basic Sets and Components

Basic Sets and Functions
−U is a finite sets of users (home owner specified)
−S is the set of sessions (each session is created, terminated and controlled by an individual user)
−The function user(s) : S → U maps each session to its unique creator and controlling user
−D is the set of devices deployed in the smart home (home owner deployed)
−OP is the set of possible operations on devices (device manufacturers specified)
−The function ops : D → 2OP specifies the valid operations for each device (device manufacturers specified)
−ES = {current} is a singleton set where current denotes the environment at the current time instance
Attribute Functions and Values
−USA,DA,OPA and ESA are user/session, device, operation and environment-state attribute functions respectively,

where for convenience we require USA,DA,OPA and ESA to be mutually exclusive
−Each session s inherits a subset of the attribute functions in USA from its unique user creator (controlled by the session

creator user(s)). For every inherited attribute function att ∈ USA, att(s) = att(user(s)) at all time
Unless otherwise specified use of a non-inherited session attribute in a logical formula renders that formula false
−For each attribute att in USA ∪DA ∪OPA ∪ ESA, Range(att) is the attribute range, a finite set of atomic values
−attType : USA ∪DA ∪OPA ∪ ESA→ {set, atomic}.
−Each att ∈ USA ∪DA ∪OPA ∪ ESA correspondingly maps users in U /sessions in S, devices in D, operations in OP or

the environment state current to atomic or set attribute values. Formally:

att : U or S or D or OP or {current} →

{
Range(att), if attType(att) = atomic

2Range(att), if attType(att) = set

−Every att ∈ USA∪DA∪OPA∪ESA, att is designated to be either a static or dynamic attribute where dynamic attributes
must have corresponding sensors deployed in the smart home (under home owner control)
−Static attribute ranges and values are set and changed by administrator actions (by home owner or device manufacturers)
−Dynamic attribute ranges and values automatically determined by sensors deployed in the smart home (under home owner
control)
Constraints
−UAConstraint ⊆ UAP × 2UAP is the user attribute constraints relation (home owner specified) where

UAP = {(usa, v) | usa ∈ USA ∧ v ∈ Range(usa))}
Each uac = ((usax, vy), UAPj) ∈ UAConstraint specifies the following invariant:{
(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[usax(ul) = vy ⇒ usam(ul) 6= vn], if attType(usax) = attType(usam) = atomic

(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[vy ∈ usax(ul)⇒ vn /∈ usam(ul)], if attType(usax) = attType(usam) = set

−SAConstraint ⊆ UAP × 2UAP is the session attribute constraints relation (home owner specified)
Each sac = ((usax, vy), UAPj) ∈ SAConstraint specifies the following invariant:
(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ usax(user(sl)) = vy ∧ usam(user(sl)) = vn ⇒ sl does not inherit usam],

if attType(usax) = attType(usam) = atomic

(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ vy ∈ usax(user(sl)) ∧ vn ∈ usam(user(sl))⇒ sl does not inherit usam],
if attType(usax) = attType(usam) = set

Attributes Authorization Function
−Authorization(s : S, op : OP, d : D, current : ES) is a logic formula defined using the grammar of Table 4.2 (home

owner specified). It is evaluated for a specific session si, operation opk, device dj and environment state current as specified
in Table 4.2

CheckAccess Predicate
−CheckAccess is evaluated when session si attempts operation opk on device dj in context of environment state current
−CheckAccess(si, opk, dj , current) evaluates to True or False using the following formula:
opk ∈ ops(dj) ∧ Authorization(si, opk, dj , current))

41

Table 4.2: HABAC Model Formalization Part II: Attributes Authorization Function

Attributes Authorization Function
−Authorization(s : S, op : OP, d : D, current : ES) is a first order logic formula specified using the following grammar.

• α ::= α ∧ α | α ∨ α | (α) | ¬α | ∃x ∈ set.α | ∀x ∈ set.α |

set setcompare set | atomic ∈ set | atomic /∈ set | atomic atomiccompare atomic

• setcompare ::=⊂|⊆|6⊆

• atomiccompare ::=<|=|≤

• set ::= usa(s) | opa(op) | esa(current) | da(d), where attType(usa) = attType(opa) = attType(esa) =
attType(da) = set

• atomic ::= usa(s) | opa(op) | esa(current) | da(d) | value, where attType(usa) = attType(opa) =
attType(esa) = attType(da) = atomic

−For a specific session si, device dj and operation opk the authorization function Authorization(si, opk, dj , current) is
evaluated by substituting the actual attribute values of usa(si), da(dj), opa(opk) and esa(current) for the corresponding
symbolic placeholders and evaluating the resulting logical formula to be True or False. Any term that references an undefined
attribute value is evaluated as False

Operation Attributes (OPA), Environment State Attributes (ESA), and Device Attributes (DA) are

attribute functions and shown as squares. We have two types of constraints shown in rectangles:

constraints on user attributes, and constraints on session attributes. Table 4.1, and Table 4.2 for-

mally define this model.

Basic Sets and Functions:

Users (U) are humans interacting directly with the smart things. Sessions (S) are similar to the

concept of subjects in [66], users create sessions during which they may perform some actions in

the system, the creating user is the only one who can terminate a session. The function user(s)

maps each session s to its unique user creator. Devices (D) are smart home devices such as a

smart light. Operations (OP) represent actions on devices as specified by device manufacturers.

The function ops(d) maps each device d to the set of valid operations on d. Environment States

(ES = {current}) is a singleton set where current denotes the picture of the environment at

the current time instant. This component can be extended in the future to include other instants

of time such as yesterday, last week, and so on. However, such generalization requires a careful

investigation on how we will track time, and to what extent.

Attribute Functions and Values:

Users, sessions, devices, operations, and environment states have characteristics which are used in

42

access control decision and expressed as their attributes. An attribute is a function which takes an

entity such as a user and returns a specific value from its range. An attribute range is given by a

finite set of atomic values. An atomic valued attribute will return one value from the range, while

a set valued attribute will return a subset of the range. In general, we have two types of attributes:

(a) Static Attributes, this type is relatively static. For example, user relationship, device level of

danger, and so on. Range and values of static attributes need administrator action to be set and

changed. (b) Dynamic Attributes, this type is rapidly changing due to different conditions. For in-

stance, user location, weather, and device temperature. Ranges and values of dynamic attributes are

automatically determined by sensors deployed in the smart home and under home owner control.

User/Session attribute functions (USA) is the set of attributes associated with both users and

sessions. Each session s inherits a subset of the attributes of its unique user creator, this is con-

trolled by the unique user creator user(s). If a session s inherited a user session attribute usa from

his user user(s), then it is required that usa(s) = usa(user(s)). Device attribute functions (DA)

is the set of attributes associated with smart things, for instance, "kitchen devices", and "Alex de-

vices". Operation attribute functions (OPA) is the set of attributes assigned to different operations,

for example you may want to characterize dangerous operations by creating an operation attribute

called "Dangerous Operations" and associate it with those operations. Environment state attribute

functions (ESA) is the set of attributes describe the environment condition of the current instance

of time. For example, "day", "time", and "weather condition". How different environment state

attributes get triggered is outside the scope of our model. Operation, and device attribute functions

are partial functions; we may have some devices, or some operations that are not assigned to some

attributes. On the other hand, users, sessions, and environment state attributes are total functions.

Constraints:

A constraint is an invariant that must be maintained at all times. In HABAC we define two types

of constraints, as follow: (a) Constraints on user attributes: these constraints enforce restrictions

on user attributes. For instance, if we have the following user attribute constraint

((Relationship, kid), {(Adults, T rue)}), this constraint implies that for any user u if kid ∈

43

Relationship(u), then it is required that Adults(u) 6= True. (b) Constraints on session at-

tributes: these constraints enforce restrictions on session attributes. For instance, if we have the

following session attribute constraint: ((Relationship, staying Home Kid), {(Relationship,

travel Abroad Kid)}), this constraint implies that for any session s if staying Home Kid ∈

Relationship(s), then travel Abroad Kid /∈ Relationship(s).

Attributes Authorization Function (Policy):

It is a two-valued boolean function which is evaluated for each access decision. It is defined using

the grammer of Table 4.2. For a specific session si, operation opk, and device dj the authoriza-

tion function Authorization(si, opk, dj, current) is evaluated by substituting the actual attribute

values of usa(si), da(dj), opa(opk) and esa(current) for the corresponding symbolic placehold-

ers and evaluating the resulting logical formula to be True or False. Any term that references an

undefined attribute value is evaluated as False.

Check Access Predicate:

The CheckAccess predicate is evaluated in each access request. When a sessio si attempts opera-

tion opk on device dj in context of environment state current theCheckAccess(si, opk, dj, current)

predicate evaluates to True if the following three conditions satisfied:

• The operation opk is assigned to the device dj by the device manufacturer.

• The authorization function is evaluated to True.

4.2.2 HABAC Use Case

We present a use case to demonstrate the components and configurations of HABAC. The objec-

tives are as follow: (a) Allow kids to use kids friendly operations in entertainment devices (G, PG

contents in TV, and A3 (games for group age below 3 years old), A7 (games for group age below

7 years old) contents in Play Station) during specific time (weekends afternoons and evenings, and

weekdays evenings). (b) Authorize teenagers to use dangerous kitchen devices (Oven) only when

one of the parents is in the kitchen. (c) Authorize teenagers to use non dangerous kitchen devices

44

U = {alex, bob, anne},
USA = {Relationship}
Relationship : u : U → {parent, kid, teenager}
Relationship : s : S → {parent, kid, teenager}
Relationship(alex) = kid
Relationship(anne) = teenager
Relationship(bob) = parent

D = {TV, P layStation,Oven, Fridge, FrontDoor}
DA = {DangerouseKitchenDevices}
DangerouseKitchenDevices : d : D → {True, False}
DangerouseKitchenDevices(Oven) = True
DangerouseKitchenDevices(Fridge) = False

All other values are undefined

ES = {Current}
ESA = {day, time, ParentInKitchen}
day : es : ES → {S,M, T,W, Th, F, Sa}
time : es : ES → {x|x is an hour of a day }
ParentInKitchen : es : ES → {True, False}

OPTV = {G,PG, . . .}
OPPlayStation = {A3, A7, A12, BuyGames, . . .}
OPOven = {ON,OFF}
OPFridge = {Open,Close}
OPFrontDoor = {Lock, Unlock}
OP = OPTV ∪OPPlayStation ∪OPOven ∪OPFridge ∪OPFrontDoor
OPA = {KidsFriendly}
KidsFriendly : op : OP → {True, False}
KidsFriendly(G) = KidsFriendly(A3) = KidsFriendly(A7) = True
KidsFriendly(PG) = KidsFriendly(A12) = KidsFriendly(BuyGames) = False

All other values are undefined

Authorization(s : S, op : OP, d : D, current : ES) ≡
(Relationship(s) = kid∧ ((day(current) ∈ {Sa, S} ∧ 12 : 00 ≤ time(current) ≤ 19 : 00) ∨
(day(current) ∈ {M,T,W, Th, F} ∧ 17 : 00 ≤ time(current) ≤ 19 : 00))∧

KidsFriendly(op) = True) ∨
(Relationship(s) = teenager ∧ ParentInKitchen(current) = True∧

DangerouseKitchenDevices(d) = True) ∨
(Relationship(s) = teenager∧ DangerouseKitchenDevices(d) = False) ∨
(Relationship(s) = teenager∧ (KidsFriendly(op) = True ∨KidsFriendly(op) = False)) ∨
(Relationship(s) = parent)

Figure 4.2: HABAC Use Case Configuration

45

(Fridge) unconditionally. (d) Allow teenagers to use entertainment devices unconditionally. (e)

Allow parents to use any operation in any device unconditionally.

To achieve these objectives, HABAC can be configured as shown in Figure 4.2. Here, we have

three users, alex, bob, and annewith user attributeRelationship set to the values kid, parent, and

teenager respectively. When a user creates a session s, this session will automatically inherit sub-

set of user(s) attributes. We have five devices TV, P layStation,Oven, Fridge and FrontDoor.

Oven, and Fridge are assigned the following device attributes by the house owner Fridge ←

(DangerouseKitchenDevices : False), and Oven← (DangerouseKitchenDevices : True).

We have twelve operations G, PG, A3, A7, A12, BuyGames, ON , OFF , Open, Close, Lock,

and Unlock. These operations are assigned to operation attributes as following, (G, A3, and

A7) ← (KidsFriendly : True), while (PG, A12, BuyGames) ← (KidsFriendly : False).

Since device attribute functions and operation attribute functions are partial functions, all other

operations and devices attributes values are undefined. Any term that references an undefined at-

tribute value is evaluated as false. We have one environment state currentwhich has three attribute

functions (day, time, and ParentInKitchen).

The authorization function is a disjunction of five propositional statements. The first statement

gives kids access to kids friendly operations during weekdays evenings, or weekends afternoon

and evenings. The second statement gives teenagers access to dangerous kitchen devices only

when one of the parents is in the kitchen. The third statement authorizes teenagers to use non

dangerous kitchen devices unconditionally. The fourth statement allows teenagers to access kids

friendly operations, and non kids friendly operations unconditionally. Finally, the fifth statement

gives parents access to anything unconditionally.

4.3 Constructing HABAC From EGRBAC

In this section, we take a further step toward comparing HABAC, and EGRBAC. We introduce

HABAC configuration that translates EGRBAC policies in a manner that they can be implemented

by HABAC. The purpose is to see whether we can fully express any EGRBAC configuration in

46

Table 4.3: EGRBAC Configuration in HABAC

- UHABAC = UEGRBAC
- USAHABAC = {Relationship}
- Range(Relationship) = REGRBAC
- Relationship : u ∈ UHABAC → 2REGRBAC

- Relationship : s ∈ SHABAC → 2REGRBAC

- (∀ui ∈ UHABAC)[Relationship(ui) = {rx|(ui, rx) ∈ UAEGRBAC}]

- UAConstraintHABAC = {uaci}, where:
- ∀(ssdci = (ri, Rj) ∈ SSDConstraintsEGRBAC)[uaci = ((Relationship, ri), UAPj)], where:
UAPj = {(Relationship, rn)|rn ∈ Rj}

- SAConstraintHABAC = {saci}, where:
- ∀(dsdci = (ri, Rj) ∈ DSDConstraintsEGRBAC)[saci = ((Relationship, ri), UAPj)], where:
UAPj = {(Relationship, rn)|rn ∈ Rj}

- ESHABAC = {Current}
- ESAHABAC = EREGRBAC
- (∀esai ∈ ESAHABAC)[esai : es ∈ ESHABAC → {True, False}]

- DHABAC = DEGRBAC , OPHABAC = OPEGRBAC
- DAHABAC = OPAHABAC = DREGRBAC
- (∀dai ∈ DAHABAC) [da : d ∈ DHABAC → {True, False}]
- (∀opai ∈ OPAHABAC)[opa : op ∈ OPHABAC → {True, False}]
- (∀(dry ∈ DREGRBAC , px ∈ {pi|(pi, dry) ∈ PDRAEGRBAC}))[dry(px.op) = True, dry(px.d) = True]

- Initialize the authorization function Authorization(s : SHABAC , op : OPHABAC , d : DHABAC , current :
ESHABAC)
- For each rpdrai = ((ri, ERi), dri) ∈ RPDRAHABAC , we construct an authorization policy as following:

1. SetOfESA = ”TRUE”. ∀(esa ∈ ERi)[SetOfESA = SetOfESA+”∧”+”esa(current) = True”].

2. CurrentAuth = ”ri” + ” ∈ ” + ”Relationship(s)” + ” ∧ ” + ”dri(op) = True” + ” ∧ ” + ”dri(d) =
True” + ” ∧ ” + ”SetOfESA”.

3. Authorization(s : SHABAC , op : OPHABAC , d : DHABAC , current : ESHABAC) ←
Authorization(s : SHABAC , op : OPHABAC , d : DHABAC , current : ESHABAC) + ” ∨ ” +
”CurrentAuth” .

47

HABAC model, and if not which model is more expressive, and in what terms.

The configuration of HABAC for a given EGRBAC configuration is shown in Table 4.3. In this

configuration, for differentiation purposes every EGRBAC component is followed with the suffix

EGRBAC , similarly, every HABAC component is followed with the suffix HABAC .

The goal is to construct HABAC configuration from EGRBAC configuration in such a way

that the authorizations are the same as those under EGRBAC. The inputs are EGRBAC compo-

nent setsREGRBAC , UEGRBAC , UAEGRBAC , ECEGRBAC , EREGRBAC , EAEGRBAC , DREGRBAC ,

PDRAEGRBAC , PEGRBAC , DEGRBAC , OPEGRBAC , RPDRAEGRBAC ,DSDConstraintsEGRBAC ,

and SSDConstraintsEGRBAC . The outputs are UHABAC , USAHABAC , ESHABAC , ESAHABAC ,

OPHABAC , OPAHABAC , DHABAC , DAHABAC , UAConstraint, SAConstraint, and the autho-

rization policy function AuthorizationHABAC(s : S, op : OP, d : D, es : ES).

The set of users, devices, and operations are the same in both systems. Roles are expressed

through the user/session attribute Relationship in HABAC. Relationship is a user/session at-

tribute that takes a user or a session as an input and returns the set of roles assigned to that

user or that session. Static separation of duty constraints SSDConstraints are translated into

user attributes constraints in HABAC. Dynamic separation of duty constraints DSDConstraints

are translated into session attributes constraints in HABAC. Environment roles are translated into

atomic environment state attributes. How to trigger different environment states attributes in re-

sponse to environment’s changes is outside the scope of this model. In EGRBAC device roles are

ways of categorizing permissions. Since we do not have permission attributes in HABAC, and

since a permission is a mapping between a device and an operation, we translate device roles in

EGRBAC into atomic operation attributes and atomic device attributes with a range of values equal

to {True, False}.

The final step is to translate the authorization policies. In EGRBAC it is the RPDRA that

gives specific role pairs and hence users access to specific device roles and hence permissions.

Therefore, we translate each rpdrai = ((ri, ERi), dri) ∈ RPDRA into an authorization policy.

The final authorization policy is the disjunction of every created authorization policy.

48

As a result, we have only one user attribute which is Relationship. The number of user

attributes constraints is equal to the number of SSDConstraints. The number of subject attributes

constraints is equal to the number of DSDConstraints. The number of operation attributes, and

the number of device attributes are equal to the number of device roles. The number of environment

state attributes is equal to the number of environment roles.

In HABAC we can not create something equivalent to EGRBAC PRConstraints. As shown

in Section 3.2.3, in EGRBAC, the way a user get access to specific set of permissions happens

through a series of assignments, the most critical assignment is the RPDRA which assigns role

pairs to device roles. Hence, by controlling RPDRA we can control which role pairs and hence

roles get access to which device roles and hence permissions. In HABAC on the other hand,

we don’t have similar "attack point" that can be controlled to prevent specific access permission.

The only way to make sure that certain users can not get access to specific permissions is by

checking each request to access these permissions and look for those prohibited users. This is a

significant advantage of EGRBAC in which we can enforce such constraints at assignment time

whereas HABAC-like models would need to enforce these at enforcement time. To summarize,

the construction of HABAC shown in Table 4.3 is equivalent to the given EGRBAC configuration

including static and dynamic separation of duty constraints. The claim of equivalence is intuitively

obvious since the construction is effectively one for one and straightforward. A formal argument

can be presented along the lines of [115] but is tedious and does not provide meaningful insight.

4.4 Constructing EGRBAC from HABAC

In this section, we introduce our methodology to construct EGRBAC components and configura-

tions from HABAC policy configuration. Our EGRBAC constructing approach works perfectly for

HABAC policies that contain environment attributes, and static user/session, operation, and device

attribute functions. It can also handles policies that do not involve comparing two different types

of attributes. Furthermore, we found that due to some limitations in EGRBAC, it is either not pos-

sible to capture policies involving dynamic user/session, operation, and device attribute functions,

49

or costly (leads to role explosion).

We followed a bottom-up role engineering approach. Traditional algorithms for translating

ABAC systems into RBAC using bottom-up approach, first represents the ABAC system in UPA

(user-permission assignment) matrix, and then do some sort of role mining. The rows and columns

of the matrix correspond to users and permissions, respectively. If a user is assigned a particular

permission, the corresponding entry of the matrix contains a 1; otherwise, it contains a 0. From this

perspective, role engineering is a process of matrix decomposition, wherein the Boolean matrix

UPA is decomposed into two Boolean matrices (UA and PA), which together give the original

access control policy [79].

EGRBAC is a more sophisticated model than RBAC; since in addition to user roles, it captures

environment, and device characteristics through environment roles, and device roles respectively.

In EGRBAC we do not give access to permissions directly, instead we give access to device roles.

Hence, instead of UPA matrix, we first need to construct a user-device role assignment matrix, we

call it user device role assignment array UDRAA. Moreover, users do not get access to autho-

rized device roles unconditionally, some times specific set of environment roles need to be active.

UDRAA need to capture these information; each cell (ui, drj) in UDRAA contains zero if ui

cannot access drj , contains one if ui can access drj unconditionally, or contains C if ui can access

drj when the set of conditionsC is satisfied, wereC is a set of user/session conditions (for example

role), and environment conditions.

4.4.1 From Authorization policy to Authorization Array

An authorization policy is expressed in a logical clause. First we convert it into a disjunctive

normal form (DNF). All logical formulas can be converted into an equivalent DNF form. Figure

4.3 shows the authorization policy of our HABAC use case which introduced in Figure 4.2 after

following the standard approach to convert it into a DNF format.

We call each conjuncted term a condition. We have session, environment, device, operation,

and mix conditions which are conditions that involve user/session, environment, device, operation,

50

Authorization(s : S, op : OP, d : D, es : ES) ≡
(Relationship(s) = kid∧ day(current) ∈ {Sa, S} ∧ 12 : 00 ≤ time(current) ≤ 19 : 00 ∧
KidsFriendly(op) = True) ∨
(Relationship(s) = kid∧ day(current) ∈ {M,T,W, Th, F} ∧ 17 : 00 ≤ time(current) ≤ 19 :
00 ∧KidsFriendly(op) = True) ∨
(Relationship(s) = teenager ∧ ParentInKitchen(current) = True∧
DangerouseKitchenDevices(d) = True) ∨
(Relationship(s) = teenager∧ DangerouseKitchenDevices(d) = False) ∨
(Relationship(s) = teenager∧KidsFriendly(op) = False) ∨
(Relationship(s) = teenager∧KidsFriendly(op) = True) ∨
(Relationship(s) = parent)

Figure 4.3: The Authorization Policy of Use Case 1 in DNF Format

and any two types of attributes respectively.

In the DNF authorization policy of our HABAC use case mentioned in Figure 4.3 we have seven

conjunctive clauses, each conjunctive clause represents one access authorization rule. To construct

the authorization array we evaluate every ui ∈ U , dj ∈ D, and opk ∈ OP combination against

each conjunctive clause, whenever a combination satisfies every term (condition) in a conjunctive

clause except those conditions which involve environment state attributes, we create a raw (ui, dj ,

opk, current, C) for that combination in the authorization array. Where, C is the set of session

and environment related conditions in the examined conjunctive clause.

Authorizations array (AA): an authorization raw (ui, dj , opk, esl, C) denotes that the user ui

is allowed to perform an operation opk on a device dj during the environment state esl whenever

the set of environment and session conditions in C are satisfied. The AA of the use case in Figure

4.2 is shown in Table 4.4. For illustration purposes each different color represents the authorization

fields for different user.

