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Attribute Based Access Control (ABAC) has gained considerable attention from businesses,

academia and standards bodies (e.g. NIST and NCCOE ) in recent years. ABAC uses attributes

on users, objects and possibly other entities (e.g. context/environment), and specifies rules using

these attributes to assert who can have which access permissions (e.g. read/write) on which ob-

jects. Although ABAC concepts have been around for over two decades, there remains a lack of

well-accepted ABAC models. Recently there has been a resurgence of interest in ABAC due to con-

tinued dissatisfaction with the traditional models—notably Role Based Access Control (RBAC),

Discretionary Access Control (DAC), and Lattice Based Access Control (LBAC).

There are two major techniques stated in the literature for specifying authorization policies in

Attribute Based Access Control. The more conventional approach is to define policies by using

logical formulas involving attribute values. The alternate technique for expressing policies is by

enumeration. While considerable work has been done for the former approach, the later is com-

paratively less studied.

In this dissertation, we conduct a systematic study of Enumerated Authorization Policy (EAP)

for ABAC. We have developed a representative, simple EAP ABAC model—EAP-ABAC1,1. For

the sake of clarity and emphasis on different elements of the model, we present EAP-ABAC1,1 as

a family of models. We have investigated how the defined models are comparable to other existing

EAP models. We also demonstrate capability of the defined models by configuring traditional

LBAC and RBAC models in them.

We compare theoretical expressive power of EAP based ABAC models to logical-formula au-

thorization policy ABAC models. In this regard, we present a finite-attribute, finite-domain ABAC

model for enumerated authorization policies and investigate its relationship with logical-formula
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authorization policy ABAC models in the finite domain. We show that these models (EAP-ABAC

and LAP-ABAC) are equivalent in their theoretical expressive power. We respectively show that

single and multi-attribute ABAC models are equally expressive.

As proof-of-concepts, we demonstrate how EAP ABAC models can be enforced in different

application contexts. We have designed an enhanced EAP-ABAC1,1 model to protect JSON docu-

ments. While most of the existing XML protection model consider only hierarchical structure of

underlying data, we additionally identify two more inherent characteristics of data— semantical

association and scatteredness and consider them in the design. Finally, we have outlined how EAP-

ABAC1,1 can be used in OpenStack Swift to enhance its “all/no access” paradigm to “policy-based

selective access”.
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Chapter 1: INTRODUCTION

Access control has been a major component in enforcing security and privacy requirements of in-

formation and resources with respect to unauthorized access. While many access control models

have been proposed, only three, viz., DAC, MAC and RBAC, have received meaningful practical

deployment. DAC (Discretionary Access Control) [66] allows resource owners to retain control on

their resources by specifying who can or cannot access certain resources. To address inherent lim-

itations of DAC such as trojan horses, MAC (Mandatory Access Control) [66] has been proposed

which mandates access to resources by pre-specified system policies. While both of these two

models are based on predetermined policies, RBAC (Role Based Access Control) [65] is a policy

neutral, flexible and administrative friendly model. Notably RBAC is capable of enforcing both

DAC and MAC. MAC is also commonly referred to as LBAC (Lattice-Based Access Control).

Attribute Based Access Control (ABAC) has gained considerable attention from businesses,

academia and standard bodies (such as NIST [43] and NCCOE [59]) in recent years. ABAC uses

attributes on users, objects and possibly other entities (e.g. context/environment) and specifies

rules using these attributes to assert who can have which access permissions (e.g. read/write) on

which objects. Although ABAC concepts have been around for over two decades there remains a

lack of well-accepted ABAC models. Recently there has been a resurgence of interest in ABAC

due to continued dissatisfaction with the three traditional models, particularly the limitations of

RBAC.

To demonstrate expressive power and flexibility, several ABAC models including [51, 67, 76]

have been proposed in past few years. These models adopt the conventional approach of designing

attribute based rules/policies as logical formulas. Using logical formulas to grant or deny access is

convenient because of the following reasons.

• Simple and easy: Creating a new rule for granting access is simple. It does not involve

upfront cost like engineering roles in case of RBAC.

• Flexible: Rules can succinctly specify even complex policies. There is no limit on how many
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attributes can be used in a rule or how complex the language can be to specify the rule. Given

a required set of attributes, and a computational language, ABAC policy is only limited to

what the language can express [43].

Interestingly, designing a rich computational language to define attribute-based rules makes

policy update or policy review an NP-complete or even undecidable problem. For example, autho-

rization policies in many existing ABAC models including [51, 67, 76] are expressed in proposi-

tional logic. Reviewing policy in these models (which may simply ask, for a given policy which

(attribute, value) pairs evaluate the policy to be true) is similar to the satisfiability problem in

propositional logic which is NP-complete. Likewise review for policies specified in first-order

logic is undecidable.

Another method for specifying attribute-based authorization policies is by enumeration. Policy

Machine [34] and 2-sorted-RBAC [53] fall into this category. Enumerated policies can also be very

expressive. Ferraiolo et al [34] show configuration of LBAC, DAC and RBAC in Policy Machine

using enumerated policies. Moreover, updating or reviewing an enumerated policy is inherently

simple (polynomial time) because of its simple structure. It should be noted that the size of an

enumerated policy may be exponential relative to a succinct formula which expresses the same

policy. Thus there is a trade-off between these two methods for specifying policies.

Enumerated authorization policies (EAPs) are less studied in the literature. There are various

issues to be investigated to better understand this concept. The issues we explore in this dissertation

include—how to represent an EAP, how to formulate an ABAC model that is based on EAPs, and

how EAP ABAC models are comparable to logical-formula ABAC models.

1.1 Problem statement

There are two major techniques for specifying authorization policies in Attribute Based Access

Control (ABAC). The more conventional approach is to define policies using logical formulas

involving attribute values. The alternate technique is by enumeration. While considerable work has

been done for the former approach, the later lacks fundamental work from the research community.

2



1.2 Thesis

Enumerated Authorization-Policy ABAC (EAP-ABAC) is a viable alternate to Logical-formula Au-

thorization Policy ABAC (LAP-ABAC). EAP-ABAC is as expressive as LAP-ABAC in the finite

domain. EAP-ABAC models can be enforced in different application domains.

1.3 Summary of Contribution

The major contributions of this research are as follows:

• We have developed enumerated authorization-policy models for single and multi attributes

defined on users and objects. For the case of single attribute, we have formulated a family of

models starting from the bare minimum ABAC model to hierarchical and constrained mod-

els. Flexibility and expressive power of the developed models are analyzed by configuring

traditional access control models in them.

• We have compare enumerated authorization-policy models to logical-formulate authorization-

policy models with respect to their theoretical expressive power.

• We have demonstrated proof-of-concept implementation of enumerated authorization-policy

based protection models in different application contexts.

1.4 Organization of the Dissertation

Rest of this dissertation is organized as follows. In Section 2, we build preliminary concepts.

We discuss related works in this section. In Section 3, we develop enumerated authorization-

policy models. We discuss different characteristics of the developed models here. In the following

section (Section 4), we show that enumerated authorization-policy ABAC models are equivalent

to logical-formula authorization-policy ABAC models with respect to their theoretical expressive

power. In Section 5, we show how we enforce enumerated models in the practical application

domains. Finally, we conclude this dissertation in Section 6.
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Chapter 2: BACKGROUND AND LITERATURE REVIEW

In Attribute Based Access Control (ABAC), given the set of user attributes (and possibly subject

attributes), object attributes and optionally environment or context attributes, access decision is

based on predefined conditions using these attributes and their corresponding values. In an access

request for an object, a user presents a set of user attributes. The access control system com-

putes access decision based on user attributes, system maintained object attributes and optionally

context/environment attributes.

