
SECURE CLOUD ASSISTED SMART CARS AND BIG DATA:

ACCESS CONTROL MODELS AND IMPLEMENTATION

by

MAANAK GUPTA, M.S.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Ravi Sandhu, Ph.D., Chair
Murtuza Jadliwala, Ph.D.

Palden Lama, Ph.D.
Gregory B. White, Ph.D.

Ram Krishnan, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
December 2018

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

13420620

13420620

2018

Copyright 2018 Maanak Gupta
All rights reserved.

DEDICATION

This dissertation is dedicated to my parents Dr. Surinder Gupta and Mrs. Meenu Gupta, who
offered unconditional support and are a big source of inspiration. I will always be indebted for the
love and compassion they have bestowed on me. This work is also dedicated to my wife Prachi,
son Maanvik and brother Ashutosh Gupta, who motivated and encouraged me through out the most
challenging phase of my life. Undoubtedly, without Prachi, our journey this far would have not
been possible. The blessings of almighty, my grandparents, family and friends is the real force
because of which I am able to write this piece!

ACKNOWLEDGEMENTS

I express my deepest gratitude and respect to my advisor and mentor Professor Ravi Sandhu,

who supervised me through this demanding journey. I have no hesitation in saying that without

his able guidance, thoughtful comments and incessant encouragement I would not have come this

far. He was the torchbearer who pushed me to critical thinking and exploring creative solutions for

real world problems. The knowledge and experience I gained professionally and personally from

him will be remembered, and will set course for my career and life. He always acknowledged my

untimely requests, corrected me on occasions and supported me in decisions made during research

and beyond. I will always be indebted for his modesty, humility and wisdom. It is an honour to

work under Dr. Sandhu and I will always relish these days.

A big thank you to Mr. Farhan Patwa, Associate Director and Chief Architect at the Institute

for Cyber Security (ICS), UTSA, for his insightful comments and incessant support during my

doctoral studies. His humble temperament and sound technical knowledge are uncommon to find.

I am very fortunate to have known and worked with him. Mr. James Benson is another outstanding

person, I have met at ICS. He helped me in AWS implementation of our work in smart connected

cars. His relentless technical support was absolutely needed to sail through this journey. I am

privileged to work with the best research team and the staff at ICS which together brought me in a

position to write my Ph.D. dissertation.

I would like to thank my doctoral dissertation committee members Dr. Murtuza Jadliwala, Dr.

Palden Lama, Dr. Gregory B. White and Dr. Ram Krishnan for their thoughtful comments, sug-

gestions and time. Their observations have made this research work more valuable and interesting.

I thank the staff members at ICS, Suzanne Tanaka and Lisa Ho for all the administrative work

they do for us. You both are most efficient, amazing and great. The staff in computer science

department especially Susan Allen, were a big help during my doctoral studies.

I am thankful to my mother-in-law Mrs. Sunita Bansal, who supported and encouraged me.

She always stood with me during difficult and tough times.

I sincerely appreciate my peers and friends at UTSA, my lab fellows and seniors who assisted

iv

me throughout my doctoral work. You all were a big support and constant help during this work.

I acknowledge all federal and private agencies including National Science Foundation (NSF), De-

partment of Defense (DoD) and other organizations for providing grants for my research.

To anyone I may have missed, you are by no means any less special and I am grateful for all

your help and support.

Once again, to all the wonderful people I have in my life, thank you!

v

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance
with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-
toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters
Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements
explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-
sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a
full introduction and literature review, and a final overall conclusion. Additional material (proce-
dural and design data as well as descriptions of equipment) must be provided in sufficient detail to
allow a clear and precise judgment to be made of the importance and originality of the research
reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include
as chapters authentic copies of papers already published, provided these meet type size, margin,
and legibility requirements. In such cases, connecting texts, which provide logical bridges between
different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the
student is required to make an explicit statement in the introductory material to that manuscript
describing the students contribution to the work and acknowledging the contribution of the other
author(s). The signatures of the Supervising Committee which precede all other material in the
Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

December 2018

vi

SECURE CLOUD ASSISTED SMART CARS AND BIG DATA:

ACCESS CONTROL MODELS AND IMPLEMENTATION

Maanak Gupta, Ph.D.
The University of Texas at San Antonio, 2018

Supervising Professor: Ravi Sandhu, Ph.D.

Access control security mechanisms, including discretionary-DAC, mandatory-MAC and role

based-RBAC, help to restrict unauthorized access and operations on data and other resources in

computer systems. More recently, attribute based access control (ABAC) has been proposed to

provide flexibility and fine grained authorization based on the attributes of users, resources, and

other relevant entities. Hierarchical group and attribute based access control (HGABAC) model

has been proposed to offer administrative benefits in ABAC system by introducing groups, which

enable multiple attributes assignment and removal from its member users or objects with single

administrative action. However, the administration of HGABAC, including who will assign users

to groups, or what attributes are inherited or directly assigned, and what attributes an entity will

get based on set of administrative rules, are not addressed so far.

Besides developing the foundational aspects of ABAC, it is also important to understand its

applicability in real problems which can impact our society. Smart cars are among the essential

components and major drivers of future cities and connected world. The interaction among con-

nected entities in this vehicular internet of things (IoT) domain, which also involves smart traffic

infrastructure, restaurant beacons, emergency vehicles, etc., will offer many real-time service ap-

plications and provide safer and more pleasant driving experience to consumers. With more than

100 million lines of code and hundreds of sensors on board generating huge amounts of data, these

vehicles are often termed as ‘datacenter on wheels’. These connected vehicles (CVs) expose a

large attack surface, which can be remotely compromised and exploited by malicious attackers.

Security and privacy are big concerns that deter the adoption of smart cars, which if not prop-

erly addressed will have grave implications with risk to human life and limb. Also, the recent

vii

data breaches and growing privacy concerns of consumer data further pushes the need for stronger

security mechanisms for Big Data.

In this dissertation, we investigate and develop both the foundational and application aspects

of ABAC models. First, we present an administrative model for HGABAC, referred as GURAG,

which defines three sub models user attribute assignment (UAA), user group attribute assignment

(UGAA) and user to group assignment (UGA), for adding and removing attributes from users and

groups along with user groups membership. As it is important to understand what attributes a user

will get based on a set of administrative rules, we present reachability analysis for restricted form

of GURAG model, called rGURAG. In general the problem is PSPACE-complete, however for

certain cases polynomial time algorithms have been devised.

Second, we investigate the smart cars ecosystem and propose an authorization framework to

secure this dynamic and distributed system where interaction among vehicle and infrastructures

is not pre-defined. We provide an extended access control oriented (E-ACO) architecture relevant

to connected vehicles and discuss the need of vehicular clouds in this time and location sensitive

environment. We also develop dynamic groups and attribute-based access control (ABAC) model

(referred as CV-ABACG) to secure communication, data exchange and resource access in smart

vehicles ecosystem. This model takes into account the user-centric privacy preferences along with

system-defined policies to make access decisions. We propose a novel concept of groups in context

of cloud assisted smart cars, which are dynamically assigned to moving entities like vehicles, based

on their current GPS coordinates, direction or other attributes, to ensure relevance of location and

time sensitive notification services offered to drivers, and to provide administrative benefits to

manage large numbers of entities and enable attributes inheritance for fine grained authorization.

Finally, as all IoT devices and smart cars produce enormous amounts of data which is sent to

central cloud for processing and storage, it is imperative to understand and develop authorization

solutions for most widely used Big data processing platform, Hadoop. Henceforth, we first for-

malize the current access control model for Hadoop ecosystem, called HeAC. We then extend this

model to provide a cohesive object-tagged role-based access control (OT-RBAC) model, consis-

viii

tent with generally accepted academic concepts of RBAC. We also present a fine-grained attribute-

based access control model, referred as HeABAC, catering to the security and privacy needs of

multi-tenant Hadoop ecosystem.

In closing, we conclude this dissertation and provide some future work directions.

ix

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vii

List of Tables . xiv

List of Figures . xv

Chapter 1: Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Thesis Statement . 4

1.4 Scope and Assumptions . 5

1.5 Summary of Contributions . 6

1.6 Organization of the Dissertation . 7

Chapter 2: Literature Review . 8

2.1 Access Control Models . 8

2.2 Administrative Models and Safety Analysis . 10

2.2.1 ARBAC97 and GURA Models . 11

2.2.2 Safety and Reachability Analysis . 12

2.3 Smart Connected Vehicles . 14

2.3.1 VANETs and Vehicular Cloud . 15

2.3.2 Virtual Objects in IoT . 17

2.3.3 Access Control Oriented Architecture . 17

2.3.4 Cyber Security Concerns and Proposed Solutions 19

2.4 Big Data and Hadoop Ecosystem . 21

x

Chapter 3: Group Based Attributes Administration in ABAC and Reachability Analysis 24

3.1 Motivation . 24

3.2 Hierarchical Group and Attribute Based Access Control 25

3.2.1 Groups in HGABAC . 25

3.2.2 HGABAC: An Alternate Formalization 26

3.3 The GURAG Administrative Model . 30

3.3.1 User Attribute Assignment (UAA) Sub-Model 31

3.3.2 User Group Attribute Assignment (UGAA) Sub-Model 33

3.3.3 User to User-Group Assignment (UGA) Sub-Model 34

3.3.4 Operational Specification . 35

3.3.5 GURAG Model Extensions . 35

3.4 Group Based User Attribute Reachability Analysis 37

3.4.1 GURAG Model and Scheme . 38

3.4.2 Restricted GURAG (rGURAG) . 42

3.4.3 Reachability Problem Definition . 46

3.4.4 PSPACE-Complete Reachability . 48

3.5 Polynomial Reachability for Restricted Cases . 51

3.5.1 Reachability plan for RP= in [rGURAG1+– N] 52

3.5.2 Reachability plan for RP= in [rGURAG1+– D,SRd] 55

3.5.3 Example Problem Instance . 59

Chapter 4: Access Control for Smart Connected Cars 65

4.1 Motivation and Scope . 65

4.2 Cloud Assisted Vehicular Internet of Things . 66

4.2.1 Characteristics and Cloud Architectures 67

4.2.2 Extended ACO Architecture . 70

4.3 Authorization Framework for Smart Cars Ecosystem 74

4.4 Access Control Approaches . 77

xi

4.5 Cloud Assisted Real-World Use Cases . 79

4.5.1 Single Cloud System . 81

4.5.2 Multiple Cloud System . 83

4.6 Dynamic Groups and ABAC for Cloud Assisted Smart Cars 84

4.6.1 Relevance of Groups . 85

4.7 Connected Vehicle ABAC Model with Dynamic Groups 87

4.7.1 CV-ABACG Model Overview . 87

4.7.2 Formal Definitions . 92

4.8 Enforcement in Amazon Web Services . 94

4.8.1 Description of Use Cases . 95

4.8.2 Prototype Implementation . 96

4.8.3 Performance Evaluation . 102

Chapter 5: Big Data Security in Hadoop Ecosystem . 104

5.1 Introduction and Motivation . 104

5.2 Multi-layer Authorization . 106

5.2.1 Hadoop Services Access . 106

5.2.2 Data and Service Objects Access . 107

5.2.3 Application and Cluster Resources Access 107

5.3 Hadoop Ecosystem Access Control Model . 109

5.4 Object-Tagged RBAC Model . 113

5.4.1 Model Definitions . 114

5.4.2 Implementation and Evaluation . 117

5.5 Attributes Based Extensions to OT-RBAC . 119

5.5.1 Dynamic Roles . 120

5.5.2 Attribute Centric . 121

5.5.3 Role Centric . 122

5.6 Attribute Based Access Control for Hadoop Ecosystem 123

xii

5.6.1 HeABAC Model Definitions . 123

5.6.2 Concept of Cross Hadoop Services Trust 127

5.6.3 HeABAC Implementation Approach . 129

5.7 Use Cases and HeABAC Application . 130

Chapter 6: Conclusion . 136

6.1 Summary . 136

6.2 Future Work . 138

Bibliography . 139

Vita

xiii

LIST OF TABLES

Table 3.1 HGABAC: An Alternate Formal Model 28

Table 3.2 Example HGABAC Configuration . 29

Table 3.3 GURAG Administrative Model . 31

Table 3.4 Example Administrative Rules in UAA . 32

Table 3.5 Example Administrative Rules in UGAA 33

Table 3.6 Example Administrative Rules in canAssign UGA 34

Table 3.7 Example Administrative Rules in canRemove UGA 35

Table 3.8 Operational Specification . 36

Table 3.9 Administrative Requests . 39

Table 3.10 Redefined GURAG Administrative Model 40

Table 3.11 Transition Function . 43

Table 3.12 Example Rules in rGURAG0 , rGURAG1 and rGURAG1+ Schemes 45

Table 3.13 Example Problem Instance for RP= in [rGURAG1+– N] 60

Table 3.14 Example Problem Instance for RP= in [rGURAG1+– D, SRd] 62

Table 4.1 Formal CV-ABACG Model Definitions for Connected Vehicles Ecosystem . 91

Table 4.2 Formal CV-ABACG Model Definitions for Connected Vehicles Ecosystem

(Continued) . 92

Table 5.1 Hadoop Ecosystem Access Control (HeAC) Model Definitions 112

Table 5.2 Formal OT-RBAC Model Definitions . 116

Table 5.3 Formal OT-RBAC Model Definitions (Continued) 117

Table 5.4 Formal ABAC Model Definitions for Hadoop Ecosystem 125

Table 5.5 Formal ABAC Model Definitions for Hadoop Ecosystem (Continued) . . . 126

xiv

LIST OF FIGURES

Figure 1.1 Dissertation Contributions . 6

Figure 2.1 ACO Architecture [37] . 18

Figure 2.2 Most Exploitable Attack Surfaces [54] . 20

Figure 3.1 Example User Groups (values in black are direct and in gray are inherited) . 26

Figure 3.2 A Conceptual Model of HGABAC . 27

Figure 3.3 Example Access Request Flow . 30

Figure 3.4 Example User-Group Attribute Assignment (UGAA) 33

Figure 3.5 Example User to User-Group Assignment (UGA) 34

Figure 3.6 rGURAG (Left Side) and rGURA (Right Side) Schemes 44

Figure 3.7 Input Starting State (γ0 ∈ Γ) . 59

Figure 3.8 Initial State for RP= in [rGURAG1+– N] 60

Figure 3.9 Initial State for RP= in [rGURAG1+– D, SRd] 62

Figure 4.1 Vehicular IoT Distinguishing Characteristics 67

Figure 4.2 Smart Object Types in Connected Vehicles Ecosystem 68

Figure 4.3 Different Cloud and Fog Cloudlet Architectures in Vehicular IoT 69

Figure 4.4 Extended ACO Architecture for Connected Cars and Vehicular IoT 71

Figure 4.5 Different Interactions in Vehicular IoT Ecosystem 76

Figure 4.6 Connected Cars and Internet of Vehicles Ecosystem 80

Figure 4.7 Smart City with Location Groups . 85

Figure 4.8 Representative Groups Hierarchy . 86

Figure 4.9 A Conceptual CV-ABACG Model . 87

Figure 4.10 Groups Hierarchy in AWS . 95

Figure 4.11 Vehicle GPS Coordinates and Groups Demarcation 96

Figure 4.12 Dynamic Groups and Vehicles in AWS . 97

xv

Figure 4.13 Attribute Based Policies in AWS . 98

Figure 4.14 Sequence Diagram for Dynamic Groups and Attributes Assignment in AWS 99

Figure 4.15 Sequence Diagram for Attributes Based Authorization in AWS 101

Figure 4.16 Policy Enforcement Time and Scoping . 102

Figure 4.17 Performance Evaluation . 103

Figure 5.1 Example Hadoop Ecosystem Authorization Architecture 108

Figure 5.2 A Conceptual Model of HeAC . 109

Figure 5.3 Conceptual OT-RBAC Model for Hadoop Ecosystem 114

Figure 5.4 Proposed Implementation in Apache Ranger and Sample JSON Policy . . . 118

Figure 5.5 Performance Evaluation . 119

Figure 5.6 Adding Attributes to OT-RBAC Model 120

Figure 5.7 Dynamic Roles and Object Permissions in OT-RBAC 121

Figure 5.8 Attribute Centric approach in OT-RBAC 122

Figure 5.9 Role Centric approach in OT-RBAC . 123

Figure 5.10 The Conceptual HeABAC Model for Hadoop Ecosystem 124

Figure 5.11 Proposed HeABAC Implementation in Apache Ranger 129

Figure 5.12 IoT Use-Case Illustrating ABAC Access Control in Hadoop Ecosystem . . 131

xvi

CHAPTER 1: INTRODUCTION

Internet of Things (IoT) has become a dominant technology which has proliferated to different

application domains including health-care, homes, industry, and power-grid, to make lives smarter.

It is predicted [22] that the global IoT market will grow to $457 Billion by year 2020, attaining a

compound annual growth rate of 28.5%. Automation is leading the world today, and with ‘things’

around sensing and acting on their own or with a remote user command, humans have anything

accessible with a finger touch. Data generated by these smart devices unleash countless busi-

ness opportunities and offer customer targeted services. IoT along with ‘infinite’ capabilities of

cloud computing are ideally matched with desirable synergy in current technology-oriented world,

termed as cloud-enabled, cloud-centric or cloud-assisted IoT in literature [34, 48, 49, 118].

IoT is embraced by every industry with automobile manufacturers and transportation among

the most aggressive. The vision of smart city incorporates intelligent transportation where con-

nected vehicles can ‘talk’ to each other (V2V) and exchange information to ensure driver safety

and offer location-based services. These intelligent vehicles can also interact with smart roadside

infrastructure (V2I), with pedestrian on road (V2H) or send data to the cloud for processing. A

car will receive information about nearby parking garages, restaurant offers or remote engine mon-

itoring by authorized mechanic with nearby repair facility and discounts updating automatically.

These services will provide pleasant travel experience to drivers and unleash business potential in

this intelligent transportation domain. Smart internet connected vehicles embed software having

more than 100 million lines of code to control critical systems and functionality, with plethora of

sensors and electronic control units (ECUs) on board generating huge amounts of data, so these

vehicles are often termed as ‘datacenter on wheels’.

Security and privacy have been a serious concern and challenge for the adoption of IoT. The

gravity of these issues is magnified when we think about implications in smart cars and the emerg-

ing concept of autonomous vehicles. With over 100 millions lines of code, more than 100 elec-

tronic control units (ECUs) and broad attack surface opened by features such as onboard diag-

1

nostics, driver assistance systems and airbags, it becomes a challenge to protect this smart entity.

Further, the data sent to the cloud for processing and storage also have security challenges which

are escalating with the continuous surge in data breaches around the globe.

This dissertation focuses on the development and implementation of access control models for

securing unauthorized access to cloud assisted Smart Cars and Big Data, and evolving a family

of models from conventional role based to fine grained attribute based access control. The work

also presents foundational facets of group supported ABAC and provides administrative models,

referred as GURAG along with attribute reachability analysis.

1.1 Motivation

Access control [72, 144, 145] mechanisms are widely used to restrict unauthorized access to re-

sources and secure data exchange among entities. Series of access control models have evolved

over time starting with Lampson’s access matrix in late 1960’s to discretionary access control

(DAC) [145], mandatory access control (MAC) [143], role based access control (RBAC) [72, 144]

and most recently to attribute based access control (ABAC) [97, 99, 105]. The growing need for

ABAC is driven by the change in current technologies and computer systems from conventional

enterprise style applications to more pervasive and distributed domains including IoT, Smart Cars,

Blockchain, Software Defined Networks, Cloud Computing etc. which cannot be secured by single

administrative domain, and have characteristics (like location, IP address or time) of the entities

that play an important role to determine the fine grained privileges. However, the concerns of ad-

ministration of attributes of different entities still is an important question, which can be termed as

attribute engineering in ABAC as a counterpart of role engineering in RBAC.

Intelligent transportation and future smart cities will change the world. These revolutionary

visions have smart cars as essential component which will enable notifications, alerts and adver-

tisements to the drivers and collection of the generated sensor data in remote cloud infrastructures.

Further, the connectivity of the car to the internet opens endless opportunities including remote di-

agnostics, over the air (OTA) updates for the firmware, or e-tolls. Vehicles can receive speed limit

2

notification and flash flood alerts on car dashboard or via seat vibration. A car will receive infor-

mation about nearby parking garages, restaurant offers or remote engine monitoring by authorized

mechanic with nearby repair facility and discounts updating automatically.

As vehicles get exposed to external environment and internet, they become vulnerable to cyber

attacks. Common security vulnerabilities including buffer overflow, malware, privilege escalation,

and trojans etc. can be exploited in connected vehicles. Other potential threats include untrustwor-

thy or fake messages from smart objects, malicious software injection, data privacy, ECU hacking

and control, and spoofing connected vehicle sensor. With broad attack surface exposed via air-bag

ECU, On-Board Diagnostics (OBD) port, USB, Bluetooth, remote key, and tire-pressure monitor-

ing system etc. these attacks have become much easier to orchestrate. In-vehicle Controller Area

Network (CAN) bus also needs security to protect message exchange among ECUs. Further, com-

munication with external networks including cellular, WiFi and insecure public networks of gas

stations, toll roads, service garages, or after-market dongles are a big threat to connected vehicles

security. Cyber incidents including Jeep [182] and Tesla Model X [172] hacks where engine was

stopped and steering remotely controlled demonstrate security vulnerabilities. Such incidents have

serious implications as they can result in loss of life. Securing Internet of Vehicles (IoV) and smart

cars will require protecting control systems (on-board diagnostic (OBD) port, CAN bus etc.), pro-

tecting infotainment systems, securing smartphone applications, securing infrastructure, securing

over-the air updates, and securing hardware from manual tampering. Security become hard to im-

plement considering IoV characteristics like dynamic topology, mobility, and distributed network.

Smart cars ecosystem involves dynamic interaction and message exchange among connected

objects, which must be authorized. It is necessary that only legitimate entities are allowed to con-

trol on-board sensors, data messages and receive notifications. Smart cars location-based services

enable notifications and alerts to vehicles. A user must be allowed to set his personal preferences

whether he wants to receive advertisements or filter out which ones are acceptable or who can

access their car’s sensors. For instance, a user may not want to receive restaurant notifications but

is interested in flash-flood warnings. System wide policy, like a speed warning to all over-speeding

3

vehicles or a policy of who can control speed of autonomous car are needed. Vehicles exchange

basic safety messages (BSMs) which raises an important question about trust. It must be ensured

that information received is correct and from a trusted party, before being used by on-vehicle ap-

plications. Applications access sensors within and outside the car, which must be authorized, for

example, a lane departure warning system accessing tire sensors must be checked to prevent a

spoofed application reading vehicle movements. A passenger accessing infotainment (information

and entertainment) systems of car via Bluetooth or using smartphone inside car must also be autho-

rized. Further, data protection in cloud is critical due to frequent occurrence of data breaches. Big

Data access control is essential when user privacy has to be ensured and unauthorized disclosure is

not allowed. As cars produce data which is stored in cloud servers, it becomes imperative to secure

data at rest, where Hadoop is the predominant big data framework for storage and processing.

To solve these issues, it is important to have a ladder approach and understand problems before

offering comprehensive solutions. To start, an authorization framework is required to recognize the

various architecture layers to illustrate different interaction and data exchange scenarios in vehic-

ular IoT and to propose access control models at various layers including physical, virtual objects,

cloud layer and applications. Attribute-based access control (ABAC) provides finer granularity and

offers flexibility in distributed multi-entity communication scenarios, which is needed to address

access control concerns in cloud assisted smart cars and Hadoop big data processing framework.

1.2 Problem Statement

New and emerging technologies such as smart connected cars and multi-tenant big data platforms

require innovative access control models.

1.3 Thesis Statement

The established paradigms of role-based and attribute-based access control can be adapted and

extended to provide fine-grained and dynamic authorization for cloud assisted smart cars and

Hadoop big data framework.

4

1.4 Scope and Assumptions

The scope of this dissertation is to first develop foundational aspects of access control particularly

related to groups based ABAC and their application in technology domains including smart cars

and big data. Some of the assumptions taken during this work, and its limitations, are as follows.

• The GURAG model assumes that the group hierarchy in the system is predefined by the

security architect and the administrative model doesn’t change the hierarchy. Further, the

model is only defined for user attributes and a similar model can be defined for objects also.

• The polynomial algorithms provided for decidable reachability analysis are not claimed to

be the only and most optimal solutions. It is expected that more optimized algorithms can

be developed and is part of the future work.

• Multi-cloud collaboration between edge cloudlets and/or central clouds is not considered

with the assumption of single cloud for a defined geographical area in smart vehicles.

• Connected vehicle CV-ABACG model assumes that the information and attributes shared

by source and object entities are trusted, for instance, location coordinates sent by a car are

correct, and uses this shared information to make access decision. How to ensure that the

information is from a trusted source or correct is out of scope.

• Direct physical access and tampering of on-board units and sensors in connected smart ve-

hicles is not considered, although they also need security from unwanted access.

• In-vehicle security is not considered in this dissertation which provides a two layer security

in case the external interface is compromised. Further, data in flow security from smart cars

to central cloud or big data frameworks is beyond the scope.

• Several big data frameworks are available but this dissertation primary focusses on Hadoop

ecosystem which is an important and widely used framework by academia and industry.

5

Figure 1.1: Dissertation Contributions

• Data ingestion into Hadoop cluster is beyond the scope of this work and for the access control

points discussed, we assume data is already present inside the cluster. Also, we ignore deny

access request, for the sake of simplicity.

1.5 Summary of Contributions

The contributions of this dissertation are shown in Figure 1.1 as discussed below:

• User attributes administration in group supported ABAC and reachability analysis: An

administrative model GURAG for user attribute assignment based on the direct and inherited

values from member groups is presented. The model has three sub-models for user attribute

assignment (UAA), user to group assignment (UGA) and user group attribute assignment

(UGAA). Further, as the attributes of user determines its permissions, this work also presents

reachability analysis of to determine the attributes a user can achieve with a predetermined

set of rules defined in GURAG model.

• Access control solutions for smart cars: Next, the dissertation proposes an extended ac-

cess control oriented architecture (E-ACO) for connected cars and discusses an authoriza-

6

tion framework to provide access control requirements at various layers defined in E-ACO.

Further, it also presents a dynamic groups and location based ABAC model referred as CV-

ABACG to secure access and communication in dynamic and location centric smart cars

ecosystem. The model takes into consideration user privacy preferences along with other

system wide policies which are used to determine access and communication decision. The

groups are dynamically assigned to moving vehicles based on their GPS locations, speed or

their attributes to ensure relevance of notifications and services to smart vehicles and also

restrict access and communication with resources onboard.

• Access control for multi-tenant Hadoop ecosystem: Lastly, the dissertation proposes a

family of access control models for widely used big data processing and storage framework

called Hadoop ecosystem. Since smart cars produce enormous amounts of data which is

stored in cloud supported big data frameworks, the dissertation presents object tagged RBAC

(OT-RBAC) and ABAC models (referred as HeABAC) for Hadoop ecosystem to protect

access to resources and data in this multi-tenant distributed system.

1.6 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 discusses relevant background in

context of access control models, smart cars security and Hadoop. Chapter 3 proposes formal

GURAG model for groups based user attributes administration and discusses three sub-models for

user attribute assignment (UAA), user group attribute assignment (UGAA) and user to user group

assignment (UGA). The chapter also discusses the reachability analysis for user attributes for a

predefined set of administrative rules stated in restricted GURAG model. Chapter 4 presents an

authorization framework for connected vehicles together with an extended access control oriented

architecture. Dynamic groups and attribute based access control model, called as CV-ABACG,

along with real world use-cases and performance analysis are also discussed in this chapter. Chap-

ter 5 presents Object-Tagged RBAC (OT-RBAC) model and attribute based model (HeABAC) for

Hadoop ecosystem. Chapter 6 summarizes the dissertation with future work directions.

7

CHAPTER 2: LITERATURE REVIEW

This chapter discusses related work along with concepts and required background of prior research

relevant to this dissertation. First, it highlights access control preliminaries along with some im-

portant traditional models including the attribute based access control which is more flexible and

suits current distributed multi-tenant applications. It also provides overview of some administra-

tive models which inspire the GURAG model developed in the dissertation along with earlier work

done in safety and reachability analysis problems. Related work and technologies used in smart

cars ecosystem along with security proposals made by several federal and other agencies is briefly

discussed. Literature in solutions provided for Big Data security and Hadoop is also presented.

The order of sections is based on their relevance in the chapters of dissertation.

2.1 Access Control Models

Access control is an important security mechanism that determines what operations (or actions)

a user (or subject) can perform on which resources (or objects) [145]. Authentication determines

identity of the user and answers who whereas authorization checks what can be done on which re-

sources by the authenticated users. Several access control models have been proposed in literature

and act as a primary cyber attack prevention technique for computer applications and systems.

Discretionary Access Control (DAC) [145], Mandatory Access Control (MAC) [145], and

Role-Based Access Control (RBAC) [72,144] are three most significant and widely adopted access

control models. In DAC, the discretion of the owners of objects determines the access of users to

their objects. When a user requests access to an object, the request is checked against the defined

policy for that object from the owner which determines either to grant or deny the access request.

The cells in the access control matrix determine the operations which a subject (in rows) can have

on other subjects or objects (in columns). Access control list (ACLs), capabilities and relations are

some ways to implement DAC. This simple and easy to setup access control model has an inher-

ent weakness of trojan horses where copying of information from one object to another cannot be

8

controlled and can be exploited to get unauthorized access of sensitive information.

MAC overcomes this underlying limitation of DAC. MAC or lattice-based access control (LBAC)

model was specifically designed for military applications where confidentiality is the main concern.

It has strict information flow policies that assigns subjects and objects with security levels which

restricts unauthorized information flow. The security levels or sensitivity for objects reflects the

kind of information they have and its impact after unauthorized disclosure, whereas the security

clearance for subjects is based on their ranking and trustworthiness in the enterprise. A user is

allowed to operate or access the information in the objects if certain predefined relationships (or

properties) are satisfied by the two security levels in question. Both DAC and MAC are based on

fixed, predetermined policies.

RBAC or Role Based Access Control [72,144], developed around mid 1990s, is an administra-

tive friendly access control model. It determines accesses based on roles assigned to the users and

permissions associated with these roles on specific objects with defined operation. In this approach,

an administrator creates roles that represent specific tasks and assigns permissions to those roles

(permission-role assignment), and these roles are then assigned to users (user-role assignment).

RBAC is capable of enforcing both DAC and MAC models [133]. Major cloud platforms such

as Amazon AWS [1], Microsoft Azure [14], and OpenStack [15] utilize role-based access control

model as their authorization foundation. Apart from many known advantages of RBAC, it also has

some limitations such as role explosion (where too many roles are created in the organization) and

role-permission explosion (where too many permissions are assigned to roles and becomes hard

to track). Further in RBAC, access control policies can only be defined on basis of roles which

restricts access control flexibility. RBAC administration is also an extra overhead.

Some other access control models proposed include provenance based access control (PBAC)

[135] and relationship based access control (ReBAC). PBAC uses the provenance information at-

tached with the underlying data, which offers utilities as usage information, versioning or pedigree

information, to provide access controls. It can further support dynamic separation of duties and

workflow controls. ReBAC [56] enables permissions based on the relationship among users and

9

primarily used in online social networks (OSNs). Besides user to user (U2U) relationship, user to

resource (U2R) and resource to resource (R2R) relation have also been used to control usage and

administrative activities of the users in OSNs.

Lately, attribute based access control model (ABAC) has received significant attention where

the authorization decision for operations by users on objects is based on the attributes (characteris-

tics) of the users and objects in question. Authorization policies are defined using policy language

which includes attributes that the users and objects should have to satisfy the policy and determine

access control decision. Besides the attributes of users and objects other information like the con-

textual attributes, environment attributes like time, date, ip address or alert level can be used to fine

grain the decision, to offer needed flexibility which is very important in distributed multi-tenant

environment. The National Institute for Standards and Technology (NIST) has published a special

publication [97] to provide detailed ABAC concepts, capabilities and implementation architecture.

Jin et al [105] proposed a unified ABAC model called ABACα which can be configured to enforce

DAC, MAC and RBAC models. Combinations of RBAC and ABAC models have also been pro-

posed by adding attributes to role-based access control policies [114]. Dynamic roles uses user and

context attributes for assigning roles to users dynamically, similar to attribute-based user-role as-

signment [36]. Attribute-centric approach assume roles as another attribute of users. Role-centric

approach curtails the permissions of a role based on user attributes [108, 114]. Further, Yong et

al [185] proposed extending the roles of the RBAC with attributes.

2.2 Administrative Models and Safety Analysis

Administrative models complement the operational access control models. In case of RBAC, the

administration part of the model address the following questions: who will assign roles to the user,

how permissions are added to the roles, who will assign these permissions, how the role hierarchy

exists, and so on. Similarly, in ABAC administrative models the questions arise as to how the

attributes are assigned to user, objects or other relevant entities, who will assign these attributes

and any set of preconditions needed to have a particular attribute. All these questions need to be

10

resolved. Hereafter, this section highlights some important administrative models followed by an

explanation of safety analysis problem and relevant work.

2.2.1 ARBAC97 and GURA Models

Administrative role based access control (ARBAC97) model [140] was proposed for RBAC ad-

ministration. It has three components: URA (user-role assignment), PRA (permission-role assign-

ment), and RRA (role-role assignment) dealing with different aspects of RBAC administration. In

URA97, the goal is to impose restrictions on which users can be added to a role by which admin-

istrator, as well as to distinctly separate the ability to add and remove users from other operations

on the role. Prerequisite conditions are important component of URA97 model and are boolean

expressions using and and or operations on current roles of the user in question. PRA97 is con-

cerned with role-permission assignment and revocation where the boolean expression is evaluated

for membership and nonmembership of a permission in specified roles. The RRA97 model distin-

guishes roles into three mutually disjoint types: Abilities (A), Groups (G) and UP-Roles (UPR).

An ability is a collection of permissions which should be assigned as a single unit to a role whereas

a group is a collection of users who are assigned as a single unit to a role. UP-Roles have no re-

striction on membership, which can include users, groups, permissions, abilities, or other UP-roles

as their member. PRA97 model can be used to propose a similar ARA97 model for ability-role

assignment whereas the URA97 model can be used to produce the GRA97 model for group-role

assignment. The administration and role hierarchy related to UP-roles is detailed in [140].

The generalized URA (GURA) model [106] was proposed to assign attributes to users. The

model is composed of three relations defined by the security architect for adding set-valued user

attribute, deleting set-valued user attribute and assigning atomic-valued user attribute. These rela-

tions are distinguished based on the attribute type, which can be set valued or atomic valued. A set

valued attribute can have multiple values whereas an atomic attribute only has a single value. Each

tuple in these relations define an administrative rule which include an administrative role which

can assign or remove attribute values (chosen from the range of the allowed values) from the user

11

who satisfy a set of specified preconditions written using a policy language. One limitation of this

model is the assignment of administrative role to the users, which itself needs administrative rules.

Also distributed policies are hard to express in the policy language specified in the GURA model.

Crampton and Loizou [63] also presented an administrative work related to RBAC model [72]

and developed models for role hierarchy administration. The URA97 and GURA model provides

inspiration for our proposed GURAG model as discussed in Chapter 3.

2.2.2 Safety and Reachability Analysis

Reachability analysis for user attributes is well studied in [107], which is based on GURA adminis-

trative model [106]. In this analysis, attributes are assigned to users directly depending on certain

attribute based prerequisite conditions and on administrative roles. This work proves PSPACE-

complete complexity for generalized GURA scheme and also presents polynomial algorithms for

some conditional cases. Our work in Chapter 3 extends this reachability analysis as it involves

attributes assignments to users as well as to groups to which users are members. This assignment

of attributes to groups provides administrative benefits in adding and removing multiple attributes

to users with single administrative operation.

Security policies have been widely analysed in several works including [94,104,120–122,138,

141, 142, 148, 150, 166]. The safety analysis problem goes back to 1970’s. In general, the safety

of access control matrix (ACM) model has been shown to be undecidable [94]. Tripunitara and

Li [166] presented an important theoretical comparison of expressive powers of different access

control models. Some of the notations in Chapter 3 are from this work. Same authors also defined

restricted forms of ARBAC97 (AATU and AAR) and provided algorithms for analysis problems

including safety and availability in restricted forms [121]. Our work extends results from trust man-

agement policies [120] where safety and availability security analysis on delegation of authority is

discussed. The schematic protection model (SPM) [141] introduced typed security entities where

each entity is associated with a security type, which remains unchanged. Sasturkar et al [148]

analyse ARBAC97 administrative policies to determine reachability and availability problems, by

12

establishing connections to the artificial intelligence planning problem. Jha et al [104] classified

analysis problems related to RBAC and showed PSPACE-complete complexity for unrestricted

classes whereas NP-complete and polynomial time algorithms exists for restricted subclasses. Lip-

ton et al [122] presented a linear time algorithm for take and grant system. Recently, Rajkumar

and Sandhu [138] discussed safety problem for pre-authorization sub-model for UCONABC.