4.4.2 Approach

The goal is to construct EGRBAC elements, assignments, and derived relations from HABAC poli-

cies in such a way that the authorizations are the same as those under HABAC. In this construction,

for differentiation purposes every EGRBAC component is followed with the suffix EGRBAC , simi-

larly, every HABAC component is followed with the suffix HABAC .

The inputs are HABAC set of usersUHABAC , set of devicesDHABAC , set of operationsOPHABAC ,

USAHABAC , ESAHABAC , OPAHABAC , DAHABAC , and the authorization array AA. The out-

51

Table 4.4: AA for HABAC Use Case

User u Device d Operation op Environment state es Conditions C
alex TV G current X
alex PS A3 current X
alex PS A7 current X
alex TV G current Z
alex PS A3 current Z
alex PS A7 current Z

bob TV G current
{Relationship(s) =

parent}

bob TV PG current
{Relationship(s) =

parent}

bob PS A3 current
{Relationship(s) =

parent}

bob PS A7 current
{Relationship(s) =

parent}

bob PS A12 current
{Relationship(s) =

parent}

bob PS BuyGames current
{Relationship(s) =

parent}

bob Oven ON current
{Relationship(s) =

parent}

bob Oven OFF current
{Relationship(s) =

parent}

bob Fridge Open current
{Relationship(s) =

parent}

bob Fridge Close current
{Relationship(s) =

parent}

bob FrontDoor Lock current
{Relationship(s) =

parent}

bob FrontDoor Unlock current
{Relationship(s) =

parent}

anne TV G current
{Relationship(s) =

teenager}

anne TV PG current
{Relationship(s) =

teenager}

anne PS A3 current
{Relationship(s) =

teenager}

anne PS A7 current
{Relationship(s) =

teenager}

anne PS A12 current
{Relationship(s) =

teenager}

anne PS BuyGames current
{Relationship(s) =

teenager}
anne Oven ON current Y
anne Oven OFF current Y

anne Fridge OPEN current
{Relationship(s) =

teenager}

anne Fridge CLOSE current
{Relationship(s) =

teenager}

X = {Relationship(s) = kid , day(current) ∈ {Sa, S}, 12 : 00 ≤ time(current) ≤ 19 : 00}.
Y = {Relationship(s) = teenager , ParentInKitchen(current) = True} .

Z= {Relationship(s) = kid , day(current) ∈ {M,T,W, Th, F}, 17 : 00 ≤ time(current) ≤ 19 : 00}

52

Table 4.5: PDRA array for HABAC Use Case

DangerouseKitchenDevices
= True

DangerouseKitchenDevices
= False

KidsFriendly = True KidsFriendly = False RemPerm

(TV,G) 0 0 1 0 0

(TV, PG) 0 0 0 1 0

(PlayStation,A3) 0 0 1 0 0

(PlayStation,A7) 0 0 1 0 0

(PlayStation,A12) 0 0 0 1 0

(PlayStation,BuyGames) 0 0 0 1 0

(Oven,ON) 1 0 0 0 0

(Oven,OFF) 1 0 0 0 0

(Fridge,Open) 0 1 0 0 0

(Fridge, Close) 0 1 0 0 0

(FrontDoor, Lock) 0 0 0 0 1

(FrontDoor, Unlock) 0 0 0 0 1

Table 4.6: UDRAA for HABAC Use Case

DangerouseKitchenDevices
= True

DangerouseKitchenDevices
= False

KidsFriendly = True KidsFriendly = False RemPerm

alex 0 0 {X,Z} 0 0

bob
{{Relationship(s) =

parent}}
{{Relationship(s) =

parent}}
{{Relationship(s) =

parent}}
{{Relationship(s) =

parent}}
{{Relationship(s) =

parent}}

anne {Y } {{Relationship(s) =
teenager}}

{{Relationship(s) =
teenager}}

{{Relationship(s) =
teenager}} 0

X = {Relationship(s) = kid , day(current) ∈ {Sa, S}, 12 : 00 ≤ time(current) ≤ 19 : 00}.
Y = {Relationship(s) = teenager , ParentInKitchen(current) = True} .

Z= {Relationship(s) = kid , day(current) ∈ {M,T,W, Th, F}, 17 : 00 ≤ time(current) ≤ 19 : 00}

53

puts are EGRBAC components UEGRBAC , REGRBAC , UAEGRBAC , ECEGRBAC , EREGRBAC ,

EAEGRBAC , RPEGRBAC , RPRAEGRBAC , RPEAEGRBAC , DEGRBAC , OPEGRBAC , PEGRBAC ,

DREGRBAC , PDRAEGRBAC , and RPDRAEGRBAC . The steps are following:

Step 1: Initialization. The set of users, devices, and operations are the same in both systems,

hence UEGRBAC = UHABAC , DEGRBAC = DHABAC , and OPEGRBAC = OPHABAC . For every

operation opi, and device dj pair, where opi is assigned to dj by the device manufacturers, create a

permission.

Step 2: Create the set of device roles DREGRBAC . (a) Create a device role dr for each operation

attribute instance, or device attribute instance. DR here are represented as a condition of the form

opa = x, or da = x. Where x is an instance of the attribute value. (b) Create one device role call it

remaining permissions RemPerm for all the permissions pl = (di, opj), where di is not assigned

to any device attributes, and opj is not assigned to any operation attribute. This device role captures

the cases where some users have access to specific permissions directly without involving device’s

or operation’s attributes.

Step 3: Construct the permission device role assignment array PDRA. It is a many-to-many map-

ping of PEGRBAC set and DREGRBAC set (constructed in Step 2). To construct PDRA we first

make a column for each dr ∈ DREGRBAC , and make a row for each permission p ∈ PEGRBAC .

Then, we fill the array PDRA, where PDRA[i, j] = 1 in two cases, first if for the permission pi

(corresponding to the row i) pi.op or pi.d satisfies the condition corresponding to the device role

of the column j drj . Second, if pi.op is not assigned to any operation attribute, and pi.d is not

assigned to any device attribute, and the device role corresponding to this column is RemPerm.

PDRA[i, j] = 0 otherwise. For every PDRA[i, j] = 1, add the pair (pi, drj) to the set PDRA of

EGRBAC. See Table 4.5 for the PDRA array of our HABAC use case.

Step 4: Construct the user device role authorization array UDRAA from the authorization ar-

ray AA, and PDRA. UDRAA ⊆ UEGRBAC × DREGRBAC , a many to many mapping between

UEGRBAC and DREGRBAC . To construct UDRAA, we first make a raw for each user, and a col-

umn for each device role. Then, for every UDRAA[i, j] ∈ UDRAA we check the AA for every

54

ui, and px combination, where (px, drj) ∈ PDRA. ui is the user corresponding to the raw i, while

drj is the device role corresponding to the column j in UDRAA. Here, we have three cases: (a)

UDRAA[i, j] = 1 if user ui can access all the permissions assigned to the device role drj without

any condition. (b) UDRAA[i, j] = Y , where Y is a set of conditions sets. Each conditions set is

a set of session, and environment conditions that need to be satisfied together for a ui to access all

the permissions assigned to drj . Note that these sets of conditions have to be the same for each

permission assigned to drj . (c) Finally, UDRAA[i, j] = 0 if user ui is not allowed to access all

the permissions assigned to the device role drj , or is allowed to access different permissions in drj

but under different set of conditions. Table 4.6 shows UDRAA for our use case.

Step 5: Construct the rest of EGRBAC elements (REGRBAC , ECEGRBAC , EREGRBAC , RPEGRBAC),

assignments (UAEGRBAC , EAEGRBAC , RPDRAEGRBAC), and derived relations (RPRAEGRBAC ,

RPEAEGRBAC) by following our proposed EGRBAC users and environment roles constructing

algorithm introduced in Section 4.4.3. The set of users roles REGRBAC constructed here is the set

of candidate users roles.

Step 6: Merge similar users roles. To do so, we run our developed role merging algorithm

illustrated in Section 4.4.4.

4.4.3 EGRBAC Users and Environment Roles Constructing Algorithm:

The goal is to Construct EGRBAC elements (REGRBAC , ECEGRBAC , EREGRBAC , RPEGRBAC),

assignments (UAEGRBAC , EAEGRBAC , RPDRAEGRBAC), and derived relations (RPRAEGRBAC ,

RPEAEGRBAC) from UDRAA. See Algorithm 1 for the full algorithm. The input is UDRAA.

The outputs are REGRBAC , UAEGRBAC , ECEGRBAC , EREGRBAC , EAEGRBAC , RPEGRBAC , and

RPDRAEGRBAC . The steps are shown as following:

Step 1: Initialize the following EGRBAC sets REGRBAC = {}, UAEGRBAC = {}, ECEGRBAC =

{}, EREGRBAC = {}, EAEGRBAC = {}, RPEGRBAC = {}, RPDRAEGRBAC = {}, and the fol-

lowing constants m = Number of device roles, n = Number of users.

Step 2: Loop through the columns of UDRAA, Table 4.6 for our HABAC use case. Each column

55

Algorithm 1 EGRBAC Users and Environment Roles Construction
Require: UDRAA
Require: ColumnDR(j): return the device role corresponding to the column j in UDRAA.
Require: RawUser(i): return the user corresponding to the raw i in UDRAA.
Require: ContainsSC(X): Return True if the set of conditions X contains at least one session condition.
Require: ContainsESC(X): Return True if the set of conditions X contains at least one environment

state condition.
Require: IsESC(c): Return True if c is an environment state condition.
Require: ToString(x) : Return the value of x in a string format.

1: Initilize n = Number of users, m = Number of device roles, REGRBAC = {}, UAEGRBAC =
{}, ECEGRBAC = {}, EREGRBAC = {}, EAEGRBAC = {}, RPEGRBAC = {}, and
RPDRAEGRBAC = {},

2: for j ← 1 to m do
3: for i← 1 to n do
4: if UDRAA[i, j] = 1 then
5: erx = Any_Time, ecx = True
6: ECEGRBAC = ECEGRBAC ∪ {ecx}, EREGRBAC = EREGRBAC ∪ {erx}
7: EAEGRBAC = EAEGRBAC ∪ {({ecx}, erx)}
8: SER = {erx}
9: rm = ToString(ColumnDR(j))

10: REGRBAC = REGRBAC ∪ {rm}
11: RPEGRBAC = RPEGRBAC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
12: RPDRAEGRBAC = RPDRAEGRBAC ∪ {(rpz, ColumnDR(j))}
13: UAEGRBAC = UAEGRBAC ∪ {(RawUser(i), rm)}
14: else if UDRAA[i, j] 6= 1 ∧ UDRAA[i, j] 6= 0 then
15: for each X ∈ UDRAA[i, j] do
16: if (¬ContainsSC(X) ∧ ContainsESC(X) then
17: SER = {}
18: for each y ∈ X do
19: Create ecy, and ery
20: ECEGRBAC = ECEGRBAC ∪ {ecy}, EREGRBAC = EREGRBAC ∪ {ery}
21: EAEGRBAC = EAEGRBAC ∪ {({ecy}, ery)}
22: SER = SER ∪ {ery}
23: end for
24: rm = ToString(ColumnDR(j)) +” ∧ ”+ ToString(X)
25: REGRBAC = REGRBAC ∪ {rm}
26: RPEGRBAC = RPEGRBAC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
27: RPDRAEGRBAC = RPDRAEGRBAC ∪ (rpz, ColumnDR(j))
28: UAEGRBAC = UAEGRBAC ∪ {(RawUser(i), rm)}
29: else if (ContainsSC(X) ∧ ¬ContainsESC(X) then
30: erx = Any_Time, ecx = True
31: ECEGRBAC = ECEGRBAC ∪ {ecx}, EREGRBAC = EREGRBAC ∪ {erx}
32: EAEGRBAC = EAEGRBAC ∪ {({ecx}, erx)}
33: SER = {erx}
34: rm = ToString(ColumnDR(j)) +” ∧ ”+ ToString(X)
35: REGRBAC = REGRBAC ∪ {rm}
36: RPEGRBAC = RPEGRBAC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
37: RPDRAEGRBAC = RPDRAEGRBAC ∪ (rpz, ColumnDR(j))
38: UAEGRBAC = UAEGRBAC ∪ {(RawUser(i), rm)}

56

39: else if (ContainsSC(X) ∧ ContainsESC(X)) then
40: SER = {}
41: for each y ∈ {y|(y ∈ X) ∧ IsESC(y)} do
42: Create ecy, and ery
43: ECEGRBAC = ECEGRBAC ∪{ecy}, EREGRBAC = EREGRBAC ∪{ery}
44: EAEGRBAC = EAEGRBAC ∪ {({ecy}, ery)}
45: SER = SER ∪ {ery}
46: end for
47: rm = ToString(ColumnDR(j)) + ” ∧ ” + ToString(X)
48: REGRBAC = REGRBAC ∪ {rm}
49: RPEGRBAC = RPEGRBAC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
50: RPDRAEGRBAC = RPDRAEGRBAC ∪ (rpz, ColumnDR(j))
51: UAEGRBAC = UAEGRBAC ∪ {(RawUser(i), rm)}
52: end if
53: end for
54: end if
55: end for
56: end for

is corresponding to users access rights to a specific device role. Inside each column loop through

the fields of different rows. Here we have two cases:

A. UDRAA[i, j] = 1, according to the way UDRAA was constructed this means the user corre-

sponding to this raw ui can access the device role of this column drj unconditionally. In this case,

the algorithm does the following:

a Creates an environment role erx = Any_Time and add it to the setEREGRBAC , an environment

condition ecx = True and add it to the set ECEGRBAC . Add ({ecx}, erx) to the set EA, this

implies that the environment role Any_Time will always be active. Create a set of environment

roles SER and add erx to it SER = {erx}.

b Creates a role rm = ToString(ColumnDR(j)) which corresponds to accessing this column

device role anytime, and unconditionally. Add this role to the set REGRBAC .

c Defines a role pair rpz, where rpz.r = rm and rpz.ER = SER. Add rpz to the set RPEGRBAC .

d Assigns the role pair rpz to the device role corresponding to this column by adding the pair

(rpz, ColumnDR(j)) to the set RPDRAEGRBAC .

57

e Assigns the role rm to the user corresponding to this raw by adding the pair(RawUser(i), rm)

to the set UAEGRBAC .

B. UDRAA[i, j] 6= 1 ∧ UDRAA[i, j] 6= 0, which means that the user ui can access the device

role drj under specific set of user and environment conditions defined by UDRAA[i, j]. Here,

UDRAA[i, j] is a set of sets of conditions, each set of conditions define a group of session, and

environment conditions that need to be satisfied together in order for the user ui to be able to access

the device role drj . Loop through each set of conditions X ∈ UDRAA[i, j], X satisfies only one

of the three following options:

1. X contains environment conditions only. In this case the algorithm first loops through each

environment condition to create a corresponding environment condition ecy, environment

role ery, and add these environment roles to the set SER. Second, the algorithm creates

a corresponding role which represents accessing this column device role when the set of

environment attributes conditions that form X is satisfied. Finally, it follows the same three

steps c, d, and e explained in the previous case (when UDRAA[i, j] = 1).

2. X contains session conditions only. Here the algorithms follows the same steps explained

in case A (when UDRAA[i, j] = 1). The only difference here is that the created role

corresponds to access this column device role anytime, under the set of user conditions

expressed by X instead of unconditionally as in case A.

3. X contains session and environment conditions. In this case the algorithm creates corre-

sponding environmnet roles, environment conditions, and user role. It then follows the same

three step c, d, and e explained in case A.

4.4.4 Users Roles Merging Algorithm

The main purpose of this algorithm is to merge roles that have similar users assignments. For each

two roles ri, rj which are assigned to the same set of users, the algorithm does the following:

58

r1 ≡ DangerouseKitchenDevices = True ∧ Relationship(s) = parent,
r2 ≡ DangerouseKitchenDevices = True ∧ {Relationship(s) = teenager,

ParentInKitchen(current) = True},
r3 ≡ DangerouseKitchenDevices = False ∧ Relationship(s) = parent ,
r4 ≡ DangerouseKitchenDevices = False ∧ Relationship(s) = teenager ,
r5 ≡KidsFriendly = True ∧ {Relationship(s) = kid,

day(current) ∈ {Sa, S}, 12 : 00 ≤ time(current) ≤ 19 : 00},
r6 ≡KidsFriendly = True ∧ {Relationship(s) = kid,

day(current) ∈ {M,T,W, Th, F}, 17 : 00 ≤ time(current) ≤ 19 : 00},
r7 ≡KidsFriendly = True ∧ Relationship(s) = parent,
r8 ≡KidsFriendly = True ∧ Relationship(s) = teenager,
r9 ≡KidsFriendly = False ∧ Relationship(s) = parent,
r10 ≡KidsFriendly = False ∧ Relationship(s) = teenager,
r11 ≡ RemPerm ∧ Relationship(s) = parent

Figure 4.4: Initial Set of Roles Before Running the Role Merging Algorithm

1. For every role pair rpk, in which the role part of it rpk.r is equal to ri, change the role part

of it to rj (rpk.r = rj).

2. Remove ri from the set of roles REGRBAC .

3. For every (ul, ri) ∈ UAEGRBAC , remove the pair (ul, ri) from the set UAEGRBAC .

4. For every ((ri, ERx), dry) ∈ RPDRAEGRBAC , remove (ri, ERx), dry) from the set

RPDRAEGRBAC , and instead add the pair ((rj, ERx), dry) to the set RPDRAEGRBAC .

See Algorithm 2 for the complete algorithm.

After applying the first five steps of the approach of constructing EGRBAC from HABAC

introduced in Section 4.4.2 on our HABAC use case, we will end up having a set of eleven roles as

illustrated in Figure 4.4. These roles will be assigned to different users as following:

UA = {(alex, r5), (alex, r6), (bob, r1), (bob, r3), (bob, r7), (bob, r9), (bob, r11),

(anne, r2), (anne, r4), (anne, r8), (anne, r10)}.

After running the users roles merging algorithm, the constructed eleven roles will be merged into

three roles only, and the user role assignment set will end up having three pairs as shown in the

following:

R = { ra ≡ r1, r3, r7, r9, r11, rb ≡ r2, r4, r8, r10, rc ≡ r5, r6}.

UA = {(alex, rc), (bob, ra), (anne, rb)}.

59

Algorithm 2 Users Roles Merging Algorithm
Require: REGRBAC : The set of roles
Require: U(r): Returns the set of users assigned to the role r.
Require: RP (r): Returns the set of role pairs associated with the role r. .

1: for each ri, rj ∈ REGRBAC do
2: if U(ri) = U(rj) then
3: for each rpk ∈ RP (ri) do
4: rpk.r = rj
5: end for
6:
7: REGRBAC = REGRBAC \ ri
8:
9: . Delete all UA pairs related to ri

10: for each (ul, ri) ∈ UAEGRBAC do
11: UA = UA \ (ul, ri)
12: end for
13:
14: . Replace all RPDRA pairs related to ri
15: for each ((ri, ERx), dry) ∈ RPDRAEGRBAC do
16: RPDRAEGRBAC = RPDRAEGRBAC \((ri, ERx), dry)
17: RPDRAEGRBAC = RPDRAEGRBAC∪
18: {((rj , ERx), dry)}
19: end for
20: end if
21: end for

4.4.5 The output of EGRBAC Constructing Approach on HABAC Use Case

The output of EGRBAC role constructing algorithm for the Use case in Table 4.2 is shown in

Table 4.7. Maximum number of created device roles is O(|OPA| + |DA|). Since we create an

environment role and an environment condition for each logical environment condition, maximum

number of environment roles and conditions is Ω(|ESA|). Finally, maximum number of user roles

is O(2|SA|+|ESA|).

4.5 Analysis and Limitations

Our proposed HABAC model is a user to device access control model. It captures different users,

environment, operations, and devices characteristics. Therefore, it is a dynamic model. It is a fine

grained model; since it is capable of giving users access to some operations within a single device

60

without the need to give them access to the entire device.

Our approach of constructing HABAC from EGRBAC is a simple, straightforward approach

that is capable of translating EGRBAC configuration into an HABAC policy configuration. How-

ever, as we discussed in Section 4.3, in HABAC we can not create something equivalent to EGR-

BAC PRConstraints. This makes it troublesome to prevent future authorization of specific users

to access specific operations on specific devices, since the only way to do so is dynamically at

enforcement time when the user is trying to access the prohibited operation, unlike EGRBAC in

which we can enforce this prevention at assignment time. In EGRBAC, determining the role struc-

ture could take a lot of efforts, but when completed it is easy to define who has what permissions,

and who is not allowed to have a future access to specific permissions. On the other hand, in

HABAC this is not achievable.

In addition to users/sessions, devices, and operations static attributes, our EGRBAC con-

structing approach is capable of handling HABAC policies that contain environment attributes.

Due to some limitations in EGRBAC, our approach can’t handle HABAC policies that involve

users/sessions or devices dynamic attributes. As explained in Section 4.2.1, dynamic attributes

are those attributes that are rapidly changing without involving administration actions. For in-

stance device temperature. In our approach, we translate device, and permission attributes in-

stances into device roles. In EGRBAC, device roles are means of categorizing permissions of

different devices according to relatively static characteristics. when a permission is assigned

to a specific device role, then it is part of that device role until some administration change

happens, there is no way to dynamically activates and deactivates neither device roles, nor as-

signment of permissions to different device roles. In HABAC we can create a device attribute

device_temperature : d : D ←− {Low,High}. We can easily configure an access policy that

authorizes some users to access a device dx only if device_temperature(dx) = Low. To do so in

EGRBAC we have two options, the first one is to create two device roles one for high temperature,

and another for low temperature for each device. for a large number of devices and dynamic at-

tributes this option may lead to a role explosion. Furthermore, there is no mechanism in EGRBAC

61

that can dynamically activates dx’s high temperature device role while deactivating the low tem-

perature device role when the temperature of drx is high and vice versa. The second option is for

those devices which have similar access conditions we create a device role for low temperature,

and a device role for high temperature. However, there is no way to dynamically activates or deac-

tivates devices membership in different device roles according to their temperatures. The similar

argument holds when we deal with dynamic user attributes.

Our EGRBAC constructing approach didn’t consider the following: (1) Policies that compare

two different types of attributes. (2) HABAC configurations that involve user attributes constraints

and session attributes constraints.

From the above, a hybrid model combining HABAC and EGRBAC features may be the most

suitable for smart home IoT, and likely more generally.