2.1 Finite Domain ABAC

Most of the ABAC models (for example, [51, 67, 68, 76]) assume finite set of user and object

attributes, and that values of each attribute come from finite sets. This assumption is useful in

many practical cases. For example, values of roles, clearance or age are bounded and mostly

static. But attribute values can be unbounded as well. For example, if values of an attribute include

users or objects in a system (e.g. owner of an object) where they may grow indefinitely, these

values are unbounded. In this dissertation, we assume that there is a finite set of attributes and

values of each attribute come from a finite set.

2.2 Types of Authorization Policy

There are two major methods for specifying authorization policies. More conventional approach

is to define policies using logical formulas. Examples in this category include ABACα [51],

HGABAC [67], ABAC for Web Services [76], and XACML [58]. The alternative technique for

expressing policy is by enumeration. Examples in this category include Policy Machine (PM) [34]

and 2-sorted-RBAC [53].
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2.2.1 Logical-formula Authorization Policy

Logical-formula authorization policy (LAP) can be defined as a boolean expression consisting of

subexpressions connected with logical operators (for example, ∧,∨,¬ and so on ) where each

subexpression compares attribute values with other attribute or constant values. The language for

LAP usually supports a large set of logical and relational operators. A LAP grants a user request

for exercising certain action on an object, if attribute-values of the requesting user and requested

object make the formula true. Authread ≡ clearance(u) � classification(o) is an example of

logical-formula authorization policy which allows a user to read an object if the user’s clearance

dominates classification of the object.

LAPs are usually expressed in propositional logic. Examples of LAP -ABAC models include

[51, 67, 68, 76]. Flexibility of these models have been demonstrated by configuring conventional

DAC [66], MAC [64] and RBAC [65] policies.

As satisfiability in propositional logic is NP-complete and policy review in general can be

mapped to satisfiability problem, reviewing policy would be NP-Complete in many existing ABAC

models including [51,67,76]. On the other hand, if policies are expressed in first-order logic, policy

review would be undecidable since satisfiability is undecidable in first-order logic.

2.2.2 Enumerated Authorization Policy

Usefulness of enumerated authorization policy has been demonstrated in the literature. For exam-

ple, in Policy Machine (PM) [34], Ferraiolo et. al define attribute based enumerated policies using

one user attribute, one object attribute and a set of actions. A policy/privilege in PM is defined as

(uai, OP, oai), where uai and oai are values of user-attribute and object-attribute respectively and

OP is a set of operations. Intuitively, reviewing or updating an enumerated policy would be in

polynomial time.

The simple structure of enumerated policy does not necessarily make it less expressive. For

example, PM can configure traditional models using enumerated policies [3]. In Section 3.3, we
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also show how to express RBAC [65] and LBAC [64] policies using EAPs. Furthermore, in Section

4.2, EAP and LAP are are equivalent in their theoretical expressive power.

Informally, an enumerated authorization policy (EAP) consists of a set of tuples. Each tuple

(UAVals, OAVals) grants privileges to a set of users to exercise an action on a set of objects identified

by the user and object attribute values, UAVals and OAVals respectively. In an EAP, each tuple

is distinct and grants privileges independently. Both UAVals and OAVals can be atomic valued

or set valued; (mng, TS) and ({mng, dir}, {TS,H}) are example of atomic and set valued tuples

respectively.

2.3 OpenStack

In this section, we briefly discuss OpenStack Swift object storage. In particular, we focus on how

Swift objects are accessed and how Swift specifies control on access to these objects.

2.3.1 OpenStack Swift

Swift is a highly available, distributed, eventually consistent object storage which can operate

standalone or integrated with the rest of the OpenStack cloud computing platform. It is used

to store lots of data efficiently, safely, and cheaply using a scalable redundant storage system.

As opposed to conventional storage architectures like file systems which manage data using file

hierarchy and block storage, Swift manages data as objects. Each object typically includes the data

itself, a variable amount of metadata, and a globally unique identifier.

Using its well defined RESTful API, users can upload or download objects to and from Swift

storage. Inside Swift, objects are organized into containers which is similar to directories in a

filesystem except that Swift containers cannot be nested. Again, a user is associated with a Swift

account and can have multiple containers associated with the account. In order to manage user

accounts, user containers and objects inside a container, Swift uses an Account Server, a Container

Server and Object Servers correspondingly.

When a user corresponding to a user account requests for an object inside a container (either for
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uploading or downloading), the Account Server looks for the account first in its account database

and finds associated containers with the account. The Container Server then checks the container

database to find whether the requested object exists in the specified container and finally the Object

Server looks into ‘object databases’ to find retrieval information about the object. In order to

retrieve an object, the Proxy Server needs to know which of the Object Servers are storing the

object, and path of the object in the local filesystem of that server.

2.3.2 Swift ACL

Once an object is stored in Swift, who can or cannot access the object is determined by Swift

Access Control List (ACL). Swift has different levels of ACL—Account level ACL, and Container

level ACL, for example. Container level ACL is associated with containers in term of a read

action, or write action or listing action. If a user is authorized read action on a container through

read ACL, he or she can read or download objects from the container. Similarly, write ACL enables

uploading an object into a container and listing ACL enables the list operation on the container.

Account ACLs, on the other hand, allow users to grant account-level access to other users. Of

these two types of ACL, Container level ACL is finer grained in that different containers of a

single account can be configured differently. Nonetheless, Swift ACL is limited in the following

ways.

• Once an object is set accessible to someone, he or she gets the full content of the object. But

there can be some sensitive information that the publisher wants to hide out.

• Swift ACL allows sharing an object with others, but it does not allow to share objects selec-

tively at the content level.

2.4 JSON (JavaScript Object Notation)

JSON or JavaScript Object Notation is a format for representing textual data in a structured way. In

JSON, data is represented in one of two forms — as an object or an array of values. A JSON object
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Figure 2.1: Example of (a) JSON data (b) corresponding JSON tree

is defined as a collection of key,value pairs where a key is simply a string representing a name and

a value is one of the following primitive types—string, number, boolean, null or another object or

an array. The definition of a JSON object is recursive in that an object may contain other objects.

An array is defined as a set of an ordered collection of values. JSON data manifests following

characteristics.

• JSON data forms a rooted tree hierarchical structure.

• In the tree, leaf nodes represent values and a non-leaf nodes represent keys.

• A node in the tree, can be uniquely identified by a unique path.

Figure 2.1(a) shows the content of a JSON document where strings representing values have

been replaced by “..." for ease of presentation. Figure 2.1(b) shows the corresponding tree repre-

sentation. Any node in the tree can be uniquely represented by JSONPath [38] which is a standard

representation of paths for JSON documents.
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2.5 Literature Review

Several attribute based access control models have been proposed in the literature. While, some

authors design general purpose ABAC model, others design ABAC in specific application con-

text. There are also significant works towards integrating attributes with traditional RBAC model

for enhancing its expressibility. Furthermore, XACML represent another line of work involving

attributes to provide flexible policy language and support of multiple access control policies.

ABACα [51] is among the first few models to formally define an ABAC model. It is de-

signed to demonstrate flexibilities of an ABAC system to configure DAC, MAC and RBAC mod-

els. ABACα uses subset of subject attributes and object attributes to define an authorization policy

for a particular permission p. It describes a constraint language to specify subject attributes from

user attributes. Furthermore, it also presents a constraint language for changing object attributes at

creation or modification time.

HGABAC [67] is another notable work in designing a formal model for an ABAC system.

Besides designing a flexible policy language capable of configuring DAC, MAC and RBAC, it also

addresses a real problem of assigning attributes to a large set of users and objects. It specifies

hierarchical groups and provides a mechanism for inheriting attributes from a group by joining to

the group.