Jajodia et al [103] presented a logical language to express positive, negative and derived autho-

rization policies, and provided polynomial algorithms to check its completeness and consistency.

Cholvy and Cuppens [57] discussed the problem of policy consistency and offer a methodology to

solve it. They further suggested the use of roles priorities to resolve normative conflicts in poli-

cies. [45] provides a method to transform policy specifications into event calculus based formal

notation. It further describes the use of abductive logical reasoning to perform a priori analysis of

various policy specifications. Jaeger et al [102] presented the concept of access control space and

its use in managing access control policies. These spaces are used to represent permission assign-

ment to subjects or roles. Authors in [73] presented decision diagram based algorithms to analyze

XACML based policies and compute the semantic differencing information between versions of

policies. Alloy language is used for specification of role based system and analysis is done using

Alloy constraint analyser [150]. Stoller et al [158] provided algorithms for ARBAC97 policies

limited to rules with one positive precondition and unconditional role revocations. Same authors

in [157] defined PARBAC (parameterized ARBAC) and determined user-reachability problem as

undecidable over infinite types of parameter. They further assume all parameters are atomic-valued

and are changed when the role is modified. Gupta et al [91] discussed rule-based administrative

model to control addition and removal of facts (attributes) and rules. They further proposed an

abductive algorithm which can analyze policies even when the facts (attributes) are unavailable

based on computation of minimal sets of facts. The work in [109] provides analysis of expressive

power of generalized temporal role-based access control (GTRBAC) which offers a set temporal

constraints to specify fine grained time based policies.

13

2.3 Smart Connected Vehicles

Internet of Things (IoT) is the new era of technology which envisions to make human lives smarter.

The concept has attracted wide applications and services in variety of domains including health-

care, homes, industry, transportation, power grids etc. The magnitude of this technology is illus-

trated by the number of devices which are estimated to be more than 20 billion by year 2020 [78].

The prime asset delivered by such massive interconnection and networking of smart devices is Big

Data, which is analyzed to gather insights and deliver valuable information.

IoT requires the use of multiple technologies including identification (naming and address-

ing), sensing (sensor devices, RFID tags etc.), communication technologies (Bluetooth, WiFi etc.),

computation technologies involving hardware or software platforms like Cloud, multiple IoT ser-

vices [81] and the applications which provide functionalities to the end user [35, 41, 83]. Several

IoT architectures have been demonstrated to incorporate physical objects, object abstraction (vir-

tual objects), middleware or service, application and business layers with variations in architecture

stack and nomenclature [35, 41]. Cloud computing is also an important domain in today’s world

which offers boundless applications and resources (storage and compute) to multiple users. There-

fore, the merger of IoT and cloud is arguably indispensable to harness the full potential of IoT

smart objects which have limited storage, processing and communication capabilities. The liter-

ature has recognized this desirable integration using terms such as cloud-assisted, cloud-enabled,

and cloud-centric IoT [34, 48, 50, 52, 53, 65, 118].

Vehicular IoT and connected cars is a novel domain where networking and communication

among cars, traffic infrastructure, pedestrians, homes or ultimately anything is proposed. The

prime goal of vehicular IoT is inter-connectivity among smart entities in which vehicles are most

important. As stated [23] in Wikipedia, “A Connected car (or Connected Vehicle (CV)) is a car

equipped with internet access and usually also with the wireless area network. This allows the

car to share internet access with other devices both inside as well as outside the vehicle”. Gartner

predicts a quarter billion connected cars by year 2020 [77] which will form a significant portion

of the overall connected devices. The communication among vehicles and infrastructure, driving

14

assistance and autonomous driving, automatic braking and emergency calling, weather and acci-

dent warnings, parking areas, E-toll, and predictive maintenance, are among the most desired and

available features in today’s connected cars. These cars have more than 100 ECUs and 100 mil-

lions lines of code in support of such functionality. CVs have controller area network (CAN) bus

with FlexRay, Ethernet and other protocols which are used for ECU communication within the car.

Messages are broadcasted to all ECUs attached to bus. Multiple buses are connected via a gateway,

usually a TCU (Telematics Control Unit), which also provides interface to external environment.

These vehicles generate, exchange and process huge amounts of data and are often referred to

as ‘smartphones on wheels’ [165]. As vehicles with a broad attack surface get connected to the

internet, they get exposed to remote malicious activities. Cyber attacks can be orchestrated from

in-vehicle network, from a user inside the car using a smartphone, from external entities in proxim-

ity, or even through cloud. Some of the most hackable and exposed attack surfaces in a connected

car include airbag ECU, Bluetooth, TPMS, and remote key [54].

This emerging concept involves several new and established technologies which needs to be

discussed to understand Internet of Vehicles (IoV) systems. This section reviews vehicular IoT

and smart cars building blocks along with security concerns which we believe are fundamentally

required and are the basis of our research work in Chapter 4.

2.3.1 VANETs and Vehicular Cloud

Vehicular Ad-hoc Networks (VANETs) have been proposed in the literature to support vehicle

to vehicle and vehicle to infrastructure communication which enable advanced services to the

drivers. The network nodes in VANETs (cars, infrastructure etc.) have storage, computation and

communication modules to provide such services. However, most of these on-board resources

are usually under-utilized with the set of applications offered, and can be utilized for additional

services to stake holders [69, 131]. The concept of vehicular cloud (VC) has been proposed which

blends the two separate ideas of VANETs and Cloud computing. Cloud computing provides the

idea of boundless storage, compute or network resources in the form of Infrastructure as a Service

15

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS), which are extended to the

inter-networked cars and infrastructure provided by VANETs. Vehicular Cloud [69, 79, 80, 131]

utilizes coordinated on-board resources of cars and infrastructure to offer the capabilities of ‘cloud

on the fly’ to users that need them.

The vision of intelligent transportation system (ITS) requires cooperation among entities for

smooth and efficient traffic flow with information and entertainment (infotainment) to driver. All

such applications have local relevance which need time and location sensitive computation of in-

formation avoiding the latency and bandwidth problems when the information is loaded and pro-

cessed in central cloud. Therefore, the surrounding vehicles can form autonomous clouds to solve

driver’s locally relevant queries about traffic ahead or parking nearby. Several architectures have

been proposed for the formation of vehicular clouds like stationary VC, VC linked with a fixed

infrastructure or dynamic VC, where each has different formation scenarios [101, 180]. The key

features to distinguish conventional cloud and VC are mobility, agility and autonomy of vehicles,

which are computation and storage nodes in vehicular cloud. In VCs, one vehicle is selected as

the broker by surrounding vehicles which mediates resource sharing among vehicles in and around

specific geographic boundary (for example in 2 miles radius). The broker asks permission for

cloud formation from relevant authorities and also sends request to neighbouring vehicles to share

resources. Once approved by authorities (DMV or transportation agency), these vehicles pool

their resources to form a virtual environment which is shared by all VC users. Further, large scale

federation of VCs can be established in case of emergency situations like earthquake, providing

temporary infrastructure when conventional cloud is unreachable.

Our research assumes that vehicular IoT will involve single or multiple cloud/fog instances

supporting different service models – SaaS, PaaS and IaaS. These instances can cover wide ge-

ographic area using central cloud, fog instances within 1-2 miles radius or even fog instances at

each connected car level based on different use cases. These architectures can be public, private

(for example by a car manufacturer) or hybrid and involve single internet clouds, vehicular clouds,

fog instances or any combination of them as discussed further in Chapter 4.

16

2.3.2 Virtual Objects in IoT

The cyber-physical ecosystem of vehicular IoT has heterogenous objects with different operating

conditions, communication technologies, and functionalities. Further, the issues related to object

connectivity, scalability, object and service discovery, security and privacy, quality management,

and identification are challenges in any IoT system [129]. To counter these issues the concept of

virtual objects is introduced in several IoT architectures [147, 179]. Amazon AWS IoT [49] also

incorporates virtual objects as device shadows where in case a physical device is not connected,

its cyber counterpart (i.e. shadow) will have the last received state or desired future state informa-

tion. Therefore, whenever the physical device gets connected to its virtual entity, it gets updated

to the state of its cyber object and also mitigates the problem of sporadic object connectivity. Mi-

crosoft Azure [32] has device twins which are JSON documents maintained in Azure IoT hub for

each device connected and stores device state information. Different association scenarios exist

between physical and virtual objects: single virtual object for one physical object irrespective of

the number of services and functionalities provided by physical object; whereas for object with

multiple services, it is possible to have many virtual objects for each service of same physical ob-

ject. Similarly, other configurations such as many physical to one virtual or many physical to many

virtual mappings are also possible depending on different use-case requirements. The creation and

location of virtual objects is primarily proposed in the cloud and their communication uses REST-

ful technologies [129]. Since high latency and low bandwidth issues will exist in virtual objects

creation, for real time applications like vehicular IoT, this dissertation envisions to keep the virtual

objects near to the physical objects, i.e at the fog level or in vehicular cloud (VC).

2.3.3 Access Control Oriented Architecture

Several IoT architectures have been proposed in the literature [35,41,52,83,129] and in general, all

such architectures have three layers: object, middleware (with multiple sub-layers) and application

layer. Recently, Alsehri and Sandhu proposed an IoT architecture, referred as access control ori-

ented architecture (ACO) [37], taking into consideration the access control requirements in IoT and

17

Figure 2.1: ACO Architecture [37]

incorporation of different models at various layers. As shown in Figure 2.1, ACO architecture has

four layers – object, virtual object, cloud services and application – with user and administrators

interacting at both object and application layers. Since, our proposed extended ACO architecture

for connected cars ecosystem (discussed in Chapter 4) adds to/refines generic IoT based ACO

architecture, we briefly outline ACO architecture layers below.

• Object Layer: The bottom layer of ACO architecture comprises physical smart devices like

sensors, RFIDs, beacons, and ECUs, which are responsible for data sensing and accumula-

tion, and for sending data to upper layers. These devices can communicate with other de-

vices using different communication technologies including Bluetooth, WiFi, Zigbee, LAN

and LTE. Physical devices communicate with their cyber counterparts (virtual objects) using

protocols like HTTP, MQTT, DDS or CoAP [35]. Users can also directly access physical

objects at this layer which generally have limited computational power and low storage

• Virtual Object Layer: As discussed earlier, virtual objects represent the digital counterpart

of physical objects which maintain the status of physical objects even when they are not con-

nected. ACO architecture recommends virtual object layer as a part of middleware to support

18

communication between heterogenous objects and overcome IoT challenges of scalability or

locality. In ACO architecture only objects are assumed to have virtual counterparts.

• Cloud Services Layer: With the number of IoT devices proliferating, the storage and

computation of data will be done in cloud, where different applications can harness it to

make valued decisions. Single or multiple cloud scenarios can exist to support federation or

trusted collaboration between them. Some important IoT cloud platforms include Amazon

AWS [42], Microsoft Azure IoT Hub [32], and Google Cloud IoT Core [30].

• Application Layer: The applications offered by IoT systems to end users are situated in

this layer, which leverage the services and functionalities of the lower cloud services layer.

Users and administrators can remotely send commands and instructions to smart devices at

bottom layer using these applications, but such interaction has to pass via other two ACO

middleware layers (cloud services and virtual object). Administrators can also define access

control policies for various IoT resources using this layer.

2.3.4 Cyber Security Concerns and Proposed Solutions

Connected vehicle with more than 100 ECUs, with broad attack surface interacting both in-vehicle

systems and a wide range of external networks including WiFi, cellular networks, and internet

to data exchange between service garages, toll roads, gas stations, and several automotive and

aftermarket applications [54], present a big challenge for security. Most security vulnerabilities

like trojan horse, buffer overflow exploits, malware, ransomware, and privilege escalation can be

exploited on connected vehicles and other smart transportation entities. Recently Tesla Model

X was hacked [172]. Figure 2.2 shows fifteen most hackable and exposed attack surfaces in the

connected car as discussed in [54]. Security is vital in smart cars ecosystem where attacks (like

disabling brakes) can even lead to loss of life. Several studies and reports [17, 24, 136, 139, 175]

have been published to illustrate potential risks and attacks which can be orchestrated on smart

entities in IoV. Some examples of cyber attacks in connected cars and IoV as discussed in [61,

68, 76, 100, 159] include: user impersonation to exchange fake basic safety messages (BSM) or

19

Figure 2.2: Most Exploitable Attack Surfaces [54]

false information about an accident, stealing personal data or credit card information, controlling

critical sensors of connected vehicle, gaining knowledge of vehicle and driver movement, spoofing

CV’s sensors, coordinated attacks on infrastructure, unauthorized over-the air firmware updates,

and infecting a CV with ransomware. CAN bus used for internal ECU communication must also

be secured to prevent unauthorized gain of data and manipulation of software on ECU and sensor

systems. An unauthorized party that gains access to the bus can block legitimate messages and

transmit illegitimate ones. On board equipments (OBEs) integrate with the CAN bus to provide

information such as vehicle speed and brake system status to participating entities. This bring us

back full circle to needing to protect the internal components of a vehicle in order to maintain

confidence that V2V, V2I and V2X messages are legitimate. Securing IoV and connected vehicles

will require protecting control systems (on-board diagnostic (OBD) port, CAN bus etc.), protecting

infotainment systems, securing smartphone applications, securing infrastructure, securing over-the

air updates, and securing hardware from manual tampering. Security mechanisms become hard

to implement considering intrinsic vehicular IoT characteristics like dynamic topology, mobile

limitation, and large scale network.

US Department of Transportation initiated the ITS (Intelligent Transportation Systems) pro-

gram to enable communication among vehicles and other smart infrastructures while ensuring

20

security and privacy of the stake-holders. The BSMs exchanged among entities must not include

personally identifiable information and must be broadcast in limited geographic area [173]. Dedi-

cated short range communications (DSRC) is used to exchange information across entities which

is used by several safety and other applications to generate alerts for drivers. Therefore, the con-

fidentiality and integrity of such messages is imperative so that drivers can trust their source and

information in them. Security Credential Management System (SCMS) [174] has been proposed to

ensure trust and message security using public key infrastructure (PKI) approach where certificate

generated by certificate authority (CA) is attached with the BSM to ensure trust between talking

entities. European Union Agency for Network and Information Security (ENISA) has also released

a study in year 2017 [70] which enumerates critical assets in smart cars, threats, potential risks,

and proposes good practices mainly segmented into three categories, policy and standards, orga-

nizational measures, and security functions, to ensure security of smart cars against cyber threats.

European Commission has set up Cooperative Intelligent Transport Systems (C-ITS) Deployment

Platform to foster cooperative, connected and automated vehicles, and has released security frame-

works [171] and certificate policy [170] documents. National Institute for Standards and Tech-

nology (NIST) also proposed a framework [128] for cyber-physical systems (CPS) which address

conceptualization, realization and assurance of CPS including security and interoperability.

2.4 Big Data and Hadoop Ecosystem

In past several years, enterprises have grown their reliance on Big Data for critical financial and

strategic decisions. An estimate in IDC’s Digital Universe study, predicts world’s data size to

reach 44 zettabytes by 2020 [75]. Multi-format big data is collected from diverse sources includ-

ing sensors, smart connected cars, tennis rackets, web browsing, social media, power meters etc.,

to improve organization’s operational efficiency, revenue and to offer personalised customer expe-

rience. Leveraging full potential and gaining valuable insights of such massive data sets require

enormous infrastructure for storage and computation in real time manner. This section provides

literature review for our work in big data security in Hadoop ecosystem discussed in Chapter 5.

21

Apache Hadoop [3] offers a distributed, scalable and cost-efficient open-source framework for

storing and analysing structured, unstructured and semi-structured data in variety of formats. Re-

silient storage and rich analytical capabilities provided by Hadoop and its ecosystem components

(Apache HBase, Apache Hive etc.) makes it a prime choice as a big data processing system in gov-

ernment and industry. Such wide acceptability of Hadoop ecosystem comes with the responsibility

to make it secure against cyber attacks.

The Multi-tenant Hadoop Data lake stores sensitive information including credit card numbers,

medical records and social security numbers (SSNs), requiring the cluster to be protected against

cyber threats. Unauthorized access to data assets can have serious impact on its confidentiality

and integrity. An inside user can masquerade by running malicious code to impersonate Hadoop

core services including HDFS NameNode, DataNode or YARN ResourceManager. A nefarious

user can also modify, view or delete other users’ applications. It is also possible to execute denial

of resources attack, where a malicious user can submit lengthy jobs which consume all the cluster

resources preventing other users from submitting new jobs. The challenges to mitigate these threats

include distributed and partitioned file system and computing, scale of Hadoop cluster, multi-tenant

environment and multi-level access of same data elements to different users. Correspondingly,

Hadoop ecosystem has deployed several security measures including authentication, authorization,

data encryption and network security.

Access Control mechanisms are vital in restricting users and applications access to authorized

resources. Apache Hadoop deploys a multi-layer authorization framework using Access Control

Lists (ACLs) to authorize users to access data, infrastructure resources and services in Hadoop

cluster. Apache Ranger [7] and Apache Sentry [8] are two widely deployed systems to enforce finer

grained authorization across several Hadoop ecosystem services. Both systems offer a centralized

administration console to store and manage security policies for multiple ecosystem components.

They provide plugins which are hooked to ecosystem services to decide and enforce access control,

based on the policies pulled from central policy server. Sentry supports role-based authorization

model, whereas Ranger assigns permissions to users and groups.

22

Several papers [18, 20, 64, 84, 132, 154, 181] discuss security threats and solutions in Hadoop

ecosystem. Recently, Gupta et al [84] presented a multi-layer authorization framework for Hadoop

ecosystem, which covers several access control enforcement points and demonstrates their appli-

cation using Apache Ranger. Access control using cryptography based on proxy re-encryption

[130] provides approach for delegated access to Hadoop cluster. A security model for G-Hadoop

framework using public key and SSL is presented in [189]. Security and privacy concerns of

MapReduce applications are discussed in [66]. Ulusoy et al [168, 169] proposed approaches for

fine grained access control for MapReduce systems. Privacy issues in Big Data are addressed

in [60,124,156,163]. Risk aware information disclosure in [40] can be used for Hadoop Data lake.

Secure information access model via data services [47] can be applied for Hadoop data services.

HDFS can use data access protection using data distribution and swapping in [67]. Vimercati et

al [176] discuss confidentiality of outsourced data. Colombo et al [59] also proposed fine-grained

context-aware access control features for MongoDB NoSQL datastore.

Risk based access using classification [44] studies role assignment based on risk factors. Con-

textual attributes in location aware ABAC in [96] can be applied in Hadoop. Classification of data

object based on content is presented in [183]. Policy engineering for ABAC [113] can be used to

define values based on risk or context. Another promising approach in attribute based data sharing

has been presented in [186]. Use of role mining in [123] can be extended to determine roles of

users based on attributes. A research roadmap on trust and Big Data is presented in [146]. Trust

based Data ingestion or processing can use models in [125]. Hu et al [98] presented a general ac-

cess control model for big data processing frameworks. The paper introduces chain of trust among

several entities to authorize access request. The work provides a preliminary document which can

be conceptualized to specific systems like Hadoop. However, the authors do not address details

particular to the Hadoop ecosystem.

23

CHAPTER 3: GROUP BASED ATTRIBUTES ADMINISTRATION IN

ABAC AND REACHABILITY ANALYSIS

In this chapter, we propose an administration model for group and user attributes assignment in

ABAC, referred as GURAG. We also study the user attribute reachability analysis based on user to

groups memberships and the administrative rules stated using policy language defined in GURAG

model. Significant portion of this chapter has been published at the following venue [88].

• Maanak Gupta and Ravi Sandhu, The GURAG Administrative Model for User and Group

Attribute Assignment. In Proceedings of the 10th International Conference on Network and

System Security (NSS), September 28-30, 2016, Taipei, Taiwan, pages 318-332.

3.1 Motivation

Attribute based access control determine the permissions based on the attributes of the users and

objects in access request. Hierarchical Group and Attribute based access control (HGABAC) [153]

model was recently proposed which introduced the novel notion of attribute inheritance through

groups memberships. Besides, the users and objects directly assigned attributes, they also inherit

attributes from groups memberships, which offers administrative benefits since multiple attributes

can be assigned to user or objects by a single administrative operation. The GURAG model pro-

vides an administration model for user attributes in HGABAC model by defining the rules which

determine the preconditions under which users are assigned or removed attributes based on the

changing group memberships by administrators. Also since the attributes of entities define their

permissions, it is important to understand the set of attributes an entity can attain directly or in-

herited via groups memberships with a predefined set of administrative rules. Therefore, we also

study the reachability analysis to determine the effective user attributes based on member groups

attributes and the administrative rules defined under GURAG model. We claim that in general the

problem is PSPACE-complete, however, under restricted pre-conditions we provide polynomial

time algorithms for different restricted GURAG instances.

24

3.2 Hierarchical Group and Attribute Based Access Control

This section gives an informal characterization of groups in HGABAC [153], followed by a formal

specification. Our formalization is in the style of ABACα [105], different from but equivalent to

the formalization of Servos et al [153]. Our alternate formalization of HGABAC enables us to

build GURAG model upon the GURA administrative model [106] for ABACα in Section 3.3

3.2.1 Groups in HGABAC

Similar to many ABAC models, HGABAC recognizes the entities of users, subjects and objects. A

user is a human being which interacts directly with the computer, while subjects are active entities

(like processes) created by the user to perform actions on objects. Objects are system resources like

files, applications etc. Operations correspond to access modes (e.g. read, write) provided by the

system and can be exercised by a subject on an object. The properties of entities in the system are

reflected using attributes. Users and subjects hold the same set of attributes whereas objects have a

separate set of attributes reflecting their characteristics. All attributes are assumed to be set valued

where each attribute has a finite set of possible atomic values from which a subset can be assigned

to appropriate entities. In addition to these familiar ABAC entities, HGABAC further introduces

the notion of a group as a named collection of users or objects. Each group has attribute values

assigned to it. A member of the group inherits these values from the group. Users will inherit

attributes from user groups and objects from object groups. A partially ordered group hierarchy

also exists in the system where senior groups inherit attribute values from junior groups.

An example user-group hierarchy is illustrated in Figure 3.1. Senior groups are shown higher

up and the arrows indicate the direction of attribute inheritance. Since Graduate group (G) is

senior to both CSD and UN, G will hold the attribute values directly assigned to it as well as

values inherited from CSD and UN. The values of univId and college attributes for group G are

respectively inherited from UN and CSD, values of userType and studType are directly assigned to

G while the values of roomAcc are a mix of directly assigned values, 2.03 and 2.04, and inherited

value 3.02 from CSD. Each user is assigned to a subset of user groups. Similarly there is an

25

Figure 3.1: Example User Groups (values in black are direct and in gray are inherited)

object-group hierarchy wherein attribute values of objects are analogously inherited.

The core advantage of introducing groups is simplified administration of user and object at-

tributes where an entity obtains a set of attributes values by group membership in lieu of assigning

one value at a time. In context of Figure 3.1 assigning an attribute value to CSD potentially saves

hundreds or thousands of assignments to individual student and staff. Likewise changing the CSD

level room from 3.02 to, say, 3.08, requires only one update as opposed to thousands.

3.2.2 HGABAC: An Alternate Formalization

We now develop a formalization of the HGABAC model different from that of Servos et al [153].

This alternate formalization will be useful in the next section where we develop the GURAG for

administration of HGABAC. Our formalization uses the conceptual model of HGABAC shown in

Figure 3.2. The complete HGABAC formalization is given in Table 3.1, which we will discuss in

the remainder of this subsection followed by an example configuration.

Basic sets and functions of HGABAC are shown at the top of Table 3.1. U, S, O and OP

represent the finite set of existing users, subjects, objects and operations respectively. UG and OG

represent sets of user and object groups in the system. UA is the set of user attributes for users,

user groups and subjects. OA is similarly the set of object attributes for objects and object groups.

26

Figure 3.2: A Conceptual Model of HGABAC

All these sets are disjoint and are predefined in the system.

Attribute values can be directly assigned to users, objects, user groups and object groups (we

will consider subjects in a moment). These are collectively called entities. Each attribute of an

entity is set valued. The value of an attribute att for an entity is some subset of Range(att) which

is a finite set of atomic values, as indicated by the functions attu and atto in Table 3.1. These

functions specify the attribute values that are directly assigned to entities. The function directUg

specifies the user groups to which the user is assigned, and similarly the function directOg specifies

the object groups to which an object is assigned. User group hierarchy (UGH) is a partial order on

UG, written as �ug, where ug1 �ug ug2 denotes ug1 is senior to ug2 or ug2 is junior to ug1. This

many to many hierarchy results in attribute inheritance where the effective values of user attribute

function attu for a user-group ug (defined by effectiveUGattu(ug)) is the union of directly assigned

values for attu and the effective attribute values of all groups junior to ug. The assignment of a

user to a user-group will inherit values from this group to that user. The function effectiveattu maps

a user to the set of values which is the union of the values of attu directly assigned to the user and

the effective values of attribute attu from all user groups directly assigned to the user. Similar sets

and functions are specified for objects and object groups.

A subject is created by a user, denoted by the SubUser function. The effective attribute values

27

Table 3.1: HGABAC: An Alternate Formal Model

Basic Sets and Functions
– U, S, O, OP (finite set of users, subjects, objects and operations respectively)
– UG, OG (finite set of user and object groups respectively)
– UA, OA (finite set of user and object attribute functions respectively)
– For each att in UA ∪OA, Range(att) is a finite set of atomic values
– For each attu in UA, attu : U ∪ UG→ 2Range(attu), mapping each user and user group

to a set of values in Range(attu)
– For each atto in OA, atto : O ∪OG→ 2Range(atto), mapping each object and object group

to a set of values in Range(atto)
– directUg : U→ 2UG, mapping each user to a set of user groups
– directOg : O→ 2OG, mapping each object to a set of object groups
– UGH ⊆ UG×UG, a partial order relation �ug on UG
– OGH ⊆ OG×OG, a partial order relation �og on OG

Effective Attributes (Derived Functions)
– For each attu in UA,
• effectiveUGattu : UG→ 2Range(attu),

defined as effectiveUGattu(ugi) = attu(ugi) ∪ (
⋃

∀g ∈ {ugj|ugi �ug ugj}
effectiveUGattu(g))

• effectiveattu : U→ 2Range(attu),
defined as effectiveattu(u) = attu(u) ∪ (

⋃
∀g ∈ directUg(u)

effectiveUGattu(g))

– For each atto in OA,
• effectiveOGatto : OG→ 2Range(atto),

defined as effectiveOGatto(ogi) = atto(ogi) ∪ (
⋃

∀g ∈ {ogj|ogi �og ogj}
effectiveOGatto(g))

• effectiveatto : O→ 2Range(atto),
defined as effectiveatto(o) = atto(o) ∪ (

⋃
∀g ∈ directOg(o)

effectiveOGattu(g))

Effective Attributes of Subjects (Assigned by Creator)
– SubUser : S→ U, mapping each subject to its creator user
– For each attu in UA, effectiveattu : S→ 2Range(attu), mapping of subject s to a set of values

for its effective attribute attu. It is required that : effectiveattu(s) ⊆ effectiveattu(SubUser(s))

Authorization Function
For each op ∈ OP, Authorizationop (s:S, o:O) is a propositional logic formula, returning true or
false and is defined using the following policy language:
• α ::= α ∧ α | α ∨ α | (α) | ¬α | ∃ x ∈ set.α | ∀ x ∈ set.α | set4 set | atomic ∈ set |

atomic /∈ set
• 4 ::= ⊂ | ⊆ | * | ∩ | ∪
• set ::= effectiveattui

(s) | effectiveattoi
(o) for attui

∈ UA, attoi
∈ OA

• atomic ::= value

Access Decision Function
A subject si ∈ S is allowed to perform an operation op ∈ OP on a given object oj ∈ O if the
effective attributes of the subject and object satisfy the policies stated in
Authorizationop(s : S, o : O). Formally, Authorizationop(si, oj) = True

28

Table 3.2: Example HGABAC Configuration

Basic Sets and functions
– UA = {studId, userType, skills, studType, univId, roomAcc, college, jobTitle, studStatus}
– OA = {readerType}
– OP = {read}
– UG = {UN, CSD, G, UGR, S}, OG = { }
– UGH is given in Figure 3.1, OGH = { }
– Range of each attu in UA, denoted by Range(attu):

studId = {er35, abc12, fhu53}, userType = {faculty, staff, student},
skills = {c, c++, java}, studType = {Grad, UnderGrad},
univId = {12345}, roomAcc = {1.2, 2.03, 2.04, 3.02},
college = {COS, COE, BUS}, jobTitle = {TA, Grader, Admin},
studStatus = {graduated, part-time, full-time}

– Range of each atto in OA, Range(readerType) = {faculty, staff, student}

Authorization Function:
Authorizationread(s : S, o : O) ≡
effectiveuserType(s) ∈ effectivereaderType(o) ∧ java ∈ effectiveskills(s)

of a subject are under control of its creating user. These values are required to be a subset of

the corresponding effective attribute values for the creator. In general these values can change

with time but cannot exceed the creator’s effective values. The exact manner in which a subject’s

effective attributes are modified by its creator is not specified in the model, and can be realized

differently in various implementations.

Each operation op ∈ OP in the system has an associated boolean authorization function

Authorizationop(s,o) which specifies the conditions under which subject s ∈ S can execute op-

eration op on object o ∈ O. The condition is specified as a propositional logic formula using the

policy language given in Table 3.1. This formula can only use the effective attribute values of the

subject and object in question. The authorization functions are specified by the security policy

architects when the system is created. Thereafter, a subject si ∈ S is allowed to execute operation

op on object o oj ∈ O if and only if Authorizationop(si, oj) evaluates to True.

An example HGABAC configuration is given in Table 3.2, utilizing the user group hierarchy

of Figure 3.1. For simplicity, we do not include any object groups. The authorization policy for

the read operation is specified. The access request flow in Figure 3.3 assumes the user has the set

29

Figure 3.3: Example Access Request Flow

of effective attributes shown. The subject has the given subset of its creator’s effective attributes.

The subject is thereby allowed to read the object as the authorization policy for read is satisfied by

the effective attributes of the subject and object.

3.3 The GURAG Administrative Model

The HGABAC model offers the advantage of easy administration of attributes for users and ob-

jects. The novel approach of assigning attributes to groups and users to groups is analogous to the

permission-role and user-role assignment in RBAC [144]. By assigning a user to a user-group, the

user inherits all the effective attribute values of that group in a single step, as compared to one by

one attribute value assignment. Further, if an inherited attribute value has to be changed for multi-

ple users, instead of changing per user, the value in a group can be changed, making administration

very convenient. The essence and importance of HGABAC model is in simple administration as

the effect of attribute inheritance can also be realized by direct attribute assignment for authoriza-

tion purposes. Changing the attribute values of a group can impact large numbers of users and

objects, thus reducing the administrative effort, and leading to better comprehension of attribute

values. For example, in Figure 3.1 the fact that groups G, UGR and S inherit the roomAcc value

3.02 from CSD is visible because of the group structure.

This section presents the GURAG administrative model for managing the user side of

30

Table 3.3: GURAG Administrative Model

Administrative Roles and Expressions

– AR : a finite set of administrative roles
– EXPR(UA) : a finite set of prerequisite expressions composed of user attribute

functions as defined in Section 3.3.1 and 3.3.2
– EXPR(UA ∪ UG) : a finite set of prerequisite expressions composed of user

attribute functions and user groups as defined in Section 3.3.3

Administrative Relations

– User Attribute Assignment (UAA) & User-Group Attribute Assignment (UGAA):
For each attu in UA,

canAddattu ⊆ AR× EXPR(UA)× 2Range(attu)

canDeleteattu ⊆ AR× EXPR(UA)× 2Range(attu)

– User to User-Group Assignment (UGA):
canAssign ⊆ AR× EXPR(UA ∪ UG)× 2UG

canRemove ⊆ AR× EXPR(UA ∪ UG)× 2UG

HGABAC. GURAG is inspired by the GURA model [106] which in turn evolved from

URA97 [140]. All these models require a set of administrative roles AR that will be assigned

to security administrators. Administrative role hierarchy also exists, wherein senior administrative

roles inherit permissions from junior ones. GURAG regulates the powers of an administrative role

with respect to user attribute assignment (UAA), user-group attribute assignment (UGAA) and user

to user-group assignment (UGA) (see Figure 3.2). The Add and Delete operations enable addition

or deletion of attribute values from user and user groups. Assignment or removal of a user from a

user-group is accomplished by Assign and Remove operations. Table 3.3 depicts the various sets

and administrative relations required to administer the user side of HGABAC. The prerequisite

conditions are specified with slight modifications to the policy language described in Table 3.1.

We now define the three sub-models of GURAG.

3.3.1 User Attribute Assignment (UAA) Sub-Model

The UAA sub-model deals with addition or deletion of values to a set-valued attribute of a user. It is

composed of two relations as shown in Table 3.3. The meaning of (ar,Expr(ua),Z) ∈ canAddattu

31

Table 3.4: Example Administrative Rules in UAA

canAddjobTitle rule :
(DeptAdmin, Grad ∈ effectivestudType(u), {TA, Grader})
canDeleteroomAcc rule :
(BuildAdmin, graduated ∈ effectivestudStatus(u), {1.2, 2.03, 2.04, 3.02})

is that a member of an administrator role ar (or senior to ar) is authorized to add any value in

the allowed range Z of attribute attu of a user whose attributes satisfy the condition specified in

Expr(ua). EXPR(UA) is the set of all prerequisite conditions represented as propositional logic

expressions. The expressions return true or false and are specified using earlier defined policy

language (Table 3.1) with following changes.

set ::= attui
(u) | effectiveattui

(u) | constantSet for attui
∈ UA

atomic ::= constantAtomic

The meaning of (ar,Expr(ua),Z) ∈ canDeleteattu is that the member of administrator role ar

(or senior) is authorized to delete any value in allowed range Z of attribute attu of a user whose at-

tributes satisfy the condition specified in Expr(ua). The delete operation will only impact directly

assigned attribute value of the user (i.e. val ∈ attu(u)). If the value to be deleted is inherited from

a group, the operation will not have any effect. Further, if a value is both inherited and directly

assigned to user, deletion will only delete the direct value, thereby, the user will still hold the value

inherited from the group. It is worth mentioning that any change in prerequisite conditions after

the attribute value assignment has been made, will not have any retrospective effect and the entity

involved will still retain the value. This is consistent with the GURA and URA97 models.

Table 3.4 illustrates example UAA relation. First rule allows administrator role DeptAdmin

(or senior to DeptAdmin) to add any value in {TA, Grader} to user attribute jobTitle if the user’s

effective studType attribute includes Grad. Second rule allows administrator role BuildAdmin (or

senior to BuildAdmin) to remove any of the specified room values from the roomAcc attribute of

a user whose effective studStatus attribute includes graduated value.

32

Figure 3.4: Example User-Group Attribute Assignment (UGAA)

Table 3.5: Example Administrative Rules in UGAA

canAddroomAcc rule: (BuildAdmin, COS ∈ college(ug), {2.04})
canAddskills rule: (DeptAdmin, Grad ∈ studType(ug), {c++})
canDeleteroomAcc rule: (BuildAdmin, 2.04 ∈ roomAcc(ug), {3.02})

3.3.2 User Group Attribute Assignment (UGAA) Sub-Model

This sub-model controls addition and deletion of attributes from user-groups as shown in Table

3.3. The relations for UAA and UGAA have slightly different policy languages for EXPR(UA),

which in case for UGAA is defined as follows.

set ::= attui
(ug) | effectiveUGattui

(ug) | constantSet for attui
∈ UA

atomic ::= constantAtomic

The meaning of canAdd and canDelete are similar to those in UAA sub-model. In particular, the

delete operation in UGAA only impacts directly assigned attribute values of a user-group (i.e val

∈ attu(ug)) and will not delete inherited values from junior groups.

Figure 3.4 shows addition and deletion of attribute values to user-group CSD in context of Table

3.5. Addition of value 2.04 to roomAcc attribute of CSD group by administrator role BuildAdmin

(or senior to BuildAdmin) is allowed by first rule in Table 3.5. Figure also shows deletion of 3.02

33

Figure 3.5: Example User to User-Group Assignment (UGA)

Table 3.6: Example Administrative Rules in canAssign UGA
Admin Role Prereq. Cond AllowedGroups

DeptAdmin
{c, java} ⊆ effectiveskills(u) ∧

S /∈ effectiveUg(u) {G,CSD}

StaffAdmin
{G,UGR} ∩ effectiveUg(u) = ∧

Admin ∈ effectivejobTitle(u)
{S}

DeptAdmin
U ∈ directUg(u) ∧

3.02 ∈ roomAcc(u) ∧ S /∈ effectiveUg(u)
{UGR,CSD}

value from roomAcc attribute authorized by third canDeleteroomAcc rule.