62

Table 4.7: The output of EGRBAC Constructing Approach on HABAC Use Case

(a) UEGRBAC = UH−ABAC , DEGRBAC = DH−ABAC , OPEGRBAC = OPH−ABAC , PEGRBAC =
{(TV,G), (TV, PG), (PlayStation,
A3), (PlayStation,A7), (PlayStation,A12), (PlayStation,
BuyGames), (Oven,ON), (Oven,OFF), (Fridge,Open), (Fridge,
Close), (FrontDoor, Lock), (FrontDoor, Unlock)}
(b) DR = {DangerouseKitchenDevices = True,
DangerouseKitchenDevices = False,
KidsFriendly = True , KidsFriendly = False,
RemPerm}.
(c) PDRA = {((TV,G),KidsFriendly = True),
(PlayStation, A3),KidsFriendly = True),
((PlayStation,A7),KidsFriendly = True),
((TV, PG), KidsFriendly = False),
((PlayStation,A12),KidsFriendly = False),
((PlayStation, BuyGames),KidsFriendly = False),
((Oven,ON), DangerouseKitchenDevices = True),
((Oven,OFF), DangerouseKitchenDevices = True),
((Fridge,Open), DangerouseKitchenDevices = False),
((Fridge, Close), DangerouseKitchenDevices = False),
((FrontDoor, Lock), RemPerm),
((FrontDoor, Unlock), RemPerm)}.
(d) EC = {True,
ec1 ≡ ParentInKitchen(current) = True,
ec2 ≡ day(current) ∈ {Sa, S},
ec3 ≡ 12 : 00 ≤ time(current) ≤ 19 : 00 ,
ec4 ≡ day(current) ∈ {M,T,W, Th, F} ,
ec5 ≡ 17 : 00 ≤ time(current) ≤ 19 : 00}.
(e) ER = {Any_Time,
er1 ≡ ParentInKitchen(current) = True,
er2 ≡ day(current) ∈ {Sa, S} ≡Weekend,
er3 ≡ 12 : 00 ≤ time(current) ≤ 19 : 00 ≡ Afternoon and Evening,
er4 ≡ day(current) ∈ {M,T,W, Th, F} ≡Weekdays,
er5 ≡ 17 : 00 ≤ time(current) ≤ 19 : 00 ≡ Evening}.
(f) EA = {({True}, Any_Time) , ({ec1}, er1) ,
({ec2}, er2) , ({ec3}, er3), ({ec4}, er4), ({ec5}, er5) }.
(g) R = {ra, rb, rc}.
(h) UA = {(bob, ra), (anne, rb), (alex, rc)}.
(i) RP = {(ra, Any_Time),
(rb, Any_Time),
(rb, {er1}),
(rc, {er2, er3}),
(rc, {er4, er5})}.
(j) RPDRA = {((ra, AnyT ime) , DangerouseKitchenDevices = True),
((ra, Any_Time) , DangerouseKitchenDevices = False),
((ra, Any_Time) , KidsFriendly = True),
((ra, Any_Time) , KidsFriendly = False),
((ra, Any_Time) , RemPerm),
((rb, {er1}) , DangerouseKitchenDevices = True),
((rb, Any_Time) , DangerouseKitchenDevices = False),
((rb, Any_Time) , KidsFriendly = True),
((rb, Any_Time) , KidsFriendly = False),
((rc, {er2, er3}) , KidsFriendly = True),
((rc, {er4, er5}) , KidsFriendly = True)}.

63

CHAPTER 5: HYBRID ATTRIBUTE AND ROLE BASED ACCESS

CONTROL MODELS FOR SMART HOME IOT

(HYBACRC AND HYBACAC)

This chapter presents two hybrid models for smart home IoT access control. Here, we utilize

two distinct approaches to develop two different hybrid models. We followed a role-centric ap-

proach and an attribute-centric approach to develop HyBACRC and HyBACAC respectively. We

formally define these models and illustrate their features through use case scenarios. We further

provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT

platform. Moreover, we compare the theoretical expressive power of HyBACAC , and HyBACRC

models by providing algorithms for converting an HyBACAC specification to HyBACRC and

vice versa. Finally, we provide a comprehensive theoretical comparison between the four smart

home IoT access control models introduced in this dissertation.

5.1 Motivation

In role based access control (RBAC) models [48, 100] permissions are associated with roles, and

users are made members of appropriate roles, thereby acquiring the roles’ permissions. On the

other hand, in attribute based access control (ABAC) models [63, 66], access is granted according

to attributes associated with the user and resource. While ABAC may require up to 2n rules for n

attributes, attempting to implement the same controls in RBAC could, in a worst case, require 2n

roles, one for each possible combination of attributes. Hence, RBAC trades up-front role structur-

ing effort (role engineering) for ease of administration and user permission review, while ABAC

makes the reverse trade-off: it is easier to set up, but analyzing or changing user permissions can

be problematic [70].

A dynamic, expressive, and accurate enough access control model has to capture different

users, devices, operations, and environment characteristics (attributes) beyond user roles. In gen-

eral, we have two types of attributes that need to be expressed and used in authorization policies:

64

static attributes, and dynamic attributes [70]. Static Attributes are relatively static and change only

by administrative action. For example, user relation to the house, skill set and danger level of de-

vice operations. Dynamic Attributes change due to different external conditions, possibly rapidly

and unpredictably. For instance, time, user location, weather, and device temperature. Expressing

dynamic attributes in RBAC models can be costly and cumbersome.

In Chapter 3, we presented EGRBAC, which is an extended version of RBAC to cover different

users, devices, permissions, and environment attributes. EGRBAC and similar RBAC based mod-

els can cover static attributes, and dynamic environment attributes effectively. On the other hand,

dynamic attributes specific to individual users and devices (objects) create significant difficulties

for RBAC, for two principal reasons. The multiplicity of combinations that need to be considered

can lead to role explosion. Moreover, RBAC lacks mechanisms to dynamically activate and deac-

tivate different user, session and roles according to varying dynamic characteristics. For example,

consider that the home owner wants to grant teenagers use of dangerous permission for kitchen

devices, such as opening the oven, but only when the oven temperature is below a threshold, say

250◦. This use case can easily be handled in ABAC models such as in HABAC [20] introduced in

Chapter 4, by defining a dynamic device attribute device_temperaturewhich measures the device

temperature, and then configuring an access policy that authorizes teenagers to such dangerous per-

missions only if this attribute is below 250◦. We could try and do this in EGRBAC by defining

two roles for each such device, one for high temperature and the other for low temperature. To

reduce the role explosion we could aggregate high temperature sensitive devices into a single high

temperature and single low temperature role for all such devices. Nevertheless, we would still

need to add mechanism to EGRBAC to dynamically activate or deactivate devices membership

in different device roles according to their temperatures [20]. A similar situation arises when we

deal with dynamic user attributes. For example, suppose we want to permit teenagers to use the

front door lock permissions in some special circumstances when they are granted a token by one

of the parents. In RBAC systems we could construct different roles for different token values for

each teenager. To reduce the role explosion we could instead define a single role for each token

65

value for all teenagers. As above we would also need to add mechanism to the RBAC system to

dynamically activate or deactivate users membership in different token value roles.

On the other hand, in ABAC based models including HABAC [20] it is easy to specify access

rules, but to determine the permissions available to a particular user, a potentially large set of

rules might need to be executed in exactly the same order in which the system applies them. This

can make it practically impossible to determine risk exposure for a given employee position [70].

Moreover, it is troublesome to prevent future authorization of specific users to access specific

operations on specific devices, since the only way to do so is dynamically at enforcement time

when the user is trying to access the prohibited operation, unlike EGRBAC in which we can enforce

such prevention at assignment time.

From the above, a hybrid model combining HABAC and EGRBAC features may be the most

suitable for smart home IoT, and likely more generally.

5.1.1 Combining RBAC and ABAC

Kuhn et al [70] specified three approaches for combining ABAC, and RBAC concepts to use both

roles and attributes in authorization decisions. These approaches are: dynamic roles, attribute-

centric, and role-centric. In the dynamic roles approach, attributes such as time of day are used

by a front-end module to determine the user’s role, retaining a conventional role structure but

changing user-role assignment dynamically. In the attribute-centric approach, a role name is just

one of many attributes with no special semantics. In contrast with conventional RBAC, the role is

not a collection of permissions but the name of an attribute called “role.” Finally, in the role-centric

approach, attributes are added to constrain RBAC. Constraint rules that incorporate attributes can

only reduce permissions available to the user via roles, but not expand them. In this research we

used the role-centric, and attribute-centric approaches to develop two different hybrid models.

The reason for avoiding dynamic roles approach is that home IoT environment is rich with

attributes. Having so many combinations of attributes values may result in large numbers of user

roles, and device roles, which will further complicate the model, and the implementation. Such

66

Figure 5.1: Smart Home IoT HyBACRC Model

approach may better fit environment with few dynamic attributes, for instance, in the case of smart

offices where in addition to the static attributes which effect permission authorization decisions,

such as user’s position, we may also have few dynamic attributes which contribute in authorization

decisions. For instance, time, and access location.

5.2 HyBACRC model

In this section, we introduce the HyBACRC model. The model is conceptually depicted in Figure

5.1 while formal definitions are given in Tables 5.1 and 5.2. HyBACRC fully incorporates the

EGRBAC model [19] (which was introduced in Section 3.2) while adding dynamic attributes for

users, sessions, and devices. The components of EGRBAC are shown in blue while the added

dynamic attributes are shown in grey boxes in Figure 5.1.

HyBACRC adopts a role-centric design [70]. In this approach, relatively static attributes (for

users, sessions, and devices) define the user’s and device’s roles. On the other hand, dynamic

attributes define attribute-based rules within the scope of the relatively static roles. In this way, we

avoid both problems of role explosion and dynamic role activation and deactivation. Developing a

67

role structure based on the more static attributes can avoid awkward designs that might result from

purely one choice or another [70]. For example, consider a system with 10 users attributes, four

of which are static and six are dynamic. In the worst case, this could result in 210 roles in RBAC

based models (including EGRBAC) or 210 rules in ABAC based models (including HABAC).

Establishing a policy structure based on the four static and six dynamic attributes amounts to a

worst case of 16 roles and 64 rules, while also effectively separating the policy concerns of the

relatively static roles and the intrinsically dynamic attributes. The potential explosion of roles or

rules will clearly get worse with device attributes also included, reinforcing our argument for a

hybrid approach.

5.2.1 HyBACRC Formal definition

The basic components of HyBACRC are discussed below.

EGRBAC basic sets:

All EGRBAC components are incorporated into HyBACRC , as shown in blue in Figure 5.1 with

the definitions given in the top portion of Table 5.1. Roles (R) are similar to the traditional RBAC

user’s roles. However, in smart homes, a role specifically represents the relationship between the

user and the family, which encompasses parents, kids, babysitters, and such [59]. Device roles

(DR) are means of categorizing permissions of different devices. For example, we can categorize

the dangerous permissions of various smart devices by creating a device role called dangerous per-

missions and assigning dangerous permissions (such as turning on the oven, turning on the mower)

to it. Environment roles (ER) represent environmental contexts, such as daytime/nighttime. Envi-

ronment roles are turned on/off (i.e., triggered) by subsets of Environment Conditions (EC) such

as daylight, these environment conditions need to be active together to trigger on specific environ-

ment role assigned to it through the EA relation. A role pair rp has a role part rp.r that is the

single role associated with rp, and an environment role part rp.ER is the subset of environment

roles associated with rp. The main idea in EGRBAC is that a user is assigned a subset of roles

and, according to the current active roles in a session and current active environment conditions

68

(which determine the current active environment roles), some role pairs will be active, whereby

the user will get access to the permissions assigned to the device roles which are assigned to the

current active role pairs. However, in HyBACRC this structure of assignments only define the

maximum permissions available to a specific user in general, whereas defining which permissions

among these maximum permissions are currently available for this user is further determined by

the current values of the dynamic user and session attributes and dynamic device attributes.

EGRBAC Derived Functions:

These are three derived functions that are useful to define for EGRBAC. First, the function roles(s)

which takes a session s as an input and returns the set of roles assigned to s. Second, the function

users(s) takes a session s as an input and returns the unique user who created s (constant for the

session lifetime). Third, the function droles(p) takes permission p as an input and returns the set

of device roles assigned to p.

EGRBAC Constraints:

These are the same three EGRBAC constraint as follows.

i Permission-role constraints (PRConstraints) prevent assignments that would enable specific

roles to access specifically prohibited permissions.

ii Static Separation of Duty (SSD) is the familiar SSD in RBAC. It enforces constraints on the

assignment of users to roles. In other words, if a user is authorized as a member of one role,

the user is prohibited from being a member of a second conflicting role [99].

iii Dynamic Separation of Duty (DSD) is the familiar DSD in RBAC. With DSD it is permissible

for a user to be authorized as a member of a set of roles that do not constitute a conflict of

interest when acted in independently, but produce policy concerns when allowed to be acted

simultaneously in the same session [99].

Dynamic attributes:

These additions to EGRBAC are shown as grey rectangles in Figure 5.1 with the definitions given

in the middle portion of Table 5.1. Attributes are characteristics that are used in access control

69

decisions. Formally, an attribute is a function that takes an entity such as a user and returns a

specific value from its range. An attribute range is given by a finite set of atomic values. An atomic

valued attribute will return one value from the range, while a set valued attribute will return a subset

of the range. As discussed in Section 5.1, dynamic attributes change due to different conditions

rather than as a result of administrative actions. An example for users dynamic attributes can be

user location, user temporal health condition, user awaking status, etc. Similarly, for devices, we

may be interested in device location, device temperature, device usage status, etc.

Dynamic users and sessions attributes (DUSA) is the set of dynamic attributes associated with

both users and sessions. Each session s inherits a subset of the dynamic attributes of its unique user

creator, this is controlled by the unique user creator user(s). If a session s inherited a dynamic user

session attribute dusa from his user user(s), then it is required that dusa(s) = dusa(user(s)).

Dynamic device attributes (DDA) is the set of dynamic attributes associated with devices. In

HyBACRC we do not consider environment and operations dynamic attributes for the following

reasons. First, regarding the element environment roles (ER), the way it is designed and associ-

ated with the role pairs (RP) element enables it to captures both static and dynamic environment

attributes; a role pair will be active only if the set of associated environment roles are currently

active and triggered by their corresponding environment conditions. Second, regarding operations

(OP), they are basically defined by the manufacturer and usually have a static nature such as dan-

gerous or benign.

Attributes authorization function (rules):

This is a logic formula which is evaluated for each access decision. It is defined using the grammar

of Table 5.2 which is evaluated for each access decision. For a specific session si, device dj and

operation opk the authorization functionAuthorization(si, opk, dj) is evaluated by substituting the

actual attribute values of dusa(si), dda(dj), roles(si) and droles((opk, dj)) for the corresponding

symbolic placeholders and evaluating the resulting logical formula to be True or False.. In Table

5.2 we define a policy language for attributes authorization functions using propositional logic

formula.

70

Table 5.1: HyBACRC Model Formalization Part I: Basic Sets and Dynamic Attributes

Users, Roles and Sessions
−U and R are sets of users and roles respectively (home owner specified)
−UA ⊆ U ×R, many to many user role assignment relation (home owner specified)

We define the derived function roles(u) : U → 2R, where: roles(ui) = {rj | (ui, rj) ∈ UA}
−S is the set of sessions (each session is created, terminated and controlled by an individual user)
−SU ⊆ S × U , many to one relation assigning each session to its single controlling user

We define the derived function user(s) : S → U , where: user(si) = uj such that (si, uj) ∈ SU
−SR ⊆ S ×R, many to many relation that assigns each session to a set of roles that can be changed by the controlling user

We define the derived function roles(s) : S → 2R, where: roles(si) = {rj | (si, rj) ∈ SR}
It is required that roles(s) ⊆ roles(user(s)) at all times

Devices, Operations, Permissions and Device Roles
−D is the set of devices deployed in the smart home (home owner deployed)
−OP and P ⊆ D ×OP are sets of operations and permissions respectively (device manufacturers specified)
−DR is the set of device roles (home owner specified)
−PDRA ⊆ P ×DR, many to many permissions to device roles assignment (home owner specified)

We define the derived function droles(p) : P → 2DR, where: droles(pi) = {drj | (pi, drj) ∈ PDRA}
Environment Conditions and Environment Roles
−EC is the set of boolean environment conditions (determined by sensors deployed in the smart home under home owner control)

At any moment each eci ∈ EC is either True or False depending on the state of the corresponding sensor
−ER is the set of environment roles (home owner specified)
−EA ⊆ 2EC × ER, many to many environment role activation relation (home owner specified)

At any moment, er ∈ ER is activated iff (∃(eci1, eci2, . . . , ecin), er) ∈ EA)[eci1 ∧ eci2 ∧ . . . ∧ ecin = True] at that moment
Role Pairs
−RP ⊆ R× 2ER, many to many role pairings of user role and subsets of environment roles (home owner specified)

For rp = (ri, ERj) ∈ RP , we define rp.r = ri and rp.ER = ERj
We define the derived relation RPRA ⊆ RP ×R where: RPRA = {(rpm, rn) | rpm ∈ RP ∧ rpm.r = rn}
We define the derived relation RPEA ⊆ RP × 2ER where: RPEA = {(rpm, ERn) | rpm ∈ RP ∧ ERn = rpm.ER}

Role Pair Assignment
−RPDRA ⊆ RP ×DR, many to many RP to DR assignment (home owner specified)
Constraints
−PRConstraints ⊆ 2P × 2R, many to many permission-role constraints relation (home owner specified)

For each (Pi, Rj) ∈ PRConstraints it is required that
(∀pm ∈ Pi)(∀rn ∈ Rj)(∀(rpp, drq) ∈ RPDRA)[(pm, drq) /∈ PDRA ∨ rpp.r 6= rn]
−SSDConstraints ⊆ R× 2R, many to many static separation of duty constraints relation (home owner specified)

For each (ri, Rj) ∈ SSDConstraints it is required that (∀u ∈ U)(∀r ∈ Rj)[(u, r) ∈ UA =⇒ (u, ri) /∈ UA]
−DSDConstraints ⊆ R× 2R, many to many dynamic separation of duty constraints relation (home owner specified)

For each (ri, Rj) ∈ DSDConstraints it is required that (∀s ∈ S)(∀r ∈ Rj)[(s, r) ∈ SR =⇒ (s, ri) /∈ SR]
Dynamic Attributes
−DUSA and DDA are finite sets of dynamic user and session attribute functions and dynamic device attribute functions respectively,

where DUSA ∩DDA = ∅ for convenience (determined by sensors deployed in the smart home under home owner control)
−Each session s inherits a subset of the dynamic attribute functions of its unique user creator (controlled by the session creator user(s))

For every inherited attribute function att ∈ DUSA, att(s) = att(user(s)) at all time
For every non-inherited attribute function att ∈ DUSA, att(s) is undefined and its use in any logical formula renders that formula false
−For each att ∈ DUSA ∪DDA, Range(att) is the attribute range which is a finite set of atomic values
−attType : DUSA ∪DDA→ {set, atomic}.
−Each att ∈ DUSA ∪ DDA correspondingly maps users in U or sessions in S, or devices in D to atomic or set attribute values.
Formally:

att : U or S or D →

{
Range(att), if attType(att) = atomic

2Range(att), if attType(att) = set

At any moment, the value of att for a given user or device is automatically determined by sensors deployed in the smart home
Attributes Authorization Function
−Authorization(s : S, op : OP, d : D) is a logic formula defined using the grammar of Table 5.2 (home owner specified)

It is evaluated for a specific session si, device dj and operation opk as specified in Table 5.2
CheckAccess Predicate
−CheckAccess is evaluated when session si attempts operation opk on device dj while the environment conditions in ECl are True
−CheckAccess(si, opk, dj , El) evaluates to True or False using the following formula:

Authorization(si, opk, dj) ∧
(∃(rpm, drn) ∈ RPDRA) [((dj , opk), drn) ∈ PDRA ∧ (si, rpm.r) ∈ SR ∧

rpm.ER ⊆ {er ∈ ER | (∃EC ′l ⊆ ECl)[(EC ′l , er) ∈ EA]}]

71

Table 5.2: HyBACRC Model Formalization Part II: Attributes Authorization Function

Attributes Authorization Function
−Authorization(s : S, op : OP, d : D) is a first order logic formula specified using the following grammar.

• α ::= α ∧ α | α ∨ α | (α) | ¬α | ∃x ∈ set.α | ∀x ∈ set.α |

set setcompare set | atomic ∈ set | atomic /∈ set | atomic atomiccompare atomic

• setcompare ::=⊂|⊆|6⊆

• atomiccompare ::=<|=|≤

• set ::= dusa(s) | dda(d) | roles(s) | droles((op, d)), for attType(dusa) = set and attType(dda) = set

• atomic ::= dusa(s) | dda(d) | value, for attType(dusa) = atomic and attType(dda) = atomic

−For a specific session si, device dj and operation opk the authorization function Authorization(si, opk, dj) is
evaluated by substituting the actual attribute values of dusa(si), dda(dj), roles(si) and droles((opk, dj)) for the
corresponding symbolic placeholders and evaluating the resulting logical formula to be True or False.

Check access predicate:

The bottom part of Table 5.1 formalizes the check access predicate of HyBACRC . Consider

a session si which attempts to perform operation opk on device dj when the subset of environ-

ment conditions ECl are active. This operation will succeed if and only if both of the following

are true. First, the authorization function Authorization(si, opk, dj) evaluates to TRUE. Second,

the requirements of role membership and role activation specified by EGRBAC are true. These

are specified in the bottom two lines of the authorization predicate in Table 5.1. The EGRBAC

requirement can be stated in words as follows. There is a role pair rpm and a device role drn as-

signed to each other in RPDRA such that the following conditions are true. (i) drn is assigned to

the permission (dj, opk) in PDRA. (ii) rpm.r is one of the active roles of si (as given in SR). (iii)

Each environment role er ∈ rpm.ER is active because it is activated by a subset of the currently

active environment conditions ECl.

5.2.2 Use Case Demonstration

Here we present one use case scenario to demonstrate how to configureHyBACRC components to

enforce specific access control policies. This use case has the following objectives. (a) Authorize

teenagers to use dangerous permissions in kitchen devices (open the oven, and turn on the oven)

72

only when a parent is in the kitchen and the current temperature of the oven is less than or equal

to 250◦. (b) Authorize teenagers to use non dangerous permissions in kitchen devices (close the

oven, turn off the oven, open and close the fridge) unconditionally. (c) Authorize teenagers to use

the front door lock permissions (lock, and unlock) if they are currently temporarily granted those

permissions by one of the parents. (d) Allow teenagers to use entertainment devices permissions

during weekends evenings and nights if the accessed device is not in use by someone else. (e)

Allow kids to use kids friendly operations in entertainment devices which are, turning on and off

the device, and G content during weekends evenings only, and if the accessed device is not in use

by someone else. (f) Finally, allow parents to use any operation in any device unconditionally.

For this use case HyBACRC will be configured as shown in Figure 5.2, and Figure 5.3. First

we configure the maximum permissions available for each user using EGRBAC components as

follows. We have five users bob, alex, suzanne, john, and anne respectively assigned to roles

parents, kids, kids, teenagers, and teenagers. The devices include Oven, Fridge,

FrontDoorLock, PlayStation, and TV . We have five device roles:

Dangerous _Kitchen_Permissions,Non_Dangerous_Kitchen_Permissions, Front_Door_

Lock, Entertainment_ Devices, and Kids_ Friendly_ Content. We assign the oven permis-

sions {OnOven, OpenOven} to the device role Dangerous _Kitchen_Permissions. We assign

the oven permissions {OffOven, CloseOven} and all fridge permissions to the Non_Dangerous_

Kitchen_Permissions device role. Moreover, we assign all front door lock permissions to the de-

vice role Front_Door_Lock. All the permissions of the TV and the PlayStation devices are as-

signed toEntertainment_Devices device role, and an appropriate subset of these permissions are

assigned toKids_Friendly_Content device role. EC comprises Parent_Is_In_The_Kitchen,

weekends, evenings, nights, and TRUE, respectively active when a parent is in the kitchen, on

weekends, during evening, during night, and always. The environment role

Teenagers_Kitchen_Time is active when the environment condition Parent_Is_In_The_Kitchen

is active. The environment role Kids_Entertainment_Time is active when both environment

conditions weekends and evenings are active. Similarly, The environment role Teenagers_

73

Entertainment_ Time is active when weekends and evenings or weekends and nights en-

vironment conditions are active. The environment condition Any_Time is always active.