ABAC-for-web-services [76] is among very few earlier works to outline authorization archi-

tecture and policy formulation for an ABAC system. They propose a distributed architecture for

authoring, administering, implementing and enforcing an ABAC system. Even though, their pol-

icy language is semi-formal, they present a powerful idea of composing hierarchical policies from

individual policies.

Wang et al [71] presents a stratified logic programming based framework to specify ABAC

policies. Even though, they only consider user attributes, they focus on providing a consistent,

high performance and workable solution for ABAC system.

In its ABAC guide [43] and other publications [45], NIST defines common terminologies, and
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concepts for an ABAC system. It discusses required components, considerations and architec-

ture for designing an enterprise ABAC system. It acknowledges the fact that ABAC rules can

be quite complex in boolean combination of attributes or in simple relations involving attributes.

Additionally, it discusses more advanced features like attribute and policy engineering, federation

of attributes and so on. Nonetheless, these documents are focused towards establishing general

definitions and considerations of an ABAC system without providing a concrete model definition.

There are other works that design an ABAC system from a particular application context. For

example, WS-ABAC [68] is motivated by requirements in web services, while ABAC-in-grid [54]

is motivated by needs in the grid computing.

Another interesting line of work combines attributes with Role Based Access Control. Kuhn

et. al [52] provides a framework for combining roles and attributes. In the framework, they briefly

outline three different approaches - (i) dynamic roles which retain basic structure or RBAC and

uses attribute based rules to derive user roles, (ii) attribute centric, which treat role as another

ordinary attribute, and (iii) role centric, which uses roles to grant permissions and attributes to

reduce permissions available to the user. Various other earlier or subsequent works involving

roles and attributes can also be cast in Kuhn’s framework. For example, attribute-based user-role

assignment by Al-Kahtani et. al [12] can be considered as an approach based on dynamic roles.

Last but not the least, XACML [58] is a declarative access control policy language and process-

ing model which supports attribute based access control concepts and policies. Although, it lacks

a formal definition of an ABAC model, it is notable for its uses in multiple commercial products.
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Chapter 3: ENUMERATED AUTHORIZATION POLICY MODELS

In this chapter, we first discuss Enumerated Authorization Policy (EAP) ABAC models based on

one user attribute and one object attribute. Subsequently we define EAP ABAC models based on

multiple user and object attributes.

3.1 Single Attribute Enumerated Authorization-Policy Models

Here we describe the EAP1,1 family of models along with formal definitions. EAP1,1 uses one

user-attribute named uLabel and one object-attribute named oLabel. We define these attributes

with predefined semantics. While attributes in general have open-ended semantics, labels (uLabel

and oLabel) are associated with specific semantics. For example, in general, attributes can be

set-valued (e.g. roles or clearance) or atomic valued (e.g. age). An attribute value (eg. role,

clearance) can be assigned by administrators, self-asserted (e.g. date of birth), or derived from

other attributes (e.g. age can be derived from date of birth). Moreover, value of attributes can be

ordered or unordered. On the other hand, labels are set-valued, values are partially ordered and are

assigned by administrators.

We specify EAP1,1 as a family of models. The basic EAP model (EAP 0
1,1) presents the min-

imum elements to define an EAP model. Additionally, we add hierarchies and constraints in

Figure 3.1: Components of EAP1,1
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Figure 3.2: Family of EAP1,1 models

EAPH
1,1 and EAPC

1,1 respectively. EAP 1
1,1 combines both the hierarchical and constrained models.

The components of the EAP1,1 models are shown in Figure 3.1 and the family of the models is

schematically presented in Figure 3.2.

3.1.1 Basic EAP1,1 Model

The elements represented by solid bold lines in Figure 3.1 represent the Basic EAP1,1 Model

(EAP 0
1,1). In this model, a set of users, objects and actions (finite set) are represented by U,O and

A respectively. Users are associated with a label function named uLabel and objects are associated

with another label function, oLabel. The function uLabel maps a user to one or more values from

the finite set UL (represented by the double headed arrow from users to UL) and similarly oLabel

maps one object to one or more values from the finite set OL (represented by the double headed

arrow from objects to OL). The double headed arrow from UL to users and OL to objects indicate

that one user-label value can be associated with more than one user and one object-label value can

be associated with more than one object.

Sessions are denoted by the set S. There is a one-to-many mapping from users to sessions.

While a user may have many uLabel values assigned to him, he can choose to activate any subset

of the assigned values in a session. The relation (and function) creator and s_labels maintain
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Table 3.1: EAP 0
1,1 Model

I. Sets and relations
- U,O and S (set of users, objects and sessions resp.)
- UL, OL and A (finite set of user-label values, object-label values and action resp.)
- uLabel and oLabel (label functions on users and objects).

uLabel : U → 2UL; oLabel : O → 2OL

- creator : S → U , many-to-one mapping from S to U
- s_labels : S → 2UL, mapping from S to uLabel values.

s_labels(s) ⊆ uLabel(creator(s))
〈 see Section 3.2 for session management functions 〉

II. Policy components
- Policya ⊆ UL×OL, for action a ∈ A.
- Policy = {Policya|a ∈ A}

III. Authorization function
- is_authorized(s:S,a:A,o:O) ≡ ∃ul ∈ s_labels(s), ∃ol ∈ oLabel(o) [(ul, ol) ∈ Policya]

Figure 3.3: Authorization policy as subset of tuples
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Figure 3.4: ULH and OLH

mapping from sessions to users and sessions to uLabel values respectively. The creator and

s_labels functions are formally defined in Segment I of Table 3.1.

In EAP1,1, for each action, a ∈ A we define only one policy, denoted Policya. A policy is

comprised of a subset of tuples from the set of all tuples UL×OL. Relationship between a policy

and tuples is schematically shown in Figure 3.3. In defining policies, a policy may contain many

tuples and a tuple (ul, ol) ∈ UL×OL can be used in more than one policy. Thus, a many-to-many

relation exists between policies and tuples. Finally, the set Policy contains all individual policies

for each action a ∈ A. The formal definition of Policy is shown in Segment II of Table 3.1.

The authorization function is_authorized(s, a, o) allows an access request by a subject s ∈ S

to perform an action a ∈ A on an object o ∈ O if all the following conditions are satisfied - s is

assigned a value ul; o is assigned a value ol and the policy for action a contains the tuple (ul, ol).

The formal definition of the authorization function is given in Segment III of Table 3.1.

3.1.2 Hierarchical EAP1,1

Hierarchical EAP1,1 model (EAPH
1,1) introduces user-label hierarchy (ULH) and object-label hi-

erarchy (OLH) in addition to the components of EAP 0
1,1. Some elements in EAP 0

1,1 are modified

in EAPH
1,1. The additions and modifications in EAPH

1,1 from EAP 0
1,1 are shown in Table 3.2.
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Table 3.2: EAPH
1,1 Model (additions and modifications to EAP 0

1,1)
I. Sets and relations

- ULH ⊆ UL× UL, partial order (�ul) on UL
- OLH ⊆ OL×OL, partial order (�ol) on OL
- s_labels(s) ⊆ {ul′|ul ∈ uLabel(creator(s)) ∧ ul �ul ul′}

II. Implied policy
- ImpliedPolicya = {(uli, olj)|∃(ulm, oln) ∈ Policya[ uli �ul ulm ∧ oln �ol olj]}

(explained in Figure 3.5)

III. Authorization function
- is_authorized(s:S,a:A,o:O) ≡ ∃ul ∈ s_labels(s), ol ∈ oLabel(o) [(ul, ol) ∈ ImpliedPolicya]

Hierarchy is a convenient way of ranking users and objects. EAP1,1 achieves ranking on users

through ULH and ranking on objects through OLH . For two user-label values, uli and ulj , when

we say uli is senior to ulj (written as uli �ul ulj), we mean that users assigned to uLabel value uli

can also exercise all privileges of users who are assigned to value ulj . Similarly, for two object-

label values, oli and olj , when we say oli is senior to olj (written as oli �ol olj), we mean that

objects assigned to value olj are also considered as inherited objects for value oli for the purpose

of authorization. The direction for the containment of privileges and objects along the hierarchy of

ULH and OLH is shown in Figure 3.4. For containment of objects, in Figure 3.5 objects that are

assigned value ‘public’, are also considered to be objects that are assigned value ‘protected’.