3.3.3 User to User-Group Assignment (UGA) Sub-Model

The UGA sub-model is composed of two authorization relations in the lower part of Table 3.3.

These control the assignment of user to user-groups, as well as removal of a user from a user-

group. The meaning of (ar, expr, {g1, g2, g3}) ∈ canAssign is that member of administrator role

ar (or senior) can assign any user-group in {g1, g2, g3} to a user which satisfy the conditions in expr.

EXPR(UA ∪UG) now includes the current membership or non-membership of user in user-groups

along with user attributes. The policy language has the following changes.

set ::= attui
(u) | effectiveattui

(u) | directUg(u) | effectiveUg(u) | constantSet

34

Table 3.7: Example Administrative Rules in canRemove UGA
Admin Role Prereq. Cond AllowedGroups

UniAdmin
graduated ∈ effectivestudStatus(u) ∧

{G,UGR} ∩ effectiveUg(u) 6= {G,UGR}

DeptAdmin COS /∈ effectivecollege(u) {CSD}

atomic ::= constantAtomic

where effectiveUg(u) = directUg(u) ∪ (
⋃

∀ugi ∈ directUg(u)

{ugj|ugi �ug ugj})

The canRemove relation in Table 3.3 controls the removal of a user from user-group member-

ships. The remove operation is said to be weak in that it will only impact explicit memberships of

user. A user is an explicit member of group ug if ug ∈ directUg(u) whereas a user is an implicit

member of ug if for some ugi ∈ directUg(u), ug ∈ {ugj| ugi �ug ugj} exists. It should be men-

tioned that removal of a user from any explicit membership ug will automatically result in removal

from all implicit membership due to ug. Figure 3.5 shows assignment of user to user-group G

allowed by first rule in Table 3.6. This assignment results in updates on effective attributes of user

as user now inherits all attributes from group G along with direct attributes assigned through UAA.

In case of weak removal (using Figure 3.1), suppose a user is an explicit member of groups CSD

and G and administrator role DeptAdmin removes user from CSD (authorized by second rule in

Table 3.7), the user will still have attributes of CSD through its membership in G.

3.3.4 Operational Specification

Table 3.8 outlines administrative operations required for user-group membership and attribute as-

signment. In all operations: ar ∈ AR, u ∈ U, attu ∈ UA, ug ∈ UG. A request (first column)

succeeds only if a tuple exists in administrative relation and the entity satisfies the conditions (sec-

ond column), in which case the update (third column) is performed.

3.3.5 GURAG Model Extensions

This section proposes some enhancements to GURAG.

35

Table 3.8: Operational Specification
Operations Conditions Updates

In following operations: V AL′ ∈ 2Range(attu), val ∈ V AL′, expr ∈ EXPR(UA)

Add(ar, u, attu, val)
if ∃〈ar, expr, V AL′〉 ∈ canAddattu

∧ expr(u) = True
∧ val /∈ attu(u)

att′u(u) =
attu(u)∪{val}

Delete(ar, u, attu, val)
if ∃〈ar, expr, V AL′〉 ∈ canDeleteattu
∧ expr(u) = True
∧ val ∈ attu(u)

att′u(u) =
attu(u)\{val}

Add(ar, ug, attu, val)
if ∃〈ar, expr, V AL′〉 ∈ canAddattu

∧ expr(ug) = True
∧ val /∈ attu(ug)

att′u(ug) =
attu(ug)∪{val}

Delete(ar, ug, attu, val)
if ∃〈ar, expr, V AL′〉 ∈ canDeleteattu
∧ expr(ug) = True
∧ val ∈ attu(ug)

att′u(ug) =
attu(ug)\{val}

In following operations: UG′ ∈ 2UG, ug ∈ UG′, expr ∈ EXPR(UA ∪ UG)

Assign(ar, u, ug)
if ∃〈ar, expr, UG′〉 ∈ canAssign
∧ expr(u) = True
∧ ug /∈ directUg(u)

directUg′(u) =
directUg(u)∪{ug }

Remove(ar, u, ug)
if ∃〈ar, expr, UG′〉 ∈ canRemove
∧ expr(u) = True
∧ ug ∈ directUg(u)

directUg′(u) =
directUg(u)\{ug }

Strong Removal: We can define a strong removal operation as per the following example using

Figure 3.1. If a user is explicit member of CSD and G and administrator role DeptAdmin removes

this user from CSD (allowed by second rule in Table 3.7), the user will also be removed from

group G along with CSD if allowed by authorization rules. If the user cannot be deleted from G,

the operation will have no effect.

Inherited Value Deletion in User: Let Alice have administrator role r1 and Alice tries to

delete inherited value val from attribute attu of user u1. Let there be a canDeleteattu rule

(r, cond, allowedV al) and if r1 > r, val ∈ allowedV al and u1 satisfies cond, find all user groups

ug in directUg(u1) from where the attribute value val is inherited. There are two possibilities:(i) If

there exists a canRemove rule (r, cond, allowedGroup) and if r1 > r, ug ∈ allowedGroup and

u1 satisfies the cond, remove u1 from all such ug groups. (ii) If such a rule doesn’t exist or u1

cannot be removed from some ug groups, the operation will have no effect.

36

Inherited Value Deletion in User Group: Let Alice have role r1, and Alice tries to delete

inherited value val from attribute attu of user group ug1. Let there exists a canDeleteattu rule

(r, cond, allowedV al) and if r1 > r, val ∈ allowedV al and ug1 satisfies cond, find all user groups

ug junior to ug1 which has val directly assigned. Delete val from all such ug as if Alice did this

delete. If any delete fails this operation is aborted.

3.4 Group Based User Attribute Reachability Analysis

In ABAC, the attributes of an entity are critical in determining its permissions. Therefore, it is an

important question to compute the attribute values that an entity can acquire through the combina-

tion of administrative roles and rules. In the context of GURAG, it is imperative to understand the

set of attribute values a user can get based on direct assignment or via group memberships. Group

hierarchy also exists in the HGABAC operational model which further complicates computation

of the possible effective attribute values of a user. Although security administrators are trusted to

assign attributes correctly, it is still desirable to understand the eventual set of attribute values that

a user can acquire through multiple direct and indirect assignments. Such analysis can also help to

identify a sequence of administrative actions required by administrators to assign certain attribute

values to the users. It further allows administrators to know the future attribute values an entity

can achieve based on predefined administrative rules, which can help them to understand if certain

permissions can ever be granted to an entity.

In this section we analyze the attribute reachability analysis focusing on the effective attributes

of the user achieved through direct assignment and through user-group memberships. This work

extends the reachability analysis [107] done for GURA administrative model [106], where the

attributes were only directly assigned to users without the concept of group memberships. In our

analysis, we have defined a restricted GURAG model, called rGURAG, which considers a subset

of preconditions which can be created in GURAG. We abstract rGURAG into a state transition

system and specify three separate instances—rGURAG0 , rGURAG1 and rGURAG1+—to cover

different set of prerequisite conditions for attributes assignments to a user or a group, and also for

37

user to group membership assignment. Our reachability analysis primarily focuses on the effective

set of attributes of users which is the union of direct attributes and attributes attained by group

membership. We have defined reachability queries which is the required set of effective attributes

a user can achieve in any target state. Two different types of reachability queries are discussed,

one with the exact values and another with the superset of attribute values. We will show that

the general reachability problem for rGURAG schemes is PSPACE-complete. We further identify

certain more restricted cases of rGURAG schemes where the reachability problem can be solved in

polynomial time. For such instances we will provide algorithms and a sequence of administrative

requests (referred as reachability plan) to satisfy the reachability query.

3.4.1 GURAG Model and Scheme

The GURAG administrative model [88] was proposed to regulate the assignment of user attribute

values in HGABAC model via direct user attributes, user-group attributes and user to group mem-

berships. The GURAG model has three sub models: user attribute assignment (UAA), user group

attribute assignment (UGAA) and user to group assignment (UGA), which regulates the direct and

effective attributes of users. It should be noted that user group hierarchy (UGH) is considered fixed

in the system and is not modified. Each of these sub models have different sets of administrative

relations and preconditions definition using policy language as discussed in following subsections.

The main difference between GURA and GURAG is that GURAG includes the assignment of

attributes to groups and user to group memberships. Further, the prerequisite conditions specified

in GURAG are more expressive, as it also checks the current effective attributes or effective group

memberships of entities to make future assignments.

Administrative Requests

Definition 1 (Administrative Requests). The attributes and group memberships of entities are

changed by administrative request made by administrators with certain administrative roles as

defined in Table 3.9, where AR is the finite set of administrative roles. The administrative request

38

Table 3.9: Administrative Requests

In the following requests: ar ∈ AR, att ∈ UA, val ∈ SCOPEatt, u ∈ U, ug ∈ UG

– For User Attributes
add(ar, u, att, val)
delete(ar, u, att, val)

– For User Group Attributes
add(ar, ug, att, val)
delete(ar, ug, att, val)

– For User to User-Group Membership
assign(ar, u, ug)
remove(ar, u, ug)

add(ar, u, att, val) is made by administrator with role ar to add value val to attribute att of user

u. Similar administrative request are used for groups also. Administrative requests assign and

remove are required for managing group memberships. Each administrative request can add or

delete a single attribute value from a user or group.

Definition 2 (Administrative Rules). Administrative rules are tuples in administrative relations

which specify conditions under which administrative requests are authorized. All three sub-models

(UAA, UGAA, UGA) in GURAG model have administrative relations to define these rules.

The UAA sub-model deals with addition or deletion of attributes from the user. It has two

administrative relations shown in Table 3.10, where a rule 〈ar, c, val〉 ∈ canAddUatt autho-

rizes request add(ar, u, att, val) if user u satisfies precondition c. Similarly, rule 〈ar, c, val〉

∈ canDeleteUatt authorizes delete(ar, u, att, val) requests if user u satisfies precondition c. In

UAA, the precondition c ∈ C includes only current direct and effective attributes of user u. Sim-

ilar relations also exist for administering attributes of groups as discussed in sub-model UGAA.

In UGAA, c ∈ C involves current direct or effective attributes of the group whose attributes are

modified.

The UGA sub-model has two relations shown in lower part of Table 3.10. The rule 〈ar, c, ug〉

∈ canAssign authorizes user to group assignment request assign(ar, u, ug) if user u satisfies the pre-

condition c. Similarly rule 〈ar, c, ug〉 ∈ canRemove authorizes remove request remove(ar, u, ug)

39

Table 3.10: Redefined GURAG Administrative Model

– User Attribute Assignment (UAA):
For each att in UA,

canAddUatt ⊆ AR× C× SCOPEatt

canDeleteUatt ⊆ AR× C× SCOPEatt

– User Group Attribute Assignment (UGAA):
For each att in UA,

canAddUGatt ⊆ AR× C× SCOPEatt

canDeleteUGatt ⊆ AR× C× SCOPEatt

– User to User Group Assignment (UGA):

canAssign ⊆ AR× C× UG

canRemove ⊆ AR× C× UG

if user u satisfies precondition c. The precondition c ∈ C involves both current direct or effective

attributes and groups of user u.

The expressive power of the GURAG model is primarily determined by the richness of the

policy language used to define the preconditions C in Table 3.10. The most general language for

this purpose is defined in [88], similar to the most general language of [106] (but without atomic

attributes).

Note: In the original GURAG definition [88], the administrative relations of Table 3.10 are de-

fined with 2SCOPEatt substituted for SCOPEatt and 2UG substituted for UG. With the modification

of Table 3.10 the administrative relations can grow linearly in the size of SCOPEatt and UG. This

does not materially impact the complexity analysis of the reachability problem.

GURAG scheme

For purpose of our reachability analysis, we express the GURAG model according to the notations

developed in [166], following the treatment in [107]. The GURAG scheme is presented as a state

transition system where each state consists of direct attribute assignments for each attribute of every

user and group, and also each user to groups membership. A transition between states occurs when

an authorized administrative request changes either direct user or group attribute, or changes user

40

to group membership. The general definition for GURAG scheme is as follows.

Definition 3 (GURAG Scheme). A GURAG scheme is a state transition system 〈U, UA, AR,

SCOPE, UG, �ug, Ψ, Γ, δ〉 where,

(i) U, UA, AR, UG, �ug are as defined in Tables 3.1 and 3.9.

(ii) SCOPE = 〈SCOPEatt1 . . . SCOPEattn〉 where atti ∈ UA, is the collection of scopes of all

attributes.

(iii) Ψ is the collection of all administrative rules in UAA, UGAA and UGA sub-models.

(iv) Γ and δ are set of states and transition function respectively, defined in following parts of this

subsection.

Direct State

Γ is the finite set of states where each state γ ∈ Γ records directly assigned attributes of each user

and user group, along with user to groups membership. The direct user attribute assignment in

state γ, denoted by UAAγ , contains tuples of the form 〈u, att, val〉 for every u ∈ U and every

att ∈ UA such that att(u) = val and val ∈ Range(att) in state γ. To ensure uniqueness of user

attribute values we require the following.

〈u, att, val1〉 ∈ UAAγ ∧ 〈u, att, val2〉 ∈ UAAγ ⇒ val1 = val2

Similarly, direct user group attribute assignment in state γ, denoted by UGAAγ , contains tuples

of the form 〈ug, att, val〉 for every ug ∈ UG and every att ∈ UA such that att(ug) = val and

val ∈ Range(att) in state γ, with the following uniqueness requirement.

〈ug, att, val1〉 ∈ UGAAγ ∧ 〈ug, att, val2〉 ∈ UGAAγ ⇒ val1 = val2

Finally, direct user to group assignment in state γ, denoted UGAγ , contains tuples of the form

〈u, val〉 for every u ∈ U such that directUg(u) = val and val ∈ 2UG in state γ, with the following

41

uniqueness requirement.

〈u, val1〉 ∈ UGAγ ∧ 〈ug, val2〉 ∈ UGAγ ⇒ val1 = val2

Note that information in a state can be used to calculate the effective attributes for user or group

and effective user to groups membership in that state. For convenience we understand the notation

attγ(u), attγ(ug) and directUgγ(u) to denote the values of these functions in state γ for u ∈ U

and ug ∈ UG.

Transition Function

Any change in the direct state records (UAAγ,UGAAγ,UGAγ) will transform the current state to

a new state. The transition function specifies the change from one state to another in a GURAG

system based on current direct or effective values and administrative requests, as shown in Table

3.11. Formally, δ : Γ× REQ→ Γ, where REQ is the set of possible administrative requests.

3.4.2 Restricted GURAG (rGURAG)

In this section, we introduce a restricted form of GURAG administrative model, called rGURAG,

used in our attribute reachability analysis. This restricted form allows a subset of the precondition

language defined for GURAG [88], whereby our analysis also establishes lower bound results on

the complexity analysis for richer GURAG model. We first present a generalized policy language

for rGURAG, followed by three specific instances—rGURAG0 , rGURAG1 , and rGURAG1+ .

The left side of Figure 3.6 shows the relation between these schemes, while the right side

shows the rGURA schemes discussed in [107]. At a high level, rGURAG0 and rGURAG1 add

group attributes respectively to rGURA0and rGURA1, while rGURAG1+ further adds adminis-

tration of user membership in groups. Thereby, in rGURAG0 and rGURAG1 the administrative

relations canAssign and canRemove are empty whereas they are populated in rGURAG1+ . Table

3.12 provides example administrative rules for each rGURAG instance, as will be explained below.

42

Table 3.11: Transition Function
(1) γ1 and γ2 are the source and target states respectively.
(2) Let : ar ∈ AR, u ∈ U, ug ∈ UG, att ∈ UA, val′ ∈ SCOPEatt, ug′ ∈ UG.
(3) Satisfyu: U × C× Γ→ {true, false}, returns true if user u ∈ U satisfies

precondition c ∈ C in state γ ∈ Γ, else false.
(4) Satisfyug : UG × C× Γ→ {true, false}, returns true if user group ug ∈ UG satisfies

precondition c ∈ C in state γ ∈ Γ, else false.
(5) Satisfyu−ug : U × C× Γ→ {true, false}, returns true if user u ∈ U satisfies

precondition c ∈ C in state γ ∈ Γ, else false.

Request Pre-Conditions Target State

add(ar, u, att, val′)

∃ 〈ar, c, val′〉 ∈
canAddUatt.

(Satisfyu(u, c, γ1)

∧ val′ /∈ attγ1(u))

attγ2(u) = attγ1(u) ∪ {val′},
attγ2(ug) = attγ1(ug),

directUgγ2
(u) = directUgγ1

(u),
UAAγ2 = UAAγ1 \ 〈u, att, attγ1(u)〉
∪ 〈u, att, attγ2(u)〉.

delete(ar, u, att, val′)

∃ 〈ar, c, val′〉 ∈
canDeleteUatt.

(Satisfyu(u, c, γ1)

∧ val′ ∈ attγ1(u))

attγ2(u) = attγ1(u) \ {val′},
attγ2(ug) = attγ1(ug),

directUgγ2
(u) = directUgγ1

(u),
UAAγ2 = UAAγ1 \ 〈u, att, attγ1(u)〉
∪ 〈u, att, attγ2(u)〉.

add(ar, ug, att, val′)

∃ 〈ar, c, val′〉 ∈
canAddUGatt.

(Satisfyug(ug, c, γ1)

∧ val′ /∈ attγ1(ug))

attγ2(ug) =attγ1(ug) ∪ {val′},
attγ2(u) = attγ1(u),

directUgγ2
(u) = directUgγ1

(u),
UGAAγ2 = UGAAγ1 \ 〈ug, att, attγ1(ug)〉
∪ 〈ug, att, attγ2(ug)〉.

delete(ar, ug, att, val′)

∃ 〈ar, c, val′〉 ∈
canDeleteUGatt.

(Satisfyug(ug, c, γ1)

∧ val′ ∈ attγ1(ug))

attγ2(ug) = attγ1(ug) \ {val′},
attγ2(u) = attγ1(u),

directUgγ2
(u) = directUgγ1

(u),
UGAAγ2 = UGAAγ1 \ 〈ug, att, attγ1(ug)〉
∪ 〈ug, att, attγ2(ug)〉.

assign(ar, u, ug′)

∃ 〈ar, c, ug′〉 ∈
canAssign.

(Satisfyu−ug(u, c, γ1)

∧ ug′ /∈ directUgγ1
(u))

directUgγ2
(u) = directUgγ1

(u) ∪ {ug′}
attγ2(u) = attγ1(u), attγ2(ug) = attγ1(ug),

UGAγ2 = UGAγ1 \ 〈u, directUgγ1
(u)〉

∪ 〈u, directUgγ2
(u)〉.

remove(ar, u, ug′)

∃ 〈ar, c, ug′〉 ∈
canRemove.

(Satisfyu−ug(u, c, γ1)

∧ ug′ ∈ directUgγ1
(u))

directUgγ2
(u) = directUgγ1

(u) \ {ug′}
attγ2(u) = attγ1(u), attγ2(ug) = attγ1(ug),

UGAγ2 = UGAγ1 \ 〈u, directUgγ1
(u)〉

∪ 〈u, directUgγ2
(u)〉.

43

Figure 3.6: rGURAG (Left Side) and rGURA (Right Side) Schemes

Definition 4 (rGURAG Scheme). The rGURAG scheme uses the policy grammar below, to spec-

ify preconditions C in Table 3.10,

ϕ ::= ¬ ϕ | ϕ ∧ ϕ | svalue ∈ direct | svalue ∈ effective

svalue ::= sval1 | sval2 | . . . | svalm

where SCOPEatt = {sval1, sval2, . . . , svalm}. The two non-terminals direct and effective, are

individually defined in its three instances—rGURAG0 , rGURAG1 and rGURAG1+—in following

subsections. Note that for convenience we denote effective attribute function for an attribute att as

e_att in following discussions.

The rGURAG0 Scheme

In rGURAG0 scheme, preconditions for rules in canAddUatt and canDeleteUatt relations only allow

the same attribute att whose value is added or deleted from user. Therefore, conditions for user u

have non-terminals direct and effective defined as follows.

direct ::= att(u) & effective ::= e_att(u)

Similarly, the administrative relations in canAddUGatt and canDeleteUGatt for user group ug have

direct and effective defined as follows.

direct ::= att(ug) & effective ::= e_att(ug)

44

Table 3.12: Example Rules in rGURAG0 , rGURAG1 and rGURAG1+ Schemes
Relation Admin Role Pre-requisite Condition Value

Rules in rGURAG0 scheme
canAddUskills DeptAdmin c ∈ e_skills(u) ∧ ¬ (java ∈ skills(u)) c++

canDeleteUroomAcc BuildAdmin 3.02 ∈ e_roomAcc(u) 1.2
canAddUGcollege UnivAdmin ¬ (COE ∈ college(ug)) COS

canDeleteUGroomAcc BuildAdmin 2.04 ∈ e_roomAcc(ug) 2.03
Rules in rGURAG1 scheme further add

canAddUstudType DeptAdmin java ∈ e_skills(u) ∧ 2.03 ∈ roomAcc(u) Grad
canDeleteUroomAcc BuildAdmin 3.02 ∈ roomAcc(u) ∧ COS ∈ college(u) 3.02

canAddUGskills DeptAdmin
COS ∈ college(ug) ∧ UnderGrad ∈

e_studType(ug)
java

canDeleteUGcollege UnivAdmin
2.04 ∈ e_roomAcc(ug) ∧ 2.03 ∈

e_roomAcc(ug)
BUS

Rules in rGURAG1+ scheme further add

canAssign DeptAdmin
1.02 ∈ e_roomAcc(u) ∧ ¬ (BUS ∈ college(u))

∧ G2 ∈ directUg(u) G1

canRemove GroupAdmin G1 ∈ effUg(u) ∧ G2 ∈ directUg(u) G2

The examples for rGURAG0 shown in Table 3.12 conform to these restrictions. Note that the

attribute being updated is given as the subscript in the Relation column and the conditions in the

Pre-requisite Condition column only involve this attribute.

The rGURAG1 Scheme

In rGURAG1 scheme, the precondition can include any attribute from the set of attributes. There-

fore, conditions in rules for canAddUatt and canDeleteUatt relations for user u have direct and

effective defined as follows where atti ∈ UA.

direct ::= atti(u) & effective ::= e_atti(u)

Similarly, the conditions for user group ug in relations canAddUGatt and canDeleteUGatt have

non-terminals direct and effective defined as follows.

direct ::= atti(ug) & effective ::= e_atti(ug)

The added rules for rGURA1in Table 3.12 illustrate this, where the preconditions involve attributes

other than the one being updated. The earlier rules for rGURAG0 continue to be valid for rGURA1.

45

The rGURAG1+ Scheme

The rGURAG1+ scheme allows changes in user group memberships besides modifying the at-

tributes of user and user groups. Therefore, in addition to the grammar supported by rGURAG1

scheme, rGURAG1+ also includes user’s direct or effective group memberships as preconditions

in rules for canAssign and canRemove administrative relations. The additional grammar to specify

such preconditions is specified below:

ϕ ::= ug ∈ directUg(u) | ug ∈ effUg(u)

In Table 3.12, rule in canAssign includes effective values for roomAcc, direct values for college

attribute and direct groups of user u.

3.4.3 Reachability Problem Definition

In this section, we provide a formal definition of our attribute reachability problem along with the

reachability query and different query types supported in our analysis. The general approach is

similar to that of [107], except that atomic-valued attributes are excluded (as noted in subsection

3.2.2) and reachability is defined with respect to effective rather than direct attributes ([107] does

not have the notion of effective attributes).

The user attribute reachability analysis problem (or reachability problem) is based on the ef-

fective attributes of the user. Informally, the problem can be stated as: Given an initial transition

system state with a set of attribute assignments of the user, the user’s group memberships and the

attributes of all the user’s member groups, can administrators with a given set of administrative

roles issue one or more administrative requests, which transition to a target state having the set of

specified effective attributes for that user? We highlight some simplifications in our reachability

analysis process. First, as the changes made to the attributes or group memberships of one user

do not affect the attributes or group memberships of another user, our analysis will only determine

the effective attributes of a single user of interest and hence will only consider attribute assignment

of that user, its group memberships and attributes of these groups. Formally, we assume U = {u}

46

in our analysis [107]. Second, as the reachability analysis focuses on powers of a certain set of

administrative roles SUBAR⊆ AR, we do not consider the administrative rules specified for roles

outside of SUBAR. In other words, we can assume AR = SUBAR. These simplifications gives

our analysis more convenient statements without loosing generality.

Definition 5 (Reachability Query). A reachability query q ∈ Q specifies a subset of effective

values of a user for some attributes in any target state. Formally,

q ⊆ {〈u, e_att, vset〉 | u ∈ U, att ∈ UA, vset ∈ Range(att)}

In the example problems discussed later in subsection 3.5.3, we will use the following notation to

specify our query, which is equivalent to the notation defined above.

q ⊆ {e_att(u) = vset | u ∈ U, att ∈ UA, vset ∈ Range(att)}

For example,

q = {〈u, e_roomAcc, {2.04}〉, 〈u, e_skills, {c}〉 , 〈u, e_college, {COS,COE}〉} is equivalent to

q = {e_roomAcc(u) = {2.04}, e_skills(u) = {c}, e_college(u) = {COS,COE}}.

Two types of reachability query are defined in the system. A query is called “strict” satisfied if

every effective attribute value specified in the query is exactly the same as that in the target state.

A query is called “relaxed” satisfied by the user if in the target state every effective attribute value

of the user is a superset of the corresponding attribute values specified in the reachability query.

For example, let UA = {skills}, U = {Bob} and reachability query q = 〈Bob, e_skills, {c, java}〉.

For strict query type, q can be satisfied in states γ′ ∈ Γ where e_skillsγ′(u) = {c, java}. In relaxed

query type, q can be satisfied by any state γ′′ ∈ Γ where e_skillsγ′′(u) = setval and {c, java} ⊆

setval. For ease of understanding, we represent the effective value of attribute att for user u in

state γ ∈ Γ as e_attγ(u). The formal definition for reachability query types is given below.

Definition 6 (Reachability Query Types). For any rGURAG scheme 〈U, UA, AR, SCOPE, UG,

�ug, Ψ, Γ, δ〉, we formally define two Reachability Query Types as:

• RP= or strict satisfied queries have the entailment function `RP= : Γ × Q→ {true, false}

which returns true (i.e., γ `RP= q) if ∀ 〈u, e_att, vset〉 ∈ q. e_attγ(u) = vset.

47

• RP⊇ or relaxed satisfied queries have the entailment function `RP⊇ : Γ×Q→{true, false}

which returns true (i.e., γ `RP⊇ q) if ∀ 〈u, e_att, vset〉 ∈ q. e_attγ(u) ⊇ vset.

It is clear that given a scheme and problem instance, if RP= query problem is satisfied then RP⊇

problem is also satisfied, but not vice versa. The following two definitions are same as defined

in [107], but we will state them for the sake of completeness.

Definition 7 (Reachability Plan). A Reachability Plan or plan is a sequence of authorized admin-

istrative requests to transition from initial state to the target state. For any rGURAG scheme 〈U,

UA, AR, SCOPE, UG, �ug, Ψ, Γ, δ〉 and states γ0, γ′ ∈ Γ, reachability plan is a sequence of

authorized requests 〈 req1, req2, . . ., reqn〉 where reqi ∈ REQ (1 ≤ i ≤ n), to transition from an

initial state γ0 to target state γ′ if: γ0
req1→ γ1

req2→ γ2 . . .
reqn→ γ′. The arrow denotes a successful

transition from one state to another due to an administrative request reqi authorized by rules in Ψ.

We write γ0
planΨ γ′ to abbreviate the complete plan.

Informally, a reachability problem deals if there exists a reachability plan to transition from an

initial state to some target state where the effective attribute values of the user satisfy a particular

reachability query. Formally,

Definition 8 (Reachability Problems). Given any rGURAG scheme 〈U, UA, AR, SCOPE, UG,

�ug, Ψ, Γ, δ〉, the attribute reachability problem is as follows:

• RP= or strict reachability problem instance I is of the form 〈γ0, q〉 where γ0 ∈ Γ, q ∈ Q and

checks if there exist a reachability plan P such that γ0
PΨ γ′ and γ′ `RP= q.

• RP⊇ or relaxed reachability problem instance I is of the form 〈γ0, q〉 where γ0 ∈ Γ, q ∈ Q

and checks if there exist a reachability plan P such that γ0
PΨ γ′ and γ′ `RP⊇ q.

3.4.4 PSPACE-Complete Reachability

In this section, we present our reachability analysis results for different rGURAG schemes shown

in Figure 3.6. These results are extensions to the results from GURA reachability analysis [107]

48

and also considers groups for assigning attributes to its member users. Our analysis will prove that

rGURAG schemes in Figure 3.6 in general are PSPACE-complete. For such schemes we will first

show that all rGURAG schemes are in PSPACE and then reduce a known PSPACE-complete

problem to our problem schemes. In the next section, we also will provide polynomial algorithms

for some restricted rGURAG problem classes.

Lemma 1. Reachability problem for every rGURAG scheme in Figure 3.6 is in PSPACE.

Proof. Each state of a non-deterministic Turing machine stores some information to predict fu-

ture states. This information takes polynomial amount of space and therefore all instance are in

PSPACE. This proof is similarly stated for GURA schemes in [107], however we will discuss it

for the sake of completeness.

The proof is an extension to proof discussed in [107]. A Non-deterministic Turing machine can

be used to implement following algorithm for each rGURAG problem instance. Each state of the

machine stores information to determine next possible states it can enter. In rGURAG schemes,

this information consists of current direct user attribute assignments, direct group attribute assign-

ments, user to group assignments, attribute scopes, administrative rules, user groups and reacha-

bility query. The administrative rules are applied against current user or group attributes, or user

to group assignments to get all next possible states. In each future state, Turing machine checks

against the reachability query, and determines if the query is satisfied. If in a state the query is

satisfied, Turning machine comes to halt or otherwise, same process repeats till a satisfied state is

reached or it is concluded that the query is non-satisfiable. The size of each state is bounded by

input to the state. It is understandable that polynomial amount of space is required to store informa-

tion required in each state of Non-deterministic Turing machine. Hence, each rGURAG problem

scheme in Figure 3.6 is in NPSPACE and therefore in PSPACE using Savitch’s theorem [149].

Since all rGURAG schemes are in PSPACE, it will now be sufficient to prove that all rGURAG

schemes are PSPACE-hard, which will conclude that the schemes are PSPACE-complete.

49

Corollary 1. Reachability query types RP⊇ and RP= for rGURAG schemes in general is

PSPACE-complete.

Proof. Recall that Figure 3.6 defines the relation between different rGURAG schemes and

rGURA0. The reachability analysis for rGURA0 scheme discussed in [107] describes the scheme

is PSPACE-complete. This scheme only allows change in attributes of the user. With respect to

rGURAG0 , it can be said that rGURA0 scheme is a sub-problem without user groups. Therefore,

the reduction from known PSPACE-complete problem (rGURA0) to rGURAG0 is straightforward,

which makes rGURAG0 as PSPACE-hard. Further, using Lemma 1, it is justified to claim that

rGURAG0 is in PSPACE-complete.

Similar claim can also be made for rGURAG1 scheme where rGURAG0 is its sub-problem

involving only the same attribute in preconditions for rules (Ψ). Therefore, rGURAG1 is PSPACE-

hard and using Lemma 1, it is also PSPACE-complete. The analysis for rGURAG1+ is also alike

the above two schemes where rGURAG1 is a sub-problem of rGURAG1+ , therefore, rGURAG1+

is in PSPACE-hard and hence PSPACE-complete also.

To explain further, we provide a brief overview of the analysis done in [107] for

rGURA0 scheme. The analysis result for RP⊇ query in rGURA0 scheme is derived by reduc-

ing from role reachability problem. This role reachability problem for miniARBAC97 is proven

PSPACE-complete [148], which by reduction makes rGURA0 scheme as PSPACE-hard and us-

ing the same Lemma as 1, rGURA0 scheme is PSPACE-complete. This reduction uses role as

one of the many attributes and map the administrative rules of miniARBAC97 to the corresponding

rules in rGURA0 as their expressive power is same. Our rGURAG0 scheme extends rGURA0 by

introducing the notion of user groups and there corresponding administrative rules. Since, without

user groups rGURA0 and rGURAG0 are same, the results for RP⊇ in rGURA0 still hold true and

provide lower bound analysis. Therefore, we conclude that RP⊇ for [rGURAG0] is PSPACE-hard

and using Lemma 1, it is in PSPACE-complete.

In GURA reachability [107], RP= results for rGURA0 uses reduction from SAS planning

problem [43] in artificial intelligence. Each state variable in [SAS, U, B] problem (proved to be

50

PSPACE-complete in [43]) is mapped to one value in scope of attribute att. The operators which

update the state variables to true or false are mapped to administrative rules. This reduction is

polynomial time which results RP= for rGURA0 in PSPACE-complete. Same results can be

extended for rGURAG0 , where the values in scope for att will be for the user and each user-

group. The operators will be mapped to administrative rules for user and each user-group. Also

each operator will change only one variable holding [SAS, U, B] restrictions and the reduction

is in polynomial time. Henceforth, rGURAG0is PSPACE-hard problem and therefore PSPACE-

complete using Lemma 1.

3.5 Polynomial Reachability for Restricted Cases

In previous subsection, we proved that attribute reachability for any rGURAG scheme in general is

PSPACE-complete. However, we have identified some instances of rGURAG schemes which can

be solved in polynomial time under precondition restrictions on administrative rules (Ψ). Similar

to [107], the following extended restrictions with broader semantic meaning are considered where

D and SRd are always imposed together:

• No negation (N): Ψ satisfies N if no administrative rules in Ψ use negation in preconditions.

• No deletion (D): Ψ satisfies D if for each attribute att ∈ UA, canDeleteUatt and

canDeleteUGatt are empty. Further, canRemove rules are also empty, meaning, attribute

values or groups once added cannot be deleted.

• Single rule with direct values (SRd): Ψ satisfies SRd if for each attribute att ∈ UA, there is

at most one precondition associated with a particular value assignment in rules of canAddUatt

or canAddUGatt. Therefore, an attribute value pair can either be added through user directly

or through groups but not both. Similar, condition also exists for canAssign rules. Further,

only direct conjuncts i.e. val ∈ atti(u), val ∈ atti(ug) or ug ∈ directUg(u) are allowed in

prerequisite condition.

These restrictions are important in different kinds of attributes and scenarios. For instance,

51

No negation (N) restrictions have significance when attributes like course or degree are added

to entities. It is likely that adding a new value for course attribute do not require negation of

another course as the precondition. Similarly, No deletion (D) restriction can apply for attribute

like skillswhere a value once added to any entity will never be deleted. The SRd restriction allows

only unique preconditions in administrative relations for user and user groups. This restriction

essentially separates set of attributes into two parts, one which can be assigned only to user directly

and others assigned through groups. For example, attribute like roomAccess can be assigned

through group as it is usually common to all users with certain characteristics, and if value changes

for one user, it will change for all others too. Attribute like advisor is assigned individually to each

user as change for one user may not change it in others. Therefore, such restrictions are relevant in

real world applications.

We now discuss reachability analysis for restricted rGURAG schemes. The notation

[rGURAGx, Restriction] specifies special instances of rGURAG scheme where subscript

x takes a value in 0, 1 or 1+ representing – rGURAG0 , rGURAG1 or rGURAG1+ and

Restriction represents combinations of N, D and SRd specifying that administrative rules Ψ

in the scheme satisfy these restrictions. For example, [rGURAG0– N] denotes rGURAG0 scheme

where rules in Ψ satisfy N.

As shown in Figure 3.6, rGURAG1+ scheme is the most expressive scheme where new attribute

values are achieved by direct assignment to the user or to its effective groups, and also by chang-

ing user to group memberships. It is clear from the previous discussions that the scheme covers

rGURAG1 and rGURAG0 , which only allow change in attributes of the user or its effective groups.

Therefore, we will only discuss algorithm for restricted rGURAG1+ scheme which can be easily

used for other two schemes by simply ignoring irrelevant administrative rules.