RPDRA assignments specify that kids can access the permissions assigned to the device role

Kids_Friendly_Content when Kids_Entertainment_Time is active. RPDRA assignments

also specify that teenagers can access the permissions assigned to Dangerous_Kitchen_

Permissions when Teenagers_ Kitchen_ Time environment role is active, whereas they can

access Non_ Dangerous_Kitchen_Permissions device role at any time. Moreover, teenagers

can access Front_ Door_ Lock at any time, whereas they can access Entertainment_Devices

device role when the environment conditions Teenagers_ Entertainment_Time is active. Fi-

nally, parents are authorized to access all different device roles at any time.

Next, we consider the dynamic attributes. We introduce one Boolean dynamic user and session

attribute Front_Door_Lock_Token which is True when the homeowner has granted this user a

token indicating that this user is allowed to access the front door lock device and False otherwise.

The detailed mechanism by which the homeowner grant a temporal token for a specific user is

outside the scope of HyBACRC operational model and can be considered as part of an adminis-

trative model. We also define three dynamic device attributes: (1) Device_Temperature whose

value is determined by the device’s temperature. (2) UsingStatus to indicate that a device is in

use (True) or not (False). (3) UsingUser, which maps each device to the user currently using it

(or is undefined if the device is not in use).

Finally, we define the authorization function, which is a disjunction of six conjunctive proposi-

tional clauses (rules) given in Figure 5.3. The first clause gives unconditional access to parents.

The following two clauses define teenagers authorization rules with respect to dangerous and non-

dangerous kitchen permissions. The fourth, and fifth clauses specify teenagers authorization rules

with respect to entertainment devices and front door lock respectively. Finally, the last clause

specifies kids access rights with respect to kids friendly content in entertainment devices.

74

U = {alex, bob, anne, suzanne, john}
R = {kids, parents, teenagers}
UA = {(bob, parents), (alex, kids), (suzanne, kids), (anne, teenagers),(john, teenagers)}
D = {Oven, Fridge, FrontDoorLock, P layStation, TV }
OP = OPOven ∪OPFridge ∪OPFrontDoorLock ∪OPPlayStation ∪OPTV , where

OPOven = {OnOven,OffOven, OpenOven, CloseOven},
OPFridge = {OpenFridge, CloseFridge, Check_temperature}Fridge},
OPFrontDoorLock = {LockFrontDoorLock, UnlockFrontDoorLock}
OPPlayStation = {OnPS,OffPS},
OPTV = {OnTV ,OffTV , GTV , PGTV , RTV }

P = POven ∪ PFridge ∪ PFrontDoorLock ∪ PPlayStation ∪ PTV , where
POven = {Oven} ×OPOven,
PFridge = {Fridge} ×OPFridge,
PFrontDoorLock = {FrontDoorLock} ×OPFrontDoorLock,
PPlayStation = {PlayStation} × {On,Off},
PTV = {TV } × {On,Off, G, PG,R}
Let P1 = {Oven} × {OnOven, OpenOven},
P2 = {Oven} × {OffOven, CloseOven},
P3 = {TV } × {On,Off, GTV },

DR = {Dangerous_Kitchen_Permissions,Non_Dangerous_Kitchen_Permissions,
Front_Door_Lock,Kids_Friendly_Content, Entertainment_Devices}

PDRA = P1 × {Dangerous_Kitchen_Permissions} ∪
(P2 ∪ PFridge)× {Non_Dangerous_Kitchen_Permissions} ∪
PFrontDoorLock × {Front_Door_Lock} ∪
PTV × {Entertainment_Devices} ∪
(P3 ∪ PPlayStation)× {Kids_Friendly_Content}

EC = {Parent_Is_In_The_Kitchen,Weekends, Evenings,Nights, TRUE}
ER = {Teenagers_Kitchen_Time,Kids_Entertainment_Time, Teenagers_Entertainment_Time,Any_Time}
EA = {({Parent_Is_In_The_Kitchen}, T eenagers_Kitchen_Time), ({weekends, evenings}, Kids_Entertainment_Time),

({weekends, evenings}, T eenagers_Entertainment_Time), ({weekends, nights}, T eenagers_Entertainment_Time),
(TRUE,Any_Time)}

RP = {(teenager, {Teenagers_Kitchen_Time}), (teenager, {Teenagers_Entertainment_Time}),
(teenagers, {Any_Time}), (kids, {Kids_Entertainment_Time}),
(parents, {Any_Time})}

RPDRA = {((kids, {Kids_Entertainment_Time}), Kids_Friendly_Contents),
((teenager, {Teenagers_Entertainment_Time}), Entertainment_Devices),
((teenager, {Teenagers_Kitchen_Time}), Dangerous_Kitchen_Permissions),
((teenagers, {Any_Time}), Non_Dangerous_Kitchen_Permissions),
((teenagers, {Any_Time}), F ront_Door_Lock),
((parents, {Any_Time}), Entertainment_Devices),
((parents, {Any_Time}), Non_Dangerous_Kitchen_Permissions),
((parents, {Any_Time}), Dangerous_Kitchen_Permissions),
((parents, {Any_Time}), F ront_Door_Lock)}

PRConstraints = {{(Oven,OnOven), (Oven,OffOven), (Fridge,OpenFridge), (Fridge, CloseFridge)}, {kids})}

DUSA = {Front_Door_Lock_Token},
DDA = {Device_Temperature, UsingStatus, UsingUser}
Front_Door_Lock_Token : u : U → {True, False}
Front_Door_Lock_Token : s : S → {True, False}
Device_Temperature : d : D → {x|x is an oven temperature}
UsingStatus : d : D → {True, False}, UsingUser : d : D → U

Figure 5.2: HyBACRC Use Case: Basic Configuration

75

Authorization(s : S, op : OP, d : D) ≡
(parents ∈ R(s)) ∨
(teenager ∈ R(s) ∧ Dangerous_Kitchen_Permissions ∈ drole((op, d))∧

Device_Temperature(d) ≤ 250◦) ∨
(teenager ∈ R(s) ∧ Non_Dangerous_Kitchen_Permissions ∈ drole((op, d))) ∨
(teenager ∈ R(s) ∧ Entertainment_Devices ∈ drole((op, d)) ∧

(¬UsingStatus(d) ∨ UsingUser(d) = user(s)) ∨
(teenager ∈ R(s) ∧ Front_Door_Lock ∈ drole((op, d)) ∧ Front_Door_Lock_Token(s) = True) ∨
(kids ∈ R(s) ∧Kids_Friendly_Contents ∈ drole((op, d)) ∧

(¬UsingStatus(d) ∨ UsingUser(d) = user(s))

Figure 5.3: HyBACRC Use Case: Attributes Authorization Function

5.3 HyBACAC model

In this section, we introduce the HyBACAC model. Figure 5.4 conceptually depicts the model

components. The model formal definition is given in Table 5.3, and Table 5.4. HyBACAC model

is inspired by the HABAC model [20] introduced in Section 4.5, it fully incorporates HABAC

model components while adding two new components: Roles, and Permission-Role constraints.

Furthermore, the check access predicate is different from HABAC model’s check access predicate.

The components of HABAC are shown in blue while the addedHyBACAC components are shown

in grey in Figure 5.4.

To develop HyBACAC we followed an attribute-centric design [70], where the role is just one

of many attributes. This is in contrast with conventional RBAC where a role is a collection of

permissions.

5.3.1 HyBACAC Formal definition

The basic components of HyBACAC are discussed below.

HABAC Basic Sets and Functions:

All HABAC components are incorporated into HyBACAC , as shown in blue in Figure 5.4 with

the definitions given in the top portion of Table 5.3. Users(U) are humans interacting directly with

smart things. Sessions (S) or subjects are created by users to perform some actions in the system.

Environment states (ES) represent the current instant of time environment picture that we want to

76

Figure 5.4: Smart Home IoT HyBACAC Model

describe. Devices (D) are smart home devices. Operations (OP) are actions on devices as specified

by device manufacturers. Attributes are characteristics of users/sessions, devices, operations, and

environment states which are used in access control decisions. An attribute is a function that takes

an entity such as a user and returns a specific value from its range. An atomic valued attribute

will return one value from the range, while a set valued attribute will return a subset of the range.

We have two types of attributes: static, and dynamic. Operation and device attribute functions

are partial functions; we may have some devices or some operations that are not assigned to some

attributes. On the other hand, users, sessions, and environment state attributes are total functions.

HABAC Constraints:

A constraint is an invariant that must be maintained at all times. HyBACAC encompasses HABAC

constraint as follows.

i Constraints on user attributes: these constraints enforce restrictions on user attributes.

ii Constraints on session attributes: these constraints enforce restrictions on subject attributes.

Roles(R):

R is a finite set (range) of roles (aka anti-roles) specified by the homeowner. The function roles

maps each user to a subset of roles. The set of roles mapped to each user is defined by the home-

owner.

77

Permission-role constraints:

HyBACAC incorporates constraints that prevent specific roles from accessing specific operations

on specific devices. For example, having a permission role constraint prci ∈ PRConstraints,

where prci = ({(dk, opl)}, {rm}) implies that a session si created by a user uj , where rm ∈

roles(uj), can not access the operation opl on the device dk. Permission-role constraints are

checked during execution time as part of the check access predicate. This is unlike the case of

EGRBAC and HyBACRC where the permission-role constraints are enforced at administration

time to prevent prohibited assignments.

Attributes Authorization function:

It is a two-valued boolean function which is evaluated for each access decision. It is defined using

the grammar of Table 5.4. For a specific session si, operation opk, and device dj the authoriza-

tion function Authorization(si, opk, dj, current) is evaluated by substituting the actual attribute

values of usa(si), opa(opk), da(dj), and esa(current) for the corresponding symbolic placehold-

ers and evaluating the resulting logical formula to be True or False. Any term that references an

undefined attribute value is evaluated as False.

Check Access Predicate:

The CheckAccess predicate is evaluated in each access request. When a session si attempts opera-

tion opk on device dj in context of environment state current theCheckAccess(si, opk, dj, current)

predicate evaluates to True if the following three conditions satisfied:

• The operation opk is assigned to the device dj by the device manufacturer.

• The authorization function is evaluated to True.

• There is no prci in the set of permission-role constraints that prevent this access.

5.3.2 Use Case Demonstration

In this section, we illustrate how to configure HyBACAC to achieve the same goals of the use

case presented in Section 5.2.2. For this purpose HyBACAC will be configured as shown in

78

Table 5.3: HyBACAC Model Formalization Part I: Basic Sets and Components

Basic Sets and Functions
−U is a finite sets of users (home owner specified)
−S is the set of sessions (each session is created, terminated and controlled by an individual user)
−The function user(s) : S → U maps each session to its unique creator and controlling user
−D is the set of devices deployed in the smart home (home owner deployed)
−OP is the set of possible operations on devices (device manufacturers specified)
−The function ops : D → 2OP specifies the valid operations for each device (device manufacturers specified)
−ES = {current} is a singleton set where current denotes the environment at the current time instance
Attribute Functions and Values
−USA,DA,OPA and ESA are user/session, device, operation and environment-state attribute functions respectively,

where for convenience we require USA,DA,OPA and ESA to be mutually exclusive
−Each session s inherits a subset of the attribute functions in USA from its unique user creator (controlled by the session

creator user(s)). For every inherited attribute function att ∈ USA, att(s) = att(user(s)) at all time
Unless otherwise specified use of a non-inherited session attribute in a logical formula renders that formula false
−For each attribute att in USA ∪DA ∪OPA ∪ ESA, Range(att) is the attribute range, a finite set of atomic values
−attType : USA ∪DA ∪OPA ∪ ESA→ {set, atomic}.
−Each att ∈ USA ∪DA ∪OPA ∪ ESA correspondingly maps users in U /sessions in S, devices in D, operations in OP or

the environment state current to atomic or set attribute values. Formally:

att : U or S or D or OP or {current} →

{
Range(att), if attType(att) = atomic

2Range(att), if attType(att) = set

−Every att ∈ USA ∪DA ∪OPA ∪ ESA, att is designated to be either a static or dynamic attribute where
dynamic attributes must have corresponding sensors deployed in the smart home (under home owner control)
−Static attribute ranges and values are set and changed by administrator actions (by home owner or device manufacturers)
−Dynamic attribute ranges and values automatically determined by sensors deployed in the smart home (under home owner control) or

set and changed by home owner.
Constraints
−UAConstraint ⊆ UAP × 2UAP is the user attribute constraints relation (home owner specified) where

UAP = {(usa, v) | usa ∈ USA ∧ v ∈ Range(usa))}
Each uac = ((usax, vy), UAPj) ∈ UAConstraint specifies the following invariant:{

(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[usax(ul) = vy ⇒ usam(ul) 6= vn], if attType(usax) = attType(usam) = atomic

(∀ul ∈ U)(∀(usam, vn) ∈ UAPj)[vy ∈ usax(ul)⇒ vn /∈ usam(ul)], if attType(usax) = attType(usam) = set

−SAConstraint ⊆ UAP × 2UAP is the session attribute constraints relation (home owner specified)
Each sac = ((usax, vy), UAPj) ∈ SAConstraint specifies the following invariant:
(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ usax(user(sl)) = vy ∧ usam(user(sl)) = vn ⇒ sl does not inherit usam],

if attType(usax) = attType(usam) = atomic

(∀sl ∈ S)(∀(usam, vn) ∈ UAPj)[sl inherits usax ∧ vy ∈ usax(user(sl)) ∧ vn ∈ usam(user(sl))⇒ sl does not inherit usam],
if attType(usax) = attType(usam) = set

Attributes Authorization Function
−Authorization(s : S, op : OP, d : D, current : ES) is a logic formula defined using the grammar of Table 5.4 (home owner specified)

It is evaluated for a specific session si, operation opk, device dj and environment state current as specified in Table 5.4
Roles (aka Anti-Roles)
−R is a finite set of roles (aka anti-roles) (home owner specified)
−The function roles : U → 2R maps each user to a subset of roles (home owner specified)
−PRConstraints ⊆ 2P × 2R, many to many permission-role constraints relation (home owner specified)

where P ⊆ D ×OP is a derived relation such that (d, op) ∈ P ⇔ op ∈ ops(d)
CheckAccess Predicate
−CheckAccess is evaluated when session si attempts operation opk on device dj in context of environment state current
−CheckAccess(si, opk, dj , current) evaluates to True or False using the following formula:
opk ∈ ops(dj) ∧ Authorization(si, opk, dj , current)) ∧
(∀(Px, Ry) ∈ PRConstraints)[((opk, dj) /∈ Px) ∨ (roles(user(si))) ∩Ry = φ]

79

U = {alex, bob, anne, suzanne, john}
D = {Oven, Fridge, FrontDoorLock, TV, P layStation}
OP = OPOven ∪OPFridge ∪OPFrontDoorLock ∪OPPlayStation ∪OPTV , where
OPOven = {Onoven,Offoven, Openoven, Closeoven},
OPFridge = {Openfridge, Closefridge, CheckTemperaturefridge},
OPFrontDoorLock = {LockFrontDoorLock, UnlockFrontDoorLock},
OPPlayStation = {OnPS,OffPS}
OPTV = {OnTV ,OffTV , GTV , PGTV , RTV }

ops(Oven) = OPOven, ops(Fridge) = OPFridge, ops(FrontDoorLock) = OPFrontDoorLock, ops(PlayStation) =
OPPlayStation, ops(TV) = OPTV

USA = {FamilyRole, FrontDoorLockToken}
FamilyRole : U → {parent, kid, teenager}
FamilyRole(alex) = FamilyRole(suzanne) = kid

FamilyRole(anne) = FamilyRole(john) = teenager

FamilyRole(bob) = parent

FrontDoorLockToken : U → {True, False}
This attribute is a dynamic attribute that is dynamically set by home owner

DA = {DangerouseKitchenDevices, FrontDoorLockDevice, EntertainmentDevices,
DeviceTemperature, UsingStatus, UsingUser}

DangerouseKitchenDevices : D → {True, False}
DangerouseKitchenDevices(Oven) = True, DangerouseKitchenDevices(Fridge) = False, all other values are undefined

FrontDoorLockDevice : D → {True, False}
FrontDoorLockDevice(FrontDoorLock) = True, all other values are undefined

EntertainmentDevices : D → {True, False}
EntertainmentDevices(TV) = EntertainmentDevices(PlayStation) = True, all other values are undefined

DeviceTemperature : D → {x|x is an oven temperature}
DeviceTemperature(Oven) is dynamically set by sensors, all other values are undefined

UsingStatus : D → {True, False}
UsingStatus(TV) and UsingStatus(PlayStation) are dynamically set by sensors, all other values are undefined

UsingUser : D → U

UsingUser(TV) and UsingUser(PlayStation) are s dynamically set by sensors, all other values are undefined

ES = {current}
ESA = {day, time, ParentInKitchen}
day : ES → {S,M, T,W, Th, F, Sa}
time : ES → {x|x is an hour of a day}
ParentInKitchen : ES → {True, False}

OPA = {KidsFriendlyContent,DangerouseKitchenOperation}
KidsFriendlyContent : OP → {True, False}
KidsFriendlyContent(GTV) = KidsFriendlyContent(OnTV) = KidsFriendlyContent(OffTV) =
KidsFriendlyContent(OnPS) = KidsFriendlyContent(OffPS) = True

KidsFriendlyContent(PGTV) = KidsFriendlyContent(RTV) = False

All other values are undefined
DangerouseKitchenOperation : OP → {True, False}
DangerouseKitchenOperation(OnOven) = DangerouseKitchenOperation(OpenOven) = True

DangerouseKitchenOperation(OffOven) = DangerouseKitchenOperation(CloseOven) = False

DangerouseKitchenOperation(OpenFridge) = DangerouseKitchenOperation(CloseFridge) =
DangerouseKitchenOperation(CheckTemperatureFridge) = False

All other values are undefined

R = {kid}
roles(alex) = roles(suzanne) = {kid}
roles(anne) = roles(john) = roles(bob) = ∅

PRConstraints = {({(Oven,OnOven), (Oven,OffOven), (Fridge,OpenFridge), (Fridge, CloseFridge)}, {kid})}

Figure 5.5: Use Case Configuration in HyBACAC : Basic Configuration

80

Table 5.4: HyBACAC Model Formalization Part II: Attributes Authorization Function

Attributes Authorization Function
−Authorization(s : S, op : OP, d : D, current : ES) is a first order logic formula specified using the following grammar.

• α ::= α ∧ α | α ∨ α | (α) | ¬α | ∃x ∈ set.α | ∀x ∈ set.α |

set setcompare set | atomic ∈ set | atomic /∈ set | atomic atomiccompare atomic

• setcompare ::=⊂|⊆|6⊆

• atomiccompare ::=<|=|≤

• set ::= usa(s) | opa(op) | esa(current) | da(d), where attType(usa) = attType(opa) = attType(esa) =
attType(da) = set

• atomic ::= usa(s) | opa(op) | esa(current) | da(d) | value, where attType(usa) = attType(opa) =
attType(esa) = attType(da) = atomic

−For a specific session si, device dj and operation opk the authorization function Authorization(si, opk, dj , current) is
evaluated by substituting the actual attribute values of usa(si), da(dj), opa(opk) and esa(current) for the corresponding
symbolic placeholders and evaluating the resulting logical formula to be True or False
Any term that references an undefined attribute value is evaluated as False

Authorization(s : S, op : OP, d : D, current : ES) ≡
(parent ∈ FamilyRole(s)) ∨
(teenager ∈ FamilyRole(s) ∧ ParentInKitchen(current) ∧ DangerouseKitchenDevices(d) ∧
DangerouseKitchenOperation(op) ∧

Device_Temperature(d) ≤ 250◦) ∨
(teenager ∈ FamilyRole(s) ∧ ¬DangerouseKitchenOperation(op)) ∨
(teenager ∈ FamilyRole(s) ∧ FrontDoorLockDevice(d) ∧ FrontDoorLockToken(s)) ∨
(teenager ∈ FamilyRole(s) ∧ day(current) ∈ {Sa, S} ∧ 17:00 ≤ time(current) ≤ 23:59) ∧ EntertainmentDevices(d) ∧

(¬UsingStatus(d) ∨ UsingUser(d) = user(s)) ∨
(kid ∈ FamilyRole(s) ∧ day(current) ∈ {Sa, S} ∧ 17:00 ≤ time(current) ≤ 19:00) ∧ EntertainmentDevices(d) ∧

KidsFriendlyContent(op) ∧ (¬UsingStatus(d) ∨ UsingUser(d) = user(s))

Figure 5.6: Use Case Configuration in HyBACAC : Authorization Function

Figure 5.5. We have five users bob, alex, suzanne, john, and anne. We have five devices

Oven, Fridge, FrontDoorLock, P layStation and TV . These devices are assigned by the house

owner to different device attributes as follows. Fridge ← (DangerouseKitchenDevices :

False), Oven← (DangerouseKitchenDevices : True), FrontDoorLock ←

(FrontDoorLockDevice : True), PlayStation ← (EntertainmentDevices : True), and

TV ← (EntertainmentDevices : True). Similarly, different operations are assigned to dif-

ferent operation attributes. Since the operation, and device attribute functions are partial functions;

we may have some devices or some operations that are not assigned to some attributes.

We have two user/session attribute functionsFamilyRole, andFrontDoorLock. FamilyRole

defines the user role in the family and has a range of three values {parent, kid, teenager}. The

81

family role function value for bob, alex, suzanne, john, and anne is set to the value {parent},

{kids}, {kids}, {teenagers}, and {teenagers} respectively. We have one environment state

current which has three attribute functions (day, time, and ParentInKitchen).

The authorization function set Authorization(s : S, op : OP, d : D, current : ES) shown in

Figure5.6 is a disjunction of six propositional statements. The first statement gives parents access

to anything unconditionally. The second statement authorizes teenagers to use dangerous kitchen

operations on dangerous kitchen devices only when one of the parents is in the kitchen and the

device temperature is below 250◦. The third statement gives teenagers access to non dangerous

kitchen operations unconditionally. The fourth statement allows a teenager to use the front door

lock device only if he/she is granted the front door lock token by the parent. The fifth statement

gives teenagers access to entertainment devices during a specific time, and if the requested device is

not in use by another user. Finally, the sixth statement permits kids to use kids friendly operations

on entertainment devices during a specific time, and if they are currently not in use by another user.

5.4 Implementation

5.4.1 Enforcement Architecture

In this section, we present proof of concept demonstrations of HyBACRC , and HyBACAC mod-

els by enforcing the use cases presented in Section 5.2.2, and Section 5.3.2 respectively using AWS

(Amazon Web Services) IoT service [4] to confirm the applicability of our model using commer-

cially available systems. We have used simulations to reflect real smart home devices, however,

this does not undermine the plausibility, use, and advantage of our proposed model as further elab-

orated in the following discussion.

We adopted the smart home IoT architecture shown in Figure 5.7 which was first introduced by

Geneiatakis et al [51]. In this architecture, the IoT devices are connected to a corresponding hub

and are not directly accessed by other devices or by users. In general, there are two types of ac-

cess. In local access, users directly interact with the IoT devices through the connectivity services

82

Figure 5.7: Enforcement Architecture (adapted from [51])

provided by the hub. In remote access, users access IoT devices via cloud services, which in turn

communicate with the smart hub via the Internet to access these devices. In our enforcement, we

only handled local communication.