When we assign a tuple (ulm, oln) in a policy Policya, additional tuples are also implied for

Policya because of user-label and object-label value hierarchy. We identify these implied tuples

with the notion of a new set ImpliedPolicy. The implied policy ImpliedPolicya includes all

tuples of Policya and extra tuples that are implied by every tuples of Policya.

Implied policy is explained in Figure 3.5. For a policy, Policya = {(employee, protected)},

corresponding implied policy is ImpliedPolicya = {(manager, protected),

(manager, public), (employee, protected), (employee, public)}. Figure 3.5, further classifies tu-

ples into tuples implied by ULH , or OLH or both. Note that authorization function and session

function are also modified in Table 3.2 to accommodate ULH and OLH .
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Figure 3.5: Policy and implied policy

3.1.3 Constrained EAP1,1

A general treatment of assignment constraints in ABAC has been covered in [20]. Similarly, role

based authorization constraints have been extensively studied in [11]. In this section, we specify

constraints for the EAP1,1 model.

We scope constraints as means of restricting administrative or user actions. We define two

types of constraints - assignment constraints and policy constraints. Assignment constraints put

constraints on user to user-label value assignments, object to object-label value assignments and

session-label value assignments. An example of user-label value assignment constraint is that a

user cannot be assigned all of the following values {manager, director, employee}. An example

of object-label value assignment constraint is that an object cannot be assigned both values - pro-

tected and public. An example of session-label value assignment constraint is that both manager

and director values cannot be activated in the same session. Policy constraints, on the other hand,

prevent certain tuples in policies. For example, policy constraints may enforce that an employee

can never access protected objects by restricting the tuple (employee, protected).

Assignment constraints are specified by defining a set of conflicting uLabel, oLabel and session

values denoted by COL, CUL and CSL respectively in Table 3.3. The constraint that an object

cannot be assigned both values - ‘protected’ and ‘public’ is specified as COL = {{public, protected}}
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Table 3.3: EAPC
1,1 Model (Additions and modifications to EAP 0

1,1)
I. Components added from EAP 0

1,1

uLabel value assignment constraint:
- CUL = a collection of conflicting user-label values, {CUL1, CUL2, ...CULn}

where CULi = {ul1, ...ulk}

oLabel value assignment constraint:
- COL = a collection of conflicting object-label values,{COL1, COL2, ...COLn}

where COLi = {ol1, ...olk}

Session value assignment constraint:
- CSL = a collection of conflicting user-label values, {CSL1, CSL2, ...CSLn}

where CSLi = {ul1, ...ulk}

Policy constraint:
- RestrictedTuples ⊆ UL×OL

II. Derived components

- ValidTuples = (UL×OL) \RestrictedTuples

III. Authorization function

- is_authorized(s:S,a:A,o:O) ≡ ∃ul ∈ s_labels(s),
∃ol ∈ oLabel(o) [(ul, ol) ∈ Policya ∩ V alidTuplesa]
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Table 3.4: EAP 1
1,1 model

I. Basic Components

- U,O and S (set of users, objects and sessions resp.)
- UL, OL and A (finite set of user-label values, object-label values and action resp.)
- uLabel and oLabel (label functions on users and objects).

uLabel : U → 2UL; oLabel : O → 2OL

- ULH ⊆ UL× UL, partial order (�ul) on UL
- OLH ⊆ OL×OL, partial order (�ol) on OL
- creator : S → U , mapping from S to U
- s_labels : S → 2UL, mapping from S to uLabel values.

s_labels(s) ⊆ {ul′|ul ∈ uLabel(creator(s)) ∧ ul �ul ul′}
- RestrictedTuples ⊆ UL×OL
- CUL, COL, CSL (conflicting set of uLabel, oLabel and session-label values)
〈 see Section 3.2 for session management functions 〉

II. Policy components

- Policya ⊆ UL×OL, for action a ∈ A.
- Policy = {Policya|a ∈ A}

III. Derived components

- ImpliedPolicya = {(uli, olj)|∃(ulm, oln) ∈ Policya[ uli �ul ulm ∧ oln �ol olj]}
- ValidTuples = (UL×OL) \RestrictedTuples

IV. Authorization function

- is_authorized(s:S,a:A,o:O) ≡ ∃ul ∈ s_labels(s), ∃ol
∈ oLabel(o)[(ul, ol) ∈ ImpliedPolicya ∩ ValidTuples]
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Figure 3.6: Restricting policies with policy constraints

and |oLabel(o) ∩ OneElement(COL)| ≤ 1 where function OneElement() returns one element

from its input set. (we use the same concept of OneElement() from [11]). Similarly, other assign-

ment constraints can also be formulated. Note that user-label value assignment constraints can be

used to configure Static Separation of Duty, while session constraints can be used to enforce some

aspects of Dynamic Separation of Duty [69].

Policy constraints are defined by using RestrictedTuples. For a tuple, (ulr, olr) ∈ RestrictedTuples,

if it is included in a policy, Policya, it would be ignored in the computation of authorization deci-

sion. For convenience we define a derived set ValidTuples as all possible tuples minus Restricted-

Tuples. RestrictedTuples and ValidTuples are defined in Table 3.3. Policy constraint is explained

schematically in Figure 3.6.

In EAPC
1,1, we include constraint policies beyond authorization policies. While, authorization

policies establish relationship only between user-label and object-label values (along with actions),

constraint policies go beyond. For example, constraint policies may consider relationship between

UL and OL (policy constraints), UL and UL (uLabel/session value assignment constraints), OL

and OL (oLabel value assignment constraints), S and UL (cardinality constraints on session value

assignments) and so on. As a result, constraint policies in EAPC
1,1 include logical formulas as well

as enumerated tuples.
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Table 3.5: User-level session functions in EAP 0
1,1

Fuction Condition Updates

create_session
(u : U, s : S, values : 2UL)

u ∈ U ∧ s 6∈ S ∧ values ⊆ uLabel(u)
S ′ = S ∪ {s},
creator(s) = u,
s_labels(s) = values

delete_session
(u : U, s : S)

u ∈ U ∧ s ∈ S ∧ creator(s) = u S ′ = S \ {s}

assign_values
(u : U, s : S, values : 2UL)

u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧
values ⊆ uLabel(u)

s_labels(s) = s_labels(s)
∪ values

remove_values
(u : U, s : S, values : 2UL)

u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧
values ⊆ uLabel(u)

s_labels(s) = s_labels(s)
\ values

3.1.4 The Combined Model (EAP 1
1,1)

The combined model, EAP 1
1,1 (shown in Table 3.4), combines elements from both EAPH

1,1 and

EAPC
1,1 models. Segment I of Table 3.4 presents all basic sets and relations. Policy components

and derived components are shown in Segment II and III respectively. Finally, authorization deci-

sion function is defined in Segment IV.