3.5.1 Reachability plan for RP= in [rGURAG1+– N]

First we will discuss reachability query type RP= for [rGURAG1+−N] scheme which can be

solved in polynomial time by Algorithm 1. This algorithm extends the algorithm discussed for

52

Algorithm 1 Plan Generation for RP= in [rGURAG1+– N]
1: Input: problem instance I = 〈γ0, q〉 Output: plan or false
2: plan := 〈〉; . Initialize plan
3: s := γ0; . Initialize with state s
. Check if state s has more values than query

4: if (∃ att ∈ UA ∃ 〈u, e_att, vset〉 ∈ q). e_att(u) − vset 6= ∅ then return false;
. Assign attribute values required in query to the user or its effective
groups

5: while (s 0RP=
q ∧

6: ((∃ att′ := att ∈ UA ∃ rule := 〈ar, c, val〉 ∈ canAddUatt′). (Satisfyu(u, c, s) ∧ val /∈ att′(u) ∧
7: ∃ 〈u, e_att′, vset〉 ∈ q. val ∈ vset)) ∨
8: ((∃ att′ := att ∈ UA ∃ rule := 〈ar, c, val〉 ∈ canAddUGatt′). (∃ ug′ := ug ∈ effUg(u). Satisfyug(ug′, c, s)
9: ∧ val /∈ att′(ug′) ∧ ∃ 〈u, e_att′, vset〉 ∈ q. val ∈ vset))

10: ∨
11: ((∃ ug′′ := ug ∈ UG ∃ rule := 〈ar, c, ug′′〉 ∈ canAssign). (Satisfyu−ug(u, c, s) ∧ ug′′ /∈ directUg(u) ∧
12: ∀ att ∈ UA ∃〈u, e_att, vset〉 ∈ q. e_att(ug′′) ⊆ vset))) do
13: s := s� rule; . apply rule on state s

. append administrative request to plan
14: switch
15: case rule ∈ canAddUatt′ :
16: plan := plan.append(add(ar, u, att′, val));
17: break;
18: case rule ∈ canAddUGatt′ :
19: plan := plan.append(add(ar, ug′, att′, val));
20: break;
21: case rule ∈ canAssign:
22: plan := plan.append(assign(ar, u, ug′′));
23: break;
24: end while

. check if reachability query is satisfied
25: if s `RP=

q then return plan else return false end if

rGURA1 [107] by including user group attribute assignments and also modification in user to

group memberships. The added restriction to this scheme (N) requires preconditions in rules with-

out negation conjuncts and therefore, administrative rules cannot specify addition of new attributes

based on the absence of some other values. Hence, the current attribute values of user or groups

are not required to be removed for adding new values or group, which precludes the need for

investigating any canDeleteUatt, canDeleteUGatt and canRemove rules.

The algorithm starts with the current set of attribute values and group memberships for user,

and the attribute values for its member groups. It traverse all relevant canAddUatt, canAddUGatt or

canAssign rules to add new values to the attributes of user or to its effective user groups and also add

new groups to the user. Since, the query type is restricted, the algorithm first checks if the current

53

effective attributes of user are not more than what required in the query (line 4). If the current

values are extra, the algorithm returns false, since there are no delete administrative relations to

delete such values. The while loop (line 5–24) terminates when either the query is satisfied or when

no other values can be added from the rules in canAddUatt and canAddUGatt or no new groups can

be added to the user using canAssign rules. When adding a new value to the user or its effective

groups, the corresponding value must be checked against the query. If the value is present in the

query, the addition is allowed. Similar check is also done to add new groups the user, where all the

attributes present in the group should also be a part of the query. The order to add these values or

new groups is independent to each other, since no negation conjuncts are required and presence of

extra values in user or group will not stop from adding new values. Also, if later a new value is

added to an entity, the while loop will again consider the relevant rules to add values based on the

already added values. When a new attribute is added to user, its effective groups or a new group

is assigned to the user, its corresponding administrative request is appended to the reachability

plan plan. If the query is satisfied, the algorithm returns the corresponding reachability plan plan

or returns false stating that the query is unsatisfiable and user will not achieve desired effective

attributes as mentioned in query.

Theorem 1. Reachability query type RP= for scheme [rGURAG1+ − N] is P.

Proof. Algorithm 1 describes the polynomial time algorithm.

Complexity: The complexity is determined by the number of times the administrative rules in

canAddUatt, canAddUGatt or canAssign are traversed. If only one value is added by each of

the rules, the complexity of Algorithm 1 is O(|canAssign| × |UG| + ((
∑

att∈UA |SCOPEatt|) ×

(|canAddUatt| + |canAddUGatt| × |UG|))), where |canAddUatt|, |canAddUGatt| and |canAssign|

represents number of the administrative rules in these relations and |UG| represents the maximum

number of groups assigned to the user. Clearly, the complexity of algorithm is polynomial.

The RP⊇ query type for [rGURAG1+ − N] also has a polynomial algorithm, where the extra

conditions to check the query before adding new values is removed since we can have values even

54

Algorithm 2 Group Assignment Plan Generation for RP= in [rGURAG1+– D, SRd]
1: Input: problem instance I = 〈γ0, q〉 Output: planug
2: if γ0 `RP=

q then return planug := 〈〉; . Check initial state
3: Gug := 〈Vug, Eug〉; Vug := {ug | ∃ ug ∈ UG. ∃ ug /∈ directUg(u). ∃ 〈ar, c, ug〉 ∈ canAssign(u). ∀ att ∈

UA ∃〈u, e_att, vset〉 ∈ q. e_att(ug) ⊆ vset }; Eug := ∅; . Construct a directed graph
4: for each pair of nodes ((ug1, ug2) ∈ Vug) do
5: if ((∃〈ar, c, ug2〉 ∈ canAssign. “(ug1 ∈ directUg(u))" is a conjunct in c) ∨
6: (∃〈ar, c, ug1〉 ∈ canAssign. “¬(ug2 ∈ directUg(u))" is a conjunct in c))
7: then Eug := Eug ∪ {〈ug1, ug2〉}; end if . Add edges
8: end for
9: if graph Gug has cycles then remove the cyclic paths and planug := sequence of assign requests corresponding to

the topological sort of Gug;

if they are not required in the query. The complexity will remain the same as shown in Theorem

1. Similar algorithm can also be devised for RP= and RP⊇ query type in [rGURAG1−N] and

[rGURAG0−N] schemes where canAssign rules will not be considered into the while loop for

adding new groups to the user. Hence these schemes can be also solved in polynomial time.

3.5.2 Reachability plan for RP= in [rGURAG1+– D,SRd]

We will now consider another restricted instance for rGURAG1+ , [rGURAG1+ −D, SRd] which

can be solved by Algorithm 2 and 3. The scheme has two restrictions, D which removes the need

to consider delete administrative relations – canDeleteUatt, canDeleteUGatt and canRemove. The

SRd restriction allows single preconditions for each attribute value pair or user group, with only

direct values as conjuncts in preconditions. This restriction results in rules which can be either

satisfied by user or any of its effective groups but not both. We have divided the algorithm into

two algorithm for ease of understanding and to show how these algorithms can be reused in other

schemes also.

Algorithm 2 is used to add new groups to the user. Since the preconditions only involves user’s

direct groups as conjuncts (SRd restriction), the addition of groups is independent of the attributes

and can be calculated separately. The administrative rules in this scheme can have negation con-

juncts in preconditions, therefore, the order of assigning new groups can be mutually dependent.

The algorithm first creates a directed graph where vertices Vug are user groups and edges Eug are

directed based on conjuncts in precondition of rules in canAssign. In line 3, before adding a group

55

Algorithm 3 Plan Generation for RP= in [rGURAG1– D, SRd]
1: Input: problem instance I = 〈γ0, q〉 Output: plan or false
2: if γ0 `RP= q then return plan := 〈〉; . Check initial state
3: toadd := {(att, val) | att ∈ UA, 〈u, e_att, vset〉 ∈ q, val ∈ vset } . Values required in query
4: curu := {(att, val) | att ∈ UA, val ∈ att(u)} . Current values of user
. Find current values of user’s effective groups

5: for each ug ∈ effUg(u) do curug := {(att, val) | att ∈ UA, val ∈ att(ug)} end for
. Check if state γ0 has more values than query

6: if (curu ∪ (
⋃

ug ∈ effUg(u)

curug)) − toadd 6= ∅ then return false;

7: ppreu := ∅; for each ug ∈ effUg(u) do ppreug := ∅; end for
8: for (each (att, val) ∈ toadd ∪ ppreu) do . Positive precondition values for user
9: ppre′u := {(att1, val1) | ∃ 〈ar, c, val〉 ∈ canAddUatt. “val1 ∈ att1(u)" is a conjunct in c};

10: ppreu := (ppreu ∪ (ppre′u \ ppreu)) \ curu;
11: end for
12: for (each ug ∈ effUg(u)) do . Positive precondition values for effective groups
13: for (each (att, val) ∈ toadd ∪ ppreug) do
14: ppre′ug := {(att1, val1) | ∃ 〈ar, c, val〉 ∈ canAddUGatt. “val1 ∈ att1(ug)" is a conjunct in c};
15: ppreug := (ppreug ∪ (ppre′ug \ ppreug)) \ curug;
16: end for
17: end for

. Check if rules exists for values required
18: if ((∃(att, val) ∈ toadd ∪ ppreu ∪ (

⋃
ug ∈ effUg(u)

ppreug) \ (curu ∪ (
⋃

ug ∈ effUg(u)

curug))). @ 〈ar, c, val〉 ∈

canAddUatt ∪ canAddUGatt)then return false;
. Find negation values in rules required to add values for the user and its
effective groups

19: npreu := {(att1, val1) | ∃ (att, val) ∈ (toadd ∪ ppreu) \ curu. ∃ 〈ar, c, val〉 ∈ canAddUatt. “¬(val1 ∈
att1(u))" is a conjunct in c}

20: for each ug ∈ effUg(u) do npreug := {(att1, val1) | ∃ (att, val) ∈ (toadd ∪ ppreug) \ curug . ∃ 〈ar, c, val〉 ∈
canAddUGatt. “¬(val1 ∈ att1(ug))" is a conjunct in c} end for
. Negation in current values

21: if ((npreu ∩ curu 6= ∅) ∨ (∀ ug ∈ effUg(u). npreug ∩ curug 6= ∅)) then return false;
. Construct a directed graph

22: G := 〈V,E〉; V := toadd ∪ ppreu ∪ (
⋃

ug ∈ effUg(u)

ppreug) \ (curu ∪ (
⋃

ug ∈ effUg(u)

curug)); E := ∅;

23: for each pair of nodes ((att1, val1), (att2, val2)) ∈ V do
24: if (((∃〈ar, c, val2〉 ∈ canAddUatt2 . “(val1 ∈ att1(u))" is a conjunct in c) ∨
25: (∃〈ar, c, val1〉 ∈ canAddUatt1 . “¬(val2 ∈ att2(u))" is a conjunct in c))
26: ∨
27: ((∃ ug ∈ effUg(u)). ((∃〈ar, c, val2〉 ∈ canAddUGatt2 . “(val1 ∈ att1(ug))" is a conjunct in c) ∨
28: (∃〈ar, c, val1〉 ∈ canAddUGatt1 . “¬(val2 ∈ att2(ug))" is a conjunct in c))))
29: then E := E ∪ {〈(att1, val1), (att2, val2)〉}; end if . Add edges to the graph
30: end for
31: valset := toadd − (curu ∪ (

⋃
ug ∈ effUg(u)

curug)); . Values in query not in state γ

32: if ∃(att1, val1) ∈ valset ∃〈(att, val), (att1, val1)〉 ∈ E. (att, val) /∈ valset then return false
33: else V := vset E := E − {〈(att, val), (att1, val1)〉 | (att, val) /∈ vset, (att1, val1) /∈ valset} end if
34: if graph G has a cycle then return false else return plan := sequence of administrative requests corresponding

to the topological sort of G;

56

to Vug, it is checked that all the attributes in group are required in query, as no extra attributes are

allowed in RP= and deletion is not allowed. Line 4 – 8 creates edges in the graph, if a user group

ug1 is a negation conjunct to add another group ug2 or ug2 is a precondition for ug1, then edge

is drawn from ug2 to ug1, signifying that ug2 should be added before ug1. If cycles exists in the

created graph then remove the cyclic paths and create topological sort on the remaining graph. The

set of administrative requests based on the sort will provide the planug for user to groups assign-

ment. Once the requests are executed in order, new effective groups are calculated for the user and

computation continues from Algorithm 3.

Algorithm 3 extends algorithm defined in [107], which checks the final set of values required

to satisfy the reachability query and find canAddUatt or canAddUGatt rules to add those values.

Further to add the values in precondition of rules, it may in-turn need some other rules and values

and so on. Therefore, algorithm traverses backward to find the set of values required to satisfy the

query. Since the values can be achieved by user directly or from any of its effective groups, this

backward search is done for user and all its effective groups as calculated by Algorithm 2.

The algorithm starts by checking if the query is satisfied in the current state, in that case empty

plan is returned signifying that with only new group assignments query is satisfied. Otherwise, it

creates a set of attribute value pair for values required in query q and also for current attributes of

user and its effective groups (line 4-5). Line 6 checks if the union of current values of the user or its

effective groups is not more than values required in q. If extra values are there, the algorithm returns

false, as no delete rules are allowed. The algorithm calculates all positive precondition attribute

value pairs required by user or its effective groups to get values in toadd (line 7-17). Therefore,

the final set of values required includes the values in query (toadd) and positive preconditions in

user or its effective groups excluding their current values. Line 18 checks if rules exists to add

all required attribute value pair or else returns false, as the values can not be added. Line 19-21

calculate negative conjuncts in rules required to add required values and returns false if the such

values are present in current state. After passing through all checks, the algorithm starts creating a

directed graph. Vertices (V) in the graph are attribute value pair of the values required in the query

57

q and the required positive preconditions excluding the values in the current state. Edges E will be

drawn in the direction defined in the for loop (line 23-30). If the attribute value pair (att1, val1) is

in the negative conjunct in administrative rule for (att2, val2) or (att2, val2) is a positive conjunct

in a rule to add (att1, val1), the edge is created from (att2, val2) to (att1, val1). Since our query

type is RP=, it requires an additional check so that no extra values are added to the user. Therefore,

once the graph is created, we create a set valset, which includes values required in query and not

present in the current state. If the created graph has vertex in valset having incoming edge not

from vertex in valset, algorithm returns false (line 32). Otherwise it removes all the edges from

vertices not in valset. If cycles exists in the remaining graph then algorithm returns false, else the

set of administrative request corresponding to the topological sort will return the plan.

Therefore, the overall reachability plan returned will be planug from Algorithm 2 and plan

from Algorithm 3.

Theorem 2. Reachability query type RP= for scheme [rGURAG1+−D, SRd] is P.

Proof. Algorithm 2 and 3 describe the polynomial algorithms.

Complexity: The algorithm takes polynomial time to create directed graphs and then to com-

pute topological sort. Its complexity is O(|UG| × |canAssign| + ((
∑

att∈UA |SCOPEatt|) ×

(|canAddUatt| + |canAddUGatt| × |UG|))).

In case of RP⊇ query type for [rGURAG1+−D, SRd], we remove the extra checks to verify

if no extra values are present in current state (line 6). Further line 31-33 is not required as extra

values are allowed to be added to user. With these minor changes, the complexity of RP⊇ for

scheme [rGURAG1+−D, SRd] is P.

It should be noted that RP= for [rGURAG1−D, SRd] do no allow changes in group mem-

berships of user. Therefore, computation for this scheme will start directly from Algorithm 3,

obviating the execution of Algorithm 2. The RP⊇ query for [rGURAG1−D, SRd] will remove all

extra conditions applied in Algorithm 3 for RP⊇ scheme for [rGURAG1+−D, SRd] as discussed

above. Also, since rGURAG0 is a sub-problem of rGURAG1 we can conjecture that RP= and

RP⊇ for scheme [rGURAG0−D, SRd] can be solved in polynomial time.

58

Figure 3.7: Input Starting State (γ0 ∈ Γ)

3.5.3 Example Problem Instance

We will now illustrate the plan generation in two schemes discussed earlier with a sample input

state and a set of reachability queries. Figure 3.7 defines the common input for both the schemes.

Plan Generation for RP= in [rGURAG1+– N]: Figure 3.8 shows attributes of user and groups

along with user to group direct membership. Table 3.13 defines set of administrative rules allowed

in scheme along with two reachability queries. We will first try to find a reachability plan (if exists)

for query q1 using Algorithm 1.

Initially, plan is set to empty 〈〉. The initial state is checked to find if it has more attribute values

than required in query q1. In state γ0, the effective values of user are e_roomAcc(u) = {2.04, 2.03,

3.02}, e_skills(u) = {c, c++}, e_college(u) = {COS}, which are all required in query. The while

loop checks if query q1 is satisfied in state γ0, which is not true as some values are missing. Now

algorithm starts adding new values to the user or its effective groups and also assign new groups

to user based on administrative rules defined in Table 3.13. The first rule requires effective skills

of user having value c++ and roomAcc attribute with value 2.04. to add 1.2 value to roomAcc by

administrative role BuildAdmin. Since user satisfy these conditions and 1.2 value is not directly

assigned in roomAcc(u) and the value is required in q1, it adds 1.2 value to roomAcc(u). The

administrative request add(BuildAdmin, u, roomAcc, 1.2) is also appended to the plan. The

algorithm again goes through the while loop and checks if q1 is satisfied. The user is still missing

skills attribute value python. The algorithm now tries to add group G3 to user u. The precondition

of canAssign rule is satisfied by user, but the effective values for roomAcc attribute for group G3

59

Figure 3.8: Initial State for RP= in [rGURAG1+– N]

Table 3.13: Example Problem Instance for RP= in [rGURAG1+– N]

Input: problem instance I = 〈γ0, q〉 Output: plan or false
ψ ∈ Ψ :
canAddUroomAcc = {〈BuildAdmin, c++ ∈ e_skills(u) ∧ 2.04 ∈ roomAcc(u), 1.2〉 },
canAddUcollege = {〈BuildAdmin, python ∈ e_skills(u) ∧ 3.05 ∈ roomAcc(u), COE〉},
canAddUskills = {〈DeptAdmin, c ∈ e_skills(u), python〉},
canAddUGroomAcc = {〈BuildAdmin, 3.02 ∈ roomAcc(ug), 1.2〉 },
canAssign = {〈DeptAdmin, G1 ∈ directUg(u), G3〉 }
Queries:
q1 ∈ Q = {e_roomAcc(u) = {2.04, 2.03, 3.02, 1.2}, e_skills(u) = {c, c++, python},

e_college(u) = {COS}}
q2 ∈ Q = {e_roomAcc(u) = {2.04, 2.03, 3.02, 1.2}, e_skills(u) = {c, c++},

e_college(u) = {COS,COE}}

are {3.05, 2.04}, which is not the subset of values required in query. Hence, G3 cannot be assigned

to user u. Next, the algorithm checks rule for skills attribute to add value python and finds that

preconditions to add value python are satisfied by user u. It appends corresponding request add(

DeptAdmin, u, skills, python) to plan which results in total of two requests in the plan. The

algorithm again checks new state against q1 and finds the query is “strict" satisfied. It breaks while

loop and returns plan = add(BuildAdmin, u, roomAcc, 1.2), add(DeptAdmin, u, skills, python).

We now check the satisfiability of query q2 with the same initial state. Similar to q1, query is

checked against initial state to check extra values and value 1.2 for attribute roomAcc is added to

the user and requests is appended to the plan. Second rule allows to add COE for attribute college,

but the preconditions are not satisfied by user. We try to add group G3 but it also adds extra values

60

which are not required in query. It can be noticed that after all the administrative rules are checked,

the query cannot be satisfied and hence the algorithm returns false.

Plan Generation for RP= in [rGURAG1+– D, SRd]: Figure 3.9 shows user and group at-

tributes along with user to group direct membership. Table 3.14 defines the set of administrative

rules allowed in the scheme and three reachability queries. It should be noted that the rules in Ψ

have negation conjuncts and single precondition with direct attributes or group memberships for

each attribute value pair or user group. We will start with Algorithm 2 to assign new groups to the

user. Once groups are assigned, attributes will be added to user or its newly computed effective

groups. If Algorithm 2 doesn’t add new groups, the computation will still be done by Algorithm 3

with old effective groups.

Algorithm 2 creates group assignment plan (defined as planug) to assign new groups to user.

Two administrative rules exists in canAssign relation. Since G3 is not directly assigned to user u,

precondition is satisfied and G3 has value python for skill attribute, which is required in query q1,

algorithm adds G3 to the set of vertices Vug. Similarly group G5 is also added to Vug. There are no

more canAssign rules, hence the algorithm starts adding edges to the graph. For (G3, G5) ∈ Vug,

since G3 is a negation conjunct in precondition to add G5, therefore, directed edge is drawn from

G5 to G3. As here are no other relevant canAssign rules and vertices pair, it breaks the loop and

creates a topological sort of the graph. Sort will have {G5, G3} order and the corresponding plan

planug := assign(DeptAdmin, u, G5), assign(DeptAdmin, u, G3) is returned. Before proceed-

ing to Algorithm 3, the request in planug must be executed to get new effective groups of the user.

Algorithm 3 is used to assign attributes to user and newly computed effective groups (which will

now have group G5 and G3 along with G1 and G2). It first checks if the query (q1) is satisfied in

the current state (line 2) which has new direct groups assigned using algorithm 2. Clearly query

q1 is satisfied with new group assignments only, hence the reachability plan for group assignments

planug is returned.

For queries q2 and q3, group assignment plan planug is created similarly as above. Therefore,

we will follow algorithm 3 with user’s effective groups as G1, G2, G3 and G5. For q2, current state

61

Figure 3.9: Initial State for RP= in [rGURAG1+– D, SRd]

Table 3.14: Example Problem Instance for RP= in [rGURAG1+– D, SRd]

Input: problem instance I = 〈γ0, q〉 Output: plan or false
ψ ∈ Ψ :
canAddUroomAcc = {〈BuildAdmin, c++ ∈ skills(u) ∧ ¬(2.04 ∈ roomAcc(u)), 1.2〉},
canAddUskills = {〈DeptAdmin, c ∈ skills(u), python〉},
canAddUcollege = {〈BuildAdmin, matlab ∈ skills(u), BUS〉},
canAddUskills = {〈DeptAdmin, c ∈ skills(u) ∧ COS ∈ college(u), matlab〉}
canAddUGcollege = {〈BuildAdmin, python ∈ skills(ug) ∧ ¬(2.04 ∈ roomAcc(ug)), COE〉},
canAssign = {〈DeptAdmin, G1 ∈ directUg(u), G3〉, 〈DeptAdmin, ¬(G3 ∈ directUg(u)), G5〉}
Queries:
q1 ∈ Q = {e_roomAcc(u) = {2.04, 2.03, 3.02}, e_skills(u) = {c, c++, python},

e_college(u) = {COS,COE}}
q2 ∈ Q = {e_roomAcc(u) = {2.04, 2.03, 3.02, 1.2}, e_skills(u) = {c, c++, python},

e_college(u) = {COS,COE}}
q3 ∈ Q = {e_roomAcc(u) = {2.04, 2.03, 3.02}, e_skills(u) = {c, c++, python,matlab},

e_college(u) = {COS,COE,BUS}}

do not have value 1.2 for roomAcc attribute. The algorithm first computes toadd, which is the set

of attribute value pair in q2:

toadd = {〈roomAcc, 2.04〉 , 〈roomAcc, 2.03〉,

〈roomAcc, 3.02〉 , 〈roomAcc, 1.2〉,

〈skills, c〉, 〈skills, c++〉, 〈skills, python〉,

〈college, COS〉, 〈college, COE〉}

It then calculates the current attribute value pair for user and its effective groups (Line 4-5):

curu = {〈roomAcc, 2.04〉 , 〈skills, c〉, 〈skills, c++〉,

62

〈college, COS〉}

curG1 = {〈roomAcc, 2.03〉} curG2 = {〈roomAcc, 3.02〉}

curG3 = {〈roomAcc, 2.04〉 , 〈skills, python〉}

curG5 = {〈college, COE〉}

The algorithm checks if the current attributes of user and its effective groups are not extra than

the values required in the query. Clearly, for query q2, no extra values are present in current state.

The algorithm next computes the positive conjuncts in the preconditions required to add the values

in toadd. It first calculates for each attribute value pair in toadd and then recalculates for each

positive preconditions attribute value pair also. For example, positive conjunct for user to add

〈roomAcc, 1.2〉 in toadd is 〈skills, c++〉 and for 〈skills, python〉 in toadd is 〈skills, c〉. There-

fore (using line 9), ppre′u := {〈skills, c++〉, 〈skills, c〉}. It then recomputes ppreu by combining

its values with newly computed ppre′u after removing values already present in ppreu or curu. In

this case, no new value is added in ppreu, as both the values in ppre′u are already present in curu.

Similarly, the positive preconditions are calculated for each effective groups.

ppreu = {}, ppreG1 = ppreG2 = ppreG5 = {〈skills, python〉}

ppreG3 = {}

Next, in line 18, the algorithm checks if rules exists for values required in toadd and positive

preconditions excluding the current values. Clearly, rule exists for 〈roomAcc, 1.2〉 pair and all

other values are already present in user or its effective groups. It then calculates negative conjuncts

for user and its effective groups in preconditions to add values in toadd and positive precondi-

tions excluding current state. For user, 〈roomAcc, 1.2〉 has negation conjunct 〈roomAcc, 2.04〉 in

canAddUroomAcc. Remaining negation conjuncts are as follows:

npreu = {〈roomAcc, 2.04〉}

npreG1 = npreG2 = npreG3 = {〈roomAcc, 2.04〉}

63

npreG5 = {}

Line 21 checks if the negation conjuncts exists in current values of either user or its effective

groups. User has {〈roomAcc, 2.04〉} pair in curu, therefore, roomAcc attribute cannot get value

1.2 required in q2 since only single rule exists for user or groups. Hence, the algorithm returns

false for query q2. For query q3, toadd values are:

toadd = {〈roomAcc, 2.04〉 , 〈roomAcc, 2.03〉,

〈roomAcc, 3.02〉 , 〈skills, c〉, 〈skills, c++〉,

〈skills, python〉, 〈skills, matlab〉

〈college, COS〉, 〈college, COE〉, 〈college, BUS〉}

The current values are still the same as defined in query q2. The algorithm calculates the positive

conjuncts in preconditions as:

ppreu = {〈skills, matlab〉}

ppreG1 = ppreG2 = ppreG5 = {〈skills, python〉}

ppreG3 = {}

The negation conjuncts are calculated as:

npreu = {}, npreG1 = npreG2 = npreG3 = {〈roomAcc, 2.04〉}

npreG5 = {}

These negation values are not present in user or all of its effective groups. Therefore, the algorithm

creates directed graph (line 22-30) with vertices V := {〈skills, matlab〉}, {〈college, BUS〉}. Edge

inE is drawn from {〈skills, matlab〉} to {〈college, BUS〉} as {〈skills, matlab〉} is a precondition

conjunct in rule to add {〈college, BUS〉}. Line 31 calculates valset which in this case is same as

V . Since no cycle exists in the graph, topological sort is created. The final reachability plan

to satisfy the query q3 is plan := assign(DeptAdmin, u, G5), assign(DeptAdmin, u, G3), add(

DeptAdmin, u, skills, matlab), add(BuildAdmin, u, college, BUS). The administrative requests

must be executed as ordered in the reachability plan.

64

CHAPTER 4: ACCESS CONTROL FOR SMART CONNECTED CARS

In this chapter, we discuss the access control requirements in cloud assisted smart cars and propose

an authorization framework. We also present dynamic groups and attribute based secure commu-

nication and data exchange solution for connected vehicles ecosystem. Significant portion of this

work has been presented at the following venue [89]:

• Maanak Gupta and Ravi Sandhu, Authorization Framework for Secure Cloud Assisted Con-

nected Cars and Vehicular Internet of Things. In Proceedings of the 23rd ACM Symposium

on Access Control Models and Technologies (SACMAT), June 13-15, 2018, Indianapolis,

Indiana, pages 193-204.

4.1 Motivation and Scope

Smart cities and intelligent transportation has been a vision of future society. IoT plays an impor-

tant role to make transportation smarter by introducing connected cars and vehicular communica-

tion. Smart cars ecosystem involves interaction and V2X data/messages exchange between several

entities including vehicle to vehicle (V2V), vehicle to road infrastructure (V2I), vehicle to human

(V2H), intravehicle, and vehicle to cloud (V2C). Vehicular Ad-hoc Networks (VANETs) provide

necessary connectivity which is extended with use of smarter devices and cloud or fog infrastruc-

tures. Sensors in and around connected car ‘talk’ to each other for smarter decisions and convenient

transportation experience to user. Our vision of smart vehicles ecosystem harnesses computation

and storage capabilities of cloud and the concept of virtual objects (e.g. AWS shadows [42]).

Security and privacy have been a serious concern and challenge for the adoption of IoT. The

gravity of these issues is magnified when we think about implications in vehicular IoT and the

emerging concept of autonomous cars. This ecosystem has connected cars as its most important,

and also most vulnerable, entity. With over 100 millions lines of code, more than 100 electronic

control units (ECUs) and broad attack surface opened by features such as on-board diagnostics,

driver assistance systems and airbags, it becomes a challenge to protect this smart entity. Fur-

65

ther, the communication among smart objects (vehicle to vehicle, vehicle to infrastructure etc.),

mobility, and dynamic network topology makes it even harder to secure the system.

To address security and privacy issues, we first propose an extended access control oriented

architecture (E-ACO) for connected vehicles ecosystem, which is an extension to the recently

proposed ACO architecture for IoT [37]. The prime difference between these architectures is the

introduction of clustered objects, which are objects with multiple sensors, and possible interaction

between sensors in same clustered object or between different object sensors. Clustered objects

are particularly relevant in case of connected cars, traffic lights or other smart devices which have

multiple sensors and ECUs mounted on them. This authorization framework illustrates different

interaction and data exchange scenarios in vehicular IoT and proposes access control models at

various E-ACO layers including physical objects, virtual objects, cloud layer and applications.

Secondly, we propose a model, referred as CV-ABACG, for data exchange and resource access

using secure cloud based communication in smart vehicles ecosystem. This model takes into

account the user-centric privacy preferences along with system-defined policies to make access

decisions. In this work, we present a novel concept of groups in context of smart cars, which

are dynamically assigned to moving entities like vehicles, based on their current GPS coordinates,

direction or other attributes, to ensure relevance of location and time sensitive notification services

offered to drivers, provide administrative benefits to manage large numbers of entities and enable

attributes inheritance for fine grained authorization.

4.2 Cloud Assisted Vehicular Internet of Things

The vision of intelligent transportation encompasses connected cars and vehicular IoT as an im-

portant component. The eventual goal of smart city ecosystem is the integration of vehicles, infras-

tructure, smart things, homes or ultimately any thing to promote efficient transportation, accidental

safety, fuel efficiency etc. and for pleasant travel experience to the driver. The technology in-

volves communication between vehicles (V2V), vehicle to human (V2H), vehicle to cloud (V2C),

vehicle to infrastructure (V2I) etc. to exchange vehicle telematics [39, 71] and gather information

66

Figure 4.1: Vehicular IoT Distinguishing Characteristics

about surroundings to offer services to the users. Safety applications in IoV require basic safety

messages (BSMs) to be exchanged among smart entities, which contain information about vehicle

position, heading, speed, etc, related to vehicle state and predicted path [16]. Such interaction can

happen using dedicated short-range communications (DSRC) technology (similar to WiFi, secure

and reliable) which allows rapid communications (up to 10 times per second) between elements of

vehicular IoT network required for end user applications.

4.2.1 Characteristics and Cloud Architectures

Vehicular IoT inherits intrinsic IoT characteristics of data sharing, communication and accumula-

tion in cloud. However, dynamic topology structures, dynamic communication, mobility, network

scale, and non-uniform nodes distribution (shown in Figure 4.1) are some features that distinguish

it from other IoT domains, resulting in new security and privacy challenges. Further, several appli-

cations in IoV domain are very time and location sensitive; for example, BSM information about

traffic congestion from a neighbouring vehicle or a traffic light, or about ice on bridge or an ac-

cident report to a nearby hospital etc. makes IoV ecosystem very dynamic. Internet of Vehicles

involve different kinds of objects (as shown in Figure 4.2) based on their mobility, functional-

ities or processing capabilities. Some smart objects are static in nature; for example, beacons

67

Figure 4.2: Smart Object Types in Connected Vehicles Ecosystem

outside a restaurant, or sensor on a smart traffic light whereas moving objects include connected

cars, pedestrian with mobile phones, etc. Further, some of these are individual objects with single

sensor performing only one function whereas some are clustered objects having multiple sensors

associated with them. A connected car has several ECUs and sensors on it, and hence is referred

as a clustered object whereas a single ECU in a car generally performs one function and is an

individual object. Such characterization is necessary as it drives our access control framework and

models. Several applications of connected cars and vehicular IoT are envisioned for smart city

intelligent transportation initiative, including the following.

• Safety and Assistance: With machine to machine (M2M) communication among vehi-

cles and infrastructure, these applications provide real-time information about other vehicles

and traffic to control speed, in-lane position control or road work warning from signboards.

Further, during inclement weather, under non-ideal driving conditions, or blind spots, even

pedestrian with mobile phones can automatically exchange safety messages about their po-

sition or speed with incoming vehicle such as while crossing roads to alert drivers.

• Diagnostic and Maintenance: Remote diagnostic and predictive maintenance of vehicles

through manufacturer or authorized mechanic will save time and money. Vehicle sensor data

can be send to cloud for processing to predict vehicle mechanical issues. Over the air (OTA)

updates can also be issued by manufacturer for fixing car firmware which will obviate the

need to go to mechanic. Fleet management applications provide real-time telematics, driver

68

Figure 4.3: Different Cloud and Fog Cloudlet Architectures in Vehicular IoT

fatigue detection and package tracking.

• Information and Entertainment: Driving based insurance models have been introduced

which will assess the driver behaviour to determine insurance premiums. Real-time parking

information can be shared between parking garages and vehicles. Restaurant and gas stations

can send offers to nearby vehicle’s dashboard. Car-pooling, connected driving [110], web-

browsing, music etc. are some additional connected vehicles and smart car applications.

We believe cloud platforms like Amazon AWS, Microsoft Azure etc. will play an important role

to fully harness the potential and applications of connected vehicles. Further, the use of edge or

fog computing [51] is imperative to resolve the issues of high latency, low bandwidth and com-

munication delays pertinent to using central cloud, which are very critical in time and location

sensitive IoV applications [19]. Figure 4.3 shows various single and multi cloud scenarios viable

in vehicular IoT. Single cloud architectures may involve only one central cloud which manages

user applications, virtual objects and data generated from smart entities in a wide geographic area,

such as a city. This architecture is not feasible because of latency and other issues mentioned

above. Fog or edge computing is essential, and we believe IoV can either use vehicular cloud (i.e

69

the resources offered by smart vehicles and infrastructure on road) or a fixed infrastructure setup

along the road where compute and storage clusters are dedicated for small areas. It is also possible

to use fog structure for each connected vehicle, and sensors in the vehicle have virtual objects in

the fog which can be used to enable intra-vehicle communication. Vehicular cloud (VC) can be

stationary where the vehicles are standing in a mall parking lot and offering their resources for an

incentive (like free parking) or moving VC where vehicles while moving may form cloud using

broker [79, 80, 101, 131, 180] and can leave or join the cloud if in specified geographic range. Fur-

ther, these moving VCs can be supported by fixed infrastructure (example, a traffic light on the

roadside acting as a broker) or moving vehicles in autonomous manner can form a VC. In multi-

cloud IoV architectures, we envision to have either multiple clouds, cloud-fog or multiple fogs

setup. However, we assume a central cloud and multiple fog architectures are a good fit to cover

most connected car and IoV applications, as discussed later in our extended ACO architecture.

4.2.2 Extended ACO Architecture

Connected Cars and Vehicular IoT ecosystem has several heterogenous devices (individual or clus-

tered) and in-built car applications which cooperate to provide services to the end users. Some de-

vices are independent (camera on street or beacons on restaurant) whereas some belong to a larger

clustered object (ECU or sensor in a connected car). Hence, we propose to incorporate this distinc-

tion into previously defined access control oriented architecture (ACO) [37] to address connected

vehicles ecosystem access control requirements. An important reason to incorporate clustered ob-

jects is to reflect cross-vehicle and intra-vehicle communication. The fact that two connected cars

can exchange basic safety messages (BSM) with each other reflects clustered object communica-

tion. Such concept is not defined in ACO architecture which is proposed for generic IoT systems.

Besides objects, these clustered objects may have applications running in them; for example, a

car may have a navigation application installed in it, or a safety warning application, which may

interact with sensors on a smart sign-board to warn the driver via car dashboard or seat vibration or

buzzer. It should be noted that these sensors or applications may access sensors in car they belong

70

Figure 4.4: Extended ACO Architecture for Connected Cars and Vehicular IoT

to or possibly sensors on other cars also.

Figure 4.4 shows our proposed extended ACO (E-ACO) architecture along with the corre-

sponding vehicular IoT components at different E-ACO layers in Figure 4.4 (b). E-ACO archi-

tecture has four layers similar to ACO: Object layer, Virtual Object layer, Cloud Services layer

and Application layer, where the communication can happen within a layer (shown as self loop in

Figure 4.4 (a)) and the adjacent layers above and below. We will now discuss layers in more detail.

Object Layer: The object layer introduces clustered objects which have multiple individual

sensors or smart objects. The clustered objects may also have several built-in applications (like

tire-pressure monitoring) installed within them. These applications can communicate with ECUs

and sensors in same car (or neighbouring car) to get data and update information to the drivers.