First, we created an AWS account, then we configured and deployed Greengrass [6]. The

Greengrass SDK (Software Development Kit) extends cloud capabilities to the edge, which in our

case is the smart home. It serves as a smart hub and a policy engine. It enables devices to process

data closer to the source of information, and communicate securely on local networks. We de-

ployed Greengrass on a dedicated virtual machine with 1 virtual CPU and 2 GB of RAM running

ubuntu server 18.04.5 LTS. Second, we simulated the five users (the devices which are used by

users to access the smart things, for example their phones), and the five devices (The smart things

that users want to access) of the two use cases using AWS IoT device SDK for Python [5] pro-

vided by AWS on different virtual machines. Each machine has 1 virtual CPU and 2 GB of RAM

running ubuntu server 18.04.5 LTS. Third, through AWS IoT management console we created one

virtual object (digital shadow) for each physical device (smart thing devices need to be accessed

83

or user’s access device). Each physical device and its corresponding shadow are cryptographically

linked via digital certificates with attached authorization policies. MQTT protocol [11] is used by

the devices and users to communicate to the AWS IoT service with TLS security [2]. MQTT stan-

dard is a machine-to-machine (M2M) lightweight publish/subscribe messaging protocol, specially

designed for constrained devices. Each shadow has a set of predefined MQTT topics/channels to

allow its interaction with other IoT devices and applications.

HyBACRC Enforcement

Here, we created two Json files: (a) UsersRolesAssignment.jason. This defines the assignments of

users to different roles. (b) ModelComponentConfiguration.json. This file defines and configures

the rest of HyBACRC components to express our use case. Moreover, we utilized the lambda

function service in AWS IoT platform [7] to receive different requests of users to access the smart

devices in the house, analyze each request according to the content of our json files, and finally

trigger the desired actions on the corresponding simulated devices. Code is written in Python 3.7

and running on a long-lived lambda function with 500 MB Memory Limit, 30 seconds timeout.

The lambda function, the UsersRolesAssignment.json file, and the ModelComponentConfigura-

tion.json file are all configured in the Greengrass.

HyBACAC Enforcement

To enforce HyBACAC , we created four json files as following, UsersAttributes.json, DevicesAt-

tributes.json, OperationAttributes.json, and EnvironmnetAttributes.json to captures different users

attributes, devices attributes, operations attributes, and environment attributes respectively. How

to automatically update different attributes values in these files is outside the scope of this work.

Similar to HyBACRC enforcement, here we also utilized AWS IoT platform lambda function to

receive different users requests, analyze those requests according to the contents of the json files,

allow or deny the requested accesses, and finally trigger the desired actions on the corresponding

devices. Code is written in Python 3.7 and running on a long-lived lambda function with 500 MB

84

Memory Limit, 30 seconds timeout.

Local Communication handling

Figure 5.8 depicts the sequence of actions in our local communication implementation. Sequence

(a) illustrated in red demonstrates the sequence of actions when a request is denied. Sequence (b) in

green illustrates the sequence of actions when a request is authorized. For instance, when the user

tries to send permission request to unlock the front door lock through his mobile phone while he is

inside the house. First, a request is sent via MQTT protocol to the virtual object (or local shadow)

corresponding to the user phone in Greengrass through the publish/subscribe relation between the

user’s phone, and the local shadow. The local shadow gets notified with the request, and sends it

to the lambda function through MQTT publish/subscribe protocol. After that, the lambda function

analyzes the request according to the model implemented. In the case of HyBACRC , it analyzes

the request according to the UsersRolesAssignment.json and ModelComponentConfiguration.json

files and makes a decision whether to authorize the user to unlock the front door or not. On the

other hand, in the case of HyBACRC , it analyzes the request according to the content of UsersAt-

tributes.json, DevicesAttribu tes.json, OperationAttributes.json, and EnvironmnetAttributes.json

files and makes the decision.

If the request is denied, the lambda function publishes to the user’s shadow update topic, the

local shadow gets notified and updates the user’s phone that the permission was denied. The front

door lock in this case does not get an indication that a user attempted to access it. If the request is

granted, the front door lock local shadow is notified through its update topic and updates the front

door lock with the unlock command. After the front door lock is unlocked, it notifies its shadow

through publishing to the shadow update topic. The front door lock local shadow then notifies the

lambda function which in turn notifies the user phone’s local shadow. Finally, the user phone’s

local shadow updates the user’s phone that the TV was turned on successfully.

85

Figure 5.8: Local Request Handling in Our System

5.4.2 Performance Results

We executed multiple test scenarios to check the policy machine’s response in each case. Further-

more, we analyzed the performance of our implementation. In particular, we measured the average

lambda function execution time under different conditions. We implemented the configuration of

the same use case given in Section 5.2.2, and Section 5.3.2 forHyBACRC andHyBACAC models

respectively. We analyzed three different cases with three different loads of requests, each unique

load of requests was executed 10 times to measure the average lambda processing time as follows.

(a) When one user is sending requests to multiple devices at the same time. Table 5.5 shows the

measured average lambda function execution time in this test case forHyBACRC andHyBACAC

implementation. The first, second, and third rows show the average time when the parent Bob

requests to lock the front door lock, the average time when Bob requests to lock the front door

86

lock, turn on the TV, and turn on the PlayStation at the same time, and the average time when Bob

requests to lock the front door lock, open the fridge, turn on the oven, the TV, and the PlayStation

at the same time respectively. All the requests were approved as they were supposed to according

to our configured policies. (b) When multiple users are sending requests to multiple devices at

the same time (one user per device). Table 5.6 describes the measured average lambda function

execution time in this test case for HyBACRC and HyBACAC implementation. The first, second,

and third rows show the average time when the parent Bob requests to lock the front door lock, the

average time when Bob requests to lock the front door lock, the kid Alex requests to turn on the

oven, and the teenager Anne requests to open the fridge at the same time, the average time when

the three access requests tested in the second row are carried again in addition to, the kid Suzanne

requests to turn on the TV, and the teenager John requests to open the oven while one of the parent

is in the kitchen and the oven temperature is 100◦. The two systems responded correctly where

all the requests were granted except for when the kid Alex was trying to turn on the oven since

according to our configuration he is not allowed to, and when Suzzane was trying to turn on the

TV since the testing was performed during a weekday, and according to our configuration kids are

not allowed to access TV during weekdays. (c)Finally, Table 5.7 illustrates the average lambda

function execution time when multiple users are sending requests to one device at the same time in

HyBACRC and HyBACAC implementation. The first, second, and third rows show the average

time when one user (the parent Bob), three users (the parent, and the two kids), and five users (the

parent, the two kids, and the two teenagers) respectively all request to lock the front door lock at

the same time. The two systems responded correctly where all the requests were denied except for

when the parent Bob requests to lock the front door lock.

From the tables, we can notice that the two models are functional and applicable using com-

mercially available technology. Furthermore, the captured average lambda processing times are

generally low, and the captured lambda processing time in HyBACAC always less than those in

HyBACRC .

We understand that practical smart homes will have different and more complicated scenarios.

87

Table 5.5: One User Sending Requests to Multiple Devices

Users Devices HyBACRC L.P.T HyBACAC L.P.T N.R
1 1 1.8343 1.2661 10
1 3 1.7408 1.3118 30
1 5 1.76588 1.3503 50

Table 5.6: Multiple Concurrent Instances of One User Sending Request to One Device.

Users Devices HyBACRC L.P.T HyBACAC L.P.T N.R
1 1 1.8343 1.2661 10
3 3 1.8385 1.3803 30
5 5 2.01128 1.3247 50

Table 5.7: Multiple Users Sending Requests to One Device

Users Devices HyBACRC L.P.T HyBACAC L.P.T N.R
1 1 1.8343 1.2661 10
3 1 1.73177 1.2818 30
5 1 1.8771 1.2654 50

L.P.T ≡ Lambda function processing time in ms.
N.R ≡ Total number of requests (10 per unique request)

88

Although a detailed performance evaluation is eventually necessary by simulating a large set of

smart things, we believe that our proof of concept implementation in AWS is to showcase the

practical viability and use of fine grained security policies in the context of smart home IoT, without

the need to capture a large set of scenarios from the real world. Such a scaled setting will not reflect

any change in security policy evaluation. We consider a more detailed performance analysis as an

extension of this work.

5.5 Constructing HyBACAC FROM HyBACRC

In this section, we take a further step toward comparing HyBACRC (a role-centric hybrid model),

and HyBACAC (an attribute-centric hybrid model). We introduce HyBACAC configuration that

translates HyBACRC policies in a manner that they can be implemented by HyBACAC . The pur-

pose is to see whether we can fully express any HyBACRC configuration in HyBACAC model,

and if not which model is more expressive, and in what terms. Here, we followed a similar ap-

proach to the one introduced in Section 4.3 for constructing HABAC from EGRBAC.

5.5.1 Approach

Step 1: Convert the HyBACRC dynamic attributes authorization function Authorization(s :

S, op : OP, d : D) into a disjunctive normal form (DNF). All logical formulas can be converted into

an equivalent DNF form. Figure 5.9 shows the attribute authorization function of our HyBACRC

use case which is introduced in Figure 5.3 after following the standard approach to convert it into

a DNF format. We call each conjuncted term a condition. We have role conditions (conditions

that involve users roles), dynamic user attributes conditions (involve dynamic user attributes), de-

vice role conditions (involve device roles), dynamic device attributes conditions (involve dynamic

device attributes), and mix conditions (involve two types of attributes).

Here, we define a function that takes a user role ri ∈ R and a device role drj ∈ DR as inputs,

loops through each clause in the DNF form of the Authorization(s : S, op : OP, d : D)RC , and

returns set of sets of dynamic user attributes conditions, dynamic device attributes conditions, and

89

Table 5.8: HyBACRC Configuration in HyBACAC

- UAC = URC
- USAAC = {Relationship}
- Range(Relationship) = RRC
- Relationship : u ∈ UAC → 2RRC

- Relationship : s ∈ SAC → 2RRC

- (∀ui ∈ UAC)[Relationship(ui) = {rx|(ui, rx) ∈ UARC}]
- USAAC = USAAC ∪DUSARC
- (∀usa ∈ USAAC ∩DUSARC)[Range(usa) in HyBACAC = Range(usa) in HyBACRC]
- (∀usa ∈ USAAC ∩DUSARC)(∀u ∈ UAC)[usa(u) in HyBACAC = usa(u) in HyBACRC]

- UAConstraintAC = {uaci}
- For all ssdci = (ri, Rj) ∈ SSDConstraintsRC :
uaci = ((Relationship, ri), UAPj), where UAPj = {(Relationship, rn)|rn ∈ Rj}

- SAConstrainACt = {saci}
- For all dsdci = (ri, Rj) ∈ DSDConstraintsRC :
saci = ((Relationship, ri), SAPj), where SAPj = {(Relationship, rn)|rn ∈ Rj}

- ESAC = {Current}
- ESAAC = ERRC
(∀esai ∈ ESAAC)[esai : es ∈ ESAC → {True, False}]

- DAC = DRC , OPAC = OPRC
- DAAC = DRRC ∪DDARC
- OPAAC = DRRC
- (∀att ∈ DAAC ∩DDARC)[Range(att)inHyBAAC = Range(att)inHyBARC]
- (∀da ∈ DAAC ∩DDARC)(∀d ∈ DAC)[da(d) in HyBACAC = da(d) in HyBACRC]
- (∀da ∈ DAAC ∩DRRC) [da : d ∈ DAC → {True, False}]
- (∀opai ∈ OPAAC)[opa : op ∈ OPAC → {True, False}]
- (∀(dry ∈ DRRC , px ∈ {pi|(pi, dry) ∈ PDRARC}))[dry(px.op) = True, dry(px.d) = True]

- RAC = RRC
- (∀ui ∈ UAC)[roles(ui) = {rx|(ui, rx) ∈ UARC}]
-PRConstraintsAC = PRConstraintsRC .

- Initialize the authorization function Authorization(s : SAC , op : OPAC , d : DAC , current : ESAC)
- For each rpdrai = ((ri, ERi), dri) ∈ RPDRARC , we construct an authorization policy as following:

1. SetOfESA = ”TRUE”. ∀(esa ∈ ERi)[SetOfESA = SetOfESA+”∧”+”esa(current) = True”].

2. EGRBACPart = ”ri” + ” ∈ ” + ”Relationship(s)” + ” ∧ ” + ”dri(op) = True” + ” ∧ ” + ”dri(d) =
True” + ” ∧ ” + ”SetOfESA”.

3. SetOfC = GetRelatedDynamicCondition(ri, drj)

4. Loop through each C ∈ SetOfC and do the following:

(a) Initialize the string TempAuth to equal EGRBACPart.

(b) For every dynamic attribute condition ci ∈ C, TempAuth← TempAuth+ ” ∧ ” + ”ci”

(c) Authorization(s : SAC , op : OPAC , d : DAC , current : ESAC) ← Authorization(s : SAC , op :
OPAC , d : DAC , current : ESAC) + ” ∨ ” + ”TempAuth

90

Authorization(s : S, op : OP, d : D) ≡
(parents ∈ R(s)) ∨
(teenager ∈ R(s) ∧ Dangerous_Kitchen_Permissions ∈ drole((op, d))∧

Device_Temperature(d) ≤ 250◦) ∨
(teenager ∈ R(s) ∧ Non_Dangerous_Kitchen_Permissions ∈ drole((op, d))) ∨
(teenager ∈ R(s) ∧ Entertainment_Devices ∈ drole((op, d)) ∧

UsingUser(d) = user(s) ∨
(teenager ∈ R(s) ∧ Entertainment_Devices ∈ drole((op, d)) ∧

¬UsingStatus(d) ∨
(teenager ∈ R(s) ∧ Front_Door_Lock ∈ drole((op, d)) ∧Front_Door_Lock_Token(s) = True)
∨
(kids ∈ R(s) ∧Kids_Friendly_Contents ∈ drole((op, d)) ∧

¬UsingStatus(d) ∨
(kids ∈ R(s) ∧Kids_Friendly_Contents ∈ drole((op, d)) ∧

UsingUser(d) = user(s)

Figure 5.9: The Attribute Authorization Function of The Use Case Described in in Figure 5.3 in
DNF Format

mix conditions that need to be satisfied together to enable the access of the role ri to the device

role drj according to the attributes authorization function of the HyBACRC model. For instance:

GetRelatedDynamicCondition(teenager, Front_Door_Lock) =

{{Front_Door_Lock_Token(s) = True}}.

GetRelatedDynamicCondition(teenager, Entertainment_Devices) =

{{¬UsingStatus(d)}, {UsingUser(d) = user(s)}}.

Step 2: Follow the HyBACRC configuration in HyBACAC approach introduced in Section 5.5.2

5.5.2 HyBACRC configuration in HyBACAC

The configuration is shown in Table 5.8. In this configuration, for differentiation purposes every

HyBACRC component is followed with the suffix RC , similarly, every HyBACAC component is

followed with the suffix AC .

The goal is to discover HyBACAC elements (UAC , USAAC , ESAC , ESAAC , DAC , DAAC ,

OPAC , OPAAC) and the attribute authorization function setAuthorization(s : SAC , op : OPAC , d :

DAC , current : ESAC)AC from HyBACRC policy in such a way that the authorizations are

the same as those under HyBACRC . The inputs are HyBACRC component sets RRC , URC ,

UARC , DUSARC , ECRC , ERRC , EARC , PRC , DRC , OPRC , DRRC , DDARC PDRARC ,

RPDRARC , and Authorization(s : S, op : OP, d : D)RC . The steps are following:

91

The set of users, devices, and operations are the same in both systems. in HyBACRC , user

static attributes are expressed through the component roles, while user dynamic attributes are

expressed through the component dynamic user/session attribute DUSA. Hence, in this con-

figuration, roles are expressed through the user/session attribute Relationship in HyBACAC .

Relationship is a user/session attribute that takes a user or a session as an input and returns the

set of roles assigned to that user or that session. On the other hand, dynamic user attributes in

HyBACRC are translated into user/session attributes in HyBACAC .

Static separation of duty constraints SSDConstraints are translated into user attributes con-

straints in HyBACAC . Dynamic separation of duty constraints DSDConstraints are translated

into session attributes constraints in HyBACAC .

Environment roles are translated into atomic environment state attributes. Each environment

state attribute has a range of values equal to {True, False}. How to trigger different environment

states attributes in response to the environment’s changes is outside the scope of this model.

While device roles are ways of categorizing permissions according to static characteristics in

HyBACRC , dynamic device attributes are means of expressing dynamic device characteristics.

On the other hand, in HyBACAC device attributes capture both static and dynamic devices char-

acteristics. Hence, device roles DRRC and dynamic device attributes DDARC in HyBACRC are

both translated into device attributes DAAC in HyBACAC .

Since we do not have permission attributes in HyBACAC , and since a permission is a mapping

between a device and an operation, we translate device roles in HyBACRC into atomic operation

attributes and atomic device attributes. For each device role dry, we create a device attribute

day = dry, and an operation attribute opay = dry. These created attributes have a range of

values equal to {True, False}. Then, for every permission px assigned to the device role dry in

HyBACRC , dry(px.op) = True and dry(px.d) = True. Permission-role constraints translation is

straightforward.

The final step is to construct the authorization function. InHyBACRC it is theRPDRARC that

gives specific role pairs and hence users access to specific device roles and hence permissions. Fur-

92

thermore, those permissions granted by RPDRARC are further constrained by Authorization(s :

S, op : OP, d : D)RC according to different dynamic user attributes, and dynamic device attributes.

Therefore, to construct the Authorization(s : S, op : OP, d : D)AC we first initialize it, and then

loop through each rpdrai = ((ri, ERi), dri) ∈ RPDRARC and execute the following steps:

1. We construct the string SetOfESA by translating ERi into a string of logically conjuncted

environment state attributes conditions.

2. We construct the string EGRBACPart by extracting users and device roles associated

with rpdrai. Then, we translate them into HyBACAC attribute functions conditions, and

logically and them with the string SetOfESA to construct the part of the authorization

function corresponding to rpdrai.

3. Get SetOfC the set of sets of the dynamic session attributes conditions, and the dynamic

device attributes conditions that further constraints the access of the session assigned to

the role ri to the permissions assigned to the device role dri by executing the function

GetRelatedDynamicCondition(ri, drj) on the Authorization(s : S, op : OP, d : D)RC

after convert it to the DNF format.

4. Loop through each set C ∈ SetOfC, and do the following:

a Initialize the variable TempAuth to equal to the string EGRBACPart that was con-

structed earlier.

b Logically and each ci ∈ C to the authorization policy TempAuth.

c Finally, we add (logically or) the constructed authorization policy TempAuth to the final

authorization function Authorization(s : S, op : OP, d : D)AC .

5.6 Constructing HyBACRC from HyBACAC

In this section, we introduce our methodology to construct HyBACRC components and configu-

rations from HyBACAC policy configuration. In this section, for differentiation purposes every

93

HyBACRC component is followed with the suffix RC , similarly, every HyBACAC component is

followed with the suffix AC . Here, we follow the same approach used to constructEGRBAC from

HABAC which introduced in Section 4.4 with some few modifications as shown in the following.

5.6.1 Smart Home Use Case Description

In this section we demonstrate a smart home use case configuration in HyBACAC system. This

use case has the following goals: (a) Authorize teenagers to use dangerous kitchen devices (oven)

only when a parent is in the kitchen and the current temperature of the oven is less than or equal

to 250◦. (b) Authorize teenagers to use non dangerous kitchen devices (fridge) unconditionally.

(d) Authorize teenagers to use the front door lock device (lock, and unlock) if they are currently

temporary granted that access permission by one of the parents. (e) Allow teenagers to use enter-

tainment devices unconditionally. (f) Allow kids to use kids friendly operations and contents in

entertainment devices which are, turning on and off the device, andG content during weekends be-

tween 12:00 pm and 7:00 pm, or weekdays between 5:00 pm and 7:00 pm only. (g) Finally, allow

parents to use any operation in any device unconditionally. Figure 5.10 illustrates this use case con-

figuration in HyBACAC . In the following subsections we construct an HyBACRC configuration

from it is equivalent HyBACAC configuration provided in Figure 5.10.

5.6.2 From Authorization policy to Authorization Array

In HyBACAC , authorization function is a logical clause. First we convert it into a disjunctive

normal form (DNF). Figure 5.11 shows the authorization set of our smart home use case which

introduced in Figure 5.10 after following the standard approach to convert it into a DNF format.

We call each conjuncted term a condition. We have session, environment, device, operation,

and mix conditions which are conditions that involve user/session, environment, device, operation,

and any two types of attributes respectively. Each condition is either static condition or dynamic

condition. Static condition correspond to static attribute functions. Dynamic conditions correspond

to dynamic attribute functions. In the DNF authorization function of our smart home use case

94

U = {alex, bob, anne}
D = {Oven, Fridge, FrontDoorLock, TV }
OP = OPOven ∪OPFridge ∪OPFrontDoorLock ∪OPTV , where
OPOven = {Onoven,Offoven},
OPFridge = {Openfridge, Closefridge},
OPFrontDoorLock = {Lock, Unlock},
OPTV = {OnTV ,OffTV , G, PG,R}

ops(Oven) = OPOven, ops(Fridge) = OPFridge, ops(FrontDoorLock) = OPFrontDoorLock, ops(TV) = OPTV

USA = {FamilyRole, FrontDoorLockToken}
FamilyRole : U → {parent, kid, teenager}
FamilyRole(alex) = {kid}
FamilyRole(anne) = {teenager}
FamilyRole(bob) = {parent}

FrontDoorLockToken : U → {True, False}
This attribute is a dynamic attribute that is dynamically set by home owner

DA = {DangerouseKitchenDevices, FrontDoorLockDevice,DeviceTemperature}
DangerouseKitchenDevices : D → {True, False}
DangerouseKitchenDevices(Oven) = True, DangerouseKitchenDevices(Fridge) = False, all other values are undefined

FrontDoorLockDevice : D → {True, False}
FrontDoorLockDevice(FrontDoorLock) = True, all other values are undefined

DeviceTemperature : D → {x|x is an oven temperature}
DeviceTemperature(Oven) is dynamically set by sensors, all other values are undefined

ES = {current}
ESA = {day, time, ParentInKitchen}
day : ES → {S,M, T,W, Th, F, Sa}
time : ES → {x|x is an hour of a day}
ParentInKitchen : ES → {True, False}

OPA = {KidsFriendlyContent}
KidsFriendlyContent : OP → {True, False}
KidsFriendlyContent(GTV) = KidsFriendlyContent(OnTV) = KidsFriendlyContent(OffTV) = True

KidsFriendlyContent(PGTV) = KidsFriendlyContent(RTV) = False

All other values are undefined

Authorization(s : S, op : OP, d : D, current : ES) ≡
(teenager ∈ FamilyRole(s) ∧ ParentInKitchen(current) = True ∧DangerouseKitchenDevices(d) = True∧

Device_Temperature(d) ≤ 250◦) ∨
(teenager ∈ FamilyRole(s) ∧ DangerouseKitchenDevices(d) = False) ∨
(teenager ∈ FamilyRole(s) ∧ FrontDoorLockDevice(d) = True ∧ FrontDoorLockToken(s) = True) ∨
(teenager ∈ FamilyRole(s) ∧ (KidsFriendlyContent(op) = True ∨KidsFriendlyContent(op) = False) ∨
(kid ∈ FamilyRole(s) ∧ ((day(current) ∈ {Sa, S} ∧ 12 : 00 ≤ time(current) ≤ 19 : 00)

∨(day(current) ∈ {M,T,W, Th, F} ∧ 17 : 00 ≤ time(current) ≤ 19 : 00)) ∧KidsFriendlyContent(op) = True ∨
(parent ∈ FamilyRole(s))

Figure 5.10: Smart Home Use Case Configuration in HyBACAC

95

Authorization(s : S, op : OP, d : D, current : ES) ≡
teenager ∈ FamilyRole(s) ∧ ParentInKitchen(current) = True∧

DangerouseKitchenDevices(d) = True ∧Device_Temperature(d) ≤ 250◦ ∨
teenager ∈ FamilyRole(s)∧ DangerouseKitchenDevices(d) = False ∨
teenager ∈ FamilyRole(s)∧ FrontDoorLockDevice(d) = True∧

FrontDoorLockToken(s) = True ∨
teenager ∈ FamilyRole(s)∧KidsFriendlyContent(op) = True ∨
teenager ∈ FamilyRole(s)∧KidsFriendlyContent(op) = False ∨
kid ∈ FamilyRole(s)∧ (day(current) ∈ {Sa, S} ∧ 12 : 00 ≤ time(current) ≤ 19 : 00) ∧

KidsFriendlyContent(op) = True ∨
kid ∈ FamilyRole(s)∧ (day(current) ∈ {M,T,W, Th, F} ∧ 17 : 00 ≤

time(current) ≤ 19 : 00) ∧KidsFriendlyContent(op) = True ∨
parent ∈ FamilyRole(s)

Figure 5.11: The Attribute Authorization Function of The Use Case Described in Figure 5.10 in
DNF Format

mentioned above we have eight conjunctive clauses, each conjunctive clause represents one access

authorization rule.