3.2 Functional Specification of EAP1,1 models

EAP1,1 allows users to create or destroy sessions, and assign/remove values from an existing ses-

sion. Table 3.5 presents user-level s_labels functions for managing sessions in EAP 0
1,1. Each func-

tion is presented with formal parameters (given in the first column), necessary preconditions (in the

second column) and resulting updates (in the third column). The function create_session() creates

a new session with given values, delete_session() deletes an existing session, assign_values()

assigns values in an existing session, and remove_values() removes values from an existing ses-

sion.

In EAPH
1,1, we modify condition of the session functions from Table 3.5 to accommodate that

in a session created by a user, he can choose from the values he is assigned to or junior val-

ues. The modified conditions are given in Table 3.6. We specify an additional condition with

each session function in EAPC
1,1 and EAP 1

1,1. For example, with create_session(), we specify a

20



Table 3.6: Session functions in EAPH
1,1 (condition modified from Table 3.5)

Function Modified condition
create_session u ∈ U ∧ s 6∈ S ∧ values ⊆ {ul′|∃ul �ul ul′[ul ∈ uLabel(u)]}
delete_session u ∈ U ∧ s ∈ S ∧ creator(s) = u
assign_values u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧ values ⊆ {ul′|∃ul �ul ul′[ul ∈ uLabel(u)]}
remove_values u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧ values ⊆ {ul′|∃ul ∈ uLabel(u) ∧ ul �ul ul′}

Table 3.7: Session functions in EAPC
1,1 (condition added with session functions from Table 3.5)

Session function Additional condition
create_session ∧fcreate_session(u, s, values)
delete_session ∧fdelete_session(u, s)
assign_values ∧fassign_values(u, s, values)
remove_values ∧fremove_values(u, s, values)

boolean function fcreate_session() as additional precondition which must also be true. The definition

of these boolean functions are open-ended to be able to configure any session constraints. The

difference between session functions in EAPC
1,1 and EAP 1

1,1 is that the former does not consider

hierarchy on user-label values whereas the later does. Table 3.7 and 3.8 show session functions in

EAPC
1,1 and EAP 1

1,1 respectively. Table 3.9 presents some examples of constraints specified with

fcreate_session() function. Example 1 uses an enumerated policy, Policycreate_session. It specifies

that in order to create a session and assign values to the session, a user must be assigned to value

session+. Example 2 enforces the constraint that no more than one conflicting uLabel values can

be activated in a session. Example 3 imposes that a user cannot have more than some bounded

number of sessions.

Note that creation and deletion of objects, updating object-label values by sessions are outside

the scope of EAP1,1 operational models presented here. One reason behind is that, EAP1,1 only

focuses on attributes. It can be extended to include object creation and modification along the line

of ABACα [51]. See Table 3.13 for example.
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Table 3.8: Session functions in EAP 1
1,1 (condition added with session functions from Table 3.6)

Session function Additional condition
create_session ∧fcreate_session(u, s, values)
delete_session ∧fdelete_session(u, s)
assign_values ∧fassign_values(u, s, values)
remove_values ∧fremove_values(u, s, values)

Table 3.9: Examples of fcreate_session(u, s, values)

Example 1. using EAP1,1 policy:
∃session+ ∈ uLabel(u)∧
∃Policycreate_session ≡ {(session+, session)} ∈ Policy

Example 2. using EAP 1
1,1 session constraint CSL:

|values ∩OneElement(CSL)| ≤ 1

Example 3. using cardinality constraint on sessions:
|{s|creator(s) = u}| ≤ 10

Table 3.10: Authorization policy space in EAP 1
1,1

Item Size
Authorization policies |A|
Ways to define an Auth. policy 2|UL|×|OL|

Ways to define all Auth. policies |A| × 2|UL|×|OL|
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3.2.1 Quantifying EAP 1
1,1 authorization policies

In EAP1,1, we define one authorization policy per action. A policy can take any subset of all

possible tuples. Thus, different number of ways to define a policy is the size of the power set

of all possible tuple as shown in Figure 3.3. Table 3.10 shows possible number of enumerated

authorization policies in EAP1,1.

3.3 Configuring Traditional Models in EAP1,1

In this section, we establish relationship between EAP1,1 and traditional access control models.

We first show that EAP1,1 is equivalent to 2-sorted-RBAC which is an enumerated policy model

for RBAC. Additionally, we show how to configure RBAC and LBAC using EAP1,1 model.

3.3.1 Equivalence of EAP1,1 and 2-sorted-RBAC

2-sorted-RBAC [53] is an interesting extension of Role Based Access Control which breaks the

duality of roles (users and permissions perspectives) into proper roles (R+) as group of users and

demarcations (D+) as groups of permissions. User inheritance is maintained with proper role

hierarchy (R+H) and permission inheritance is maintained with demarcation hierarchy (D+H).

The connection between proper roles and demarcation is maintained by the grant relation (G)

which enumerates (proper role, demarcation) pairs. For example, for proper roles and demarcations

given in Figure 3.7, G includes following tuples - {(manager, red), (employee, amber)}. Note that

2-sorted-RBAC [53] also includes negative roles and demarcations which we do not consider here.

2-sorted-RBAC is compelling in many ways. It introduces a higher administrative level (through

grant relation) for access management. User-role assignment (UR+ ⊆ U ×R+) and demarcation-

permission assignment (PD+ ⊆ P × D+), along with administration of grant relation can be

carried out more independently and distributively. Moreover, the authors shows that, 2-sorted-

RBAC enables many-to-many administrative mutations which leads to organizational scalability.

In many-to-many mutation, by granting a (proper role, demarcation) pair, all users in the proper
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Figure 3.7: An example of 2-sorted-RBAC

Figure 3.8: An example of 2-sorted-RBAC configured in EAP1,1

role get all permissions in the demarcation which, as the authors shows cannot be achieved by

standard RBAC [36].

The benefits of 2-sorted-RBAC can also be realized through EAP1,1. For example, user to

uLabel value assignments, object to oLabel value assignments and authorization policies are anal-

ogous to R+H , D+H and grant relation in 2-sorted-RBAC and can also be carried out indepen-

dently. On the other hand, many-to-many administrative mutation can also be achieved. For ex-

ample, the EAP1,1 policy, Policyop1 ≡ {(manager, (red, op1))} in Figure 3.8, enables every

manager to perform operation op1 on every object labeled with (red, op1).

EAP1,1 is similar to 2-sorted-RBAC in spirit. While 2-sorted-RBAC is more role oriented,

EAP1,1 is attribute oriented. In the rest of this section, we show equivalence of EAP1,1 and
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Table 3.11: 2-sorted-RBAC in EAPH
1,1

I. 2-sorted-RBAC components

- S,OBS,OPS, R+, R+H , D+, D+H , (users, objects, operations, proper roles,
role hierarchy, demarcation and demarcation hierarchy respectively).

- PRMS = (OBS ×OPS), the set of permissions
- SR+ ⊆ S ×R+

- PD+ ⊆ PRMS ×D+

- G ⊆ R+ ×D+

II. Construction in EAPH
1,1

- U = S,O = OBS,A = OPS
- UL = R+, ULH = R+H
- OL = D+ ×OPS
- OLH = {((di, opi), (dj, opj))|di � dj ∧ opi = opj}
- uLabel(u) = {r|(s, r) ∈ SR+}
- oLabel(o) = {(d, op)|((o, op), d) ∈ PD}
- Policyopi = {(ri, (dj, opj))|(ri, di) ∈ G∧ ((o, opi), di) ∈ PD+}

2-sorted-RBAC with respect to their theoretical expressive power. In order to establish the equiva-

lence, we show that any instance of 2-sorted-RBAC can be expressed in EAP1,1 and vice-versa.