Some of these applications accumulate data and send it to the cloud infrastructure for further anal-

ysis; for example diagnostic applications installed by the manufacturer which will collect data

from critical engine sensors and send to the cloud for processing and offering customers with

OTA maintenance services. The in-vehicle communication for applications, ECUs and sensors is

71

supported by different networking technologies including Controller Area Network (CAN), Local

Interconnect Network (LIN), Ethernet, Media Oriented Systems Transport (MOST) etc. Commu-

nication can occur between objects (and clustered objects) in the object layer and also with the

layers above (virtual object) and below it (user). Communication across objects (within the ob-

ject layer) among different vehicles or clustered objects is feasible via technologies like dedicated

short-range communications (DSRC), Bluetooth, WiFi, and LTE. An example interaction in object

layer is BMW connect application in phone which reads address from phone and send to the car

navigation system, or V2V BSM exchange using DSRC.

It should be noted that instead of introducing clustered objects as a separate layer in E-ACO, we

have added them to the same object layer of ACO architecture, which reflects the binding between

objects, applications and the clustered object to which they belong. We believe the relationship

between objects and clustered objects is important, for example, a lane departure sensor in car will

have some attributes (like vehicle id) it inherits from the car and such binding is shown by putting

them in same layer. These clustered objects and cars also have applications associated with them

which offer services to drivers inside. For example, a rear vision system is an application in cars

to get rear-view, which gets data from rear-camera (an object) to provide dashboard view to the

driver. Other applications, including tire-pressure monitoring which ‘talks’ to sensor installed in

tire, cabin monitoring system, info-tainment systems etc, are in-built in connected cars and can

communicate with sensors or other applications in system. These applications in object layer of E-

ACO are an add-on to the object layer in ACO architecture and reflect its importance in intelligent

transportation ecosystem which is dependent on in-built applications supported by smart cars.

Virtual Object Layer: Communication of sensors, vehicles and other smart entities may also

involve virtual objects or cyber entities to eliminate connectivity, heterogeneity and locality issues.

The most important smart entity in IoV, a smart car, when in motion will pass through areas with

low or no internet connectivity. In such scenario, it is imperative to create a cyber entity of smart

car (and its sensors) in the cloud so that the last state and desired state information of car (and sen-

sors) can be sent to the virtual entity when car is not connected. Once the physical object gets back

72

internet connectivity, the virtual entity will push information/state to its physical counter part. For

example, if a problem is diagnosed in powertrain control ECU of a car and a command needs to be

sent by mechanic to ECU to control air-fuel ratio. In case a car has internet connectivity, message

can be sent directly to ECU, but if there is no connectivity message should be sent to virtual entity

of the ECU which will push message to physical ECU when car gets connectivity and syncs virtual

and physical entity. We envision the virtual object layer in E-ACO architecture will have one or

many cyber entities (virtual objects or device shadows) for both clustered and individual objects.

Physical objects can communicate with their cyber counterpart using HTTP, MQTT, AMQP or

CoAP protocols. When sensors s1 and s2 across different vehicles or clustered objects communi-

cate with each other, the sequence of communication via virtual object layer should follow starting

s1 to vs1 (virtual entity of s1), vs1 to vs2 and vs2 to physical sensor s2. Similar communication can

be envisioned for in-built car applications which can indirectly exchange information from physi-

cal sensors through their cyber counterparts created in cloud, vehicular cloud or fog architecture.

It is possible to create a fog cloudlet for each vehicle where cyber entities will reside and support

the indirect communication within physical sensors and ECUs inside car. Our E-ACO architecture

does not support cyber-entity for in-car applications supported by IoV and will not create virtual

objects for such applications 1.

Cloud Services and Application Layer: Since most user smart cars applications are cloud

supported (i.e. use cloud infrastructure and services), we explain them together to provide a better

understanding of these two mutually dependent E-ACO layers. Cloud layer provides storage and

processing whereas application layer provides application interface to users to control and interact

with object layer components as discussed in ACO architecture [37]. Over the air (OTA) updates

for firmware and other software components in the cars are through the cloud service layer where

only authorized users are allowed to issue OTA. User and applications can access the data pushed

into the cloud by smart infrastructures for offering value added services to customers. Our pro-

posed architecture assumes to have both central cloud and fog (instantiated by vehicular cloud)

1Note that Amazon AWS IoT does allow applications to have a thing shadow [42] but comprehensive smart cars
use-cases to support the functionality are still missing in literature.

73

component in IoV ecosystem but are collectively represented as cloud services. An important use

for cloud layer in IoV and connected cars involves defining security policies for authorized vehic-

ular communication, which we understand is missing in literature. Further, we assume that virtual

entities of various objects can be created in both central cloud and fog depending on the use-cases

and the scope of applications which are accessing the objects. For example, an accidental safety

application will have limited geographic scope and hence will access virtual objects created in fog

(to overcome latency issues); whereas, a health-monitoring application may access body sensors

via virtual objects created in central cloud. Cloud services and applications can access information

and data from virtual objects using MQTT or other relevant protocols. It should be noted that most

IoV architectures and use-cases we studied [61,80,110] don’t have virtual object layer and include

only object, cloud services and application layer. Communication between cars, sensors and ap-

plications in object layer do not involve virtual objects and is done using lower layer protocols like

DSRC, WAVE, Bluetooth or WiFi. Sensors can directly send data to cloud storage for processing

without involving virtual objects, which is then used by applications. However, connectivity is-

sues in moving cars and communication heterogeneity among entities supports the need for virtual

layer, as discussed earlier in this section.

Figure 4.4 (b) shows an instance of connected vehicles ecosystem with physical objects (like

smart cars or traffic lights) along with their cyber counterparts in virtual objects layer, and other

E-ACO layers. It can be seen that physical objects communicate with virtual objects, and user

applications are accessing data through cloud which is pushed by virtual entity of an object. Stor-

age and processing icons at object layer symbolizes road-side infrastructures which can also help

to store data from vehicles and filter before pushing data to the central cloud. Virtual objects are

created at both fog and central cloud to satisfy different application needs.

4.3 Authorization Framework for Smart Cars Ecosystem

The dynamic and distributed nature of vehicular IoT brings in challenges to secure the ecosystem.

Broad attack surface and numerous external interfaces along with the intrinsic characteristics of

74

IoV makes it hard to ensure security and privacy of the components and data inside. Access con-

trols are important to restrict unauthorized access to data, sensors, applications, infrastructure and

other resources in connected cars and IoV. Applications like MobEyes [119] and CarSpeak [116]

allow vehicles (or sensors) to access not only its own sensors but also neighbouring vehicle sensors

to get data and information. The exchange of BSM messages among vehicles and smart entities,

and their use must be trusted and checked. Further, in-vehicle communication along buses be-

tween ECUs and applications should be secured. Such exchange must be authorized to ensure

confidentiality and integrity of vehicle’s and user’s personal data, and to prevent remote (or phys-

ical) control of connected smart entities. In this section, we define an access control framework

that reflects authorization needs at various layers of extended ACO architecture discussed earlier.

Several interaction scenarios exist in vehicular IoT ecosystem which makes it hard to com-

prehend different access control decision and enforcement points, together with other security

requirements. Based on the extended ACO architecture, we have put together various vehicular

IoT communications into three categories: Object Level, Virtual Object Level and Cloud Services

Level as shown in Figure 4.5. Since most user applications are cloud based which use services

and resources in cloud, we have bundled the interaction of IoV entities with cloud and applications

together. As discussed in the E-ACO architecture, each layer components interact with them-

selves (components in same layer) and the components in layers immediately above and below

it. Two types of interactions exist in E-ACO, direct and indirect, marked with solid and dashed

boxes shown in figure. Communication between adjacent and same layer is direct communication

whereas indirect includes interaction beyond adjacent layers i.e. two or more layers above or down

in E-ACO. For example, interaction between clustered object and objects inside the clustered ob-

ject is direct, as they belong to the same object layer whereas interaction between an application in

application layer and object will be indirect as applications will interact with object via its virtual

entity created in cloud. It is possible to have interactions overlapping in two categories, e.g., cloud

service (CSR) and virtual object (VOB) interaction is part of both cloud services and virtual object

category. Following are the authorization framework categories and IoV communication scenarios.

75

Figure 4.5: Different Interactions in Vehicular IoT Ecosystem

• Object Level: This category covers object layer interaction within itself and with adjacent

layers (virtual objects and users) in E-ACO architecture. Some interaction types (shown

in Figure 4.5) include between clustered objects (CO-CO), between clustered object and

object (CO-OB) for example smartphone and car USB port, between user and sensors (U-

OB), between sensor and any application running inside car (OB-OAP), and between ECUs

(OB-OB). Access control models to authorize each of these interactions and resulting data

exchange are required. BSM exchanges between connected cars using DSRC is an example

communication that needs entity authorization to ensure integrity of message, which must

be addressed by appropriate access control methods.

• Virtual Object Level: This includes communication of virtual entities with real objects,

with cloud services or with user applications. Some examples include, between virtual ob-

jects (VCO-VCO, VOB-VOB), between application and virtual objects (AP-VOB), cloud

services and virtual objects (CSR-VOC, CSR-VOB) etc. Most of these communications are

76

through publish-subscribe protocols like MQTT, DDS or through HTTP, CoAP. Recently,

Alsehri and Sandhu [38] presented access control models for VOB-VOB interaction in topic

based communication using CapBAC (Capability based access control), ACLs and ABAC.

• Cloud Services Level: Cloud provides necessary storage, processing and services to unleash

true IoT potential. Further, most applications are also cloud based with their software and

hardware components supported in cloud. Therefore, this category includes both application

and cloud interactions with IoV entities and virtual objects. The layer also considers multi-

cloud or fog-cloud interactions which are important in distributed IoV. Some interactions in

this category (shown in Figure 4.5) include: between user application and cloud services

(AP-CSR), multi-cloud or fog interaction (CL-CL, FG-CL), indirect interaction between

application and objects (AP-OB), cloud services (CSR-CSR) etc.

In-vehicle network allows interaction among sensors and applications inside the car, which also

needs protection. Such communication can fit into above categories depending if entities in-

volved are physical, virtual or applications. CAN bus and other intra-vehicle communication can

be protected by assigning ACLs and capabilities to ECUs to prevent spoofing and other attacks.

TCUs (Telematics Control Units) or Gateways have been used to separate critical ECUs from

non-important subnetworks and also act as a common external interface to connected car. Access

control models should be developed for various interactions in each category to control commu-

nication and data exchange. Note that our authorization framework does not include physical

tampering and OBD port connectivity. In next section, we discuss some access control approaches

relevant to fit in the vehicular IoT authorization framework.

4.4 Access Control Approaches

Researchers have investigated authorization requirements in IoT systems and proposed several

access control models and implementations [55,90,92,95,111,134,151,184]. Recently, an access

control model for virtual objects was proposed [38] using ACLs, CapABAC and ABAC. AWS

77

access control model for IoT is discussed [49] which uses policies to control physical, virtual,

cloud services and other communications in a publish subscribe exchange protocol.

We conclude that intelligent transportation environment requires access control policy decision

and enforcement at two levels: external communication and in-vehicle internal communication.

Access control for external interface will secure authorized access to vehicle’s data, sensors, ECUs

and applications from external entities (like vehicle, traffic light, smartphones or user applications

etc.) whereas internal mechanisms will secure ECUs and in-car applications communication and

data exchange in a connected car supported by CAN bus, Bluetooth, WiFi etc. Securing external

interface may not be enough to stop hackers, as they could impersonate a trusted device and by-

pass external access control. Also, in case if some ECUs with external interface are compromised,

second level access control will protect critical systems in connected car. Vehicles discover new

vehicles and infrastructure and start exchanging BSMs with them. Vehicular IoT mainly has two

data exchange scenarios: static and dynamic, where static considers interaction due to long lasting

relation for example, vehicle and owner or car manufacturer. Dynamic communication is tempo-

rary and occurs when entities are at certain place, or in geographic range with no prior relation

between them. Also, static relation may share more private information which might not be the

case in dynamic relation. These relations can help understand and develop access controls in the

Internet of Vehicles. Another approach may require multi-layered access control where the type of

action required on an object determines the authority who can take access decision. For example,

controlling an autonomous vehicle may require permissions from both owner and transportation

authority, whereas reading data from vehicle may only need owner’s consent.

We believe that clustered objects are important in access control decisions and can help to make

preliminary decision. In case of vehicles, it is not only the vehicles which share BSMs, but also

the sensors or applications in them which communicate. Therefore, first level check will ensure if

two vehicles (as clustered objects) are allowed to talk, without considering their in-built sensors.

If authorized at first level, next level access control will include sensors, applications and ECUs

of the vehicles to make the final decision. Concept of trust can be introduced where only trusted

78

entities can communicate. Trust can be established based on interaction, or relationships among

two entities. For example, entities who have exchanged data earlier are more trusted; home and

vehicle belonging to same owner are more trusted and can communicate. PKI based trust estab-

lishment in Security Credential and Management System (SCMS) [174] supported by USDOT is

an important system to ensure BSM confidentiality and integrity in V2V communication. Further,

attribute based [105] solutions can be added where IoV entities can inherit set of attributes from

their geographic location, or from manufacturer. In such cases, attribute based policies can be

used to determine sensors communication after trust is checked between their vehicles. Attributes

which can be used in access decisions include geographic position, current speed, acceleration, de-

celeration, road surface temperature or other vehicle telemetry. Two level policy may be required:

one at cloud level (to control V2V, V2I like communication) and another at fog or vehicular cloud

level (to control intra-vehicle ECU’s, applications or sensors interaction). Both single and multi-

cloud scenarios can exist in which vehicles in same or across clouds can interact, which will also

require access controls. Administrative models [38, 88] are also needed to support administration

of vehicular IoT operational access control models.

4.5 Cloud Assisted Real-World Use Cases

In this section, we will discuss some use-cases in relevance to our authorization framework, incor-

porating the extended ACO architecture (shown in Figure 4.4), various smart vehicles communi-

cation exchange scenarios (shown in Figure 4.5), using cloud and fog architectures, and entities

of vehicular IoT ecosystem as shown in Figure 4.6. We have classified our use-cases into single

cloud and multi cloud systems to reflect local or global scope of entity communications and user

IoV applications, however, all applications in single cloud can be extended to multi-cloud and vice

versa. Our prime objective is to describe how interactions and data exchange takes place in dis-

tributed and dynamic vehicular IoT ecosystem and to elaborate on various access control decision,

and enforcement points requirements.

Most applications in vehicular IoT are time and location sensitive, which require real time

79

Figure 4.6: Connected Cars and Internet of Vehicles Ecosystem

processing of information gathered from smart vehicles, sensors, ECUs and other smart objects

present in a limited geographic area. To resolve issues related to latency and bandwidth pertinent

to using central cloud, we believe vehicular cloud (VC) will play an important role, where the

storage and computation present in smart vehicles or road side infrastructures (smart traffic lights,

sign boards etc.) can be used to support IoV applications. Hence, our single cloud applications are

supported by fog or cloudlet instance in the form of a VC where physical objects will have their

cyber counterpart (virtual objects). It is also possible to have a fog instance for each connected

car and any communication within the car is supported through it. Other scenarios may need to

have multiple virtual objects for a single physical object where some objects are in VC and some

in central internet cloud, required for more persistent state or for non-time sensitive applications

or where the interacting IoV entities are not present in the range of same vehicular cloud. Such

use-cases are discussed in multi cloud or fog-cloud architecture scenarios.

80

4.5.1 Single Cloud System

Single cloud applications include entities in limited geographic area communicating and exchang-

ing information. A pedestrian crossing a road sends an alert message to an approaching car, or

remote parking capability in BMW 7 series assists driver to park car using touch screen key are

some examples of short-range communication. It is also possible to have a nearby restaurant or

a gas station sending offers to connected vehicles on their dashboard, or in case of cruise mode

cars, speed sign board automatically reduces the speed of car when a message is exchanged be-

tween them. Each IoV entity (clustered object, sensors, ECU’s) in physical layer will have a cyber

entity (one-to-one) created in virtual object layer, which is part of vehicular cloud or cloudlet or

fog. MQTT and other IoT topic or content based publish subscribe communication enable pub-

lishers (sensors, applications) to publish to certain topics which are subscribed by other sensors or

applications, and message broker passes relevant messages to desired subscribers whenever a pub-

lisher publishes on these topics. Besides cross entity interactions, in-vehicle communication also

occurs, where sensors, ECUs and applications in a connected car exchange messages or interact

with a smart device of a passenger sitting inside the car. In-vehicle communication is supported by

fog architecture for each car where virtual entities can be created for each ECU, sensor or device.

Further, in case of CAN bus communication critical ECUs are separated using gateway which

also provides external interface to connected car. This ensures authentication and authorization to

over-the-air (OTA) updates and enforces access control policies for in-vehicle communication.

Access control points are needed at physical, virtual object and cloud services layer, where

the interaction and data exchange between legitimate and authorized entities is only allowed. At

object layer V2V, V2I and other V2X communications using DSRC, WiFi etc. between clustered

objects need access controls to ensure BSM confidentiality and prevent malicious activity. Direct

access of user using a remote key to unlock a car or through a smart-phone application also needs

authorization. It is also possible to store credit card information on vehicle storage or with a cy-

ber entity of the vehicle, which can ease payment process on a toll road, or in a parking garage.

In such cases, only authorized applications can access credit card information, which if leaked to

81

nefarious actors can have huge financial implications. Within object layer, access controls are also

needed to ensure authorized communication among sensors or applications and clustered devices,

for example in case smart-phone accessing info-tainment systems or plug-in device into car needs

security. Access controls are needed when physical objects communicate to their virtual entities

in the cloud. For example, an airbag ECU or sensor in the car should only be able to contact

its corresponding virtual entity to update its state or push messages via topics. Our concept of

IoV ecosystem incorporates virtual objects (for every physical object) which will be important for

message and information exchange among heterogenous objects. Virtual entity will be also cre-

ated for smart devices inside the car that can issue commands to connected vehicle. Therefore,

access control is required at virtual object layer also which will control interaction between cyber

entities. In-built applications in cars also access on-board sensors for example, tire-pressure mon-

itoring, lane-departure warning system etc., which must be authorized to legitimate applications

only. Communication between ECUs also needs authorization using gateway or TCUs. Attribute

based access controls can provide fine grained policies and use contextual information to secure

data exchange and communication for both physical and virtual object layer. Hence, to secure crit-

ical ECUs first level access control restricts external interface and then in-vehicle access control

provides second level check.

Connected cars generate lot of data and are referred as ‘data-centers on wheels’. Applications

use this data to provide real time information regarding traffic, road safety, weather, or road main-

tenance. Applications can also diagnose issues of vehicles and offer predictive and precautionary

advices to the drivers on road. Such actions through mechanics or users via cloud must be autho-

rized. Further, access controls are required for applications and virtual objects communication, in

case any application wants to send a command to a sensor in car. Data generated can be sent to

cloud servers for storage and processing. As most of these applications are relevant to geography

they can harness the vehicular cloud and use its storage and processing capabilities. Data security

is important in the cloud. Proper access controls are required to allow only relevant entities to

access and process the data in multi-tenant data lake. Applications and cloud services must be au-

82

thorized to ensure privacy of user data. The most common platform to analyze big data is Hadoop

where several access control models have been proposed including [84–87]. This data can be used

by applications inside vehicles or user applications at E-ACO application layer.

4.5.2 Multiple Cloud System

Some smart car applications and use-cases require multiple cloud instances to offer services in vast

geographic area or non-time sensitive conditions. For example, assume a vehicle manufacturer has

a private cloud where it gathers all data generated from its vehicles, performs analysis for potential

problems and offers over the air (OTA) solutions like firmware or software updates. This data

can sometimes also reflect problems in the vehicle which needs immediate attention and hence to

be sent to a mechanic nearby. Now, the mechanic has its own private cloud and cannot access

the vehicle’s data which is stored in original equipment manufacturer (OEMs) cloud. In such a

scenario, trust has to be established among two clouds so that vehicle’s data can be shared between

mechanic’s cloud and manufacturer’s cloud, with the approval of vehicle owner. If a mechanic

needs to send messages to sensors in vehicle, cross cloud communication must take place between

vehicular cloud (where virtual object of sensor in the car is created) and application in mechanic

cloud, which also needs access controls and trust.

Applications like CarSpeak [116] gather data from different sensors not only in the same car

but across different cars which may or may not be in the same vehicular cloud. In such cases,

the application will access the virtual entity across different vehicular clouds also, which may

require trust across different cloud infrastructures. It is also possible to have two vehicular clouds

or a vehicular cloud and central cloud exchanging information. For example, suppose a vehicle is

approaching the driver’s home, and it needs to send a message to the thermostat to turn on the air

conditioner. It is possible that the home is in a different cloud, and hence will have its cyber entity

in other cloud. In such a scenario cross cloud communication will take place where the application

from vehicle will communicate with the virtual object corresponding to the thermostat in the home

in other cloud. Since, in this case the home and vehicle belongs to the same owner, we can create

83

a level of trust between them across clouds and use it to make faster access decision without using

policy based controls. In another example, suppose department of motor vehicle (DMV) or local

police issues a notice about a stolen car or some nefarious elements in city, a vehicle dashboard

will start displaying alert messages. These applications will be running in DMV cloud or cloud

owned by police department, which will send messages to the cars running in the city, which also

requires multi cloud access scenarios. In such cases, DMV can also have dedicated infrastructure

installed around the city or highway which will receive messages sent over cloud and will then

pass to nearby vehicles or relevant sensors (through cyber objects, WiFi communication or DSRC)

within a defined geographic area.

Henceforth, access controls across single and multiple cloud architectures are needed to en-

sure secure interaction, data exchange and resource access among physical, virtual objects and

applications in Internet of Vehicles ecosystem.

4.6 Dynamic Groups and ABAC for Cloud Assisted Smart Cars

Smart cars location-based services enable notifications and alerts to vehicles. A user must be

allowed to set his personal preferences whether he wants to receive advertisements or filter out

which ones are acceptable. For instance, a user may not want to receive restaurant notifications but

is interested in flash-flood warnings. System wide policy, like a speed warning to all over-speeding

vehicles or a policy of who can control speed of autonomous car are needed.

In this section, we present dynamic groups and attribute-based access control (ABAC) model

(referred as CV-ABACG) to ensure authorized data exchange and resource access using secure

cloud based communication channels in smart vehicles ecosystem. This model takes into account

the user-centric privacy preferences along with system-defined policies to make access decisions.

This work proposes a novel concept of groups in context of smart cars, which are dynamically

assigned to moving entities like vehicles, based on their current GPS coordinates, direction or

other attributes, to ensure relevance of location and time sensitive notification services offered to

drivers, provide administrative benefits to manage large numbers of entities and enable attributes

84

Figure 4.7: Smart City with Location Groups

inheritance for fine-grained authorization. Later in Section 4.8, we present a proof of concept im-

plementation of the proposed model in Amazon Web Services (AWS) IoT platform demonstrating

real-world uses cases along with performance metrics.

4.6.1 Relevance of Groups

Most smart cars applications and service requests from drivers are location specific and time sen-

sitive. For example, a driver might want to get warning signals when traveling near a blind spot,

in school zone or pedestrians crossing road. Further, notifications sent to drivers are short-lived

and mostly pertinent around current GPS coordinates. A gas discount notification from a nearby

station, an accident warning two blocks away or ice on the bridge, are some example where alerts

are sent to all vehicles in the area. Therefore, we believe that dynamically categorizing connected

vehicles into location groups will be helpful for scoping the vehicles to be notified instead of a

general broadcast and reduce administrative overheads, since single notification for the group will

trigger alerts for all its members. Also, entities present at a location have certain characteristics

85

Figure 4.8: Representative Groups Hierarchy

(like stop sign warning, speed limit, deer-threat etc.) in common, which can be inherited by being

a group member. Figure 4.7 represents how various smart entities can be separated into different

location groups defined by appropriate authorities in a smart city system. These groups are dy-

namically assigned to connected vehicles based on their attributes, personal preferences, interests

or current GPS coordinates as further elaborated in the model and implementation section.

Groups hierarchy can also exist, as shown in Figure 4.8, with sub-groups within a larger parent

group so as to reduce the number of vehicles to be notified. For instance, under location group, sub-

groups can be created for cars, buses, police vehicles or ambulances, to enable targeted alerts to

ambulances or police vehicle sub-groups defined within the location group. Groups can be defined

based on services, for example, a group of cars within the car parent group which take part in car-

pooling (CP) service or those which want to receive gas station offers. Group hierarchy [88, 153]

also enables attributes inheritance from parent to child groups which helps in bulk assignment of

attributes to the member entities reducing the overhead of attributes administration.

86

Figure 4.9: A Conceptual CV-ABACG Model

4.7 Connected Vehicle ABAC Model with Dynamic Groups

Dynamic communication and data exchange among entities in connected vehicles ecosystem re-

quire multi-layer access control policies, which are managed centrally and also driven by individual

user preferences. Therefore, an access control model must incorporate all such user and system

requirements and offer fine-grained authorization solutions. In this section, we will discuss and for-

mally define our proposed connected vehicle attribute-based access control model with dynamic

groups, which we refer as CV-ABACG.

4.7.1 CV-ABACG Model Overview

The conceptual CV-ABACG model is shown in Figure 4.9 with formal definitions summarized in

Table 4.1. The basic model has following components: Sources (S), Clustered Objects (CO), Ob-

jects in clustered objects (O), Groups (G), Operations (OP), Activities (A), Authorization Policies

(POL), and Attributes (ATT).

Sources (S): These entities initiate activities (explained below) on various smart objects, groups

87

and applications in the ecosystem. A source can be a user, an application, administrator, sensor,

hand-held device, clustered object (such as a connected car), or a group defined in the system.

For instance, in case of flash flood warning, activity source is police or city department triggering

an alert to all vehicles in the area. Similarly, mechanic is a source, when he tries to access data

remotely from on-board sensor in a connected car.

Clustered Objects (CO): Clustered objects are particularly relevant in case of connected vehicles,

traffic lights or smart devices held by humans as they have multiple sensors and actuators. A smart

car with on-board sensors, ECUs (like tire pressure, lane departure, or engine control) and applica-

tions is a clustered object. These smart entities interact and exchange data among themselves and

with others such as requestor source, applications or cloud. An important reason to incorporate

clustered objects is to reflect cross-vehicle and intra-vehicle communication. The fact that two

smart vehicles can exchange basic safety messages (BSM) shows clustered object communication.

Objects in clustered objects (O): These are individual sensors, ECUs and applications installed

in clustered objects. Objects in smart cars include sensors for internal state of the vehicle, e.g.,

engine diagnostics, emission control, cabin monitoring system, as well as sensors for external

environment such as cameras, temperature, rain, etc. Control commands can directly be issued to

these objects, and data can be read remotely. Applications (like lane departure warning) on board

can also access data from these objects to provide alerts to driver or to a remote service provider.

Groups (G): A group is a logical collection of clustered objects with similar characteristics or

requirements. With these groups, subset of COs can be sent relevant notification and also attributes

can be assigned to group members. Some groups which can be defined in the smart vehicles

ecosystem include location specific groups, service specific groups (like car-pooling, gas station

promotions etc.) or vehicle type (a group of cars, buses etc.). Group hierarchy (GH) also exists

which enables attributes and policies inheritance from parent to children groups. For simplicity,

we require that a vehicle or CO can be direct member of only one group at same hierarchy level.

For example, a car can be in either location A or B group and but not both. Such restriction helps

in managing attributes inheritance and enhances the usability of our model.

88

Operations (OP): These are actions which can be performed against clustered objects, individual

objects or groups. Examples include: a mechanic performing read, write or control operations on

engine ECU, a restaurant triggering notifications to vehicles in location A group. Operations also

include administrative actions like creating or updating attributes or policies for COs, objects and

groups, which are usually performed by system/security administrators.

Activities (A): Activities encompass both operational and administrative activities which are per-

formed by various sources in the system. An activity can have one or many atomic operations

(OP) involved and will need authorization policies, which can be user privacy preferences, system

defined or both, to allow or deny an activity. For example, a car pooling notification activity gener-

ated by a requestor (source) will be broadcast to all relevant vehicles in the locations nearby using

location groups, however individual drivers must also receive or respond to that request based on

individual preferences. A driver may not want to car-pool the requestor because of poor rating

or because he is not going to the destination the requestor asked for. Therefore, an activity can

involve multiple set of policies defined at different levels which must be evaluated, in car-pooling

case a policy is set to determine cars to be notified and then driver personal preferences. We have

primarily divided these smart car activities into following categories.

• Service Requests: These are activities initiated by entities or users (via on-board car or

hand-held applications). For instance, a vehicle break-down initiates a service request to

other vehicles around, or a user using a smartphone initiates a car-pooling requests for a

destination to the cars which are available for the service.

• Administration: These activities perform administrative operations in system which include

changing policies and attributes of entities or determining the group hierarchy. These activi-

ties also defines the geographical scope of groups, how user defined privacy preferences are

used, or how vehicles are determined to be a member of a group etc.

• Notifications: These are group centric activities where all members are notified for any

updates about the group (like speed limit or deer threat notifications in location A) or for

89

locations-based marketing promotions by parking lots or restaurants.

• Control and Usage: These activities include simple read, write or control operations per-

formed remotely or within a vehicle. Over the air updates issued by manufacturer or turning

on car climate control using a smart key are remote activities whereas a passenger accessing

infotainment system using smartphone or on-board applications reading camera are local.

Authorization Policies and Attributes: CV-ABACG model incorporates individual user privacy

controls for different entities by managing authorization policies and entity attributes. A shown in

Figure 4.9 policy of sources include personal preferences, whereas attributes reflect characteristics

like name, age or gender. Policies can be defined for clustered objects, for instance, a USB can

be plugged only by car owner, or which mechanic can access an on-board sensor. Attributes of a

car include GPS coordinates, speed, heading direction, and vehicle size. Groups also set policies

and attributes for themselves, for example, car pooling group policy of who can be its member.

Similarly, system wide policies are also considered, for instance, policy to determine which groups

will be sent information when a request comes from a source, or policy to change group hierarchy.

Policies also include attributes of entities involved in an activity. A CO can inherit attributes from

dynamically assigned groups which will change as the CO leaves old group and adds to new group.

It should be noted that attributes of entities change more often than system wide or individual

policies. Attributes are more dynamic in nature which are added or removed with the movement

of vehicles or change in surroundings, like GPS coordinates or temperature. Policies once set by

administrators or users are more static and only the attributes which comprise the policy change

the outcome of a policy but the policy definition remains relatively fixed. For instance, a user

policy could state that ‘Send restaurant notifications only from Cheesecake factory’. In such case,

only attribute name of the restaurant sending the notification will be checked and if it is equal to

Cheesecake factory will be able to advertise to that user. Dynamic policies are also possible, for

instance, a policy may state that police vans in locations groups A and B are notified in case of

emergency, but, in case of a bigger threat this policy can be changed or overwritten with police vans

in groups A, B C and D. It should be noted that the CV-ABACG model assumes that no policies or

90

Table 4.1: Formal CV-ABACG Model Definitions for Connected Vehicles Ecosystem

Basic Sets and Functions

– S, CO, O, G, OP are finite sets of sources, clustered objects, objects, groups and operations
respectively [blue circles in Figure 4.9].

– A is a finite set of activities which can be performed in system.
– ATT is a finite set of attributes associated with S, CO, O, G and system-wide.
– For each attribute att in ATT, Range(att) is a finite set of atomic values.
– attType: ATT = {set, atomic}, defines attributes to be set or atomic valued.
– Each attribute att in ATT maps entities in S, CO, O, G to attribute values. Formally,

att : S ∪ CO ∪ O ∪ G ∪ {system-wide}→

{
Range(att) ∪ {⊥} if attType(att) = atomic
2Range(att) if attType(att) = set

– POL is a finite set of authorization policies associated with individual S, CO, O, G.
– directG : CO→ G, mapping each clustered object to a system group,

equivalently CGA ⊆ CO×G.
– parentCO : O→ CO, mapping each object to a clustered object,

equivalently OCA ⊆ O× CO.
– GH ⊆ G × G, a partial order relation �g on G.

Equivalently, parentG : G→ 2G, mapping group to a set of parent groups in hierarchy.

Effective Attributes of Groups, Clustered Objects and Objects (Derived Functions)

– For each attribute att in ATT such that attType(att) = set:
• effGatt : G→ 2Range(att), defined as effGatt(gi) = att(gi) ∪ (

⋃
g ∈ {gj|gi �g gj}

effGatt(g)).

• effCOatt : CO→ 2Range(att), defined as effCOatt(co) = att(co) ∪ effGatt(directG(co)).
• effOatt : O→ 2Range(att), defined as effOatt(o) = att(o) ∪ effCOatt(parentCO(o)).

– For each attribute att in ATT such that attType(att) = atomic:
• effGatt : G→ Range(att) ∪ {⊥},

defined as effGatt(gi) =

att(gi) if ∀g′ ∈ parentG(gi). effGatt(g

′) = ⊥
effGatt(g

′) if ∃ parentG(gi). effGatt(parentG(gi)) 6= ⊥ then select
parent g′ with effGatt(g

′) 6= ⊥ updated most recently.
• effCOatt : CO→ Range(att) ∪ {⊥},

defined as effCOatt(co) =

{
att(co) if effGatt(directG(co)) = ⊥
effGatt(directG(co)) otherwise

• effOatt : O→ Range(att) ∪ {⊥},

defined as effOatt(o) =

{
att(o) if effCOatt(parentCO(o)) = ⊥
effCOatt(parentCO(o)) otherwise

91

Table 4.2: Formal CV-ABACG Model Definitions for Connected Vehicles Ecosystem (Continued)

Authorization Functions (Policies)
– Authorization Function: For each op ∈ OP, Authop(s : S, ob : CO ∪O ∪G) is a propositional

logic formula returning true or false, which is defined using the following policy language:
• α ::= α ∧ α | α ∨ α | (α) | ¬α | ∃ x ∈ set.α | ∀ x ∈ set.α | set4 set | atomic ∈ set |

atomic /∈ set
• 4 ::= ⊂ | ⊆ | * | ∩ | ∪
• for att ∈ ATT, i ∈ S ∪ CO ∪ O ∪ G ∪ {system-wide}, attType(att) = set :

set ::= effatt(i) | att(i)
• for att ∈ ATT, i ∈ S ∪ CO ∪ O ∪ G ∪ {system-wide}, attType(att) = atomic :

atomic ::= effatt(i) | att(i) | value

Authorization Decision
– A source s ∈ S is allowed to perform an activity a ∈ A, stated as Authorization(a : A, s : S),

if the required policies needed to allow the activity are included and evaluated to make final
decision. These multi-layer policies must be evaluated for individual operations (opi ∈ OP)
to be performed by source s ∈ S on relevant objects (xi ∈ CO ∪ O ∪ G). Formally,
Authorization(a : A, s : S)⇒
Authop1(s : S, x1), Authop2(s : S, x2),, Authopn(s : S, x3)

attributes are changed during an activity evaluation session.

Some activities will need multi-level policy evaluation and may include user privacy prefer-

ences. For instance, a user must be allowed to decide if he wants to share data from car sensors

or whether wants to get marketing advertisements. Each activity will evaluate required system and

user defined ecurity policies to make final decision.

4.7.2 Formal Definitions

As shown in Table 4.1, sources, clustered objects, objects and groups can be directly assigned

values from the set of atomic values (denoted by Range(att)) for attribute att in set ATT. Each

attribute can be set or atomic valued, determined by attType function. Based on attribute type,

entities can be assigned a single value including null (⊥) for an atomic attribute, or multiple values

for set-valued attribute from the attribute range. POL is the set of authorization policies in the

system which will be defined below.

Clustered objects can be members of different groups, based on preferences and requirements.

For example, a car is assigned to a location group based on its GPS coordinates. In our model,

92

we assume that a clustered object can be directly assigned to only one group at same hierarchy

level (specified by directG function). As we will discuss later that since groups inherit attributes

from parent groups, assigning a clustered object to one parent group is sufficient to realize attributes

inheritance. Smart cars have sensors and applications installed in them, which can also be accessed

by different sources. Therefore, parentCO function determines the clustered object to which an

object belongs, which is a one to many mapping i.e an object can only belong to one CO while a

CO can have multiple objects. Further, group hierarchy GH (shown as self loop on G), is defined

using a partial order relation on G and denoted by �g, where g1 �g g2 signifies g1 is child group

of g2 and g1 inherits all the attributes of g2. Function parentG computes the set of parent groups in

the hierarchy for a child group.

The benefit to introduce groups is ease of administration where multiple attributes can be as-

signed or removed from member clustered objects with single administrative operation. Group

hierarchy enables attributes inheritance from parent to child groups. Therefore, in case of set

valued attributes, the effective attribute att of a group gi (denoted by effGatt(gi)) is the union of

directly assigned values for attribute att and the effective values for att for all its parent groups in

group hierarchy. This definition is well formed since �g is a partial order. For a maximal group

gj in this ordering, we have effGatt(gj) = att(gj), giving base cases for this recursive definition.