To construct the authorization array we evaluate every ui ∈ UAC , dj ∈ DAC , and opk ∈

OPAC combination against static conditions in each conjunctive clause. For every combination

that satisfies every static term (condition) in a conjunctive clause we create a raw (ui, dj , opk,

current, C) for that combination in the authorization array. Where, C is the set of conditions

that need to be satisfied together for a user ui to perform an operation opk on a device dj . These

conditions are related to the following: (a)Static or dynamic session attributes.(b)Dynamic device

attributes. (c)environment attributes.

Authorizations array (AA): an authorization raw (ui, dj , opk, esl, C) denotes that the user ui

is allowed to perform an operation opk on a device dj during the environment state esl whenever

the set of session’s, device’s, and environment’s conditions in C are satisfied. The AA of the use

case in Figure 5.10 is shown in Table 5.9. For illustration purposes each different color represents

the authorization fields for different user.

5.6.3 Approach

The goal is to construct HyBACRC elements, assignments, derived relations, dynamic attributes

sets, and attribute authorization function fromHyBACAC policies in such a way that the authoriza-

tions are the same as those under HyBACAC . The inputs are HyBACAC elements UAC , ESAC ,

96

Table 5.9: AA for The Use Case Described in Figure 5.10

User u Device d Operation op Environment state es Conditions C
alex TV G current X
alex TV OnTV current X
alex TV OffTV current X
alex TV G current Z
alex TV OnTV current Z
alex TV OffTV current Z
bob TV G current {parent ∈ FamilyRole(s)}
bob TV PG current {parent ∈ FamilyRole(s)}
bob TV R current {parent ∈ FamilyRole(s)}
bob TV OnTV current {parent ∈ FamilyRole(s)}
bob TV OffTV current {parent ∈ FamilyRole(s)}
bob Oven Onoven current {parent ∈ FamilyRole(s)}
bob Oven Offoven current {parent ∈ FamilyRole(s)}
bob Fridge Openfridge current {parent ∈ FamilyRole(s)}
bob Fridge Closefridge current {parent ∈ FamilyRole(s)}
bob FrontDoorLock Lock current {parent ∈ FamilyRole(s)}
bob FrontDoorLock Unlock current {parent ∈ FamilyRole(s)}

anne TV G current
{teenager ∈

FamilyRole(s)}

anne TV PG current
{teenager ∈

FamilyRole(s)}

anne TV R current
{teenager ∈

FamilyRole(s)}

anne TV OnTV current
{teenager ∈

FamilyRole(s)}

anne TV OFFTV current
{teenager ∈

FamilyRole(s)}
anne Oven Onoven current Y
anne Oven OFFoven current Y

anne Fridge Openfridge current
{teenager ∈

FamilyRole(s)}

anne Fridge Closefridge current
{teenager ∈

FamilyRole(s)}
anne FrontDoorLock Lock current L
anne FrontDoorLock Unlock current L

X = {kid ∈ FamilyRole(s) , day(current) ∈ {Sa, S}, 12 : 00 ≤ time(current) ≤ 19 : 00}.
Y = {teenager ∈ FamilyRole(s) , ParentInKitchen(current) = True, Device_Temperature(d) ≤ 250◦} .

Z= {kid ∈ FamilyRole(s) , day(current) ∈ {M,T,W, Th, F}, 17 : 00 ≤ time(current) ≤ 19 : 00}.
L= {teenager ∈ FamilyRole(s) , FrontDoorLockToken(s) = True}.

97

Table 5.10: PDRA array for The Use Case Described in Figure 5.10

DangerouseKitchenDevices
= True

DangerouseKitchenDevices
= False

FrontDoorLockDevice =
True

FrontDoorLockDevice =
False

KidsFriendlyContent =
True

KidsFriendlyContent =
False

RemPerm

(TV,OnTV) 0 0 0 0 1 0 0

(TV,OffTV) 0 0 0 0 1 0 0

(TV,G) 0 0 0 0 1 0 0

(TV, PG) 0 0 0 0 0 1 0

(TV,R) 0 0 0 0 0 1 0

(Oven,Onoven) 1 0 0 0 0 0 0

(Oven,Offoven) 1 0 0 0 0 0 0

(Fridge,Openfridge) 0 1 0 0 0 0 0

(Fridge, Closefridge) 0 1 0 0 0 0 0

(FrontDoorLock, Lock) 0 0 1 0 0 0 0

(FrontDoorLock, Unlock) 0 0 1 0 0 0 0

Table 5.11: UDRAA for The Use Case Described in Figure 5.10

DangerouseKitchenDevices
= True

DangerouseKitchenDevices
= False

FrontDoorLockDevice =
True

KidsFriendlyContent =
True

KidsFriendlyContent =
False

alex 0 0 0 {X,Z} 0

bob
{{parent ∈

FamilyRole(s)}}
{{parent ∈

FamilyRole(s)}}
{{parent ∈

FamilyRole(s)}}
{{parent ∈

FamilyRole(s)}}
{{parent ∈

FamilyRole(s)}}

anne {Y } {{teenager ∈
FamilyRole(s)}} {L} {{teenager ∈

FamilyRole(s)}}
{{teenager ∈

FamilyRole(s)}}

X = {kid ∈ FamilyRole(s) , day(current) ∈ {Sa, S}, 12 : 00 ≤ time(current) ≤ 19 : 00}.
Y = {teenager ∈ FamilyRole(s) , ParentInKitchen(current) = True, Device_Temperature(d) ≤ 250◦} .

Z= {kid ∈ FamilyRole(s) , day(current) ∈ {M,T,W, Th, F}, 17 : 00 ≤ time(current) ≤ 19 : 00}.
L= {teenager ∈ FamilyRole(s) , FrontDoorLockToken(s) = True}.

98

DAC , OPAC , USAAC , ESAAC , OPAAC , DAAC , and the authorization array AA. The outputs are

HyBACRC components URC , RRC , UARC , ECRC , ERRC , EARC , RPRC , RPRARC , RPEARC ,

DRC , OPRC , PRC , DRRC , PDRARC , RPDRARC , DUSARC , DDARC , and Authorization(s :

S, op : OP, d : D)RC . The steps are similar to the steps carried in Section 4.4.2 to construct

EGRBAC configuration from HABAC configuration as shown in the following:

Step 1: Initialization. The set of users, devices, and operations are the same in both systems,

hence URC = UAC , DRC = DAC , and OPRC = OPAC . For every operation opi, and device dj

pair, where opi is assigned to dj by the device manufacturers, create a permission px, and add it to

the set PRC .

Step 2: Create the set of device rolesDRRC . (a) Create a device role dr for each operation attribute

instance, or static device attribute instance. DRRC here are represented as a condition of the form

opa = x, or da = x. Where x is an instance of the attribute value. (b) Create one device role

call it remaining permissions RemPerm for all the permissions pl = (di, opj), where pl ∈ PRC

and di is not assigned to any device attributes, and opj is not assigned to any operation attribute.

This device role captures the cases where some users have access to specific permissions directly

without involving device’s or operation’s attributes.

Step 3: Construct the permission device role assignment array PDRA. It is a many-to-many

mapping of P set and DR set (constructed in Step 2). To construct PDRA we first make a column

for each device role drj ∈ DRRC , and make a row for each permission px ∈ PRC . Then, we fill the

array PDRA, where PDRA[i, j] = 1 in two cases, first if for the permission pi (corresponding

to the row i) pi.op or pi.d satisfies the condition corresponding to the device role of the column

j drj . Second, if pi.op is not assigned to any operation attribute, and pi.d is not assigned to any

device attribute, and the device role corresponding to this column is RemPerm. PDRA[i, j] = 0

otherwise. For every PDRA[i, j] = 1, add the pair (pi, drj) to the set PDRARC of HyBACRC .

See Table 5.10 for the PDRA array of our smart home use case shown in Figure 5.10. Finally,

delete device roles that do not have any permission assigned to them, such as, RemPerm device

role shown in Table 5.10 .

99

Step 4: Construct the user device role authorization array UDRAA from the authorization array

AA, and PDRARC . UDRAA ⊆ U × DR, a many to many mapping between U and DR. To

construct UDRAA, we first make a raw for each user, and a column for each device role. Then,

for every UDRAA[i, j] ∈ UDRAA we check the AA for every ui, and px combination, where

(px, drj) ∈ PDRARC . Here, we have three cases: (a) UDRAA[i, j] = 1 if user ui can access all

the permissions assigned to the device role drj without any condition. (b) UDRAA[i, j] = 2C ,

where C is a set of user/session attributes, dynamic device attributes, and environment attributes

conditions that need to be satisfied together for a ui to access all the permissions assigned to drj .

Note that these sets of conditions have to be the same for each permission assigned to drj . (c)

Finally, UDRAA[i, j] = 0 if user ui is not allowed to access all the permissions assigned to

the device role drj , or is allowed to access different permissions in drj but under different set of

conditions. Table 5.11 shows UDRAA for our use case.

Step 5: Create the set of dynamic user/session attributes DUSA, and the set of dynamic device

attributes DDA as following:

1. Initialize the sets DUSARC and DDARC

2. (∀ dynamic user/session attribute usai ∈ USAAC)[DUSARC ← DUSARC ∪ {usai}]

3. (∀ dynamic device attribute dai ∈ DAAC)[DDARC ← DDARC ∪ {dai}]

Step 6: Construct the rest of HyBACRC elements (RRC , ECRC , ERRC , RPRC), assignments

(UARC , EARC , RPDRARC), derived relations (RPRARC , RPEARC), dynamic attribute func-

tions DUSARC , DDARC , and attribute authorization function Authorization(s : S, op : OP, d :

D)RC by following our proposed HyBACRC constructing algorithm introduced in Section 5.6.4.

The set of users roles RRC constructed here is the set of candidate users roles.

Step 7: Merge similar users roles. To do so, we run our developed role merging algorithm

illustrated in Section 5.6.5.

100

Algorithm 3 HyBACRC Users and Environment Roles Construction
Require: UDRAA
Require: ColumnDR(j): return the device role corresponding to the column j in UDRAA.
Require: RawUser(i): return the user corresponding to the raw i in UDRAA.
Require: IsESC(c): Return True if c is an environment state condition.
Require: IsDDC(c): Return True if c is a dynamic device attribute condition.
Require: IsUSDC(c): Return True if c is a dynamic user/session attribute condition.
Require: ToString(x) : Return the value of x in a string format.

1: Initilize n = Number of users, m = Number of device roles, RRC = {}, UARC = {}, ECRC = {},
ERRC = {}, EARC = {}, RPRC = {}, RPDRARC = {}, and Authorization(s : S, op : O, d :
D) = ”False”

2: for j ← 1 to m do
3: for i← 1 to n do
4: if UDRAA[i, j] = 1 then
5: erx = Any_Time, ecx = True
6: ECEGRBAC = ECEGRBAC ∪ {ecx}, EREGRBAC = EREGRBAC ∪ {erx}
7: EAEGRBAC = EAEGRBAC ∪ {({ecx}, erx)}
8: SER = {erx}
9: rm = ToString(ColumnDR(j))

10: REGRBAC = REGRBAC ∪ {rm}
11: RPEGRBAC = RPEGRBAC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
12: RPDRAEGRBAC = RPDRAEGRBAC ∪ {(rpz, ColumnDR(j))}
13: UAEGRBAC = UAEGRBAC ∪ {(RawUser(i), rm)}
14: Rolepart = rm + ” ∈ ” + ”R(s)”
15: DRpart = ToString(ColumnDR(j)) + ” ∈ ” + ”drole((op, d)”
16: AuthFunc← Rolepart+ ” ∧ ” +DRpart
17: Authorization(s : S, op : O, d : D)←
18: Authorization(s : S, op : O, d : D) + ” ∨ ” +AuthFunc
19:
20: else if UDRAA[i, j] 6= 1 ∧ UDRAA[i, j] 6= 0 then
21: for each X ∈ UDRAA[i, j] do
22: SER = {}, AuthFunc = ”True”
23: for each y ∈ X do
24: if IsESC(y) then
25: Create ecy, and ery
26: ECRC = ECRC ∪ {ecy}, ERRC = ERRC ∪ {ery}
27: EARC = EARC ∪ {({ecy}, ery)}
28: SER = SER ∪ {ery}
29: else if IsUSDC(y) then
30: AuthFunc← AuthFunc+ ” ∧ ” + ToString(y)
31: else if IsDDC(y) then
32: AuthFunc← AuthFunc+ ” ∧ ” + ToString(y)
33: end if
34: end for

101

35: if SER == {} then
36: erx = Any_Time, ecx = True
37: ECRC = ECRC ∪ {ecx}, ERRC = ERRC ∪ {erx}
38: EARC = EARC ∪ {({ecx}, erx)}
39: SER = {erx}
40: end if
41: rm = ToString(ColumnDR(j)) +” ∧ ”+ ToString(X)
42: RRC = RRC ∪ {rm}
43: RPRC = RPRC ∪ {rpz}, where rpz.r = rm, rpz.ER = SER
44: RPDRARC = RPDRARC ∪ (rpz, ColumnDR(j))
45: UARC = UARC ∪ {(RawUser(i), rm)}
46: Rolepart = rm + ” ∈ ” + ”R(s)”
47: DRpart = ToString(ColumnDR(j)) + ” ∈ ” + ”drole((op, d)”
48: AuthFunc← Rolepart+ ” ∧ ” + AuthFunc+ ” ∧ ” +DRpart
49: Authorization(s : S, op : O, d : D)←
50: Authorization(s : S, op : O, d : D) + ” ∨ ” + AuthFunc
51: end for
52: end if
53: end for
54: end for

5.6.4 HyBACRC Roles and Authorization function Constructing Algorithm

The input isUDRAA. The goal is to ConstructHyBACRC elements (RRC , ECRC , ERRC , RPRC),

assignments (EARC , RPDRARC), derived relations (RPRARC , RPEARC), and attribute autho-

rization function Authorization(s : S, op : OP, d : D)RC from UDRAA. See Algorithm 3 for

the full algorithm. The steps are shown as following:

Step 1: Initialize the attribute authorization function and the following HyBACRC sets RRC =

{}, UARC = {}, ECRC = {}, ERRC = {}, EARC = {}, RPRC = {}, RPDRARC = {}. More-

over, initialize the following constants m = Number of device roles, n = Number of users.

Step 2: Loop through the columns of UDRAA, Table 5.11 for the use case introduced in Figure

5.10. Each column is corresponding to users access rights to a specific device role. Inside each

column loop through the fields of different rows. Here, if the field is equal to zero, according to the

way UDRAA was constructed this means the user corresponding to this field has no access right

to this field device role, hence, the algorithm go to the next field. Otherwise, we have two cases:

A. UDRAA[i, j] = 1, according to the way UDRAA was constructed this means the user corre-

102

sponding to this raw ui can access the device role of this column drj unconditionally. In this case,

the algorithm does the following:

a Creates an environment role erx = Any_Time and add it to the set ERRC , an environment

condition ecx = True and add it to the set ECRC . Add ({ecx}, erx) to the set EARC , this

implies that the environment role Any_Time will always be active. Create a set of environment

roles SER and add erx to it SER = {erx}.

b Creates a role rm = ToString(ColumnDR(j)) which corresponds to accessing this column

device role anytime, and unconditionally. Add this role to the set RRC .

c Defines a role pair rpz, where rpz.r = rm and rpz.ER = SER. Add rpz to the set RPRC .

d Assigns the role pair rpz to the device role corresponding to this column by adding the pair

(rpz, ColumnDR(j)) to the set RPDRARC .

e Assigns the role rm to the user corresponding to this raw by adding the pair(RawUser(i), rm)

to the set UARC .

f Creates an authorization policy that permits users assigned to rm to access permissions assigned

to drj unconditionally. Finally add this policy to the authorization function.

B. UDRAA[i, j] 6= 1 ∧ UDRAA[i, j] 6= 0, which means that the user ui can access the device

role drj under specific set of user, devices, and environment conditions defined by UDRAA[i, j].

Here, UDRAA[i, j] is a set of sets of conditions, each set of conditions define a group of session,

devices, and environment condition that need to be satisfied together in order for the user ui to

access the device role drj . Loop through each set of conditions X ∈ UDRAA[i, j], for each X

perform the following steps:

1. Loop through each condition y ∈ X , and check for the following options:

a If y is an environment state attribute condition, the algorithm creates a corresponding

environment condition ecy and adds it to the set ECRC , environment role ery and adds it

103

to the set ERRC . Adds ({ecx}, erx) to the set EARC . Moreover, the algorithm adds ery

to the set of environment roles SER.

b If y is a dynamic session condition, the algorithm updates the authorization function

AuthFunc accordingly by logically conjunct this session condition to the authorization

function.

c If y is a dynamic device attribute condition, the algorithm updates the authorization func-

tion AuthFunc accordingly by logically conjunct this dynamic device attribute condition

to the authorization function.

2. After looping through each condition in X , if the set SER is empty, that means this set

of conditions does not contain an environment state condition. In other words, the user of

this raw can access the device role of this column without any environment condition. In

this case the algorithm creates an environment role erx = Any_Time and add it to the set

ERRC , an environment condition ecx = True and add it to the set ECRC . Add ({ecx}, erx)

to the set EARC , this implies that the environment role Any_Time will always be active.

Add erx to it SER = {erx}.

3. The algorithm creates a corresponding user role rm = ToString(ColumnDR(j)) +”∧ ”+

ToString(X) which represents accessing this column device role when the set of conditions

that form X is satisfied. Add this role to the set RRC .

4. Defines a role pair rpz, where rpz.r = rm and rpz.ER = SER. Add rpz to the set RPRC .

5. Assigns the role pair rpz to the device role corresponding to this column by adding the pair

(rpz, ColumnDR(j)) to the set RPDRARC .

6. Assigns the role rm to the user corresponding to this raw by adding the pair(RawUser(i), rm)

to the set UARC .

7. Finally, the algorithm prepare the authorization function corresponding to this field ofUDRAA

and then add it to the final authorization function.

104

5.6.5 Users Roles Merging Algorithm

Algorithm 4 Users Roles Merging Algorithm
Require: REGRBAC : The set of roles
Require: U(r): Returns the set of users assigned to the role r.
Require: RP (r): Returns the set of role pairs associated with the role r. .

1: for each ri, rj ∈ REGRBAC do
2: if U(ri) = U(rj) ∧ ri 6= rj then
3: for each rpk ∈ RP (ri) do
4: rpk.r = rj
5: end for
6:
7: REGRBAC = REGRBAC \ ri
8:
9: . Delete all UA pairs related to ri

10: for each (ul, ri) ∈ UAEGRBAC do
11: UA = UA \ (ul, ri)
12: end for
13:
14: . Replace all RPDRA pairs related to ri
15: for each ((ri, ERx), dry) ∈ RPDRAEGRBAC do
16: RPDRAEGRBAC = RPDRAEGRBAC \((ri, ERx), dry)
17: RPDRAEGRBAC = RPDRAEGRBAC∪
18: {((rj , ERx), dry)}
19: end for
20: Replace every ri in the authorization function with rj .
21: end if
22: end for

The main purpose of this algorithm is to merge roles that have similar users assignments. For

each two roles ri, rj which are assigned to the same set of users, the algorithm does the following:

1. For every role pair rpk, in which the role part of it rpk.r is equal to ri, change the role part

of it to rj (rpk.r = rj).

2. Remove ri from the set of roles RRC .

3. For every (ul, ri) ∈ UARC , remove the pair (ul, ri) from the set UARC . See Algorithm 4 for

the complete algorithm.

4. For every ((ri, ERx), dry) ∈ RPDRARC , remove (ri, ERx), dry) from the set

RPDRARC , and instead add the pair (rj, ERx), dry) to the set RPDRARC .

105

r1 ≡ DangerouseKitchenDevices = True ∧ parent ∈ FamilyRole(s),
r2 ≡ DangerouseKitchenDevices = True ∧ {teenager ∈ FamilyRole(s),

ParentInKitchen(current) = True ∧DeviceTemperature(d) ≤ 250◦},
r3 ≡ DangerouseKitchenDevices = False ∧ parent ∈ FamilyRole(s) ,
r4 ≡ DangerouseKitchenDevices = False ∧ teenager ∈ FamilyRole(s) ,
r5 ≡ FrontDoorLockDevice = True ∧ parent ∈ FamilyRole(s) ,
r6 ≡ FrontDoorLockDevice = True ∧ {teenager ∈ FamilyRole(s),

F rontDoorLockToken(s) = True},
r7 ≡KidsFriendly = True ∧ {kid ∈ FamilyRole(s),

day(current) ∈ {Sa, S}, 12 : 00 ≤ time(current) ≤ 19 : 00},
r8 ≡KidsFriendly = True ∧ {kid ∈ FamilyRole(s),

day(current) ∈ {M,T,W, Th, F}, 17 : 00 ≤ time(current) ≤ 19 : 00},
r9 ≡KidsFriendly = True ∧ parent ∈ FamilyRole(s),
r10 ≡KidsFriendly = True ∧ teenager ∈ FamilyRole(s),
r11 ≡KidsFriendly = False ∧ parent ∈ FamilyRole(s),
r12 ≡KidsFriendly = False ∧ teenager ∈ FamilyRole(s),

Figure 5.12: Initial Set of Roles Before Running the Role Merging Algorithm

Authorization(s : S, op : OP, d : D) ≡
(r1 ∈ R(s) ∧DangerouseKitchenDevices = True ∈ drole((op, d)) ∨
(r2 ∈ R(s) ∧ DeviceTemperature(d) ≤ 250◦∧;DangerouseKitchenDevices = True ∈
drole((op, d))) ∨
(r3 ∈ R(s) ∧DangerouseKitchenDevices = False ∈ drole((op, d)) ∨
(r4 ∈ R(s) ∧DangerouseKitchenDevices = False ∈ drole((op, d)) ∨
(r5 ∈ R(s) ∧ FrontDoorLockDevice = True ∈ drole((op, d)) ∨
(r6 ∈ R(s) ∧ FrontDoorLockToken(s) = True∧;FrontDoorLockDevice = True ∈
drole((op, d)) ∨
(r7 ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d))) ∨
(r8 ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d))) ∨
(r9 ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d)) ∨
(r10 ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d)) ∨
(r11 ∈ R(s) ∧KidsFriendlyContent = False ∈ drole((op, d)) ∨
(r12 ∈ R(s) ∧KidsFriendlyContent = False ∈ drole((op, d))

Figure 5.13: Initial Authorization function Before Running the Role Merging Algorithm

5. Finally, update the authorization function accordingly, by replacing any ri with rj .

After applying the first six steps of the approach of constructing HyBACRC from HyBACAC

introduced in Section 5.6.3 on our smart home use case introduced in Figure 5.10, we will end up

having a set of twelve roles as illustrated in Figure 5.12. These roles will be assigned to different

users as following:

UA = {(alex, r7), (alex, r8), (bob, r1), (bob, r3), (bob, r5), (bob, r9), (bob, r11),

(anne, r2), (anne, r4), (anne, r6), (anne, r10), (anne, r12)}.