Figure 3.8 is an example showing configuration of a 2-sorted-RBAC instance (given in Figure

3.7) in EAP1,1. In Figure 3.8, user-label values and its hierarchy directly corresponds to roles and

role hierarchy in Figure 3.7. On the other hand, object-label values correspond to Cartesian product

of D+ and OPS. An object-label value (di, op) dominates another object-label value (dj, op),

if demarcation di dominates demarcation dj . For example, for demarcations {red, amber} and

operations {op1, op2} (of Figure 3.7), four object-label values have been defined where (red, op1)

dominates (amber, op1) because red dominates amber. For an object-label value (d, op), we

assign (d, op) to the object o to if (o, op) is a permission in demarcation d. For example, object

o1 is assigned the value (red, op1) because (o1, op1) is a permission in demarcation red. On the

other hand, user-label values assigned to a user corresponds to his assigned proper roles. Finally,

having assigned object-label and user-label values, for each grant relation (r, d) ∈ G, we specify

authorization policy Policyop ≡ {(r, (d, op))} so that object labeled with (d, op) are accessed
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Table 3.12: EAPH
1,1 in 2-sorted-RBAC

I. EAPH
1,1 components

- U,O,A (set of users, objects and actions resp.)
- UL,OL,ULH,OLH (uLabel and oLabel values, uLabel and oLabel value hierarchy resp.)
- uLabel : U → 2UL, oLabel : O → 2OL

- Policya, authorization policy for action a ∈ A

II. Construction in 2-sorted-RBAC

- S = U,OBS = O,OPS = A
- R+ = UL, R+H = ULH
- D+ = OL, D+H = {}
- SR+ = {(u, r)|r ∈ uLabel(u)}
- PD+ = {((oi, ai), ol)|∃(ul, ol) ∈ Policyai∧ ol′ ∈ oLabel(oi) ∧ ol �ol ol′}
- G = {(ul, ol)|(ul, ol) ∈ Policya}

by users with role r for operation op. For example, for the grant relation (manager, red) in

Figure 3.7, we create a policy Policyop1 ≡ {(manager, (red, op1))}. We do not create policy

Policyop2 ≡ {(manager, (red, op2))} because there is no permission defined with operation op2

in demarcation red. Table 3.11 shows this configuration formally.

Configuration of EAPH
1,1 in 2-sorted-RBAC is given in Table 3.12. Segment I represents el-

ements of EAP1,1 model and Segment II shows the configuration of 2-sorted-RBAC. In the con-

figuration, user-label values and its hierarchy are used as proper roles and proper role hierarchy.

Object-label values are used as names for demarcations. For an object-label value ol ∈ OL, let

Ool be the objects labeled with ol. For each policy policyop ≡ {(ul, ol)} in EAP1,1, we create a

grant relation (ul, ol) in 2-sorted-RBAC. Further, assign permission (o,op) in demarcation named

ol for o ∈ Oop. Note that 2-sorted-RBAC does not distinguish between users and sessions as we

do in EAP1,1. For this reason, we omit EAP1,1 sessions while showing equivalence with 2-sorted-

RBAC.

Here we use EAPH
1,1 to configure 2-sorted-RBAC for convenience. In fact, EAP 0

1,1 is the mini-

malistic model that is equivalent to 2-sorted-RBAC. In Figure 3.9, we show summary of expressive

power of different EAP1,1 models. The dashed box represents the minimalistic EAP1,1 model re-
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Figure 3.9: Expressiveness of EAP1,1 models

quired to configure other models and solid box represents the EAP1,1 model that we use for our

convenience.

The construction of Tables 3.11 and 3.12 and other constructions given in the rest of this paper

can be cast in the formal approach of [70]. So, these models are equivalent in the sense of state-

matching reduction.

3.3.2 Configuring LBAC in EAP1,1

In this section, we configure LBAC using EAP 1
1,1. For each configuration, we additionally show

the required number of label values and authorization policies.

LBAC or Lattice Based Access Control is characterized by one directional information flow in a

lattice of security classes. The security classes are partially ordered. One security class from these

classes is assigned to each user which is known as clearance of the user. A user having a senior

security class can also exercise his/her privileges using a junior security class. For example, a top

secret user can also exercise his privileges as secret user but he/she cannot use both secret and top
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secret clearance at the same time. On the other hand, one security class (from the same classes of

the security lattice) is assigned on objects commonly known as classification of the object. LBAC

enforces one direction of information flow by two mandatory rules for reading and writing of these

objects. One rule, known as simple-security property (informally, read down rule), states that a

subject (or user) can read an object if subject’s clearance dominates object’s classification. The

other rule, known as liberal ?-property (informally, write up rule), states that a subject can write

on an object if object’s classification dominates subject’s clearance. As a security class dominates

itself it is possible to read and write at the same level. A variation of liberal ?-property, know as

strict ?-property, mandates that a subject can only write at his own level for the purpose of integrity

requirements. A definition of LBAC is given in Segment I of Table 3.13.

We present the configuration of LBAC in EAP 1
1,1. Minimalistically, we need EAPC

1,1 to con-

figure some constraints of LBAC, for example, at most one security class can be activated by a

subject (i.e. session in case of EAP1,1 ) at a time. We use EAP 1
1,1 for convenience.

The configuration of LBAC in EAP 1
1,1 is given in Segment II of Table 3.13. The security classes

and its hierarchy are directly used as user label values and its hierarchy. For object-label values

and its hierarchy we consider both the original lattice and the inverted lattice. The clearance of a

user in LBAC is assigned as uLabel values of the user in EAP1,1 . On the other hand, if an object

has a classification of sc ∈ SC in LBAC, we assign the object oLabel values of {sc,sc’}, where

sc′ correspond to sc in the inverted lattice. The simple-security property is configured as a EAP1,1

policy Policyread ≡ {(sci, sci)} so that users having user-label value sci can read objects having

object-label value sci or its junior. Similarly, the ?-property is configured with Policywrite ≡

{(sci, sc′i)} where sci is the user-label value from the original lattice and sc′i is the object-label

value from the inverted lattice and sci correspond to sc′i. For the liberal ?-property, we consider

the hierarchy of the inverted lattice where as we do not consider them for the strict ?-property. An

example of LBAC configured in EAP 1
1,1 is given in Figure 3.10.

Segment II(b) of Table 3.13 specifies conditions for the session management functions in

EAP1,1 . In create_session() we specify additional condition so that at most one user-label value
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Table 3.13: LBAC in EAP 1
1,1

I. LBAC components

- UL, OL and SL (set of users, objects and sessions resp.)
- SC: set of security classes in the lattice
- SCH: partial order on SC (also denoted by � )
- sub_creator : SL → UL, many-to-one mapping from SL to UL
- clearance : (UL ∪ SL)→ SC, and clearance(s) � clearance(sub_creator(s))
- classification : OL → SC
- Simple-security property: Subject s can read object o

only if clearance(s) � classification(o)
- Liberal ?-property: Subject s can write object o

only if clearance(s) � classification(o)
- Strict ?-property: Subject s can write object o

only if clearance(s) = classification(o)

II. Construction in EAP 1
1,1

II(a). Construction of basic sets and relations
- U = UL, O = OL, S = SL, A = {read, write}
- creator(s) = sub_creator(s), for s ∈ S
- UL = SC,ULH = SCH
- OL = {sc|sc ∈ SC} ∪ {sc′|sc ∈ SC}
- OLH = {(sci, scj)|sci � scj} ∪ {(sc′i, sc′j)|sc′j � sc′i} [liberal ?-property]
- OLH = {(sci, scj)|sci � scj} [strict ?-property]
- uLabel(u) = clearance(u)
- oLabel(o) = {sc, sc′}, where sc = classification(o)
- Policyread = {(sci, sci)|sci ∈ SC}
- Policywrite = {(sci, sc′i)|sci ∈ SC}