The effective attribute values of clustered object for attribute att (stated as effCOatt) will then be

the directly assigned values for att and the effective attribute values of att for the group to which

CO is directly assigned (by directG). Similarly, in addition to direct attributes, sensors in car can

inherit attributes from the car itself (eg. make, model, location), effOatt calculates these effective

attributes of objects. For set valued attributes, union operation will be sufficient which is not true

for atomic attributes. In case of groups, the most recently updated non-null attribute values in par-

ent groups will overwrite the values of child group as defined in Table 4.1. For example, if the most

recent value updated in one of the parent groups for Deer_Threat attribute is ‘ON’, this value will

trickle to the child group. It should be noted that overwriting with the most recently updated value

in groups is one of the many approaches to inherit atomic attributes, but for the dynamic nature

93

of smart cars ecosystem, we believe this is most appropriate. Clustered object inherits non-null

atomic value from its direct parent group as stated by effCOatt(co) = effGatt(directG(co)). In case

of objects, parent clustered object will overwrite non-null atomic attributes. For atomic attributes,

if the parent(s) has null value for an attribute, the entity (group, clustered object or object) will

retain its directly assigned value without any overwrite.

Authorization functions are defined for each operation op ∈ OP, which are policies defined in

the system. POL is the set of all authorization functions, Authop(s : S, ob : CO ∪O ∪G), which

specify the conditions under which source s ∈ S can execute operation op ∈ OP on object ob ∈

CO ∪ O ∪ G. Such policies include privacy preferences set by users for individual clustered ob-

ject, objects and groups or can be system wide by security administrators. The conditions can

be specified as propositional logic formula using policy language defined in Table 4.2. Multi-

ple policies must be satisfied before an activity is allowed to perform. Authorization function,

Authorization(a : A, s : S), where an activity a ∈ A is allowed by source s ∈ S, specifies the sys-

tem level, user privacy policies or other relevant policies returning true for an activity to succeed.

CV-ABACG is an attribute-based access control model which satisfies fine-grained authoriza-

tion needs of dynamic, location oriented and real-time interaction in smart cars ecosystem. The

model supports personalized privacy controls by utilizing individual user policies and attributes,

along with dynamic groups assignment. CV-ABACG assumes that the information and attributes

shared by source and object entities are trusted, for instance, location coordinates sent by a car

are correct, and uses this shared information to make access decision. How to ensure that the

information is from a trusted source or is correct is out of the scope of this work.

4.8 Enforcement in Amazon Web Services

In this section, we present a proof of concept demonstration of CV-ABACG model by enforcing

a use case of smart cars using AWS IoT service [26]. The implementation will demonstrate how

dynamic groups assignment and multi-layer authorization policies required in connected vehicle

ecosystem can be realized in AWS. We have used simulations to reflect real connected smart ve-

94

Figure 4.10: Groups Hierarchy in AWS

hicles, however, it does not undermine the plausibility, use and advantage of our proposed model

as further elaborated in following discussion. It should be noted that no long term vehicle data

including real-time GPS coordinates are collected in central cloud, which mitigates user privacy

concerns and encourages wide adoption of the model.

4.8.1 Description of Use Cases

Location based alerts and notifications are important in smart cars applications and motivate our

use cases. We will build upon our defined group hierarchy in AWS shown in Figure 4.10. Our

implementation will enforce access controls in following use cases.

Deer Threat Notification - Smart infrastructure in the city can sense the surrounding environment

and notify group(s) regarding the change. In this use case, a motion sensor senses deers in the

area and changes Deer_Threat attribute of location group to ON which in-turn sends alerts to

all member vehicles in that location. Similar, implementation can be done in case of accident

notification, speed limit warning or location based marketing.

Car-Pooling - A traveller needs a ride to Location-A. Using a mobile application, he sends car-

95

Figure 4.11: Vehicle GPS Coordinates and Groups Demarcation

pooling requests to vehicles in his vicinity which are heading to the destination location asked by

the traveller. The request is received by AWS cloud, which computes location and appropriate

groups based on the coordinates of the requester, to publish notifications to nearby cars. All the

members of group Car-A, B, C or D can get the request, but some cars may not want to be part of

car-pooling, or do not want some requestors to join them because of ratings. User policies will be

also checked before a driver is notified of likely car-pool customer.

4.8.2 Prototype Implementation

AWS implementation of our model in these use-cases involves two phases: administrative phase

and operational phase. Administrative part involves creation of groups hierarchy, dynamic assign-

ment of moving vehicles to different location and sub-groups, attributes inheritance from parent to

child groups and to group members, and attributes modification of entities. Operational part covers

96

Figure 4.12: Dynamic Groups and Vehicles in AWS

how groups are used to scope down the number of vehicles who receive messages or notifications

from different sources. Both these phases involve multi-layer access control polices. We created

an ABAC policy decision (PDP) and enforcement point (PEP) [97], and implemented our external

policy evaluation engine which is hooked with AWS to enable attribute-based authorization.

Administrative Phase: We created a group hierarchy in AWS as shown in Figure 4.10. In this

hierarchy, County-XYZ is divided into four disjoint Location-A, B, C and D groups, with each

having Car and Bus subgroups for vehicle type car or bus. We created 10 vehicles and simulated

their movement using a python script which publishes MQTT message to shadows of these vehicles

with current GPS coordinates (generated using Google API [33]) iterated over green dots shown

in Figure 4.11. The area was demarcated into four locations and a moving vehicle belongs to a

subgroup in one of these groups. Assuming current location of Vehicle-1 as Location-D, and it

publishes MQTT message with payload:

{"state": {"reported": {"Latitude": "29.4769353",

"Longitude":"-98.5018237"}}}

to AWS topic: $aws/things/Vehicle-1/shadow/update, its new location changes to

Location-A and since we defined the vehicle type as car, it is assigned to Car-A group under

97

Figure 4.13: Attribute Based Policies in AWS

Location-A as shown by snippet in Figure 4.12. Both attributes, vehicle type and current coor-

dinates of vehicle, are used to dynamically assign groups, which is important in moving smart

vehicles. These functionalities are implemented as a stand alone service (can be enforced as a

Lambda service [27] function) using Boto [28] which is the AWS SDK for Python. Further, in

case of deer threat notification use-case, we simulated a location-sensor which senses deers in the

area and updates the attribute ‘Deer_Threat’ of location group to ‘ON’ or ‘OFF’, which is then

notified to all members of location and its subgroups. We defined an attribute-based policy to con-

trol which sensors can change the ‘Deer_Threat’ attribute of location groups. As shown in Figure

4.13, our policy for Deer_Threat operation checks that a motion sensor with ID = ‘1’ and current

groups of Location-A can update the attribute Deer_Threat for group Location-A, and if sensor is

relocated to Location-B it can update attribute for Location-B group only. This policy ensures that

the sensor must be in that location group for which it is updating Deer_Threat attribute.

The complete sequence of events performed in AWS along with our stand-alone service for

the administrative phase is shown in Figure 4.14. A moving vehicle updates its coordinates to

98

Figure 4.14: Sequence Diagram for Dynamic Groups and Attributes Assignment in AWS

AWS shadow service, which along with attributes of vehicles and location groups determines if

the vehicle can be member of the group using our external enforcement service. If authorization

policy allows vehicle to be a member of group, the vehicle and group is notified and vehicle

inherits all attributes of its newly assigned group. Similarly, if attribute ‘Deer_Threat’ of group

is allowed (by authorization policy) to be changed by the location sensor, the new values are

propagated to all its members. We implemented attribute inheritance from parent to child groups

through our service using update_thing_group and update_thing methods. In our use-

case attributes inheritance exist from Location-A to all both subgroups Car-A and Bus-A, and

to vehicles in Car-A and Bus-A. Therefore, when attribute ‘Deer_Threat’ is set to ON in group

Location-A, its new attributes using Boto describe_thing_group command are:

{‘Center-Latitude’: ‘29.4745’, ‘Center-Longitude’:

‘-98.503’,‘Deer_Threat’: ‘ON’}

99

This inherits the attributes to Car-A child group whose effective attributes will now be:

{‘Center-Latitude’: ‘29.4745’, ‘Center-Longitude’:

‘-98.503’,‘Deer_Threat’: ‘ON’, ‘Location’: ‘A’}

As shown in Figure 4.12, both Vehicle-1 and Vehicle-2 as member of group Car-A under Location-

A parent group, therefore the effective attributes of Vehicle-2 are:

{‘Center-Latitude’: ‘29.4745’, ‘Center-Longitude’:

‘-98.503’,‘Deer_Threat’: ‘ON’, ‘Location’: ‘A’,

‘Type’: ‘Car’, ‘VIN’: ‘9246572903752’, ‘thingName’:

‘Vehicle-2’}

Operational Phase: In this phase, attribute-based policies are used to restrict service and noti-

fication activities which may require single or multi-level policies along with user preferences.

In car-pooling use case, we defined policies to restrict notifications to only a subset of relevant

vehicles in specific locations. We simulated requestor in AWS needing car-pool. It has attribute

‘destination’ with value in Location-A, B, C or D. Requestor sends source and destination loca-

tion as MQTT message to AWS topic $aws/things/Requestor/shadow/update which

based on these attributes determine subgroups to which service requests is sent.

{"state": {"reported": {"policy":

"car_pool_notification", "source": "Location-A",

"destination": "Location-B"}}}

The policy for car_pool_notification operation (shown in Figure 4.13) suggests that if

current location of source requestor is ‘Location-A’ and destination location is somewhere in

‘Location-A’ then all members of sub-group Car-A should be notified. Similarly, if the destination

attribute is Location-B, then all members of Car-A, Car-B and Car-C needs notification. In our

100

Figure 4.15: Sequence Diagram for Attributes Based Authorization in AWS

use-case, all members of these sub-groups are notified. The policy restricts the number of vehicles

which will be requested as compared to all vehicles getting irrelevant notification (as they are far

from the requestor or are not vehicle type car) and illustrates the importance of location-centric

smart car ecosystem. Similarly, location-based marketing can be restricted and policies can be

defined to control such notifications.

User privacy policies take into effect once the subset of vehicles is calculated. These policies

encapsulate user preferences, for instance, in car pooling a particular driver is not going to the

destination requested by the requestor in his request, therefore notification will not be displayed on

his car dashboard. These local policies are implemented using AWS Greengrass [25] which allows

to run local lambda functions on the device (in our case a connected vehicle) to enable edge com-

puting facility, an important requirement in real-time smart car applications and enforce privacy

policies. Once accepted by drivers, a SNS (AWS Simple Notification Service) [29] message can

be triggered for requestor from accepting vehicles along with name and vehicle number. The se-

quence of events for car-pooling activity and multi-layer authorization policies together with user

personal preferences is shown in Figure 4.15.

Our proposed external service to implement ABAC policy decision and evaluation helps

101

Figure 4.16: Policy Enforcement Time and Scoping

achieve fine grained authorization needed in smart cars ecosystem. The implementation also

demonstrates dynamic groups assignment based on mobile vehicle GPS coordinates and attributes

along with groups based attributes inheritance which offer administrative benefits in enforcing an

ABAC model. In this entire implementation, no persistent data from moving vehicles is collected

or stored by the central authority hosted cloud which reaffirms its privacy preserving benefits.

4.8.3 Performance Evaluation

We evaluated the performance of our proposed CV-ABACG model in AWS and provide different

metrics when no policies were used against our implemented ABAC policies for the car-pooling

notification use-case. As shown in Figure 4.16, our external policy evaluation engine has average

time (in milliseconds) to decide on car-pooling service requests and provide the subset of cars

which are notified. This scoping ensures the service relevance as without a policy all 5 vehicles

were sent car-pool request (even when one was 20 miles away from the requestor), whereas with

attribute based policies only nearby cars are notified. The performance graph shown in Figure

4.17 compares no policy execution time (red line) against implemented ABAC policy (blue line).

Since, in our experiments the policy (shown in Figure 4.13) evaluated for each access requests is

the same, we get a linear graph as the number of access requests increase the number of times the

policy is evaluated and so is its total evaluation time. Some variation in red line is because of the

network latency time to access AWS cloud, although this can change based on the communication

technologies used by vehicles including 3G, LTE, cellular or DSRC [31]. Clearly, this external

102

Figure 4.17: Performance Evaluation

policy engine does have some impact on the performance against no policy when used with number

of vehicles. However, we believe when used in city wide scenario this time will be overshadowed

by the notification time to all vehicles against a subset of vehicles provided by the engine. Our

proposed model is focused to ensure relevance of service and data exchange to nearby drivers on

road which is well achieved even with a little tradeoff.

It should be noted that the sole purpose of this proof of concept is to showcase the practical

viability and use of security policies in context of smart cars, without the need to capture large

set of data points from real world traffic scenarios spread across wide geographic area and sizable

on-road moving vehicles. Such scaled setting will only stress the entire system without reflecting

any change in policy evaluation.

103

CHAPTER 5: BIG DATA SECURITY IN HADOOP ECOSYSTEM

In this chapter, we discuss authorization requirements in the widely used multi-tenant Big Data

processing framework, known as Hadoop. Hadoop ecosystem provides a highly scalable, fault-

tolerant and cost-effective platform for storing and analyzing variety of data formats. Apache

Ranger [7] and Apache Sentry [8] are two predominant frameworks used to provide authorization

capabilities in Hadoop. We first formalize the current access control model for Hadoop Ecosystem

and propose two extensions including Object-Tagged RBAC Model and fine grained ABAC model.

Significant portions of this chapter have been published at the following venues [85, 87]:

• Maanak Gupta, Farhan Patwa and Ravi Sandhu, Object-Tagged RBAC Model for the Hadoop

Ecosystem. In Proceedings of the 31st Annual IFIP WG 11.3 Working Conference on Data

and Applications Security and Privacy (DBSec 2017), July 19-21, 2017, Philadelphia, Penn-

sylvania, USA, pages 63-81.

• Maanak Gupta, Farhan Patwa and Ravi Sandhu, An Attribute-Based Access Control Model

for Secure Big Data Processing in Hadoop Ecosystem. In Proceedings of the 3rd ACM

Workshop on Attribute-Based Access Control (ABAC 2018), March 19-21, 2018, Tempe,

Arizona, USA, pages 13-24.

5.1 Introduction and Motivation

Over the last few years, enterprises have started harvesting data from ‘anything’ to discover busi-

ness and customer needs. It is estimated that 163 zettabytes of data will be generated annually

by year 2025 as quoted by IDC [11]. Such massive and varied collections of data, referred to as

Big Data, are considered 21st century gold for data miners. Enterprises gain useful insights from

analysis to offer targeted marketing, fraud detection, accident forecasting, traffic patterns and even

strong love matching. With volume, variety and velocity of data burgeoning, massive storage and

compute clusters are required for analysis. Data lake formed by the amalgamation of data from

these sources requires powerful, scalable and resilient, storage and processing platforms to reveal

104

the true value hidden inside this data mine.

Apache Hadoop [3] has established itself as an important open-source framework for cost-

efficient, distributed storage and computing of data in timely fashion. The platform offers resilient

infrastructure for sophisticated analytical and pattern recognition techniques for multi-structured

data. Hadoop ecosystem includes several open-source and commercial tools (Apache Hive [5],

Apache Storm [9], Apache HBase [4], Apache Ambari [2] etc.) built to leverage the full capabil-

ities of Hadoop framework. These tools along with Apache Hadoop 2.x core modules (Hadoop

Common, Hadoop Distributed File System (HDFS), YARN and MapReduce) empower users to

harness the potential of data assets.

As Hadoop is widely used in government and private sector, its security has been a major con-

cern and widely studied. Multi-tenant Data Lake offered by Hadoop, stores and processes sensitive

information from several critical sources, such as banking and intelligence agencies, which should

only be accessed by legitimate users and applications. Threats—including denial of resources, ma-

licious user killing YARN applications, masquerading Hadoop services like NameNode, DataN-

ode etc.—can have serious ramifications on confidentiality and integrity of data and ecosystem

resources. In year 2017 alone several instances of data breaches [21] were brought to the notice

of the world [11] which amplifies and emphasises the need for better cyber security and privacy

mechanisms. The distributed nature and platform scale of Hadoop makes it more difficult to protect

the infrastructure assets.

Apache Ranger [7] and Apache Sentry [8] are two important software systems used to provide

fine-grained access across several Hadoop ecosystem components. In this chapter we present the

multi-layer access control model for Hadoop ecosystem (referred as HeAC), formalizing the au-

thorization model in Apache Ranger (release 0.6) and Sentry (release 1.7.0) in addition to access

controls capabilities in core Hadoop 2.x. We further propose an Object-Tagged Role Based Access

Control (OT-RBAC) model which leverages the merits of RBAC and provides a novel approach

of adding object attribute values (called object tags) in RBAC model. We also outline extensions

to OT-RBAC to incorporate NIST proposed strategies [114] for adding attributes in RBAC. Im-

105

plementation and evaluation of OT-RBAC using Apache Ranger is also discussed in this chapter.

Further, we present a formalized attribute based access control model for Hadoop ecosystem, re-

ferred to as HeABAC. We also present an implementation approach for HeABAC using Apache

Ranger along with comprehensive real-world use cases to reflect the application and enforcement

of the proposed HeABAC model in Hadoop ecosystem.

5.2 Multi-layer Authorization

The most critical assets required to be secured in Hadoop involve services, data and service ob-

jects, applications and cluster infrastructure resources. In this section, we discuss the multi-layer

authorization capabilities provided in Hadoop ecosystem in line with Apache Hadoop 2.x, along

with access control features offered by Apache Ranger, Apache Sentry and Apache Knox [6].

5.2.1 Hadoop Services Access

The first layer of defense is provided by service level authorization which checks if a user

or application is allowed to access the Hadoop ecosystem services and Hadoop core dae-

mons. This check is done before data and service objects permissions are evaluated, thereby

preventing unauthorized access early in the access request lifecycle. ACLs (Access Con-

trol Lists) are specified with users and groups to restrict access to services. For exam-

ple, ACL security.job.client.protocol.acl is checked to allow a user to com-

municate with YARN ResourceManager for job submission or application status inquiry.

This layer also restricts cross-service communication to prevent malicious processes inter-

action with Hadoop daemon services (NameNode, ResourceManager etc.). Another ACL

security.datanode.protocol.acl is checked for interaction between DataNodes and

NameNode for heartbeat or task updates. A user making API requests to individual ecosystem

services like Apache Hive, HDFS, Apache Storm etc., is restricted by implementing single gate-

way (e.g Apache Knox [6]) access point—which enforces policies to allow or deny users to access

ecosystem services before operating on underlying objects.

106

5.2.2 Data and Service Objects Access

Hadoop Distributed File System (HDFS) enforces POSIX style model and ACLs for setting per-

missions on files and directories holding data. Multiple other ecosystem services require different

objects to be secured. For example, Apache Hive requires table and columns, whereas Apache

Kafka secures topic objects from unauthorized operations by users. Some services like Apache

Hive or Apache HBase also have native access control capabilities to secure different data objects.

Security frameworks like Apache Ranger or Sentry provide plugins for individual ecosystem ser-

vices, where centralized policies are set for different data and service objects. In Apache Ranger,

authorization policies can also be formulated on Tags, which are attribute values associated with

objects. For example, a tag PII can be associated with table SSN and a policy created for tag

PII. Such tag-based policy will then control access to table SSN. Tags allow controlling access to

resources along several services without need to create separate policies for individual services.

It should be noted that data access allowed at one service may be restricted by permissions at

underlying HDFS, thereby requiring user to have multiple object permissions at different services.

5.2.3 Application and Cluster Resources Access

Multi-tenant Hadoop cluster requires sharing of finite resources among several users, controlled

by Apache YARN capacity (or fair) scheduler queues in Hadoop 2.x. Queue level authorization

enables designated users to submit or administer applications in different queues. This restricts

user from submitting applications in cluster and prevents rogue users from deleting or modifying

other user applications. Further, cluster resources are not consumed by certain applications requir-

ing more resources as queues have limited resources allocated. It should be noted that application

owner and queue administrator can always kill or modify jobs in queue. These queues support

hierarchical structure where permissions to parent queues descend to all child queues. Hadoop

implements these authorization configurations using ACLs. Configuration file can also be associ-

ated with applications to specify users who can modify or kill an application. Access to cluster

nodes can be restricted by assigning node labels. Each queue can be associated with node labels to

107

Figure 5.1: Example Hadoop Ecosystem Authorization Architecture

restrict nodes where applications submitted to queues can run.

Figure 5.1 illustrates multi-layer authorization architecture provided in Hadoop ecosystem. An

authenticated user passes through several access control mechanisms to operate on objects and

services in Hadoop cluster. Gateway (such as Apache Knox) offers single access point to all REST

APIs and provides first layer of access control to check if services inside the cluster are allowed

access by outside users. Once user is approved through the gateway policy plugin, ecosystem ser-

vices apply policies cached from central policy manager to validate requests of user. User trying

to access objects (files, tables etc.) in ecosystem services like HDFS or Apache Hive (shown as

ES in Figure 5.1) is checked by policy plugins attached to the services to enforce access decisions.

A user wanting to submit an application or to get submitted application status should be allowed

through gateway policies to communicate with YARN ResourceManager. Apache YARN queue

permissions are then checked and enforced by plugin to know if a user is allowed to submit or ad-

minister application in queues. Cross-services access (between Hadoop daemons) for information

passing or task status update is mainly enforced using core Hadoop service ACLs.

As shown in Figure 5.1, security frameworks like Apache Ranger provides centralized Policy

adminstration (1-PAP) and information point (2-PIP). Enforcement and decision points (3-PEP,

108

Figure 5.2: A Conceptual Model of HeAC

4-PDP) are plugins attached to each service which cache policies periodically from central server

and enforce access decisions.

5.3 Hadoop Ecosystem Access Control Model

In this section we present the formal multi-layer access control model (HeAC) for Hadoop ecosys-

tem based on Apache Hadoop 2.x. The model also covers access capabilities provided by two

predominant Apache projects, Ranger (release 0.6) and Sentry (release 1.7.0). Apache Ranger

supports permissions through users and groups, while Sentry assigns permissions to roles which

are assigned to groups and via groups to member users. We will now discuss the formal definitions

of HeAC model as shown in Figure 5.2 and specified in Table 5.1.

The basic components of HeAC include: Users (U), Groups (G), Roles (R), Subjects (S),

Hadoop Services (HS), Operations (OPHS) on Hadoop Services, Ecosystem Services (ES), Data

and Service Objects (OB) belonging to Ecosystem Services, Operations (OP) on objects, and Ob-

109

ject Tags (Tag).

• Users, Groups, Roles and Subjects: A user is a human who interacts with the system to

access services and objects inside the Hadoop ecosystem. A group is a collection of users

in the system with similar organizational requirements. A role is a collection of permissions

which can be assigned to different entities in the system. Permissions are assigned to users,

groups or roles. In the current model roles can only be assigned to groups, thereby giving

permissions to member users of groups indirectly. A subject is an application running on

behalf of the user to perform operations in the Hadoop ecosystem. In HeAC model subjects

always run with full permissions of the creator user.

• Hadoop Services: These services are background daemon processes, like HDFS NameN-

ode, DataNode, YARN ResourceManager, ApplicationMaster etc., which provide core func-

tionalities in Hadoop 2.x framework. User access these services to submit applications, data

block recovery or application status updates. Besides interaction with end user, these dae-

mon services also communicate with each other for resource monitoring or task updates. It

should be noted that these services do not have objects associated with them.

• Operations on Hadoop Services: These are actions allowed on Hadoop services. In

most cases, the general action allowed is to access a service. For example, ACL

security.client.protocol.acl is used to determine which user is allowed to ac-

cess HDFS NameNode service. These ACLs are part of Hadoop native access control capa-

bilities (referred as service level authorization).

• Ecosystem Services: Data and objects inside the Hadoop ecosystem are accessed through

different platforms which we consider as Ecosystem Services. Example of such services

include Apache HDFS, Apache Hive, Apache HBase, Apache Storm, Apache Kafka etc.

These services can either have data objects (tables, columns) or other type of resources

(queues, topics) which they support. Access to the ecosystem services is first required before

110

operation on supported objects. We consider Data Services as one instance of Ecosystem

Services.

• Data and Service Objects: Ecosystem services manage different types of resources (ob-

jects) inside the cluster. For example, Apache HDFS supports files and directories, while

Apache HBase has data objects like column-family, cells etc. YARN manages queue objects

and Apache Solr has collections. These are resources which are protected from unauthorized

operations from users.

• Operations on objects: Multiple data and service objects support different operations to

perform actions on them. Apache Hive has select, create, drop, alter for tables and columns

while Apache HBase data objects (column family, column) support read, write, create etc.

YARN queues have operations to submit applications or administer the queue.

• Object Tags: Objects inside ecosystem can be assigned attributes based on sensitivity, con-

tent or expiration date. Such classification is done using attribute values called Tags. An

object can have multiple tags associated with it and vice versa. For example, PII tag can be

attached to sensitive data table SSN.

As shown in Table 5.1, a user can be assigned to multiple groups defined by directUG func-

tion. Groups are also assigned to multiple roles as reflected by function directGR. Relation

object-tag denotes a many-to-many relation between objects and associated attribute values called

tags. Hadoop ecosystem has two different sets of permissions to perform actions on services and

objects. OBJECT-PRMS is the set of data and service object permissions which is power set of

the cross product of ecosystem services (ES), objects (OB) or object tags (Tag), and operations

(OP). Here permissions can be set either on object or object tags, and policies can allow or deny

operations on the object based on its associated tags or the object itself. OBJECT-PRMS also

include ecosystem service as part of permission thereby taking into account the requirement of

service access before object operations. Another set of permissions called Hadoop service permis-

sions (HS-PRMS) is the power set of the cross product of HS and OPHS. These are required for

111

Table 5.1: Hadoop Ecosystem Access Control (HeAC) Model Definitions

Basic Sets and Functions
– U, G, R, S (finite set of users, groups, roles and subjects respectively)
– HS, OPHS (finite set of Hadoop services and operations respectively)
– ES, OB (finite set of ecosystem services and objects respectively)
– OP, Tag (finite set of object operations and object tags respectively)
– directUG : U→ 2G, mapping each user to a set of groups, equivalently UGA ⊆ U×G
– directGR : G→ 2R, mapping each group to a set of roles, equivalently GRA ⊆ G× R
– object-tag ⊆ OB×Tag, relation between object and object tags
– OBJECT-PRMS = 2ES×(OB ∪ Tag)×OP, set of data and service object permissions
– HS-PRMS = 2HS×OPHS , set of Hadoop services permissions

Permission Assignments
– PAHS ⊆ (U ∪G)×HS-PRMS, mapping entities to Hadoop service permissions. Alternatively,

hsprms : (x)→ 2HS-PRMS, defined as hsprms(x) = {p | (x,p) ∈ PAHS, x ∈ (U ∪ G)}
– PAES ⊆ (U ∪G ∪ R)×OBJECT-PRMS, mapping entities to object permissions. Alternatively,

esprms : (x)→ 2OBJECT-PRMS, defined as esprms(x) = {p | (x,p) ∈ PAES, x ∈ (U ∪ G ∪ R)}

Hadoop Cross Services Access
– PAHS-HS ⊆ HS × HS-PRMS, mapping Hadoop service to Hadoop service access.

Alternatively, hs-hsprms : (hs:HS)→ 2HS-PRMS, defined as
hs-hsprms(hs) = {p | (hs,p) ∈ PAHS-HS }

Effective Roles of Users (Derived Functions)
• effectiveR : U→ 2R, defined as effectiveR(u) =

⋃
∀g ∈ directUG(u)

directGR(g)

Effective Permissions of User
• effectiveHSprms : U→ 2HS-PRMS, defined as

effectiveHSprms(u) = hsprms(u) ∪
⋃

∀g ∈ {directUG(u)}
hsprms(g)

• effectiveESprms : U→ 2OBJECT-PRMS, defined as
effectiveESprms(u) = esprms(u) ∪

⋃
∀x ∈ {directUG(u) ∪ effectiveR(u)}

esprms(x)

User Subject
• userSub : S→ U, mapping each subject to its creator user, where the subject

gets all the permissions of the creator user.

Ecosystem Service Object Operation Decision
A subject s ∈ S is allowed to perform an operation op ∈ OP on an object ob ∈ OB
in ecosystem service es ∈ ES if the effective object permissions of userSub(s) include
permissions for object ob or for tag t ∈ Tag associated with object ob. Formally,
(es,ob,op) ∈ effectiveESprms (userSub(s)) ∨
(∃ t) [(ob,t) ∈ object-tag ∧ (es,t,op) ∈ effectiveESprms (userSub(s))]

112

application submission or other non-data or object operations. Depending on the type of operations

to be performed, a user may require either one or both type of permissions.

A many-to-many relation PAHS specifies the assignment of HS-PRMS to users or groups.

In this way a user can be assigned HS-PRMS directly or through group membership.

OBJECT-PRMS can be assigned to users, groups or roles (shown by PAES). A group can get

the object permissions directly or through roles, which will then enable it to the member users. It

should be noted that a user may need multiple data object permissions across several data services

to operate on a data object. For example, in case of Apache Hive table, besides having permission

on the table, a user may be required to have permissions on the underlying data file in HDFS.

PAHS-HS encapsulates the access requirement between several Hadoop services inside the cluster

for task updates or resource monitoring (e.g. communication between DataNodes and NameN-

ode). The effective roles of user are covered by effectiveR which is union of roles assigned to

all member groups. The effective permissions on Hadoop services attained by user (reflected by

effectiveHSprms) is the direct permissions on HS and permissions inherited through group member-

ship. The final set of ES object permissions for a user is union of direct permission and permissions

assigned through group membership and effective roles as shown in effectiveESprms.

A subject is created by a user as expressed by userSub. It inherits all the permissions assumed

by the user to perform actions. In last section of Table 5.1, a subject is allowed to perform oper-

ations on objects in ES service depending on either direct permission on objects or permission on

tags associated with objects.

5.4 Object-Tagged RBAC Model

In this section we present Object-Tagged Role-Based Access Control model for the Hadoop

Ecosystem, which we denote as OT-RBAC. With respect to HeAC model, this model assigns both

objects and Hadoop service permissions to users only through roles, consistent with the basic prin-

ciple of RBAC. The model presents a novel approach for combining attributes and RBAC [144] be-

sides NIST proposed approaches (i.e., Dynamic Roles, Attribute-Centric and Role Centric) [114].

113

Figure 5.3: Conceptual OT-RBAC Model for Hadoop Ecosystem

Hence the convenient administrative benefits of RBAC, along with a finer-grained attributes autho-

rization using object tags, are incorporated in this model.

5.4.1 Model Definitions

The conceptual model for OT-RBAC is shown in Figure 5.3 followed by formal definitions in

Table 5.2 and Table 5.3 (continued). The remainder of this section discusses the new and modified

components introduced in OT-RBAC model (marked ** and †† respectively in Table 5.2 and 5.3)

with respect to HeAC model. In OT-RBAC model users are directly assigned to multiple roles

specified by function directUR. Group hierarchy (GH) is introduced into the system, defined by

a partial order relation on G and written as �g. The inheritance of roles is from low to high, i.e.,

g1 �g g2 means g1 inherits roles from g2. In such cases, we say g1 is the senior group and g2 is

the junior group. The HS-PRMS and OBJECT-PRMS permissions are assigned to roles only,

specified by many-to-many relations PAHS and PAES respectively. This is modified with respect

114

to the original HeAC, where HS-PRMS were assigned to users or groups and OBJECT-PRMS

to user, groups or roles also. This reflects the advantage of RBAC model where permissions are

allotted or removed from users by granting or revoking their roles. Both OBJECT-PRMS and

HS-PRMS can be assigned to same role in the Hadoop ecosystem.

With group hierarchy (GH), the effective roles of a group (expressed by effectiveGR) is the

union of direct roles assigned to group and effective roles of all its junior groups. It should be

noted that this definition is recursive where the junior-most groups have same direct and effective

roles. The effective roles of the user (defined by effectiveR) is then the union of direct user roles

and effective roles of the groups to which the user is directly assigned. For example, assuming

group Grader is assigned roles Student and Graduate and a senior group TA is assigned to role

Doctoral. Then the effective roles of group TA would be Student, Graduate and Doctoral. A

user u1 can be directly assigned to role Staff. If u1 also becomes a member of group TA, u1 has

the effective roles of Student, Graduate, Doctoral and Staff. The important advantage of user

group membership is convenient assignment and removal of multiple roles from users with single

administrative operation.

A subject S (similar to sessions in RBAC [72]) created by the user can have some or all of

the effective roles of the creator user. The effective permissions available to a subject (expressed

by effectiveESprms and effectiveHSprms) will then be the object and Hadoop service permissions

assigned to all the effective roles activated by the subject. A subject might need to have multiple

permissions to access different services or objects inside Hadoop ecosystem which may result in

requiring multiple roles. The prime advantage of OT-RBAC model over HeAC model is the as-

signment of permissions only to roles instead of assigning directly to users and groups. Further it

introduces the concept of group hierarchy which results in roles inheritance and eases administra-

tive responsibilities of the security administrator. Also including group hierarchy makes OT-RBAC

model easier to fit into attributes based models where role is one of the other attributes. In such

case group hierarchy can be very useful in attributes inheritance offering convenient administration

by assigning or removing multiple attributes to users with single administrative operation [153].

115

Table 5.2: Formal OT-RBAC Model Definitions

Basic Sets and Functions
– U, G, R, S (finite set of users, groups, roles and subjects respectively)
– HS, OPHS (finite set of Hadoop services and operations respectively)
– ES, OB (finite set of ecosystem services and objects respectively)
– OP, Tag (finite set of object operations and object tags respectively)
– directUG : U→ 2G, mapping each user to a set of groups, equivalently UGA ⊆ U×G
– **directUR : U→ 2R, mapping each user to a set of roles, equivalently URA ⊆ U× R
– directGR : G→ 2R, mapping each group to a set of roles, equivalently GRA ⊆ G× R
– **GH ⊆ G×G, a partial order relation �g on G
– object-tag ⊆ OB×Tag, relation between object and object tags
– OBJECT-PRMS = 2ES×(OB ∪ Tag)×OP, set of data and service object permissions
– HS-PRMS = 2HS×OPHS , set of Hadoop services permissions

††Role Permission Assignments
– PAHS ⊆ R×HS-PRMS, mapping roles to Hadoop service permissions. Alternatively,

hsprms : (r:R)→ 2HS-PRMS, defined as hsprms(r) = {p | (r,p) ∈ PAHS }
– PAES ⊆ R×OBJECT-PRMS, mapping roles to object permissions. Alternatively,

esprms : (r:R)→ 2OBJECT-PRMS, defined as esprms(r) = {p | (r,p) ∈ PAES }

Hadoop Cross Services Access
– PAHS-HS ⊆ HS × HS-PRMS, mapping Hadoop service to Hadoop service access.

Alternatively, hs-hsprms : (hs:HS)→ 2HS-PRMS, defined as
hs-hsprms(hs) = {p | (hs,p) ∈ PAHS-HS }

††Effective Roles of Users (Derived Functions)
• effectiveGR : G→ 2R, defined as

effectiveGR(gi) = directGR(gi) ∪ (
⋃

∀g ∈ {gj|gi �g gj}
effectiveGR(g))

• effectiveR : U→ 2R, defined as
effectiveR(u) = directUR(u) ∪ (

⋃
∀g ∈ directUG(u)

effectiveGR(g))

††Effective Roles and Permissions of Subjects
• userSub : S→ U, mapping each subject to its creator user
• effectiveR : S→ 2R, mapping of subject s to a set of roles. It is required that :

effectiveR(s) ⊆ effectiveR(userSub(s))
• effectiveHSprms : S→ 2HS-PRMS, defined as effectiveHSprms(s) =

⋃
∀r ∈ effectiveR(s)

hsprms(r)

• effectiveESprms : S→ 2OBJECT-PRMS, defined as effectiveESprms(s) =
⋃

∀r ∈ effectiveR(s)

esprms(r)

** and †† highlight new and modified components respectively with respect to HeAC

116

Table 5.3: Formal OT-RBAC Model Definitions (Continued)

Ecosystem Service Object Operation Decision
A subject s ∈ S is allowed to perform an operation op ∈ OP on an object ob ∈ OB in
ecosystem service es ∈ ES if the effective object permissions of subject s include permissions
to object ob or to tag t ∈ Tag associated with object ob. Formally,
(es,ob,op) ∈ effectiveESprms (s) ∨
(∃ t) [(ob,t) ∈ object-tag ∧ (es,t,op) ∈ effectiveESprms (s)]

** and †† highlight new and modified components respectively with respect to HeAC

The proposed OT-RBAC model presents a novel approach for adding attributes to RBAC (be-

sides NIST strategies [114]), by introducing object tags. The model represents object permissions

(OBJECT-PRMS) as union of permissions on attribute values (reflected as tags) associated with

objects and regular permissions as discussed in RBAC [144]. In the following section, we propose

an implementation approach for OT-RBAC using open-source Apache Ranger.