Moreover, we will end up having the dynamic attribute authorization function shown in Figure

5.13. After running the users roles merging algorithm, the constructed twelve roles will be merged

106

Authorization(s : S, op : OP, d : D) ≡
(ra ∈ R(s) ∧DangerouseKitchenDevices = True ∈ drole((op, d)) ∨
(rb ∈ R(s) ∧ DeviceTemperature(d) ≤ 250◦∧;DangerouseKitchenDevices = True ∈
drole((op, d))) ∨
(ra ∈ R(s) ∧DangerouseKitchenDevices = False ∈ drole((op, d)) ∨
(rb ∈ R(s) ∧DangerouseKitchenDevices = False ∈ drole((op, d)) ∨
(ra ∈ R(s) ∧ FrontDoorLockDevice = True ∈ drole((op, d)) ∨
(rb ∈ R(s) ∧ FrontDoorLockToken(s) = True∧;FrontDoorLockDevice = True ∈
drole((op, d)) ∨
(rc ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d))) ∨
(rc ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d))) ∨
(ra ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d)) ∨
(rb ∈ R(s) ∧KidsFriendlyContent = True ∈ drole((op, d)) ∨
(ra ∈ R(s) ∧KidsFriendlyContent = False ∈ drole((op, d)) ∨
(rb ∈ R(s) ∧KidsFriendlyContent = False ∈ drole((op, d))

Figure 5.14: Authorization function After Running the Role Merging Algorithm

into three roles only, and the user role assignment set will end up having three pairs as shown in

the following:

R = { ra ≡ r1, r3, r5, r9, r11, rb ≡ r2, r4, r6, r10, r12, rc ≡ r7, r8}.

UA = {(alex, rc), (bob, ra), (anne, rb)}.

Figure 5.14 shows the final authorization function after running the role merging algorithm.

5.6.6 The output of HyBACRC Constructing Approach on HyBACAC Use Case

The output of HyBACRC role constructing algorithm for the Use case in Table 5.10 is shown in

Table 5.12.

5.7 A Comprehensive Comparison

Considering the diverse structure, requirements, and specifications of an organization, and taking

into account that access control policies and models are available in diverse forms, it is required

to select and implement an appropriate access control model consistent with the security require-

ments of the related organization in order to achieve the best results and minimum access risks

and threats. In this section, we compare between four access control models specifically designed

to meet smart home IoT challenges. We compare the two hybrid models developed in this paper,

107

HyBACRC , and HyBACAC with EGRBAC and HABAC. We evaluate these models against

an access control criteria adapted from [58]. These criteria are classified into two types: (a) Basic

and main criteria. (b) Quality criteria.

5.7.1 Basic and main criteria

This type of criteria consists of six elements. Here we discuss each criterion.

Constraints Constraints are invariants that must be maintained. We have three types of constraints,

static separation of duty, dynamic separation of duty, and permission-role constraints as explained

in Section 5.2, and Section 5.3. From table 5.13, we can notice that all four models support

the three types of constraints except for HABAC. Where it does not support permission-role

constraints [20].

Attributed based specifications We have two types of attributes as explained in Section 5.1, static

and dynamic. The four models support environment attributes. Moreover, they all support static

users, devices, and operations attributes (conditions). On the other hand, dynamic attributes are

not supported by EGRBAC.

Least privilege principle This principle means that a subject of a system should only be permitted

to have access to the least privileges that are required for performing the user’s duties. All four

models support this principle. They all include the component session, and a user belonging to

several roles (in EGRBAC, and HyBACRC), or has different attributes corresponding to his

roles in the house (in HABAC, and HyBACAC) can invoke any subset of them that enables tasks

to be accomplished in a session. Thus, a user who is a member of a powerful role can normally

keep this role deactivated and explicitly activate it when needed.

Authentication All four models support positive (close) authentication. Closed policy permits an

access when there is a positive authorization for such access, and denied it otherwise.

Access administration Here we compare the four models based on three administrative tasks.

User provisioning, policy provisioning, and configuration effort. In general, user provisioning is

108

easier in RBAC based models (includingEGRBAC andHyBACRC) than in ABAC based models

(including HABAC, and HyBACAC). In RBAC models user provisioning simply requires the

administrator (the homeowner) assigns users to roles. On the other hand, in ABAC based models,

the administrator needs to configure different attribute values for newly provisioned users, and

devices. On the contrary, in ABAC based model policy provisioning only require the addition

of those policies to the authorization function as in HABAC or to the authorization set as in

HyBACAC . Differently, in RBAC based model this requires configuring a series of assignments

as in EGRBAC, and configuring a series of assignments and adding new authorization rules as

in HyBACRC . Regarding configuration effort, from Table 5.13, we can notice that HyBACRC

requires more configuration effort than the other three models. On the other hand, EGRBAC (the

pure RBAC model) is the one with the least configuration efforts.

Access review In RBAC based model (including EGRBAC and HyBACRC), to determine the

maximum permission available for a user we just need to look into his roles while this could be

more complicated in ABAC based models (such as HABAC and HyBACAC) [70].

Administrative policies To determine how administrative privileges are organized in any model, an

access control administration model is required. However, in the four models, it is assumed that

the house owner is the one who is responsible for granting or revoking permissions. Hence, we

can say that they all support centralized administrative policies.

5.7.2 Quality criteria

Here we have three important criteria as explained in the following.

Expressiveness, and Meaningfulness We believe that in order for an AC model to be expressive,

it has to maintain at least the following three characteristics. First, it has to be formally defined

so that there is a precise and rigorous specification of the intended behavior. Second, it has to be

sufficiently meaningful and expressive to support different types of constraints. Finally, The model

should capture different types of static and dynamic attributes. All four models that we are compar-

ing are formally defined. Furthermore, they all support different constraints except for HABAC,

109

since it does not support permission-role constraints. Finally, as explained in the Attributed based

specifications criterion in Section 5.7.1. They all capture different types of attributes except for

EGRBAC, where it doesn’t capture the user’s and device’s dynamic attributes.

Flexibility To consider a specific AC model as a flexible model several factors need to be eval-

uated, here we identify three of them. First, the model should be flexible enough to meet smart

home IoT requirements. Second, the model should support delegation which means the capability

of a subject to delegate his privileges to any other user partially or totally. Moreover, the flexibility

of provisioning new users or policies.

According to the criteria proposed in Section ?? for an access control model to fulfill smart home

IoT requirements, it should be dynamic, fine grained, and suitable for constrained smart home de-

vices. Moreover, The model should be constructed specifically for smart home IoT, or otherwise

be interpreted for the smart home domain such as by appropriate use cases. The model should

be demonstrated in a proof-of-concept to be credible using commercially available technology. Fi-

nally, the model should have a formal definition, so that there is a precise and rigorous specification

of the intended behavior. As discussed in [19] EGRBAC meet this criteria. On the other hand,

HABAC model was not implemented or tested, hence it doesn’t fulfill the entire criteria. More-

over, HyBACRC , and HyBACAC are both dynamic, fine grained, suitable for the constrained

home environment, designed specifically for smart home IoT, illustrated with a use case demon-

stration, has proof of concept implementation, and they are both formally defined. Hence, they

meet the criteria proposed in [19]. From the above, we can claim that except for HABAC, these

models are flexible enough to meet smart home IoT requirements. HABAC needs to be imple-

mented and tested to ensure its applicability using commercially available technology.

Regarding delegation support, this can’t be fully determined without an access control admin-

istration model. But generally speaking, it has been shown before that RBAC and ABAC based

models are capable of performing delegation. All four models are capable of provisioning new

users and policies. However, as discussed earlier, while it is easier to provision new users in

RBAC based models (including EGRBAC and HyBACRC) than in ABAC based models (in-

110

cluding HABAC and HyBACAC), it is more complicated to provision new policies in RBAC

based models than in ABAC based models.

Efficiency level and scalability An access control model is required to answer two main ques-

tions on efficiency level and scalability. If the model cannot be expanded easily, this program

will be questionable in the real world. Moreover, the development of the model should not af-

fect its efficiency negatively. To answer these questions accurately a more detailed study needs to

be performed. However, generally speaking in smart home IoT, we are dealing with a relatively

small number of users. Moreover, ABAC based models and RBAC based models have proved their

scalability since they have been widely adopted on different organizations with huge sizes.

5.8 Analysis and Limitations

In this chapter, we proposed HyBACRC . It is a user to device access control model. It is a

role-centric hybrid model that combines the basic concepts of EGRBAC (an RBAC model) and

HABAC (an ABAC model) systems. It encapsulates relatively static attributes of access decisions

in user roles and device roles. It utilizes the concept of user’s and device’s dynamic attributes

to capture rapidly changing attributes to further constrain the permissions available for each user.

The users’ roles and devices’ role sets, therefore, determine the maximum set of available per-

missions, supporting the principle of least privilege and allowing easy review of user permissions.

Moreover,HyBACRC can capture the environment contextual information through the component

environment roles. HyBACRC retains advantages of EGRBAC (such as ease of user provisioning,

least privilege principle, and the ability to quickly determine and control the maximum permissions

available to each user) while captures different authorizations for every possible user, environment,

operation, and device dynamic conditions without involving the risk of role explosion.

Moreover, we introduced HyBACAC . It is an attribute-centric user to device access control

model that is based on the HABAC model proposed in Chapter 4. It captures different users’, envi-

ronment’s, operations’, and devices’ static and dynamic characteristics. Therefore, it is a dynamic

model. It is a fine grained model; since it is capable of giving users access to some operations

111

within a single device without the need to give them access to the entire device. Unlike HABAC,

HyBACAC supports the permission-role constraints by introducing the notion of roles (aka anti-

roles). However, it enforces this type of constraint during execution time. On the other hand,

EGRBAC, and HyBACRC enforces permission-role constraints during configuration time.

Our approach of constructing HyBACAC from HyBACRC is a simple, straightforward ap-

proach that is capable of translating HyBACRC configuration into an HyBACAC policy configu-

ration.

In addition to static users/sessions, devices, and operations attributes, our HyBACRC con-

structing approach is capable of handling HyBACRC policies that contain environment attributes,

and dynamic user/session, and devices attributes. On the other hand, our HyBACRC constructing

approach didn’t consider the following: (1)Policies that compare two different types of attributes.

(2)HyBACAC configurations that involve constraints. However, this may be a possible future

direction.

112

Table 5.12: The output of HyBACRC Constructing Approach on The Use Case Described in
Figure 5.10

(a) URC = UAC , DRC = DAC , OPRC = OPAC , PRC = {(TV,G), (TV, PG), (TV,R), (TV,OnTV),
(TV,OffTV), (Oven,Onoven), (Oven,Offoven), (Fridge,Openfridge), (Fridge,
Closefridge), (FrontDoorLock, Lock), (FrontDoorLock, Unlock)}
(b) DR = {DangerouseKitchenDevices = True,
DangerouseKitchenDevices = False,
FrontDoorLockDevice = True , FrontDoorLockDevice = False,
KidsFriendlyContent = True , KidsFriendlyContent = False,
RemPerm}.
(c) PDRA = {((TV,G),KidsFriendly = True),
((TV,OnTV), KidsFriendly = True),
((TV,OffTV),KidsFriendly = True),
((TV, PG),KidsFriendly = False),
((TV,R),KidsFriendly = False),
((Oven,Onoven), DangerouseKitchenDevices = True),
((Oven,Offoven), DangerouseKitchenDevices = True),
((Fridge,Openfridge), DangerouseKitchenDevices = False),
((Fridge, Closefridge), DangerouseKitchenDevices = False),
((FrontDoorLock, Lock), F rontDoorLockDevice = True),
((FrontDoorLock, Unlock), F rontDoorLockDevice = True)}.
(d) EC = {True,
ec1 ≡ ParentInKitchen(current) = True,
ec2 ≡ day(current) ∈ {Sa, S},
ec3 ≡ 12 : 00 ≤ time(current) ≤ 19 : 00 ,
ec4 ≡ day(current) ∈ {M,T,W, Th, F} ,
ec5 ≡ 17 : 00 ≤ time(current) ≤ 19 : 00}.
(e) ER = {Any_Time,
er1 ≡ ParentInKitchen(current) = True,
er2 ≡ day(current) ∈ {Sa, S} ≡Weekend,
er3 ≡ 12 : 00 ≤ time(current) ≤ 19 : 00 ≡ Afternoon and Evening,
er4 ≡ day(current) ∈ {M,T,W, Th, F} ≡Weekdays,
er5 ≡ 17 : 00 ≤ time(current) ≤ 19 : 00 ≡ Evening}.
(f) EA = {({True}, Any_Time) , ({ec1}, er1) ,
({ec2}, er2) , ({ec3}, er3), ({ec4}, er4), ({ec5}, er5) }.
(g) R = {ra, rb, rc}.
(h) UA = {(bob, ra), (anne, rb), (alex, rc)}.
(i) RP = {(ra, Any_Time),
(rb, Any_Time),
(rb, {er1}),
(rc, {er2, er3}),
(rc, {er4, er5})}.
(j) RPDRA = {((ra, AnyT ime) , DangerouseKitchenDevices = True),
((ra, Any_Time) , DangerouseKitchenDevices = False),
((ra, Any_Time) , FrontDoorLockDevice = True),
((ra, Any_Time) , KidsFriendly = True),
((ra, Any_Time) , KidsFriendly = False),
((rb, {er1}) , DangerouseKitchenDevices = True),
((rb, Any_Time) , DangerouseKitchenDevices = False),
((rb, Any_Time) , FrontDoorLockDevice = True),
((rb, Any_Time) , KidsFriendly = True),
((rb, Any_Time) , KidsFriendly = False),
((rc, {er2, er3}) , KidsFriendly = True),
((rc, {er4, er5}) , KidsFriendly = True)}.

113

Table 5.13: Evaluating Smart Home IoT Access Control Models Against Basic Criteria

Criteria EGRBAC HABAC HyBACRC HyBACAC

1. Constraints
a. Static separa-
tion of duty

Yes Yes yes Yes

b. Dynamic sepa-
ration of duty

Yes yes yes yes

c. Least privilege Yes yes yes yes
d. P-R constraints Yes No yes yes

2. Attributed based specifications
a. Static Yes Yes yes Yes
b. Dynamic No yes yes yes
3. Least privilege
principle

Yes yes yes yes

4. Authentication Positive(Close) Positive(Close) Positive(Close) Positive(Close)
5. Access administration

a. User provision-
ing

Easy Complicated Easy Complicated

b. Policy provi-
sioning

Complicated Easy Complicated Easy

c. Configuration
effort

1- Define and set
initial users, de-
vices, and opera-
tions static char-
acteristics (user
roles, and device
roles)

1- Define and set
initial users, de-
vices, and opera-
tions static char-
acteristics (user
roles, and device
roles)

1- Define and
set initial users,
devices, and op-
erations static
characteristics (
attributes)

1- Define and
set initial users,
devices, and op-
erations static
characteristics (
attributes)

2- Define environ-
ment conditions,
environment roles,
and environment
activations

2- Define and
set initial users,
and devices
dynamic charac-
teristics (Dynamic
attributes)

2- Define and
set initial users,
and devices
dynamic charac-
teristics (Dynamic
attributes)

2- Define and
set initial users,
and devices
dynamic charac-
teristics (Dynamic
attributes)

3- Setting up ini-
tial role structure
and assignments

3- Define environ-
ment states, and
environment state
attributes

3- Define environ-
ment conditions,
environment roles,
and environment
activations

3- Define environ-
ment states, and
environment state
attributes

4- Specify access
policies

4- Setting up ini-
tial role structure
and assignments

4- Specify access
policies

5- Specify access
policies

6. Access review Easy Complicated Easy Complicated
7. Administrative
policies

Centralized Centralized Centralized Centralized

114

CHAPTER 6: CONCLUSION AND FUTURE WORK

This chapter concludes our dissertation. It summarizes the contributions of this dissertation and

presents future research directions that can be further investigated.

6.1 summary

This dissertation makes fundamental contributions towards addressing the lack of access control

models suitable for smart home IoT. It develops a family (or series) of models ranging from rela-

tively simple to incorporating increasingly sophisticated and comprehensive features. Our intuitive

insight was that a hybrid model which combines both ABAC and RBAC components will better

capture smart home IoT access control requirements. In order to further investigate this intuition

our approach was to develop pure RBAC and pure ABAC based models explicitly defined to meet

smart home challenges, and compare their benefits and drawbacks. This comparison provided

insights to guide us in designing adequate hybrid models to meet smart home IoT challenges.

Initially, we started by analyzing IoT access control models proposed in the literature, and

smart home IoT access control challenges and formulated criteria that need to be maintained in

future proposed access control models.

Second, we introduced the extended generalized role based access control (EGRBAC) model

for user to device interaction in smart home IoT. It is a dynamic, fine-grained model that grants ac-

cess based on the specific permission required rather than at device granularity. We demonstrated

our model with a use case scenario and a proof-of-concept implementation in AWS. We also con-

ducted a performance test to depict how our system responds in different scenarios with different

loads. The results show that our model is functional and applicable in practice.

Third, we proposed HABAC. It is an attribute-based access control model for smart home

IoT. It is provided with a use case scenario demonstration. Moreover, we compared the theoretical

expressive power of HABAC to EGRBAC by providing approaches for converting an HABAC

specification to EGRBAC and vice versa. We found that while EGRBAC is capable of handling

115

environment attributes, and relatively static user, and device attributes, it is incapable of handling

relatively dynamic users and devices attributes. On the other hand, unlikeEGRBAC, inHABAC

it is hard to prevent future authorization of specific users to access specific operations on specific

devices. Hence, reinforcing our argument for a hybrid approach.

As a result, our fourth contribution was presenting two hybrid models for smart home IoT ac-

cess control HyBACRC , and HyBACAC . While HyBACRC is a role-centric combined (RBAC

and ABAC) access control model,HyBACAC is an attribute-centric combined (RBAC and ABAC)

access control model. These models were formally defined, illustrated through use case scenar-

ios, and implemented and tested in Amazon Web Services (AWS). Moreover, we compared the

theoretical expressive power of HyBACAC , and HyBACRC models by providing algorithms for

converting an HyBACAC specification to HyBACRC and vice versa. We discussed the insights

for practical deployment of these models. Finally, we provided a comprehensive theoretical com-

parison between the four smart home IoT access control models introduced in this dissertation.

6.2 Future Work

There are several potential directions that can be studied and explored as extensions to this research.

This dissertation focuses on user to device interaction in smart home IoT. However, analogous

to the way humans use the Internet, devices will be the main “users” on the Internet of Things

ecosystem. These devices will operate with different networking standards which will increase

the risk exposure for their communication. Therefore, device-to-device (D2D) communication is

expected to be an intrinsic part of IoT. Devices will communicate with each other autonomously

with or without any centralized control and collaborate to gather, share and forward information.

Hence, further research on device-to-device interaction access and communication control in smart

home IoT is a viable direction.

Moreover, communicating smart devices are usually constrained in resources, and they will

probably operate with different networking standards. Such interaction poses heterogeneity prob-

lems. Therefore, in many cases it may be wiser to transfer the communication to the virtual objects

116

layer. This will provide a uniform abstract interface for the physical objects to communicate with

each other, and with the upper layers. This abstraction will introduce many types of interactions

that need to be secured, such as Objects-to-Virtual objects, Virtual objects-to-Virtual objects, and

Virtual objects-to-Applications.

On the other hand, many researchers who studied different IoT platforms for applications to

devices interactions concluded that applications usually have over privileged access to smart de-

vices. They also figured that apps might pose a higher risk to users than needed [44, 95]. Hence,

rigorous access control models for Users-to-Applications, Applications-to-Virtual objects, and

Applications-to-Applications need to be developed.

Finally, the integration between IoT and cloud services will enlarge the attack surface for smart

things. The cloud services layer allows IoT to leverage its practically unlimited storage, compu-

tation, and analysis capabilities. It provides the flexibility and scalability needed for IoT. This

will introduce new interactions that need to be secured, for example, Cloud-to-Virtual objects,

Applications-to-Cloud, Users-to-Cloud, and Cloud-to-Cloud.

117

BIBLIOGRAPHY

[1] OpenStack. https://www.openstack.org/.

[2] The Transport Layer Security (TLS) Protocol. https://tools.ietf.org/html/

rfc5246.

[3] Amazon Web Services (AWS) - Cloud Computing Services. https://aws.amazon.

com.

[4] AWS-IoT. https://aws.amazon.com/iot/.

[5] AWS IoT Device SDK for Python. https://docs.aws.amazon.com/

greengrass/latest/developerguide/IoT-SDK.html.

[6] AWS IoT Greengrass. https://docs.aws.amazon.com/greengrass/

latest/developerguide/what-is-gg.html.

[7] AWS lambda function. https://aws.amazon.com/lambda/.

[8] Internet of Battlefield Things. https://www.arl.army.mil/business/

collaborative-alliances/current-cras/iobt-cra/.

[9] Internet of things. https://en.wikipedia.org/wiki/Internet_of_things.

[10] Microsoft Azure. https://azure.microsoft.com.

[11] MQTT.fx - A JavaFX based MQTT Client. https://softblade.de/en/

welcome/.

[12] Muhammad Umar Aftab, Yasir Munir, Ariyo Oluwasanmi, Zhiguang Qin, Muham-

mad Haris Aziz, Ngo Tung Son, et al. A hybrid access control model with dynamic COI for

secure localization of satellite and iot-based vehicles. IEEE Access, 2020.

118

 https://www.openstack.org/
 https://tools.ietf.org/html/rfc5246.
 https://tools.ietf.org/html/rfc5246.
 https://aws.amazon.com
 https://aws.amazon.com
 https://aws.amazon.com/iot/
 https://docs.aws.amazon.com/greengrass/latest/developerguide/IoT-SDK.html
 https://docs.aws.amazon.com/greengrass/latest/developerguide/IoT-SDK.html
 https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
 https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
 https://aws.amazon.com/lambda/
https://www.arl.army.mil/business/collaborative-alliances/current-cras/iobt-cra/
https://www.arl.army.mil/business/collaborative-alliances/current-cras/iobt-cra/
https://en.wikipedia.org/wiki/Internet_of_things
 https://azure.microsoft.com
 https://softblade.de/en/welcome/
 https://softblade.de/en/welcome/

[13] Tahmina Ahmed, Ravi Sandhu, and Jaehong Park. Classifying and comparing attribute-

based and relationship-based access control. In CODASPY ’17. ACM, 2017.

[14] Shadab Alam, Shams Tabrez Siddiqui, Ausaf Ahmad, Riaz Ahmad, and Mohammed Shuaib.

Internet of things (IoT) enabling technologies, requirements, and security challenges. In

Advances in data and information sciences. Springer, 2020.

[15] Frances K Aldrich. Smart homes: past, present and future. In Inside the smart home.