II(b). Condition on session functions

- fcreate_session(u, s, val) : |val| = 1
- fdelete_session(u, s) : true
- fassign_values(u, s, val) : false [assuming tranquility]
- fremove_values(u, s, val) : false [assuming tranquility]

III. EAP1,1 extension for object creation
- create_object(s, o, {val}): create a new object, and assign value {val}

condition: s ∈ S ∧ o 6∈ O ∧ ∃ul ∈ s_labels(s) ∧val � ul]
update: O′ = O ∪ {o}, oLabel(o) = {val}
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Figure 3.10: LBAC example configured in EAP1,1

Table 3.14: Quantifying EAP1,1 for simulating LBAC
|UL| = |SC| and |OL| = 2|SC|
|Policy| = 2 (|Policyread| and |Policywrite|)

can be activated in one session. We assume, once created clearance of subjects and classification

of objects cannot be changed. This property in known tranquility in the literature [64]

Segment III is an extension of EAP 1
1,1 for the purpose of creating objects in EAP1,1 . Since

functional specification of EAP 1
1,1 does not include functions for creating or managing objects,

here we define a function create_object() for this purpose. We follow the liberal ?-property as the

precondition for creation of objects.

Finally, Table 3.14 shows required number of authorization policies, UL and OL values for

configuring LBAC.

3.3.3 Configuring RBAC in EAP1,1

In this section, we configure RBAC using EAP 1
1,1. For each configuration, we additionally show

the required number of label values and authorization policies.

A definition of hierarchical RBAC (RBAC1) is shown in Segment I of Table 3.15. In RBAC,

permissions are assigned to roles and users receive permissions through their enrollment to roles.

Roles are partially ordered. If a role, ri is senior to role, rj (otherwise told ri dominates rj), ri
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Figure 3.11: An example of roles and permission-role assignments in RBAC.

Figure 3.12: An instance of RBAC (from Figure 3.11) configured in EAP1,1.

inherits permissions from rj and rj inherits users from ri. Thus role hierarchy serves dual purpose

of inheriting users and permissions. Figure 3.11 presents an example showing roles, role hierarchy

and permission-role assignments in RBAC1.

In Segment II of Table 3.15, we show construction of RBAC1 in EAPH
1,1. Minimalistically,

we need EAP 0
1,1, but we use EAPH

1,1 for convenience.

Figure 3.12 shows an instance of RBAC (given in Figure 3.11) configured in EAP1,1. In the

figure, user-label values and its hierarchy directly correspond to roles and role hierarchy of Fig-

ure 3.11. On the other hand, object-label values correspond to Cartesian Product of ROLES and

OPS. For example, for roles {manager, employee} and operations {read, write, exec} of Fig-

ure 3.11, six different object-label values have been defined. For an object-label value (r, op), we

assign it to the object o if (o, op) is a permission assigned to role r. For example, object o1 is

assigned to label (manager, read) because (o1, read) is a permission of role manager (see Fig-

ure 3.11). Having assigned object-label and user-label values, for each r ∈ ROLES, we specify
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Table 3.15: RBAC1 in EAPH
1,1

I. RBAC1 components

- USERS, OBS, OPS, SESSIONS, ROLES and RH (users, objects, operations,
sessions, roles and role hierarchy resp.)

- PRMS = (OBS× OPS), the set of permissions
- UA ⊆ USERS× ROLES.
- PA ⊆ PRMS× ROLES.
- session_user : SESSIONS→ USERS
- session_roles : SESSIONS→ 2ROLES and

session_roles(s) ⊆ {r|(∃r′ � r)[session_user(s), r′) ∈ UA]}

II. Construction in EAPH
1,1

- U = USERS, O = OBS, A = OPS, S = SESSIONS
- UL=ROLES, ULH=RH
- OL = ROLES× OPS, OLH = {}
- uLabel(u) = {r|(u, r) ∈ UA}
- oLabel(o) = {(r, op)|((o, op), r) ∈ PA}
- creator(s) = session_user(s), for s ∈ S
- s_labels(s) = session_roles(s), for s ∈ S
- Policyopi = {(r, (r′, opi))|((o, opi), r′) ∈ PA ∧ r′ = r}

Table 3.16: Quantifying EAP1,1 for simulating RBAC
|UL| = |ROLES|
|OL| = |ROLES| × |OPS|
|Policy| = |OPS|

authorization policy Policyop ≡ {(r, (r, op))} so that object labeled with (r, op) are accessed by

users labeled with role r for operation op. For example, for role, manager in Figure 3.11, we create

Policyread ≡ {(manager, (manager, read))} and Policywrite ≡ {(manager, (manager, write))}.

We do not create policy Policyexec ≡ {(manager, (manager, exec))} because there is no permis-

sion defined with operation exec in role manager. Table 3.15 formally shows the configuration of

RBAC1 in EAP1,1.

Finally, Table 3.16 presents number of user-label values, object-label values and authorization

policies required to configure RBAC1.
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3.3.4 EAP1,1 as a Subset of Policy Machine

In this section, we show how EAP1,1 can be presented as a simple instance of Policy Machine

(PM) [34]. In order to do so, we first define Policy Machine Mini (PMmini) - a step down version

of PM sufficient enough for our purpose. We then configure EAPH
1,1 in PMmini.

Policy Machinemini (PMmini)

PMmini is a sufficiently reduced version of Policy Machine (PM). For example, while PM uses

four basic relations namely Assignment, Association, Prohibition and Obligation, PMmini includes

only the first two of these. Similarly, PM manages both resource operations and administrative

actions but PMmini is limited to managing operation on resources only. Additionally, Policy Class,

an important concept in PM for combining multiple policies, is not considered in PMmini.

Definition of PMmini is shown in Table 3.17. In PMmini users, objects, operations and pro-

cesses are denoted by set U,O,OP and P respectively. UA and OA represent the finite sets of user

attributes and object attributes. The definition of attributes in PMmini is different than the defini-

tion of attributes in most other models. While typically attributes are used as (attribute, value) pairs,

PMmini uses attributes as containers for users, objects and other attributes (constraints apply). For

example, a user can be assigned to a user attribute uai which can further be assigned to another user

attribute uaj . Same type of assignment applies for object and object attributes. User (or user at-

tribute) to user-attribute assignments and object (or object attribute) to object-attribute assignments

are captured by the ASSIGN relation which must be acyclic and irreflexive. On the other hand, the

ASSOCIATION relation is like a grant relation. The meaning of (ua, {a}, oa) ∈ ASSOCIATION

is that users contained in ua can perform operation a on objects contained in oa. Containment of

users and objects can be transitive which is specified by the ASSIGN+ relation. The decision

function allow_resource_request(p, op, o) allows a process, p (running on behalf of a user, u) to

perform an operation, op on an object, o if there exists an entry, (ua, {op}, oa) in ASSOCIATION

relation where ua transitively contains u and oa transitively contains o.
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Table 3.17: PMmini definition
I. Basic sets and relations

- U,O,OP and P (set of users, objects, operations and processes resp.)
- UA,OA (set of user and object attributes)
- AR (set of access rights). In PMmini, AR = OP
- process_user : P → U

II. Assignment and association relations
- ASSIGN ⊆ (U × UA) ∪ (UA× UA) ∪ (O ×OA) ∪(OA×OA),

an irreflexive, acyclic relation
- ASSOCIATION ⊆ UA× 2AR ×OA

III. Derived relations
- ASSIGN+, transitive closure of ASSIGN

IV. Decision function
- allow_resource_request(p, op, o) = ∃oa ∈ OA, ∃ua ∈ UA, ∃u ∈ U

[(ua, {op}, oa) ∈ ASSOCIATION∧ (u, ua) ∈ ASSIGN+∧
(o, oa) ∈ ASSIGN+∧ process_user(p) = u]

A process in PMmini simply inherits all attributes of the creating user. Thus PMmini lacks

the ability to model sessions, since there is no user control over a process’s attributes. Note that

PM achieves this effect through obligation and prohibition relations [3]. A complete and detailed

model of Policy Machine can be found here [3, 34].