5.4.2 Implementation and Evaluation

One approach to implement OT-RBAC model is by extending open-source Apache Ranger which

provides centralized security administration to multiple Hadoop ecosystem services. It offers

REST API to create security policies which are enforced using plugins appended to each se-

cured service. These plugins intercept a user access request, and check against policies cached

sporadically from policy server to make access decisions. Apache Ranger 0.5 and above provide

extensible framework to add new authorization functionalities by offering context enricher and

condition evaluator hooks. Context enricher is a Java class which appends user access request with

additional information used for policy evaluation. Condition evaluator enables a security archi-

tect to add custom conditions to policies. These hooks can be used to extend plugins to enforce

OT-RBAC in Hadoop ecosystem.

Proposed Apache Ranger architecture for Hive service authorization is shown in Figure 5.4.

Users and groups are stored in Lightweight Directory Access Protocol (LDAP), which are synced

to Ranger policy manager to create policies. A text file is added which stores current users to roles

117

Figure 5.4: Proposed Implementation in Apache Ranger and Sample JSON Policy

assignment. This file is used by context enricher implemented, to add roles of user to access request

along with objects and actions. A condition evaluator should also be implemented to include roles

in policy used for evaluation. A sample policy in JSON format is shown in Figure 5.4. This

policy includes roles in condition which specifies the roles allowed to perform select operation

on table foodmart. Hive service definition should be updated with new context and condition

hooks information using REST API. Access decision and enforcement is done in Ranger plugin

embedded with Hive service whereas policy administration and information is through central

policy server as shown in Figure 5.4. Similar implementation approach can be adopted in other

ecosystem services also. This proposed implementation requires roles addition at two places, one

in text file and other in policy conditions which requires extra effort by administrator.

We simulated the effect of roles using groups in Apache Ranger where a set of users were

assigned permissions directly and another set via group membership. Users and groups were

synced from Active Directory (FreeIPA v3.0.0) and access policy for Hive service was created

using Ranger API. A 6 node Hadoop cluster (with CentOS6 and 1Gbps network speed) each hav-

ing 500GB disk space, 32GB RAM and 8 CPU Intel 2.5GHz was set up, with a separate client node

118

Figure 5.5: Performance Evaluation

having 32 CPU Intel Core i7 2GHz to send access requests. As shown in Figure 5.5, the average

execution time for user access request is same (with marginal reading error) for users getting direct

permissions compared to users which are assigned permissions through roles. Hence, in can be

conjectured that OT-RBAC model provides convenient permission-assignment benefits of RBAC

without impacting execution time of user requests.

5.5 Attributes Based Extensions to OT-RBAC

This section outlines some approaches for adding attributes in OT-RBAC model to achieve finer-

grained access control. OT-RBAC model incorporates tags for objects, which is further generalized

by introducing set of object attributes along with attributes for other entities. As shown in Figure

5.6, UA is a set of attributes for users and groups, and OA is a set of attributes for data and service

objects. HSA and ESA are set of attributes for HS and ES. An attribute is a function which takes

as input an entity and returns values from a specified range [105]. Attribute-based authorization

policies are used to determine access permissions of users on services and objects. With group

hierarchy, senior groups inherit attributes from junior groups [88], and a user assigned to senior

groups gets all attributes of group besides its direct attributes. A set of environment attributes is

119

Figure 5.6: Adding Attributes to OT-RBAC Model

also added to incorporate contextual information (like access time, threat level) in policies.

We outline how an attribute enhanced OT-RBAC model, along the lines of Figure 5.6, can

incorporate NIST proposed strategies [114] for adding attributes in RBAC, i.e., Dynamic Roles,

Attribute Centric and Role Centric. We discuss these in context of objects permissions assignment.

These approaches can be similarly applied to Hadoop services permissions assignment also.

5.5.1 Dynamic Roles

Dynamic Roles approach considers user and environment attributes to determine roles of a user.

This automated approach require rules defined using a policy language [36] composed of attributes

and resulting roles. The roles of the user will change based on the user’s current attributes as well

as current environment attributes. As shown in Figure 5.7, OT-RBAC model can be configured to

achieve dynamic roles assignment to users based on the direct or inherited attributes through group

memberships [88]. We can further extend the use of attributes for dynamic permissions assignment

120

Figure 5.7: Dynamic Roles and Object Permissions in OT-RBAC

to roles based on object tags, environment attribute values and operations.

As shown in Figure 5.7, a user u1 with attribute jobTitle value director and environment at-

tribute optMode value normal can be assigned an Admin role, which can change to role Faculty

when attribute optMode changes to emergency value. Similarly, a permission containing operation

write on object ob with tag value PII can be assigned to role Admin which can further change to

role Faculty when tag changes to PCI.

5.5.2 Attribute Centric

In this approach, access decision is based on attributes of entities (role is also an attribute) where

authorization policies comprise attributes of subjects, objects or environment [99, 105, 178]. To

configure OT-RBAC with attribute centric strategy, boolean authorization functions are defined

using propositional logic formula for each operation in OP which specify policy if subject s can

perform operation op on object ob in ecosystem service es under some environment attributes.

As shown in Figure 5.8, authorization policy is defined stating that subject s with effective

attribute jobTitle value director is allowed to perform write on object ob with attribute tag value

PII in ecosystem service es with name hdfs when environment attribute optMode is normal. It

121

Figure 5.8: Attribute Centric approach in OT-RBAC

should be noted that object ob must belong to ecosystem service es and subject must be allowed

to access es (expressed by access(s,es)) before performing any operation on object in es. Similar

authorization policy for read operation can be defined by administrators.

5.5.3 Role Centric

In this approach the maximum permissions (avail_prms) are assigned to user through roles assign-

ment (similar to RBAC [144]) but the final set of permissions (final_prms) is dependent on the

attributes of entities. Permission Filtering boolean functions are defined based on the attributes,

which are checked for each permission in avail_prms set available to users via roles, to determine

the final_prms set assigned to the users as discussed in [108].

Assume user u1 assigned to role Admin then u1 gets permissions (avail_prms) of writing to

hdfs service file customer and reading a file having PII tag. These permissions are checked against

filter functions selected using target functions discussed in [108]. As shown in Figure 5.9, filter

function FAdmin1 is invoked to check if first permission is in final_prms set. The function checks

if creator user of s has jobTitle attribute with value director and optMode is normal to avail this

permission. If it returns true, the permission will be included in final set (final_prms). Similar filter

function can be called for other permissions also.

122

Figure 5.9: Role Centric approach in OT-RBAC

5.6 Attribute Based Access Control for Hadoop Ecosystem

Attribute based access control is known to offer flexible fine grained authorization capabilities

by introducing the characteristics of subjects, objects, environment or context in access control

decision. Such mechanisms are required in complex distributed systems like Hadoop where multi-

tenant data lake is being accessed at varied data granularity levels by multiple users at different

time, locations and conditions. Real-world use-cases like a user allowed to access data only from a

particular location or IP address or at a specific time are very common and most conveniently ad-

dressed by attribute based systems. We will now define the attribute based access control model for

Hadoop ecosystem, referred as HeABAC and shown in Figure 5.10. The complete formalization

of HeABAC model is given in Table 5.4.

5.6.1 HeABAC Model Definitions

The basic sets of HeABAC model involve the previously defined access control components —

Users (U), Groups (G), Subjects (S), Hadoop Services (HS), Ecosystem Services (ES), Data and

service objects (OB), Operations on objects in Ecosystem Services (OP), Operations on Hadoop

123

Figure 5.10: The Conceptual HeABAC Model for Hadoop Ecosystem

Services (OPHS), as elaborated in Section 5.3 and stated in Table 5.4. Some of these entities have

characteristics which are used in access control decision and are expressed as their attributes. User

attributes (UA) is the set of user attributes for users, groups and subjects. Object attributes (OA) is

the set of object attributes assigned to data and service objects (OB). Ecosystem service attribute

(ESA) and Hadoop service attribute (HSA) are the set of attribute functions which can be assigned

to Ecosystem services (ES) and Hadoop Services (HS) respectively. Users, groups, Hadoop or

ecosystem services and objects can be assigned attribute values directly for an attribute function

att (in their respective sets) from the set of atomic values in the range, denoted by Range(att).

Attribute functions in UA are required to be only set valued whereas for other sets OA, ESA and

HSA both set and atomic valued functions are allowed. Each attribute function in UA, denoted by

attu, will map a user or group to a set of values in power set of Range(attu). Similarly, attribute

functions in OA, ESA and HSA map OB, ES and HS respectively to one or subset of attribute

values from the range depending on atomic or set valued attribute type as shown in Table 5.4.

Users are assigned to multiple groups (defined by many to many function directUG) to achieve

simplified administration of attributes. When a user is made member to a group, the user inherits

all attributes of the group, whereby multiple attributes can be assigned or removed from a user by

124

Table 5.4: Formal ABAC Model Definitions for Hadoop Ecosystem

Basic Sets and Functions
– U, G, S are finite sets of users, groups and subjects respectively.
– HS, ES are finite sets of Hadoop services and ecosystem services respectively.
– OB, OP are finite sets of objects and object operations respectively.
– OPHS is a finite set of operations on Hadoop services.
– UA, OA are finite sets of user and object attribute functions respectively.
– ESA, HSA are finite sets of ecosystem and Hadoop service attribute functions respectively.
– For each attribute att in UA ∪ OA ∪ ESA ∪ HSA, Range(att) is a finite set of atomic values.
– attType: UA = {set}, defines user attributes to be set valued only.
– attType: OA ∪ ESA ∪ HSA = {set, atomic}, defines other attributes to be set or atomic.
– For each attribute attu in UA, attu : U ∪ G→ 2Range(attu) mapping each user or group to a

set of attribute values in Range(attu).
– Each attribute attob in OA maps objects in OB to attribute values.

Formally, attob : OB→

{
Range(attob) if attType(attob) = atomic
2Range(attob) if attType(attob) = set

– Each attribute attes in ESA maps services in ES to attribute values.

Formally, attes : ES→

{
Range(attes) if attType(attes) = atomic
2Range(attes) if attType(attes) = set

– Each attribute atths in HSA maps services in HS to attribute values.

Formally, atths : HS→

{
Range(atths) if attType(atths) = atomic
2Range(atths) if attType(atths) = set

– directUG : U→ 2G, mapping each user to a set of groups, equivalently UGA ⊆ U×G
– GH ⊆ G×G, a partial order relation �g on G

Effective Attributes of Users (Derived Functions)
– For each attribute attu in UA,
• effectiveGattu : G→ 2Range(attu), defined as

effectiveGattu(gi) = attu(gi) ∪ (
⋃

g ∈ {gj|gi �g gj}
effectiveGattu(g)).

– For each attribute attu in UA,
• effectiveUattu : U→ 2Range(attu), defined as

effectiveUattu(u) = attu(u) ∪ (
⋃

g ∈ directUG(u)

effectiveGattu(g)).

Effective Attributes of Subjects
– userSub : S→ U, mapping each subject to its creator user.
– For each attribute attu in UA, effectiveUattu : S→ 2Range(attu), mapping subject s to a set of

values for its effective attribute attu.
It is required that : effectiveUattu(s) ⊆ effectiveUattu(userSub(s)).

Cross Hadoop Services Trust
– trusted-services : HS→ 2HS is a required function to map Hadoop services to a set of trusted

Hadoop services. Equivalently, relation service trust written as E ⊆ HS × HS, where
hsa E hsb iff hsb ∈ trusted-services(hsa), meaning trustee service hsb is trusted by trustor
service hsa and Hadoop service hsb can access service hsa.

125

Table 5.5: Formal ABAC Model Definitions for Hadoop Ecosystem (Continued)

Authorization Functions
– Service Authorization Function: For each op ∈ OPHS, Authorizationop(s : S, sr : HS ∪ ES)

is a propositional logic formula returning true or false, which is defined using the following
policy language:
• α ::= α ∧ α | α ∨ α | (α) | ¬α | ∃ x ∈ set.α | ∀ x ∈ set.α | set4 set | atomic ∈ set |

atomic /∈ set
• 4 ::= ⊂ | ⊆ | * | ∩ | ∪
• set ::= effectiveattu(s) | attsr(sr) for attu ∈ UA, sr ∈ ES ∪ HS, attType(att) = set
• atomic ::= attsr(sr) | value sr ∈ ES ∪ HS, attType(att) = atomic

– Data or Service Objects Authorization Function: For each op ∈ OP on objects ob ∈ OB
belonging to ecosystem service es ∈ ES, Authorizationop(s : S, es : ES, ob : OB) is a
propositional logic formula returning true or false, which is defined using the policy language
stated above with following changes
• set ::= effectiveattu(s) | attes(es) | attob(ob) for attu ∈ UA, attType(att) = set
• atomic ::= attes(es) | attob(ob) | value attType(att) = atomic

Access Operation Decision
– A subject s ∈ S is allowed to perform an operation op ∈ OPHS on a service sr ∈ ES ∪ HS

if the effective attributes of subject s and attributes of services satisfy policies stated in
Authorizationop(s : S, sr : HS ∪ ES). Formally,
Authorizationop(s : S, sr : HS ∪ ES) = True.

– A subject s ∈ S is allowed to perform an operation op ∈ OP on an object ob ∈ OB
in ecosystem service es ∈ ES if subject is allowed to access services es and the effective
attributes of subject s, the attributes of object ob and service es satisfy policies in
Authorizationop(s : S, es : ES, ob : OB). Formally,
Authorizationaccess(s : S, es : ES) = True ∧ Authorizationop(s : S, es : ES, ob : OB) = True.

just a single administrative action. Further, group hierarchy (GH) also exists in the system (shown

as self loop on G), defined using a partial order relation on G and denoted by �g, where g1 �g

g2 signifies g1 is senior to g2 and g1 will inherit all the attributes of g2. Therefore, for attribute

attu, the effective values for group g1 is the union of values directly assigned to g1 for attu and

the effective values of attu for all the junior groups to g1, as defined by effectiveGattu(g1). The

effective attribute values of a user for attribute attu will then be the directly assigned values to user

for attu and the effective attribute values of attribute attu for all the groups to which user is directly

assigned. For example, if group g1 has attribute role with value Chair, and a junior group g2 has role

with value Faculty, then the effective values of attribute role for group g1 will be Chair and Faculty.

Further, when a user is assigned to group g1, it will inherit all values of attribute role (i.e. Chair and

126

Faculty) besides the values directly assigned to user, as further elaborated in [88, 153]. A subject

which is created by the user (denoted by function userSub) inherits subset or all the values of

effective attributes of the creator user as stated by effectiveUattu(s) ⊆ effectiveUattu(userSub(s)).

These values can change with time but must not exceed values of the creator user.

In Hadoop ecosystem, several Hadoop services interact or access other Hadoop services for

task updates or cluster resource status (like HDFS NameNode and DataNode or YARN Resource-

Manager and ApplicationMaster). We refer to this type of interaction as Cross Hadoop Service

Trust in Table 5.4 (stated as trusted-services), determining which Hadoop services are allowed

to access other services. In this cross service relation, we introduce the notion of Cross Hadoop

service trust as a many to many relation where HSA E HSB denotes that HSB is a trusted ser-

vice by HSA and therefore, HSB is allowed to access or interact with HSA. In this case HSB is a

trustee service and HSA is a trustor service, and trust relation existence is controlled by HSA. This

trust relation obviates the need to specify ACLs as done in HeAC model. For example, a service

level authorization ACL security.datanode.protocol.acl controls which DataNodes

are allowed to communicate with NameNodes. In such cases, a DataNode running as datanode1

can access service NameNode namenode1, if cross service trust relation is established between

them i.e. namenode1 E datanode1. Different types of cross Hadoop service trust relations can

exist in the system which are discussed further in the next subsection.

5.6.2 Concept of Cross Hadoop Services Trust

Cross Hadoop service trust determines which two Hadoop services can interact with each other.

Our definition of trust relations are primarily unidirectional and involves only two Hadoop services,

a trustor and trustee. We assert that trust is established unilaterally by the trustor, and can only be

revoked or modified by the trustor.

The cross Hadoop trust relation E is a binary relation established between trustor and trustee

services. A service can be a trustor in one relation and trustee in another. This relation has the

following defining properties, for Hadoop services hsa, hsb, hsc ∈ HS:

127

• Reflexive: A Hadoop service must always trust itself, meaning hsa E hsa.

• Non Transitive: The Cross Hadoop service trust relation is always defined by the trustor

and cannot be inferred from any indirect combinations of other trust relationships i.e.

hsa E hsb ∧ hsb E hsc ; hsa E hsc.

• Non Symmetric and Non Asymmetric: This characteristic states that the trust relation is

always unidirectional and is also independent in each direction i.e.

hsa E hsb ; hsb E hsa and hsa E hsb ∧ hsb E hsa ; hsa ≡ hsb.

We will now identify and discuss four potential types of trust relations to enable cross Hadoop

services access control. The type of relation is determined by who controls the existence of trust

relation and who controls access to the service. These types of relations are analogous and adapted

from the trust relation types discussed in [137, 160–162].

Type-α. In this relation, trustor grants access to trustee and the relation is controlled (exists or

created) by the trustor. For example, if hsa Eα hsb, then Hadoop service hsa authorizes service

hsb to access hsa, and the relation is controlled by hsa and service access is also controlled by hsa.

This type of relation are most intuitive and for simplicity, is used in our HeABAC model.

Type-β. In this relation, trustee grants access to trustor and the relation is still controlled by trustor.

For example, if hsa Eβ hsb, then Hadoop service hsb authorizes service hsa to access hsb, and the

relation is controlled by hsa and service access is also controlled by hsa without the consent from

service hsb.

Type-γ. In this relation, trustee controls access of trustor and the relation is still controlled by

trustor. For example, if hsa Eγ hsb, then Hadoop service hsb authorizes service hsa to access hsb.

Here the relation is controlled by hsa but service access is controlled by Hadoop service hsb.

Type-δ. In this relation, trustee takes access from trustor by approving or denying access. For

example, if hsa Eδ hsb, then Hadoop service hsa authorizes service hsb to access hsa, and the

relation existence is controlled by hsa but the service access is controlled by the consent of hsb.

128

Figure 5.11: Proposed HeABAC Implementation in Apache Ranger

5.6.3 HeABAC Implementation Approach

Apache Ranger and Apache Sentry are two dominant open-source security projects in Hadoop

ecosystem which are focussed in offering authorization and access control capabilities in several

ecosystem projects including Apache Hive, HBase, Kafka etc. Both Apache Ranger and Sentry

provides security plugins which are attached to different ecosystem services which needs to be

protected. Every access request by a user is intercepted by these plugins which check the security

policies defined by the administrator using REST API or user interface, to decide and enforce

access control decisions. Apache Ranger currently offers some fine grained extensions where

attributes of a user are embedded into the access request using context enricher. These context

enrichers are Java class which enriches the request of the user with extra information which is used

in the security policy conditions to approve or deny request. These conditions are evaluated using

condition evaluators which are also defined in Apache Ranger. For example, is a user Alice wants

to access an object obj1 but the policy specifies that user Alice can only access resource obj1 if

time is after 10 pm, then, the context enricher will add on the current time into the access request

129

of the user Alice and the condition evaluator will check if the access request complies with the

time condition specified in the policy.

Our proposed implementation of HeABAC extends the current context enricher and condition

evaluators in Apache Ranger. We propose that context enricher will not only be used for enriching

user information but also for services and objects in the access request. As shown in Figure 5.11,

the security administrator will add text files for different users, objects and services into the sys-

tem with their relevant attributes. These files will then be used by context enricher implemented,

which will add attributes of users, services and objects in the access request. Similarly, condition

evaluators also need to be extended to incorporate the attributes of objects and services in policies,

which will be also evaluated when the enriched access request with attributes is checked against

a defined security policy. Here, the administration of policies is done through the central policy

server while the decisions and enforcement are made by Apache Ranger security plugins attached

with the individual services as shown in Figure 5.11.

5.7 Use Cases and HeABAC Application

In this section we illustrate some important use-cases to emphasise the use and benefits of fine

grained and flexible attribute based access control in Hadoop ecosystem. These use-cases will

reflect real world scenarios and will cover different access control requirements as discussed in

earlier sections of this chapter. In these use-cases we consider that users have already been authen-

ticated by some external mechanisms and data is already ingested into the Hadoop system before

access control comes into enforcement.

Internet of Things is a growing buzz among different businesses, and several enterprises are

harnessing the potential it offers. It has spread itself to different spheres of our life including health,

smart homes and more recently to smart city and transportation. Vehicular Internet of Things is

the future where vehicles and road infrastructure will be communicating with each other. These

vehicles will be generating lot of data ranging from car sensor readings, road conditions or even

driver health vitals to be analysed by different stake-holders for better and life saving services to

130

Figure 5.12: IoT Use-Case Illustrating ABAC Access Control in Hadoop Ecosystem

the customers. Let us suppose, a connected vehicle from car manufacturer Toyota is running on the

road and is continuously generating data, which is stored in multi-tenant Hadoop data lake. This

stored data can be used by various entities, including the car dealer or manufacturer for diagnostic

services, by transportation or police department for over-speeding check, by insurance company to

understand driver driving behaviour or by a doctor who is continuously monitoring the heart-rate

of the patient driver. Each of these users must have different levels of access to data in the Hadoop

data lake and are only required to know what they should need to know to perform their functions

following the principle of least privileges, and without compromising the integrity and privacy of

data. Further, for analysis purposes these users will be also running jobs or applications in the

Hadoop cluster, which must cater the needs of all users without unwarranted resource constraints.

Figure 5.12 illustrates the use cases to reflect the importance of attribute based system in

such distributed and multi-tenant environment like Hadoop. In this case, a user Alice is as-

signed to a Dealer group, which makes it inherit the attributes of Dealer group, yielding the ef-

fective attributes for Alice. Here, the attributes of Dealer group (companyName: mccombs,

address: spring-well drive, dealership: Toyota) are added to the di-

131

rect attributes of Alice user (certification: ASE, department: diagnostic,

role: technician). The benefits of user to group assignment are evident, since with sin-

gle administrative operation all the attributes of Dealer group are assigned to Alice. Further, when

Alice creates a subject, the subject inherits subset of the effective attributes of Alice. Also, other

entities shown such as Hadoop services (datanode, NameNode), Ecosystem service (hive) and

object (Table car1) in the system, are also assigned direct attributes by a security administrator.

Security policies are defined by the architect and stored in the central policy server. Cross Hadoop

services trust relation is also established which will be discussed more in the following part of this

section. The numbers in the figure define the sequence of access control process where the subject

is first created, which initiates requests to perform different operations on objects and services.

These requests are intercepted by the access control decision and enforcement point (shown as

rhombus), which will retrieve polices from the central server to make an access control decision.

Let us assume that the following security policy (referred as policy 1) is created by an admin-

istrator in the system to control access to some Ecosystem service:

Authorizationaccess(s:S, es:ES) ≡

diagnostic ∈ effectivedepartment(s) ∧ technician ∈

effectiverole(s) ∧ serviceType(es) = HIVE ∧ createdBy(es) =

admin1

This policy states that a user (or subject) belonging to diagnostic department with technician role

can access ecosystem service of type HIVE which was created by admin1. Clearly, if subject s

: S created by a user and an ecosystem service es : ES satisfy the stated policy condition (i.e.

evaluates to True), then access operation will be granted on service es to subject s. This policy can

be enforced by Apache Knox [6], which offers a single point gateway to multiple services inside

Hadoop ecosystem. Another security policy (referred as policy 2) is created to determine if select

operation is allowed by a subject s : S on an object ob : OB in ecosystem service es : ES:

Authorizationselect(s:S, es:ES, ob:OB) ≡

Authorizationaccess(s:S, es:ES) = True ∧ diagnostic ∈

132

effectivedepartment(s) ∧ effectiverole(s) ∈ readerType(ob) ∧

tableType(ob) = sensor-data ∧ car(ob) = FVR1234

This policy requires a subject to perform select operation on an object ob belonging to Ecosystem

service es if the user belongs to diagnostic department and the effective roles of the user belong to

readerType attribute of the object, tableType attribute of object having value sensor-data and car

attribute with value FVR1234. It should be noted that, this authorization function has a condition

Authorizationaccess(s:S, es:ES) = True, stating that subject s must be first allowed to

access ecosystem service es before its underlying object ob is allowed to be operated by subject s.

Let us say, in our use-case a user Alice from a car dealer wants to read the data of a car which

is stored in Hadoop data lake. As a security requirement, Alice can only access data through

Apache Hive ecosystem service with no direct access to data at HDFS level. Alice has some

attributes which are its own, but some are also inherited from the car dealer as being a part of

its employee. For this access to authorize, Alice must first be allowed to access Apache Hive

ecosystem service and then allowed to read the table inside it. Looking at the effective attributes

of user Alice, the subject created by Alice and the attributes of service hive and object table car1,

it can be well understood that the policy 1 and policy 2 are satisfied by subject of user Alice.

Therefore, select operation by Alice on table car1 is allowed by the defined security policies. Let

us suppose another user Bob from the same car dealer but in a different department (say sales)

tries to perform select operation on the same object table car1. The operation will not be allowed

as the value for department attribute for Bob will be sales, which will not satisfy the above stated

policies. Similar set of policies can be defined in the system to cater various other use-cases and

security requirements in Hadoop data lake. For example, some user may only be allowed to access

HDFS files directly without access through Apache Hive, or some may be allowed to submit YARN

applications only. Policies can also be defined to prevent denial of resource attacks where specific

users are only allowed to submit jobs to YARN capacity or fair scheduler queues which have

limited set of resources attached to them. A sample security policy to restrict submitting YARN

applications to only specific users can be defined for YARN capacity scheduler queues as:

133

Authorizationsubmit(s:S, es:ES, ob:OB) ≡

Authorizationaccess(s:S, es:ES) = True ∧ diagnostic ∈

effectivedepartment(s) ∧ technician = effectiverole(s) ∧

queueType(ob) = dept-diagnostic ∧ queueAdmin(ob) = admin2

In this case, Authorizationaccess(s:S, es:ES) = True signifies that a user with certain

attributes must be allowed to access YARN ResourceManager (approved by a separate policy)

before allowed to submit applications to its queues which have attributes queuetype having value

dept-diagnostic and queueAdmin with value admin2.

Similar attribute based access control policies can be also defined for controlling user access

to Hadoop daemon services like HDFS DataNode, NameNode etc. In Figure 5.12, we created a

Hadoop service DataNode ‘datanode’ which has a set of attributes directly assigned to it. An access

control list (ACL) security.client.datanode.protocol.acl is currently defined in

Hadoop to control the communication between user clients and DataNodes to retrieve data blocks.

The following security policy can be used in place of ACL to control this access:

Authorizationaccess(s:S, hs:HS) ≡

diagnostic ∈ effectivedepartment(s) ∧ technician ∈

effectiverole(s) ∧ serviceType(hs) = DataNode ∧ createdBy(hs)

= admin2

Clearly, if user Alice subject tries to access DataNode service ‘datanode’, the aforementioned

policy will allow Alice to access service ‘datanode’ which will serve the purpose of defining

security.client.datanode.protocol.acl ACL. Similar attribute based policies can

be stated for other service level authorization ACLs also.

Another Hadoop service NameNode has also been shown in Figure 5.12 which trusts

DataNode service ‘datanode’. Cross Hadoop service trust relation is needed to control

cross Hadoop services communication which is currently controlled by ACLs. For example,

security.datanode.protocol.acl controls communication between DataNode and Na-

meNode. These can be replaced by defining trust relations between Hadoop services. As shown

134

in Figure 5.12, DataNode ‘datanode’ has a cross service trust with NameNode, meaning datanode

can access NameNode where NameNode is trustor and ‘datanode’ is trustee service. To state this

requirement, we assume to have a cross Hadoop service Type-α trust type, written as NameNode

Eα datanode, where the trust is initiated by NameNode and service access to NameNode is also

controlled by NameNode service. Other trust types can also be considered depending on use-cases

requirements but for simplicity, we restrict to Type-α trust type in HeABAC model.

As noted, these real world use-cases illustrate how attribute-based access controls can be en-

forced into this dynamic and distributed environment, where users have different access needs.

Fine grained requirements of a multi-tenant Hadoop data lake, where a user can access one ser-

vice but not other, or two users having different levels of access to the same object can be truly

catered by this HeABAC authorization model. Further, the use of trust in cross Hadoop service

communication obviates the need to define service level authorization ACLs in the system.

135

CHAPTER 6: CONCLUSION

This chapter summarizes the contributions of this dissertation and provide some future research

directions to solve open problems we came across during our work.

6.1 Summary

The work discussed in this dissertation contributes to the fundamental aspects of attribute based

access control (ABAC) and extends its application to current technology domains and real world

scenarios including cloud assisted Smart Cars and Big Data.

First, we propose a generalized URA97 model administration for Hierarchical Group and At-

tribute Based Access Control (HGABAC), called GURAG. Propositional logic conditions together

with administrative roles are defined to make administrative decisions for assignment of attributes

and groups to users. GURAG consists of three sub-models: User Attribute Assignment (UAA),

User-Group Attribute Assignment (UGAA) and User to User-Group Assignment (UGA). The au-

thorization relations in UAA and UGAA control addition and deletion of direct attributes from

users and user-groups respectively. UGA governs assignment and removal of a user from user-

groups based on the current membership (or non-membership) and attributes of the user. Next,

we discuss the reachability problem to understand what attributes a user can attain based on set

of administrative rules created using GURAG. We defined a restricted form of GURAG, referred

as rGURAG and classified three schemes rGURAG0 , rGURAG1 and rGURAG1+ to discuss different

reachability solutions. In general, we proved that the reachability problem for rGURAG scheme is

intractable as PSPACE-complete but with certain restrictions the problem is tractable for which we

discussed polynomial time algorithms.

Second, we proposed an authorization framework for cloud assisted smart cars and vehicular

IoT. The research provides security requirements and discusses several access control decision and

enforcement points necessary in the dynamic ecosystem of connected vehicles. We presented an

Extended Access Control Oriented (E-ACO) architecture which introduces the novel concept of

136

clustered objects (objects with several smart sensors and applications) like cars, traffic infrastruc-

tures or smart homes. The architecture envisions IoV to have both fog and cloud instances where

fog can be static or dynamically built using vehicular cloud or fixed roadside base stations. Autho-

rization framework discusses different communication and data exchange scenarios along with ac-

cess control approaches in E-ACO layers. Real-world use-cases in single and multi-cloud scenarios

with access control requirements justifies the need and use of authorization framework for vehic-

ular IoT. Further in this chapter, we presented a fine-grained attribute-based access control model

for real-time and location-centric smart cars ecosystem. The model (referred as CV-ABACG) in-

troduces the novel notion of dynamic groups in relation to connected vehicles and emphasizes its

relevance in this context. Besides considering system wide authorization policies, this model also

supports personal preference policies for different users, which is required in today’s privacy con-

scious world. Several real world use-cases are discussed and a proof of concept implementation of

our CV-ABACG model is shown in AWS. This implementation demonstrates how moving vehicles

can be dynamically assigned to location groups and sub-groups defined in the system based on the

current GPS coordinates and vehicle-type, which is an important contribution. Performance has

been evaluated against time taken to determine activity access control decision when groups and

ABAC policies are used against when no policies are available.

Finally, we proposed access control models and extensions for most widely used Big Data

platform, called Hadoop. We presented the first formalized access control model called HeAC for

Hadoop ecosystem. Besides the regular permissions including objects and operations, this model

also includes object attribute values (represented as tags) in object permissions. We extended

HeAC model to propose Object-Tagged RBAC model (OT-RBAC) which preserves role based

permission assignment and presents a novel approach for adding object attributes to RBAC. We

proposed an implementation in open-source Apache Ranger using context enricher and condition

evaluators along with performance comparison graph. Further, we proposed an attribute-based

access control model for Hadoop ecosystem, referred to as HeABAC, which offers fine grained

and flexible authorization policies required in multi-tenant distributed system like Hadoop.

137

6.2 Future Work

Some potential future research directions which can be explored are as follows:

• ABAC Administrative Models and Reachability: As GURAG proposes manual assign-

ment of attribute values and user-groups to users, a potential research thrust can be to de-

velop automated GURAG like model. An administrative model for group hierarchies and

objects can also be a future prospect. Also instead of using the role of administrator, if user

attributes can be used to define the administrative privileges, can also be explored. For future

works, we can develop additional polynomial algorithms for some restricted forms and per-

form reachability analysis on other types of queries like effective user groups or minimum

number of administrative requests to satisfy reachability query.

• Smart Cars and Intelligent Transportation: An important direction in cloud assisted

smart cars is to extend CV-ABACG model to introduce in-vehicle security and built risk

aware trust-based models for smart vehicles ecosystem. Further, location privacy preserving

approaches such as homomorphic encryption and other anonymity techniques can be used to

complement and extend CV-ABACG which can mitigate location sharing concerns without

effecting its advantages and application. Multi-tenant and federation supported cloud or fog

architectures can be proposed to ensure cross tenant trust. V2X trusted communication and

privacy concerns also need further investigation, which can use edge cloudlets to ensure real

time trusted communication and messages exchange in intelligent transportation.

• Big Data and Hadoop Ecosystem: Different Big Data platforms including NoSQL data

stores like MongoDB must be studied and fine grained access control solutions can be pro-

posed. Some privacy preserving policies and practices reflected using content based and

purpose based access control need thorough investigation. Also, since the Hadoop data lake

is used by multiple tenants it would be interesting to introduce data ingestion security into

the system to secure data at HDFS data nodes level.

138

BIBLIOGRAPHY

[1] Amazon Web Services (AWS) - Cloud Computing Services. https://aws.amazon.com. [Ac-

cessed: 2016-11-08].

[2] Apache Ambari. http://ambari.apache.org/. [Accessed: 2016-11-14].

[3] Apache Hadoop. http://hadoop.apache.org/. [Accessed: 2017-05-17].

[4] Apache HBase. http://hbase.apache.org/. [Accessed: 2016-12-08].

[5] Apache Hive. http://hive.apache.org/. [Accessed: 2016-12-05].

[6] Apache Knox. https://knox.apache.org/. [Accessed: 2018-02-03].

[7] Apache Ranger. http://ranger.apache.org/. [Accessed: 2016-12-03].

[8] Apache Sentry. https://sentry.apache.org/. [Accessed: 2017-01-10].

[9] Apache Storm. http://storm.apache.org/. [Accessed: 2017-01-03].

[10] Cloudera. http://www.cloudera.com/products/apache-hadoop.html. [Accessed: 2017-05-

13].

[11] Data Age 2025: The Evolution of Data to Life-Critical. https://www.idc.com/. [Accessed:

2017-02-03].

[12] Every Day Big Data Statistics 2.5 Quintillion Bytes Of Data Created Daily.

http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data/

-created-daily. [Accessed: 2018-02-03].

[13] Hortonworks. https://www.hortonworks.com/. [Accessed: 2017-03-13].

[14] Microsoft Azure. https://azure.microsoft.com. [Accessed: 2016-11-10].

[15] OpenStack. https://www.openstack.org/. [Accessed: 2016-11-10].

139

https://aws.amazon.com
http://ambari.apache.org/
http://hadoop.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
https://knox.apache.org/
http://ranger.apache.org/
https://sentry.apache.org/
http://storm.apache.org/
http://www.cloudera.com/products/apache-hadoop.html
https://www.idc.com/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data/-created-daily
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data/-created-daily
https://www.hortonworks.com/
https://azure.microsoft.com
https://www.openstack.org/

[16] Connected vehicles and your privacy. https://www.its.dot.gov/factsheets/pdf/Privacy_

factsheet.pdf, 2014. [Accessed: 2018-02-13].

[17] Building Autonomous and Connected Vehicle Systems with the Vortex IoT Data Sharing

Platform. Prismtech, 2015.

[18] Big Data: Securing Intel IT’s Apache Hadoop Platform. http:

//www.intel.com/content/dam/www/public/us/en/documents/white-papers/

big-data-securing-intel-it-apache-hadoop-platform-paper.pdf, 2016. [Accessed: 2017-01-

16].

[19] Convergence of secure vehicular ad-hoc network and cloud in internet of things. http:

//mahbubulalam.com/convergence-of-secure-vehicular-ad-hoc-network-and-cloud-in-iot/,

2016. [Accessed: 2018-02-01].

[20] Securing Hadoop: Security Recommendations for Hadoop Environments. https://securosis.

com/assets/library/reports/Securing_Hadoop_Final_V2.pdf, 2016. [Accessed: 2018-02-

03].

[21] 2017 Data Breaches - The worst So Far. https://www.identityforce.com/blog/

2017-data-breaches, 2017. [Accessed: 2017-01-13].

[22] 2017 Roundup Of Internet Of Things Forecasts. https://www.forbes.com/sites/

louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#67005b6a1480,

2017. [Accessed: 2018-05-03].

[23] Connected car. https://en.wikipedia.org/wiki/Connected_car, 2017. [Accessed: 2018-01-

13].

[24] Securing The Connected Vehicle. Thales E-Security, 2017.