Springer, 2003.

[16] Gauhar Ali, Naveed Ahmad, Yue Cao, Muhammad Asif, Haitham Cruickshank, and

Qazi Ejaz Ali. Blockchain based permission delegation and access control in internet of

things (BACI). Computers & Security, 2019.

[17] Mousa Alramadhan and Kewei Sha. An overview of access control mechanisms for internet

of things. In ICCCN. IEEE, 2017.

[18] Mohammed Alshahrani and Issa Traore. Secure mutual authentication and automated ac-

cess control for iot smart home using cumulative keyed-hash chain. Journal of information

security and applications, 2019.

[19] Safwa Ameer, James Benson, and Ravi Sandhu. The EGRBAC model for smart home IoT.

In 2020 IEEE 21st International Conference on Information Reuse and Integration for Data

Science (IRI). IEEE, 2020.

[20] Safwa Ameer and Ravi Sandhu. The HABAC model for smart home IoT and comparison

to EGRBAC. In ACM Workshop on Secure and Trustworthy Cyber-Physical Systems (SAT-

CPS), 2021.

[21] Orlando Arias, Jacob Wurm, Khoa Hoang, and Yier Jin. Privacy and security in internet of

things and wearable devices. TMSCS, 2015.

119

[22] Saurabh Bagchi, Tarek F Abdelzaher, Ramesh Govindan, Prashant Shenoy, Akanksha Atrey,

Pradipta Ghosh, and Ran Xu. New frontiers in IoT: Networking, systems, reliability, and

security challenges. IEEE Internet of Things Journal, 2020.

[23] Syafril Bandara, Takeshi Yashiro, Noboru Koshizuka, and Ken Sakamura. Access control

framework for api-enabled devices in smart buildings. In APCC. IEEE, 2016.

[24] Ezedin Barka and Ravi Sandhu. Framework for role-based delegation models. In ACSAC.

IEEE, 2000.

[25] Ezedine Barka, Sujith Samuel Mathew, and Yacine Atif. Securing the web of things with

role-based access control. In C2SI. Springer, 2015.

[26] Bruhadeshwar Bezawada, Kyle Haefner, and Indrakshi Ray. Securing home IoT environ-

ments with attribute-based access control. In ABAC’18. ACM, 2018.

[27] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. Access control model for AWS internet of

things. In International Conference on Network and System Security, 2017.

[28] Smriti Bhatt and Ravi Sandhu. Abac-cc: Attribute-based access control and communication

control for internet of things. In Proceedings of the 25th ACM Symposium on Access Control

Models and Technologies, 2020.

[29] K. Z. Bijon, R. Krishnan, and R. Sandhu. Towards an attribute based constraints specifica-

tion language. In SOCIALCOM ’13, Sep. 2013.

[30] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Label-based access control: An abac

model with enumerated authorization policy. In Proceedings of the 2016 ACM International

Workshop on Attribute Based Access Control, pages 1–12, 2016.

[31] Enrico Carniani, Davide D’Arenzo, Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori.

Usage control on cloud systems. Future Gen. Comp. Sys., 2016.

120

[32] Poornima M Chanal and Mahabaleshwar S Kakkasageri. Security and privacy in IoT: A

survey. Wireless Personal Communications.

[33] Arnab Chatterjee, Yash Pitroda, and Manojkumar Parmar. Dynamic role-based access con-

trol for decentralized applications. In International Conference on Blockchain. Springer,

2020.

[34] Yuan Cheng, Jaehong Park, and Ravi Sandhu. Relationship-based access control for online

social networks: Beyond user-to-user relationships. In SocialCom. IEEE, 2012.

[35] Michael J Covington, Wende Long, Srividhya Srinivasan, Anind K Dev, Mustaque Ahamad,

and Gregory D Abowd. Securing context-aware applications using environment roles. In

SACMAT ’01. ACM, 2001.

[36] Michael J Covington, Matthew James Moyer, and Mustaque Ahamad. Generalized role-

based access control for securing future applications. Technical report, Georgia Tech, 2000.

[37] Ang Cui and Salvatore J Stolfo. A quantitative analysis of the insecurity of embedded

network devices: results of a wide-area scan. In ACSAC ’10. ACM, 2010.

[38] Luciana Moreira Sá De Souza, Patrik Spiess, Dominique Guinard, Moritz Köhler, Stamatis

Karnouskos, and Domnic Savio. Socrades: A web service based shop floor integration

infrastructure. In The IoT. Springer, 2008.

[39] Tamara Denning, Tadayoshi Kohno, and Henry M Levy. Computer security and the modern

home. Communications of the ACM, 2013.

[40] Sheng Ding, Jin Cao, Chen Li, Kai Fan, and Hui Li. A novel attribute-based access control

scheme using blockchain for IoT. IEEE Access, 2019.

[41] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. Blockchain for iot secu-

rity and privacy: The case study of a smart home. In PerCom workshops. IEEE, 2017.

121

[42] Sofia Dutta, Sai Sree Laya Chukkapalli, Madhura Sulgekar, Swathi Krithivasan, Prajit Ku-

mar Das, and Anupam Joshi. Context sensitive access control in smart home environments.

In 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE

Intl Conference on High Performance and Smart Computing,(HPSC) and IEEE Intl Confer-

ence on Intelligent Data and Security (IDS). IEEE, 2020.

[43] Dave Evans. The internet of things: How the next evolution of the internet is changing

everything. CISCO white paper, 1(2011), 2011.

[44] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security analysis of emerging smart

home applications. In 2016 IEEE symposium on security and privacy (SP). IEEE, 2016.

[45] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and

Atul Prakash. Flowfence: Practical data protection for emerging IoT application frame-

works. In 25th {USENIX} security symposium, 2016.

[46] David F Ferraiolo, John F Barkley, and D Richard Kuhn. A role-based access control model

and reference implementation within a corporate intranet. TISSEC, 2(1), 1999.

[47] David F Ferraiolo, Larry Feldman, Gregory A Witte, et al. Exploring the next generation of

access control methodologies. 2016.

[48] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed NIST standard for role-based access control. TISSEC, 2001.

[49] Philip WL Fong, Mohd Anwar, and Zhen Zhao. A privacy preservation model for facebook-

style social network systems. In ESORICS. Springer, 2009.

[50] Gartner. Gartner says the internet of things will transform the data center. http://www.

gartner.com/newsroom/id/2684616, 2014.

122

http://www.gartner.com/newsroom/id/2684616
http://www.gartner.com/newsroom/id/2684616

[51] Dimitris Geneiatakis, Ioannis Kounelis, Ricardo Neisse, Igor Nai-Fovino, Gary Steri, and

Gianmarco Baldini. Security and privacy issues for an IoT based smart home. In 2017 40th

MIPRO. IEEE, 2017.

[52] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for

fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference

on Computer and communications security, pages 89–98, 2006.

[53] Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. Security for the internet of things: a

survey of existing protocols and open research issues. IEEE Comm. Surv. & Tutorials, 2015.

[54] Zhang Guoping and Gong Wentao. The research of access control based on UCON in the

internet of things. Journal of Software, 2011.

[55] Deepti Gupta, Smriti Bhatt, Maanak Gupta, Olumide Kayode, and Ali Saman Tosun. Access

control model for google cloud IoT. In 2020 IEEE 6th Intl Conference on Big Data Security

on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Com-

puting,(HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). IEEE,

2020.

[56] Maanak Gupta, James Benson, Farhan Patwa, and Ravi Sandhu. Dynamic groups and

attribute-based access control for next-generation smart cars. In Ninth ACM Conference

on Data and Application Security and Privacy, 2019.

[57] Maanak Gupta and Ravi Sandhu. Authorization framework for secure cloud assisted con-

nected cars and vehicular internet of things. In Proceedings of the 23nd ACM on Symposium

on Access Control Models and Technologies, 2018.

[58] Shabnam Mohammad Hasani and Nasser Modiri. Criteria specifications for the comparison

and evaluation of access control models. International Journal of Computer Network and

Information Security, 2013.

123

[59] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence Fer-

nandes, and Blase Ur. Rethinking access control and authentication for the home internet of

things (IoT). In USENIX Security 18, 2018.

[60] Debra S Herrmann. Using the Common Criteria for IT security evaluation. CRC Press,

2002.

[61] Kashmir Hill. Baby monitor hack could happen to 40,000 other foscam

users. https://www.forbes.com/sites/kashmirhill/2013/08/27/

baby-monitor-hack-could-happen-to-40000-other-foscam-users/

613ec55458b5, 2013.

[62] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and David Wag-

ner. Smart locks: Lessons for securing commodity internet of things devices. In ASIA CCS

’16. ACM, 2016.

[63] Vincent C Hu, D Richard Kuhn, David F Ferraiolo, and Jeffrey Voas. Attribute-based access

control. Comp., 2015.

[64] E. V. Horn J. Dennis. Programming semantics for multiprogrammed computations. In

Comm. of the ACM, 1966.

[65] Anshul Jain and Tanya Singh. Security challenges and solutions of IoT ecosystem. In

Information and communication technology for sustainable development. Springer, 2020.

[66] X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-based access control model covering

DAC, MAC and RBAC. In IFIP Annual Conf. on Data and App. Sec., 2012.

[67] Jia Jindou, Qiu Xiaofeng, and Cheng Cheng. Access control method for web of things based

on role and sns. In CIT 2012. IEEE, 2012.

[68] Sun Kaiwen and Yin Lihua. Attribute-role-based hybrid access control in the internet of

things. In APWeb. Springer, 2014.

124

https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/613ec55458b5
https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/613ec55458b5
https://www.forbes.com/sites/kashmirhill/2013/08/27/baby-monitor-hack-could-happen-to-40000-other-foscam-users/613ec55458b5

[69] Michael S Kirkpatrick, Maria Luisa Damiani, and Elisa Bertino. Prox-rbac: a proximity-

based spatially aware rbac. In Proceedings of the 19th ACM SIGSPATIAL GIS, 2011.

[70] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding attributes to role-based

access control. Computer, 2010.

[71] Antonio La Marra, Fabio Martinelli, Paolo Mori, and Andrea Saracino. Implement-

ing usage control in internet of things: A smart home use case. In 2017 IEEE Trust-

com/BigDataSE/ICESS. IEEE, 2017.

[72] Aliaksandr Lazouski, Gaetano Mancini, Fabio Martinelli, and Paolo Mori. Usage control in

cloud systems. In ICITST. IEEE, 2012.

[73] In Lee and Kyoochun Lee. The internet of things (IoT): Applications, investments, and

challenges for enterprises. Business Horizons, 58(4), 2015.

[74] J. Liu, Y. Xiao, and C. Chen. Authentication and access control in the internet of things. In

2012 32nd Int. Con. on Dist. Comp. Sys. Workshops. IEEE, 2012.

[75] Ankur Lohachab et al. Next generation computing: Enabling multilevel centralized access

control using ucon and capbac model for securing iot networks. In IC3IoT. IEEE, 2018.

[76] Saurav Malani, Jangirala Srinivas, Ashok Kumar Das, Kannan Srinathan, and Minho Jo.

Certificate-based anonymous device access control scheme for iot environment. IEEE In-

ternet of Things Journal, 2019.

[77] Fabio Martinelli, Christina Michailidou, Paolo Mori, and Andrea Saracino. Too long, did not

enforce: a qualitative hierarchical risk-aware data usage control model for complex policies

in distributed environments. In CPSS ’18. ACM, 2018.

[78] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya Sleeper, Jill Palzkill Woelfer, Mar-

tin Shelton, Cori Manthorne, Elizabeth F Churchill, and Sunny Consolvo. Stories from sur-

125

vivors: Privacy & security practices when coping with intimate partner abuse. In CHI’17.

ACM, 2017.

[79] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. A survey of role

mining. ACM Computing Surveys, 2016.

[80] Philipp Morgner, Stephan Mattejat, and Zinaida Benenson. All your bulbs are belong to us:

Investigating the current state of security in connected lighting systems. CoRR, 2016.

[81] Andrew Mutsvangwa, B Nleya, and Bakhe Nleya. Secured access control architecture con-

sideration for smart grids. In IEEE PES PowerAfrica, 2016.

[82] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. \T1\

textquotedblrighthttp://bitcoin.org/bitcoin.pdf, 2008.

[83] Michele Nitti, Virginia Pilloni, Giuseppe Colistra, and Luigi Atzori. The virtual object

as a major element of the internet of things: a survey. IEEE Communications Surveys &

Tutorials, 18(2):1228–1240, 2015.

[84] Oscar Novo. Blockchain meets IoT: An architecture for scalable access management in IoT.

IEEE IoT Journal, 2018.

[85] Mark Mbock Ogonji, George Okeyo, and Joseph Muliaro Wafula. A survey on privacy and

security of internet of things. Computer Science Review, 2020.

[86] Temitope Oluwafemi, Tadayoshi Kohno, Sidhant Gupta, and Shwetak Patel. Experimen-

tal security analyses of non-networked compact fluorescent lamps: A case study of home

automation security. In LASER 2013, 2013.

[87] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access con-

trol to enforce mandatory and discretionary access control policies. ACM Transactions on

Information and System Security (TISSEC), 3(2):85–106, 2000.

126

\T1\textquotedblright http://bitcoin. org/bitcoin. pdf
\T1\textquotedblright http://bitcoin. org/bitcoin. pdf

[88] Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. Towards a novel privacy-

preserving access control model based on blockchain technology in IoT. In Europe and

MENA Coop. Adv. in Inf. and Comm. Tech. Springer, 2017.

[89] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman. Access

control in the internet of things: Big challenges and new opportunities. Comp. NW, 112,

2017.

[90] Jaehong Park. Usage control: A unified framework for next generation access control. PhD

thesis, George Mason University, 2003.

[91] Jaehong Park, Dang Nguyen, and Ravi Sandhu. A provenance-based access control model.

In 2012 Tenth Annual International Conference on Privacy, Security and Trust, pages 137–

144. IEEE, 2012.

[92] Jaehong Park and Ravi Sandhu. Towards usage control models: beyond traditional access

control. In SACMAT ’02. ACM, 2002.

[93] Jaehong Park and Ravi Sandhu. The uconabc usage control model. ACM Trans. Inf. Syst.

Secur., 7(1):128–174, February 2004.

[94] Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing Fang. A survey on

access control in the age of internet of things. IEEE Internet of Things Journal, 2020.

[95] Amir Rahmati, Earlence Fernandes, Kevin Eykholt, and Atul Prakash. Tyche: A risk-based

permission model for smart homes. In 2018 IEEE Cybersecurity Development (SecDev),

pages 29–36. IEEE, 2018.

[96] Qasim Mahmood Rajpoot, Christian Damsgaard Jensen, and Ram Krishnan. Integrating at-

tributes into role-based access control. In IFIP Annual Conference on Data and Applications

Security and Privacy, pages 242–249. Springer, 2015.

127

[97] Sowmya Ravidas, Alexios Lekidis, Federica Paci, and Nicola Zannone. Access control in

internet-of-things: A survey. Journal of Network and Computer Applications, 2019.

[98] Erik Rissanen. extensible access control markup language (xacml) version 3.0. http:

//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.

html, 2013.

[99] Ravi Sandhu, David Ferraiolo, Richard Kuhn, et al. The nist model for role-based access

control: towards a unified standard. In ACM workshop on Role-based access control, 2000.

[100] Ravi S Sandhu. Role-based access control. In Advances in computers, volume 46, pages

237–286. Elsevier, 1998.

[101] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based

access control models. Comp., 1996.

[102] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice. IEEE

communications magazine, 32(9):40–48, 1994.

[103] Jayasree Sengupta, Sushmita Ruj, and Sipra Das Bit. A comprehensive survey on attacks,

security issues and blockchain solutions for IoT and IIoT. Journal of Network and Computer

Applications, 2020.

[104] Arbia Riahi Sfar, Enrico Natalizio, Yacine Challal, and Zied Chtourou. A roadmap for

security challenges in the internet of things. Digital Communications and Networks, 2018.

[105] Kewei Sha, T Andrew Yang, Wei Wei, and Sadegh Davari. A survey of edge computing-

based designs for IoT security. Digital Communications and Networks, 2020.

[106] Hai-bo Shen and Fan Hong. An attribute-based access control model for web services. In

2006 Seventh International Conference on Parallel and Distributed Computing, Applica-

tions and Technologies (PDCAT’06), pages 74–79. IEEE, 2006.

128

 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[107] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-Porisini. Se-

curity, privacy and trust in internet of things: The road ahead. Computer networks, 2015.

[108] Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Abbas Acar, Hidayet Aksu, Patrick

McDaniel, Engin Kirda, and A Selcuk Uluagac. Multi-user multi-device-aware access con-

trol system for smart home. arXiv preprint arXiv:1911.10186, 2019.

[109] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. Smart-phones attacking

smart-homes. In WiSec ’16. ACM, 2016.

[110] Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic Savio, Oliver Baecker,

Luciana Moreira Sá de Souza, and Vlad Trifa. Soa-based integration of the internet of

things in enterprise services. In ICWS. IEEE Comp. Soc. Press, 2009.

[111] Statista. Forecast market size of the global smart home market from 2016 to 2022

(in billion u.s. dollars). https://www.statista.com/statistics/682204/

global-smart-home-market-size/, 2019.

[112] Madiha Tabassum, Jess Kropczynski, Pamela Wisniewski, and Heather Richter Lipford.

Smart home beyond the home: A case for community-based access control. In Proceedings

of the 2020 CHI Conference on Human Factors in Computing Systems, 2020.

[113] Abhijeet Thakare, Euijong Lee, Ajay Kumar, Valmik B Nikam, and Young-Gab Kim. PAR-

BAC: Priority-attribute-based rbac model for Azure IoT cloud. IEEE Internet of Things

Journal, 2020.

[114] Aaron Tilley. How a few words to Apple’s Siri unlocked a man’s front

door. http://www.forbes.com/sites/aarontilley/2016/09/21/

apple-homekit-siri-security, 2016.

[115] M. Tripunitara and N. Li. A theory for comparing the expressive power of access control

models. Journal of Computer Security, 15:231–272, 02 2007.

129

https://www.statista.com/statistics/682204/global-smart-home-market-size/
https://www.statista.com/statistics/682204/global-smart-home-market-size/
http://www. forbes. com/sites/aarontilley/2016/09/21/apple-homekit-siri-security
http://www. forbes. com/sites/aarontilley/2016/09/21/apple-homekit-siri-security

[116] Blase Ur, Jaeyeon Jung, and Stuart Schechter. The current state of access control for smart

devices in homes. In HUPS, 2013.

[117] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-based framework for at-

tribute based access control. In Proceedings of the 2004 ACM workshop on Formal methods

in security engineering, pages 45–55, 2004.

[118] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151(2014), 2014.

[119] Yuanpeng Xie, Hong Wen, Jinsong Wu, Yixin Jiang, Jiaxiao Meng, Xiaobin Guo, Aidong

Xu, and Zewu Guan. Three-layers secure access control for cloud-based smart grids. In

IEEE 82nd VTC2015-Fall. IEEE, 2015.

[120] Hongyang Yan, Yu Wang, Chunfu Jia, Jin Li, Yang Xiang, and Witold Pedrycz. Iot-fbac:

Function-based access control scheme using identity-based encryption in iot. Future Gen-

eration Computer Systems, 2019.

[121] Ning Ye, Yan Zhu, Ru-chuan Wang, Reza Malekian, and Lin Qiao-Min. An efficient au-

thentication and access control scheme for perception layer of internet of things. Applied

Math. & Inf. Sciences, 2014.

[122] Guoping Zhang and Jiazheng Tian. An extended role based access control model for the

internet of things. In 2010 ICINA. IEEE, 2010.

[123] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park. Formal model

and policy specification of usage control. TISSEC, 2005.

[124] Yuanyu Zhang, Mirei Yutaka, Masahiro Sasabe, and Shoji Kasahara. Attribute-based ac-

cess control for smart cities: A smart contract-driven framework. IEEE Internet of Things

Journal, 2020.

130

[125] Yunpeng Zhang and Xuqing Wu. Access control in internet of things: A survey. arXiv

preprint arXiv:1610.01065, 2016.

131

VITA

Safwa Ameer was born in Khartoum, Sudan, in 1991. In August 2012, she earned her bach-

elor’s degree in electrical and electronic engineering from University of Khartoum, Khartoum,

Sudan. After completing her engineering, she worked for two years as a Software Integration En-

gineer in Khartoum at Ericsson telecommunication company. In Fall 2015, Safwa started pursuing

her master’s degree at University of Texas at San Antonio. In Fall 2016 she started doing her thesis

research under the supervision of Dr. Mathew Gibson. Safwa received her Master of Computer

Science from The University of Texas at San Antonio in December 2017. Safwa entered the doc-

toral program in the Department of Computer Science at the University of Texas at San Antonio in

Fall 2018. She joined the Institute for Cyber Security (ICS), and started doing research under the

supervision of Dr. Ravi Sandhu. Her research area is IoT Access Control systems mainly focused

in smart home IoT.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28717874

2021

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Motivation
	Problem Statement and Solution Approach
	Thesis Statement
	Scope and Assumption
	Summary of Contributions
	Organization of the dissertation

	Chapter 2: Background and Literature Review
	Access Control Models
	Role-Based Access Control (RBAC)
	Attribute-Based Access Control (ABAC)
	Combining ABAC and RBAC

	IoT Access Control Models
	IoT Access Control Models Based On RBAC
	IoT Access Control Models Based on ABAC
	IoT Access Control Models Based on CapBAC
	IoT Access Control Models Based on UCON
	IoT Access Control Models Based on Blockchains
	IoT Access Control Models Based on Other Models

	Chapter 3: Role-Based Access Control Model for Smart Home IoT and Related Criteria (EGRBAC)
	Criteria for Smart Home IoT Access Control Models
	EGRBAC Model for Smart Home IoT
	Motivation
	Background
	EGRBAC Formal Definition
	EGRBAC Use Case
	EGRBAC Constraints
	EGRBAC Analysis and Limitations
	Proof-Of-Concept Implementation

	Chapter 4: Attribute-based Access Control model for Smart Home IoT (HABAC)
	Motivation
	HABAC Model for Smart Home IoT
	HABAC Formal Definition
	HABAC Use Case

	Constructing HABAC From EGRBAC
	Constructing EGRBAC from HABAC
	From Authorization policy to Authorization Array
	Approach
	EGRBAC Users and Environment Roles Constructing Algorithm:
	Users Roles Merging Algorithm
	The output of EGRBAC Constructing Approach on HABAC Use Case

	Analysis and Limitations

	Chapter 5: Hybrid Attribute and Role Based Access Control Models for Smart Home IoT (HyBACRC and HyBACAC)
	Motivation
	Combining RBAC and ABAC

	HyBACRC model
	HyBACRC Formal definition
	Use Case Demonstration

	HyBACAC model
	HyBACAC Formal definition
	Use Case Demonstration

	Implementation
	Enforcement Architecture
	Performance Results

	Constructing HyBACAC FROM HyBACRC
	Approach
	HyBACRC configuration in HyBACAC

	Constructing HyBACRC from HyBACAC
	Smart Home Use Case Description
	From Authorization policy to Authorization Array
	Approach
	HyBACRC Roles and Authorization function Constructing Algorithm
	Users Roles Merging Algorithm
	The output of HyBACRC Constructing Approach on HyBACAC Use Case

	A Comprehensive Comparison
	Basic and main criteria
	Quality criteria

	Analysis and Limitations

	Chapter 6: Conclusion and Future Work
	summary
	Future Work

	Bibliography
	Vita