[25] AWS Greengrass. https://aws.amazon.com/greengrass/, 2018. [Accessed: 2018-05-27].

[26] AWS IoT. https://aws.amazon.com/iot/, 2018. [Accessed: 2018-05-09].

140

https://www.its.dot.gov/factsheets/pdf/Privacy_factsheet.pdf
https://www.its.dot.gov/factsheets/pdf/Privacy_factsheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/big-data-securing-intel-it-apache-hadoop-platform-paper.pdf
http://mahbubulalam.com/convergence-of-secure-vehicular-ad-hoc-network-and-cloud-in-iot/
http://mahbubulalam.com/convergence-of-secure-vehicular-ad-hoc-network-and-cloud-in-iot/
https://securosis.com/assets/library/reports/Securing_Hadoop_Final_V2.pdf
https://securosis.com/assets/library/reports/Securing_Hadoop_Final_V2.pdf
https://www.identityforce.com/blog/2017-data-breaches
https://www.identityforce.com/blog/2017-data-breaches
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#67005b6a1480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#67005b6a1480
https://en.wikipedia.org/wiki/Connected_car
https://aws.amazon.com/greengrass/
https://aws.amazon.com/iot/

[27] AWS Lambda. https://aws.amazon.com/lambda/, 2018. [Accessed: 2018-05-20].

[28] AWS SDK for Python (Boto3). https://aws.amazon.com/sdk-for-python/, 2018. [Accessed:

2018-05-23].

[29] AWS Simple Notification Service. https://aws.amazon.com/sns/, 2018. [Accessed: 2018-

05-20].

[30] Cloud IoT Core. https://cloud.google.com/iot-core/, 2018. [Accessed: 2018-02-03].

[31] Dedicated Short Range Communications. https://en.wikipedia.org/wiki/Dedicated_

short-range_communications, 2018. [Accessed: 2018-08-07].

[32] Device Twins. https://docs.microsoft.com/en-us/azure/iot-hub/

iot-hub-devguide-device-twins, 2018. [Accessed: 2018-02-03].

[33] Google Maps Platform. https://cloud.google.com/maps-platform/, 2018. [Accessed: 2018-

05-09].

[34] M. Aazam and et al. Cloud of Things: Integrating Internet of Things and cloud computing

and the issues involved. In Proceedings of IBCAST, pages 414–419, 2014.

[35] A. Al-Fuqaha and et al. Internet of things: A survey on enabling technologies, protocols,

and applications. IEEE Comm. Surveys & Tutorials, pages 2347–2376, 2015.

[36] Mohammad A Al-Kahtani and Ravi Sandhu. A model for attribute-based user-role assign-

ment. In Proceedings of IEEE Annual Computer Security Applications Conference, pages

353–362, 2002.

[37] Asma Alshehri and Ravi Sandhu. Access control models for cloud-enabled internet of

things: A proposed architecture and research agenda. In Proceedings of IEEE CIC, pages

530–538, 2016.

141

https://aws.amazon.com/lambda/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sns/
https://cloud.google.com/iot-core/
https://en.wikipedia.org/wiki/Dedicated_short-range_communications
https://en.wikipedia.org/wiki/Dedicated_short-range_communications
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://cloud.google.com/maps-platform/

[38] Asma Alshehri and Ravi Sandhu. Access Control Models for Virtual Object Communication

in Cloud-Enabled IoT. In Proceedings of IEEE IRI, pages 16–25, 2017.

[39] Mikio Aoyama. Computing for the next-generation automobile. IEEE Computer, 45(6):32–

37, 2012.

[40] Alessandro Armando, Michele Bezzi, Nadia Metoui, and Antonino Sabetta. Risk-based

privacy-aware information disclosure. International Journal of Secure Software Engineer-

ing (IJSSE), 6(2):70–89, 2015.

[41] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Com-

puter networks, 54(15):2787–2805, 2010.

[42] Amazon AWS. Thing Shadows for AWS IoT. http://docs.aws.amazon.com/iot/latest/

developerguide/iot-thing-shadows.html, 2017. [Accessed: 2018-01-25].

[43] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Compu-

tational Intelligence, 11(4):625–655, 1995.

[44] Nazia Badar, Jaideep Vaidya, Vijayalakshmi Atluri, and Basit Shafiq. Risk based access

control using classification. In Automated Security Management, pages 79–95. Springer,

2013.

[45] Arosha K Bandara, Emil C Lupu, and Alessandra Russo. Using event calculus to formalise

policy specification and analysis. In Proceedings of IEEE International Workshop on Poli-

cies for Distributed Systems and Networks, pages 26–39, 2003.

[46] Jim Barbaresso and et al. USDOT’s Intelligent Transportation Systems ITS Strategic Plan

2015- 2019. 2014.

[47] Mahmoud Barhamgi, Djamal Benslimane, Said Oulmakhzoune, Nora Cuppens-Boulahia,

Frederic Cuppens, Michael Mrissa, and Hajer Taktak. Secure and privacy-preserving exe-

142

http://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-shadows.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-shadows.html

cution model for data services. In Proceedings of International Conference on Advanced

Information Systems Engineering, pages 35–50. Springer, 2013.

[48] S. Bhatt, F. Patwa, and R. Sandhu. An access control framework for cloud-enabled wearable

internet of things. In Proceedings of IEEE CIC, pages 328–338, 2017.

[49] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. Access control model for AWS internet of

things. In Proceedings of NSS, pages 721–736. Springer, 2017.

[50] A. R. Biswas and R. Giaffreda. IoT and cloud convergence: Opportunities and challenges.

In Proceedings of IEEE WF-IoT, pages 375–376, 2014.

[51] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the internet

of things. In Proceedings of ACM MCC Workshop, pages 13–16, 2012.

[52] A. Botta, W. de Donato, V. Persico, and A. Pescape. On the Integration of Cloud Computing

and Internet of Things. In Proceedings of IEEE FiCLOUD, pages 23–30, 2014.

[53] Alessio Botta and et al. Integration of Cloud computing and Internet of Things: A survey.

Future Generation Computer Systems, pages 684 – 700, 2016.

[54] David Brown et al. Automotive Security Best Practice. Intel Security, 2015.

[55] V. G. Cerf. Access control and the internet of things. IEEE Internet Computing, 19(5):96–

c3, Sept 2015.

[56] Yuan Cheng, Jaehong Park, and Ravi Sandhu. A user-to-user relationship-based access

control model for online social networks. In Proceedings of IFIP Annual Conference on

Data and Applications Security and Privacy, pages 8–24. Springer, 2012.

[57] Laurence Cholvy and Frédéric Cuppens. Analyzing consistency of security policies. In

Proceedings of IEEE Symposium on Security and Privacy, pages 103–112, 1997.

143

[58] Lorenzo Cirio, Isabel F Cruz, and Roberto Tamassia. A role and attribute based access

control system using semantic web technologies. In Proceedings of OTM Confederated

International Conferences on "On the Move to Meaningful Internet Systems", pages 1256–

1266. Springer, 2007.

[59] Pietro Colombo and Elena Ferrari. Complementing MongoDB with advanced access con-

trol features: Concepts and research challenges. In Proceedings of Italian Symposium on

Advanced Database Systems, pages 343–350, 2015.

[60] Pietro Colombo and Elena Ferrari. Privacy aware access control for Big Data: A research

roadmap. Big Data Research, 2(4):145–154, 2015.

[61] J. Contreras, S. Zeadally, and J. A. Guerrero-Ibanez. Internet of vehicles: Architecture,

protocols, and security. IEEE Internet of Things, pages 1–9, 2017.

[62] Michael J Covington and Manoj R Sastry. A contextual attribute-based access control

model. In Proceedings of OTM Confederated International Conferences on "On the Move

to Meaningful Internet Systems", pages 1996–2006. Springer, 2006.

[63] Jason Crampton and George Loizou. Administrative scope: A foundation for role-based

administrative models. ACM Transactions on Information and System Security (TISSEC),

6(2):201–231, 2003.

[64] Devaraj Das, Owen O’Malley, Sanjay Radia, and Kan Zhang. Adding security to Apache

Hadoop. Hortonworks, IBM, 2011.

[65] M. DÃaz and et al. State-of-the-art, challenges, and open issues in the integration of Internet

of things and cloud computing. Journal of Network and Computer Applications, pages 99 –

117, 2016.

[66] Philip Derbeko, Shlomi Dolev, Ehud Gudes, and Shantanu Sharma. Security and privacy

aspects in MapReduce on clouds: A survey. Computer Science Review, 20:1–28, 2016.

144

[67] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and

Pierangela Samarati. Protecting access confidentiality with data distribution and swapping.

In Proceedings of IEEE International Conference on Big Data and Cloud Computing, pages

167–174, 2014.

[68] A. Elmaghraby and M. Losavio. Cyber security challenges in smart cities: Safety, security

and privacy. Journal of advanced research, 5(4):491–497, 2014.

[69] Mohamed Eltoweissy, Stephan Olariu, and Mohamed Younis. Towards autonomous vehic-

ular clouds. Ad hoc networks, pages 1–16, 2010.

[70] ENISA. Cyber Security and Resilience of smart cars: Good practices and recommendations.

https://www.enisa.europa.eu/publications/cyber-security-and-resilience-of-smart-cars,

2017. [Accessed: 2018-01-27].

[71] Y. Fangchun and et al. An overview of internet of vehicles. China Communications,

11(10):1–15, 2014.

[72] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed NIST standard for role-based access control. ACM TISSEC, 4(3):224–

274, 2001.

[73] Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and Michael Carl Tschantz. Ver-

ification and change-impact analysis of access-control policies. In Proceedings of IEEE

International Conference on Software Engineering, pages 196–205, 2005.

[74] Keith Frikken, Mikhail Atallah, and Jiangtao Li. Attribute-based access control with hid-

den policies and hidden credentials. IEEE Transactions on Computers, 55(10):1259–1270,

2006.

[75] John Gantz et al. Digital universe in 2020: Big data, bigger digital shadows, and biggest

growth in the far east. IDC iView: IDC Analyze the future, 2012.

145

https://www.enisa.europa.eu/publications/cyber-security-and-resilience-of-smart-cars

[76] US GAO. Vehicle Cybersecurity . GAO-16-350, 2016, March.

[77] Gartner. Gartner Says By 2020, a Quarter Billion Connected Vehicles Will Enable New In-

Vehicle Services and Automated Driving Capabilities. https://www.gartner.com/newsroom/

id/2970017, 2015. [Accessed: 2017-10-25].

[78] Gartner. Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31 Percent

From 2016. https://www.gartner.com/newsroom/id/3598917, 2017. [Accessed: 2018-01-

13].

[79] M. Gerla. Vehicular cloud computing. In Proceedings of IEEE Med-Hoc-Net, 2012.

[80] M. Gerla, E. Lee, G. Pau, and U. Lee. Internet of vehicles: From intelligient grid to au-

tonomous cars and vehicular clouds. In Proceedings of IEEE WF-IoT, pages 241–246,

2014.

[81] Matthew Gigli and Simon Koo. Internet of things: services and applications categorization.

Advances in Internet of Things, 1(02):27, 2011.

[82] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption

for fine-grained access control of encrypted data. In Proceedings of ACM Conference on

Computer and communications security, pages 89–98, 2006.

[83] J. Gubbi and et al. Internet of Things (IoT): A vision, architectural elements, and future

directions. Future generation computer systems, 29(7):1645–1660, 2013.

[84] Maanak Gupta, Farhan Patwa, James Benson, and Ravi Sandhu. Multi-layer authorization

framework for a representative Hadoop ecosystem deployment. In Proceedings of ACM

Symposium on Access Control Models and Technologies, pages 183–190, 2017.

[85] Maanak Gupta, Farhan Patwa, and Ravi Sandhu. Object-Tagged RBAC Model for the

Hadoop Ecosystem. In Proceedings of IFIP Annual Conference on Data and Applications

Security and Privacy, pages 63–81. Springer, 2017.

146

https://www.gartner.com/newsroom/id/2970017
https://www.gartner.com/newsroom/id/2970017
https://www.gartner.com/newsroom/id/3598917

[86] Maanak Gupta, Farhan Patwa, and Ravi Sandhu. POSTER: Access Control Model for the

Hadoop Ecosystem. In Proceedings of ACM Symposium on Access Control Models and

Technologies, pages 125–127, 2017.

[87] Maanak Gupta, Farhan Patwa, and Ravi Sandhu. An Attribute-Based Access Control Model

for Secure Big Data Processing in Hadoop Ecosystem. In Proceedings of ACM Workshop

on Attribute-Based Access Control, pages 13–24, 2018.

[88] Maanak Gupta and Ravi Sandhu. The GURAG Administrative Model for User and Group

Attribute Assignment. In Proceedings of International Conference on Network and System

Security, pages 318–332. Springer, 2016.

[89] Maanak Gupta and Ravi Sandhu. Authorization framework for secure cloud assisted con-

nected cars and vehicular internet of things. In Proceedings of ACM Symposium on Access

Control Models and Technologies, pages 193–204. ACM, 2018.

[90] Maanak Gupta and Ravi Sandhu. POSTER: Access Control Needs in Smart Cars. https://

www.ieee-security.org/TC/SP2018/poster-abstracts/oakland2018-paper26-poster-abstract.

pdf, 2018. [Accessed: 2018-10-04].

[91] Puneet Gupta, Scott D Stoller, and Zhongyuan Xu. Abductive analysis of administrative

policies in rule-based access control. IEEE Transactions on Dependable and Secure Com-

puting, 11(5):412–424, 2014.

[92] Sergio Gusmeroli, Salvatore Piccione, and Domenico Rotondi. A capability-based security

approach to manage access control in the internet of things. Mathematical and Computer

Modelling, 58(5):1189–1205, 2013.

[93] Kevin Hamlen, Murat Kantarcioglu, Latifur Khan, and Bhavani Thuraisingham. Security

issues for cloud computing. Optimizing Information Security and Advancing Privacy As-

surance: New Technologies, 150, 2012.

147

https://www.ieee-security.org/TC/SP2018/poster-abstracts/oakland2018-paper26-poster-abstract.pdf
https://www.ieee-security.org/TC/SP2018/poster-abstracts/oakland2018-paper26-poster-abstract.pdf
https://www.ieee-security.org/TC/SP2018/poster-abstracts/oakland2018-paper26-poster-abstract.pdf

[94] Michael A Harrison, Walter L Ruzzo, and Jeffrey D Ullman. Protection in operating sys-

tems. Communications of the ACM, 19(8):461–471, 1976.

[95] J. Hernandez-Ramos and et al. Distributed capability-based access control for the internet

of things. Journal of Internet Services and Information Security, 3(3/4):1–16, 2013.

[96] Andy Chunliang Hsu and Indrakshi Ray. Specification and enforcement of location-aware

attribute-based access control for online social networks. In Proceedings of ACM Interna-

tional Workshop on Attribute Based Access Control, pages 25–34, 2016.

[97] Vincent C Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert

Miller, and Karen Scarfone. Guide to attribute based access control (ABAC) definition

and considerations. NIST Special Publication 800-162, 2014.

[98] Vincent C Hu, Tim Grance, David F Ferraiolo, and D Rick Kuhn. An access control scheme

for Big Data processing. In Proceedings of IEEE International Conference on Collabora-

tive Computing: Networking, Applications and Worksharing (CollaborateCom), pages 1–7,

2014.

[99] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Attribute-based access control.

IEEE Computer, (2):85–88, 2015.

[100] Jean-Pierre Hubaux, Srdjan Capkun, and Jun Luo. The security and privacy of smart vehi-

cles. IEEE Security & Privacy, 2(3):49–55, 2004.

[101] Rasheed Hussain and et al. Rethinking vehicular communications: Merging VANET with

cloud computing. In Proceedings of IEEE CloudCom, pages 606–609, 2012.

[102] Trent Jaeger, Xiaolan Zhang, and Antony Edwards. Policy management using access control

spaces. ACM Transactions on Information and System Security (TISSEC), 6(3):327–364,

2003.

148

[103] Sushil Jajodia, Pierangela Samarati, and VS Subrahmanian. A logical language for express-

ing authorizations. In Proceedings of IEEE Symposium on Security and Privacy, pages

31–42. IEEE, 1997.

[104] Somesh Jha, Ninghui Li, Mahesh Tripunitara, Qihua Wang, and William Winsborough.

Towards formal verification of role-based access control policies. IEEE Transactions on

Dependable and Secure Computing, 5(4):242–255, 2008.

[105] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control model

covering DAC, MAC and RBAC. In Proceedings of IFIP Annual Conference on Data and

Applications Security and Privacy, pages 41–55. Springer, 2012.

[106] Xin Jin, Ram Krishnan, and Ravi Sandhu. A role-based administration model for attributes.

In Proceedings of ACM International Workshop on Secure and Resilient Architectures and

Systems, pages 7–12, 2012.

[107] Xin Jin, Ram Krishnan, and Ravi Sandhu. Reachability analysis for role-based administra-

tion of attributes. In Proceedings of ACM workshop on Digital identity management, pages

73–84, 2013.

[108] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: role-centric attribute-based access

control. In Proceedings of International Conference on Mathematical Methods, Models,

and Architectures for Computer Network Security, pages 84–96. Springer, 2012.

[109] James BD Joshi, Elisa Bertino, and Arif Ghafoor. An analysis of expressiveness and design

issues for the generalized temporal role-based access control model. IEEE Transactions on

Dependable and Secure Computing, 2(2):157–175, 2005.

[110] O. Kaiwartya and et al. Internet of vehicles: Motivation, layered architecture, network

model, challenges, and future aspects. IEEE Access, 4:5356–5373, 2016.

[111] Sun Kaiwen and Yin Lihua. Attribute-role-based hybrid access control in the internet of

things. In Proceedings of APWeb, pages 333–343. Springer, 2014.

149

[112] Evangelos A Kosmatos, Nikolaos D Tselikas, and Anthony C Boucouvalas. Integrating

RFIDs and smart objects into a unified internet of things architecture. Advances in Internet

of Things, 1(01):5, 2011.

[113] Leanid Krautsevich, Aliaksandr Lazouski, Fabio Martinelli, and Artsiom Yautsiukhin. To-

wards attribute-based access control policy engineering using risk. In Proceedings of In-

ternational Workshop on Risk Assessment and Risk-driven Testing, pages 80–90. Springer,

2013.

[114] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding attributes to role-based

access control. Computer, 43(6):79–81, 2010.

[115] Devdatta Kulkarni. A fine-grained access control model for key-value systems. In Proceed-

ings of ACM Conference on Data and application security and privacy, pages 161–164,

2013.

[116] Swarun Kumar and et al. Carspeak: A content-centric network for autonomous driving.

SIGCOMM Computer Communication Review, 42(4):259–270, August 2012.

[117] Bo Lang, Ian Foster, Frank Siebenlist, Rachana Ananthakrishnan, and Tim Freeman. A flex-

ible attribute based access control method for grid computing. Journal of Grid Computing,

7(2):169, 2009.

[118] R. Lea and M. Blackstock. City Hub: A Cloud-Based IoT Platform for Smart Cities. In

Proceedings of IEEE CloudCom, pages 799–804, Dec 2014.

[119] U. Lee and et al. Mobeyes: smart mobs for urban monitoring with a vehicular sensor

network. IEEE Wireless Communications, pages 52–57, 2006.

[120] Ninghui Li, John C Mitchell, and William H Winsborough. Beyond proof-of-compliance:

security analysis in trust management. Journal of the ACM, 52(3):474–514, 2005.

150

[121] Ninghui Li and Mahesh V Tripunitara. Security analysis in role-based access control. ACM

Transactions on Information and System Security (TISSEC), 9(4):391–420, 2006.

[122] Richard J Lipton and Lawrence Snyder. A linear time algorithm for deciding subject secu-

rity. Journal of the ACM, 24(3):455–464, 1977.

[123] Haibing Lu, Yuan Hong, Yanjiang Yang, Lian Duan, and Nazia Badar. Towards user-

oriented RBAC model. Journal of Computer Security, 23(1):107–129, 2015.

[124] Rongxing Lu, Hui Zhu, Ximeng Liu, Joseph K Liu, and Jun Shao. Toward efficient and

privacy-preserving computing in big data era. IEEE Network, 28(4):46–50, 2014.

[125] Francisco Moyano, Carmen Fernandez-Gago, and Javier Lopez. A conceptual framework

for trust models. In Proceedings of International Conference on Trust, Privacy and Security

in Digital Business, pages 93–104. Springer, 2012.

[126] NHTSA. NHTSA and Vehicle CyberSecurity. NHTSA Report, 2016.

[127] NHTSA. Cybersecurity Best Practices for Modern Vehicles. NHTSA Report No. DOT HS

812 333, 2016, October.

[128] NIST. Framework for Cyber-Physical Systems. https://www.nist.gov/itl/

applied-cybersecurity/nist-initiatives-iot, 2016. [Accessed: 2018-01-13].

[129] M. Nitti and et al. The virtual object as a major element of the internet of things: a survey.

IEEE Comm. Surveys & Tutorials, pages 1228–1240, 2016.

[130] David Nunez, Isaac Agudo, and Javier Lopez. Delegated access for Hadoop clusters in the

cloud. In Proceedings of IEEE International Conference on Cloud Computing Technology

and Science, pages 374–379, 2014.

[131] Stephan Olariu and et al. Taking VANET to the clouds. International Journal of Pervasive

Computing and Communications, 7(1):7–21, 2011.

151

https://www.nist.gov/itl/applied-cybersecurity/nist-initiatives-iot
https://www.nist.gov/itl/applied-cybersecurity/nist-initiatives-iot

[132] Owen O’Malley, Kan Zhang, Sanjay Radia, Ram Marti, and Christopher Harrell. Hadoop

security design. Yahoo, Inc., Tech. Rep, 2009.

[133] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access con-

trol to enforce mandatory and discretionary access control policies. ACM Transactions on

Information and System Security (TISSEC), 3(2):85–106, 2000.

[134] Aafaf Ouaddah and et al. Access control in the internet of things: Big challenges and new

opportunities. Computer Networks, 112:237–262, 2017.

[135] Jaehong Park, Dang Nguyen, and Ravi Sandhu. A provenance-based access control model.

In Proceedings of IEEE Annual International Conference on Privacy, Security and Trust,

pages 137–144, 2012.

[136] Christopher Poulen. Driving security: Cyber assurance for next-generation vehicles. IBM

Global Business Services, 2014.

[137] Navid Pustchi, Ram Krishnan, and Ravi Sandhu. Authorization federation in IaaS multi

cloud. In Proceddings of ACM International Workshop on Security in Cloud Computing,

pages 63–71, 2015.

[138] PV Rajkumar and Ravi Sandhu. Safety decidability for pre-authorization usage control

with finite attribute domains. IEEE Transactions on Dependable and Secure Computing,

13(5):582–590, 2016.

[139] Brian Russell and et al. Observations and Recommendations on Connected Vehicle Security.

Cloud Security Alliance, 2017.

[140] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for role-

based administration of roles. ACM Transactions on Information and System Security (TIS-

SEC), 2(1):105–135, 1999.

152

[141] Ravi S Sandhu. The schematic protection model: its definition and analysis for acyclic

attenuating schemes. Journal of the ACM, 35(2):404–432, 1988.

[142] Ravi S Sandhu. The typed access matrix model. In Proceedings of IEEE Computer Society

Symposium on Research in Security and Privacy, pages 122–136, 1992.

[143] Ravi S Sandhu. Lattice-based access control models. Computer, (11):9–19, 1993.

[144] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based

access control models. Computer, 29(2):38–47, 1996.

[145] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice. Communi-

cations Magazine, IEEE, 32(9):40–48, 1994.

[146] Johannes Sänger, Christian Richthammer, Sabri Hassan, and Günther Pernul. Trust and big

data: A roadmap for research. In Proceedings of IEEE International Workshop on Database

and Expert Systems Applications, pages 278–282, 2014.

[147] Chayan Sarkar and et al. Diat: A scalable distributed architecture for IoT. IEEE Internet of

Things journal, 2(3):230–239, 2015.

[148] Amit Sasturkar, Ping Yang, Scott D Stoller, and CR Ramakrishnan. Policy analysis for

administrative role based access control. In Proceedings of IEEE Computer Security Foun-

dations Workshop, page 13, 2006.

[149] Walter J Savitch. Relationships between nondeterministic and deterministic tape complexi-

ties. Journal of computer and system sciences, 4(2):177–192, 1970.

[150] Andreas Schaad and Jonathan D Moffett. A lightweight approach to specification and anal-

ysis of role-based access control extensions. In Proceedings of ACM symposium on Access

control models and technologies, pages 13–22, 2002.

[151] Ludwig Seitz, Göran Selander, and Christian Gehrmann. Authorization framework for the

internet-of-things. In Proceedings of IEEE WoWMoM, pages 1–6, 2013.

153

[152] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K Rajamani, Janice Tsai, and Jeannette M

Wing. Bootstrapping privacy compliance in big data systems. In Proceedings of IEEE

Symposium on Security and Privacy, pages 327–342, 2014.

[153] Daniel Servos and Sylvia L Osborn. HGABAC: Towards a Formal Model of Hierarchical

Attribute-Based Access Control. In Proceedings of International Symposium on Founda-

tions and Practice of Security, pages 187–204. Springer, 2014.

[154] Priya P Sharma and Chandrakant P Navdeti. Securing Big Data Hadoop: A review of

security issues, threats and solution. International Journal Computer Science Information

Technology, 5, 2014.

[155] Hai-bo Shen and Fan Hong. An attribute-based access control model for web services.

In Proceedings of IEEE International Conference on Parallel and Distributed Computing,

Applications and Technologies, pages 74–79, 2006.

[156] Jordi Soria-Comas and Josep Domingo-Ferrer. Big data privacy: challenges to privacy

principles and models. Data Science and Engineering, 1(1):21–28, 2016.

[157] Scott D Stoller, Ping Yang, Mikhail I Gofman, and CR Ramakrishnan. Symbolic reach-

ability analysis for parameterized administrative role-based access control. Computers &

Security, 30(2):148–164, 2011.

[158] Scott D Stoller, Ping Yang, C R Ramakrishnan, and Mikhail I Gofman. Efficient policy

analysis for administrative role based access control. In Proceedings of ACM Conference

on Computer and communications security, pages 445–455. ACM, 2007.

[159] Yunchuan Sun and et al. Security and privacy in the internet of vehicles. In Proceedings of

IEEE IIKI, pages 116–121, 2015.

[160] Bo Tang and Ravi Sandhu. Cross-tenant trust models in cloud computing. In Proceddings of

IEEE International Conference on Information Reuse and Integration (IRI), pages 129–136,

2013.

154

[161] Bo Tang and Ravi Sandhu. Extending openstack access control with domain trust. In

Proceddings of International Conference on Network and System Security, pages 54–69.

Springer, 2014.

[162] Bo Tang, Ravi Sandhu, and Qi Li. Multi-tenancy authorization models for collaborative

cloud services. Concurrency and Computation: Practice and Experience, 27(11):2851–

2868, 2015.

[163] Omer Tene and Jules Polonetsky. Big data for all: Privacy and user control in the age of

analytics. Nw. J. Tech. & Intell. Prop., 11:xxvii, 2012.

[164] Omer Tene and Jules Polonetsky. Privacy in the age of big data: a time for big decisions.

Stanford Law Review Online, 64:63, 2012.

[165] Toyota. Toyota-to-launch-smartphone-on-wheels. https://www.2wglobal.com/

news-and-insights/articles/features/Toyota-to-launch-smartphone-on-wheels/, 2011.

[Accessed: 2018-02-03].

[166] Mahesh V Tripunitara and Ninghui Li. A theory for comparing the expressive power of

access control models. Journal of Computer Security, 15(2):231–272, 2007.

[167] Mahesh V. Tripunitara and Ninghui Li. The foundational work of Harrison-Ruzzo-Ullman

Revisited. IEEE Transactions on Dependable and Secure Computing, 10(1):28–39, 2013.

[168] Huseyin Ulusoy, Pietro Colombo, Elena Ferrari, Murat Kantarcioglu, and Erman Pattuk.

GuardMR: Fine-grained security policy enforcement for MapReduce systems. In Proceed-

ings of ACM Symposium on Information, Computer and Communications Security, pages

285–296, 2015.

[169] Huseyin Ulusoy, Murat Kantarcioglu, Erman Pattuk, and Kevin Hamlen. Vigiles: Fine-

grained access control for mapreduce systems. In Proceedings of IEEE International

Congress on Big Data, pages 40–47, 2014.

155

https://www.2wglobal.com/news-and-insights/articles/features/Toyota-to-launch-smartphone-on-wheels/
https://www.2wglobal.com/news-and-insights/articles/features/Toyota-to-launch-smartphone-on-wheels/

[170] European Union. Certificate Policy for Deployment and Operation of European Cooperative

Intelligent Transport Systems (C-ITS). https://ec.europa.eu/transport/sites/transport/files/

c-its_certificate_policy_release_1.pdf, 2017. [Accessed: 2018-01-27].

[171] European Union. Security Policy & Governance Framework for Deployment and Opera-

tion of European Cooperative Intelligent Transport Systems (C-ITS). https://ec.europa.eu/

transport/sites/transport/files/c-its_security_policy_release_1.pdf, 2017. [Accessed: 2018-

01-27].

[172] USAToday. Chinese group hacks a Tesla for the second year in a row. https://www.usatoday.

com/story/tech/2017/07/28/chinese-group-hacks-tesla-second-year-row/518430001/,

2017. [Accessed: 2017-12-03].

[173] USDOT. Connected Vehicles and Your Privacy. https://www.its.dot.gov/factsheets/pdf/

Privacy_factsheet.pdf, 2016. [Accessed: 2018-02-17].

[174] USDOT. Securty Credential Management System. https://www.its.dot.gov/resources/scms.

htm, 2016. [Accessed: 2018-01-13].

[175] Timo van Roermund. Secure Connected Cars for a Smarter World. NXP Semiconductors,

2015.

[176] Sabrina De Capitani Di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo Pelosi, and

Pierangela Samarati. Shuffle index: efficient and private access to outsourced data. ACM

Transactions on Storage (TOS), 11(4):19, 2015.

[177] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public auditing for

data storage security in cloud computing. In Proceedings of IEEE INFOCOM, pages 1–9,

2010.

[178] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-based framework for at-

tribute based access control. In Proceedings of ACM workshop on Formal methods in secu-

rity engineering, pages 45–55, 2004.

156

https://ec.europa.eu/transport/sites/transport/files/c-its_certificate_policy_release_1.pdf
https://ec.europa.eu/transport/sites/transport/files/c-its_certificate_policy_release_1.pdf
https://ec.europa.eu/transport/sites/transport/files/c-its_security_policy_release_1.pdf
https://ec.europa.eu/transport/sites/transport/files/c-its_security_policy_release_1.pdf
https://www.usatoday.com/story/tech/2017/07/28/chinese-group-hacks-tesla-second-year-row/518430001/
https://www.usatoday.com/story/tech/2017/07/28/chinese-group-hacks-tesla-second-year-row/518430001/
https://www.its.dot.gov/factsheets/pdf/Privacy_factsheet.pdf
https://www.its.dot.gov/factsheets/pdf/Privacy_factsheet.pdf
https://www.its.dot.gov/resources/scms.htm
https://www.its.dot.gov/resources/scms.htm

[179] Evan Welbourne and et al. Building the internet of things using RFID: the RFID ecosystem

experience. IEEE Internet computing, 13(3), 2009.

[180] Md Whaiduzzaman and et al. A survey on vehicular cloud computing. Journal of Network

and Computer Applications, 40:325–344, 2014.

[181] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[182] Wired. Hackers Remotely Kill a Jeep on the Highway-With Me in It, 2015. [Accessed:

2018-08-07].

[183] Konrad Wrona, Sander Oudkerk, Alessandro Armando, Silvio Ranise, Riccardo Traverso,

Lisa Ferrari, and Richard McEvoy. Assisted content-based labelling and classification of

documents. In Proceedings of IEEE International Conference on Military Communications

and Information Systems (ICMCIS), pages 1–7, 2016.

[184] Ning Ye and et al. An efficient authentication and access control scheme for perception

layer of internet of things. Applied Mathematics and Information Sciences, 8(4):1617–1624,

2014.

[185] Jianming Yong, Elisa Bertino, and Mark Toleman Dave Roberts. Extended RBAC with role

attributes. In Proceedings of Pacific Asia Conference on Information Systems, page 8, 2006.

[186] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Attribute based data sharing with

attribute revocation. In Proceedings of ACM Symposium on Information, Computer and

Communications Security, pages 261–270, New York, NY, USA, 2010.

[187] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for web services. In

Proceedings of IEEE International Conference on Web Services, 2005.

[188] Guoping Zhang and Jiazheng Tian. An extended role based access control model for the

internet of things. In Proceedings of IEEE ICINA, pages 319–323, 2010.

157

[189] Jiaqi Zhao, Lizhe Wang, Jie Tao, Jinjun Chen, Weiye Sun, Rajiv Ranjan, Joanna Kołodziej,

Achim Streit, and Dimitrios Georgakopoulos. A security framework in G-Hadoop for big

data computing across distributed cloud data centres. Journal of Computer and System

Sciences, 80(5):994–1007, 2014.

158

VITA

Maanak Gupta was born and brought up in Karnal, Haryana, India. He completed his Bache-

lor of Technology (B.Tech) degree in Computer Engineering from Kurukshetra University in year

2010. Subsequently, he joined Master of Science (M.S.) program in Information Systems at North-

eastern University, Boston, USA and graduated in 2012. After graduation, he worked as assistant

professor for around two years at Dehradun Institute of Technology (DIT) University, Dehradun,

India in the Department of Computer Science. He enrolled in doctoral program at The University

of Texas at San Antonio (UTSA) in Fall 2014, and later joined as research assistant at the Institute

for Cyber Security under Professor Ravi Sandhu. He also received M.S. in Computer Science at

UTSA with specialization in Computer and Information Security. His primary area of research in-

cludes security and privacy in cyber space. In particular, he is interested in studying foundational

aspects of access control and their applications in real world 21st century technologies including

Smart Cars, Internet of Things, Cloud Computing, Blockchain and Big Data.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Motivation
	Problem Statement
	Thesis Statement
	Scope and Assumptions
	Summary of Contributions
	Organization of the Dissertation

	Chapter 2: Literature Review
	Access Control Models
	Administrative Models and Safety Analysis
	ARBAC97 and GURA Models
	Safety and Reachability Analysis

	Smart Connected Vehicles
	VANETs and Vehicular Cloud
	Virtual Objects in IoT
	Access Control Oriented Architecture
	Cyber Security Concerns and Proposed Solutions

	Big Data and Hadoop Ecosystem

	Chapter 3: Group Based Attributes Administration in ABAC and Reachability Analysis
	Motivation
	Hierarchical Group and Attribute Based Access Control
	Groups in HGABAC
	HGABAC: An Alternate Formalization

	The GURAG Administrative Model
	User Attribute Assignment (UAA) Sub-Model
	User Group Attribute Assignment (UGAA) Sub-Model
	User to User-Group Assignment (UGA) Sub-Model
	Operational Specification
	GURAG Model Extensions

	Group Based User Attribute Reachability Analysis
	GURAG Model and Scheme
	Restricted GURAG (rGURAG)
	Reachability Problem Definition
	PSPACE-Complete Reachability

	Polynomial Reachability for Restricted Cases
	Reachability plan for RP= in [rGURAG1+– N]
	Reachability plan for RP= in [rGURAG1+– D, SRd]
	Example Problem Instance

	Chapter 4: Access Control for Smart Connected Cars
	Motivation and Scope
	Cloud Assisted Vehicular Internet of Things
	Characteristics and Cloud Architectures
	Extended ACO Architecture

	Authorization Framework for Smart Cars Ecosystem
	Access Control Approaches
	Cloud Assisted Real-World Use Cases
	Single Cloud System
	Multiple Cloud System

	Dynamic Groups and ABAC for Cloud Assisted Smart Cars
	Relevance of Groups

	Connected Vehicle ABAC Model with Dynamic Groups
	CV-ABACG Model Overview
	Formal Definitions

	Enforcement in Amazon Web Services
	Description of Use Cases
	Prototype Implementation
	Performance Evaluation

	Chapter 5: Big Data Security in Hadoop Ecosystem
	Introduction and Motivation
	Multi-layer Authorization
	Hadoop Services Access
	Data and Service Objects Access
	Application and Cluster Resources Access

	Hadoop Ecosystem Access Control Model
	Object-Tagged RBAC Model
	Model Definitions
	Implementation and Evaluation

	Attributes Based Extensions to OT-RBAC
	Dynamic Roles
	Attribute Centric
	Role Centric

	Attribute Based Access Control for Hadoop Ecosystem
	HeABAC Model Definitions
	Concept of Cross Hadoop Services Trust
	HeABAC Implementation Approach

	Use Cases and HeABAC Application

	Chapter 6: Conclusion
	Summary
	Future Work

	Bibliography
	Vita