Configuring EAPH
1,1 in PMmini

As PMmini lacks the ability to manage sessions, here we present a mapping from PMmini to

EAPH
1,1 without session management. In the mapping, users, objects, actions and sessions in

EAP1,1 are directly mapped to users, objects, operations and processes in PMmini. User-label

values and object-label values in EAP1,1 correspond to UA and OA respectively. Additionally,

user to user-label value assignments, object to object-label value assignments, ULH and OLH

in EAPH
1,1 are mapped to the ASSIGN relation. Finally, each tuple in each policy in EAP1,1 is

contained in the ASSOCIATION relation. A mapping from PMmini to EAPH
1,1 is given in Table

3.18.
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Table 3.18: EAPH
1,1 in PMmini

I. EAPH
1,1 components

- UL, OL, A, S (set of users, objects, actions and sessions resp.)
- UL,OL,ULH,OLH (uLabel values, oLabel values, uLabel and

oLabel value hierarchy resp.)
- uLabel : U → 2UL, oLabel : O → 2OL

- Policya, authorization policy for action a ∈ A
- creator : S → U

II. Construction

- U = UL, O = OL, OP = A,P = S
- process_user(s) = creator(s), for s ∈ S
- UA = UL,OA = OL
- ASSIGN = {(u, ul)|ul ∈ uLabel(u)}∪ {(uli, ulj)|uli �ul ulj}∪

{(o, ol)|ol ∈ oLabel(o)}∪ {(oli, olj)|olj �ul oli}
- ASSOCIATION = {(ul, a, ol)|∃(ul, ol) ∈ Policya ∧Policya ∈ Policy}

Figure 3.13: Components of EAP -ABAC model with m user and n object attributes

3.4 Multi Attribute Enumerated Authorization-Policy Model

In this section, we define a multi-attribute enumerated authorization policy ABAC model named

EAP -ABACm,n (shown in Figure 3.13). To the best of our knowledge, EAP -ABACm,n is the

first such model. PM [34] also defines a multi-attribute EAP -ABAC model, but their interpreta-

tion of attributes is different than the traditional interpretation of (attribute-name, value) pairs.
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Table 3.19: EAP -ABACm,n model
I. Sets and relations

- U,O, S,A (users, objects, sessions and actions resp)
- UL1, UL2, ...ULm (values for uLabel1, uLabel2, ... , uLabelm)
- OL1, OL2, ...OLn (values for oLabel1, oLabel2, ... , oLabeln)
- uLabeli : U → 2ULi , for 1 ≤ i ≤ m;
- oLabeli : O → 2OLi , for 1 ≤ i ≤ n
- creator : S → U , many-to-one mapping
- s_labelsi : S → 2ULi, for 1 ≤ i ≤ m and s_labelsi(s) ⊆ uLabeli(creator(s))

II. Policy components
- Policya ⊆ (2UL1 × 2UL2 × ...× 2ULm)× (2OL1 × 2OL2 × ...× 2OLn)
- Policy = {Policya|a ∈ A}

III. Authorization function
- is_authorized(s : S, a : A, o : O) ≡ (∃(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ...OLSn)
∈ Policya)[ULSi = s_labelsi(s), for 1 ≤ i ≤ m ∧OLSi = oLabeli(o), for 1 ≤ i ≤ n]

3.4.1 The EAP -ABACm,n Model

EAP -ABACm,n has m user attributes and n object attributes. Components of EAP -ABACm,n are

shown in Figure 3.13. In the figure, the unbounded set of users and objects are shown by the ovals

represented by U and O. The finite set of actions is represented by the oval A. The set of values

represented by UL1, UL2 through ULm (only UL1 and ULm are shown in the figure) represent

range of m user attribute functions respectively. m user attributes named uLabel1, uLabel2 through

uLabelm (only uLabel1 and uLabelm are shown in the figure) are represented by many-to-many

connections between users and corresponding set of values. All these attributes are set valued.

Similarly, oLabel1, oLabel2 through oLabeln denote n object attributes where OL1 OL2 through

OLn specify ranges respectively. In an instantiation of the model, it is useful to replace these

attribute names with meaning ones.

The set of policies in this model is shown by the oval Policy. We define at most one policy for a

single action. A policy is defined a set of policy tuples. A policy tuple (uVal1, uVal2, ..., uValm, oVal1,

oVal2, ..., oValn) takes a subset (including empty set) of values for each user and object attribute.

The set of sessions is represented by the oval S. There is a one-to-many relation between users

and sessions. A user can create many sessions but each session must be attached to only one user.
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Table 3.20: User-level session functions in EAP -ABACm,n
Fuction Condition Updates

create_session (u : U, s : S,
Val1 : 2UL1, Val2 : 2UL2,...,
Valm : 2ULm)

u ∈ U ∧ s 6∈ S∧
Vali ⊆ uai(u), for 1 ≤ i ≤ m

S ′ = S ∪ {s},
creator(s) = u ,
s_labelsi(s) = Vali,
for 1 ≤ i ≤ m

delete_session(u : U, s : S) u ∈ U ∧ s ∈ S ∧ creator(s) = u S ′ = S \ {s}
assign_values (u : U, s : S,
Val1 : 2UL1, Val2 : 2UL2,...,
Valm : 2ULm)

u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧
Vali ⊆ uai(u), for 1 ≤ i ≤ m

s_labels′i(s) = s_labelsi(s)
∪Vali, for 1 ≤ i ≤ m

remove_values (u : U, s : S,
Val1 : 2UL1, Val2 : 2UL2,...,
Valm : 2ULm)

u ∈ U ∧ s ∈ S ∧ creator(s) = u ∧
Vali ⊆ uai(u), for 1 ≤ i ≤ m

s_labels′i(s) = s_labelsi(s)
\Vali

The relation creator between U and S maintains the creating user of a session. In a session, for

each user attribute uLabeli, we maintain a relation s_labelsi that maps values of uLabeli activated

by the user.

The formal definition of the model and semantics of authorization decision is given in Table

4.1. Segment I of the table defines basic sets and relations discussed above. In Segment II, we

show notation of policy tuples and define a policy as a subset of tuples. Finally, the authorization

function is_authorized(s, a, o) is defined in Segment III. It allows a session s, to perform an action

a on an object o if in Policya (the policy for action a) there exists a tuple that satisfies following

conditions - (i) values of each user attribute used in the tuple are activated in the session and (ii)

values of each object attribute mentioned in the tuple are assigned to the object.

User-level session management functions of EAP -ABACm,n are given in Table 3.20. EAP -

ABACm,n allows users to create or destroy sessions, assign or remove values to attributes in a

session. In Table 3.20, each session function is specified with its formal parameters, necessary

preconditions and resulting updates as shown in 1st, 2nd and 3rd columns respectively. The function

create_session() creates a new session with given values and delete_session() deletes an existing

session. assign_values() and remove_values() assign or remove attributes values of an existing

session.
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Chapter 4: COMPARING ENUMERATED AND LOGICAL-FORMULA

AUTHORIZATION-POLICY MODELS

In this chapter, we compare enumerated and logical-formula authorization policy ABAC models

with respect to their theoretical expressive power. In this connection, we define a multi-attribute

LAP model called LAP -ABACm,n. We also simplify EAP -ABACm,n model defined in the

last section. We then compare EAP -ABACm,n with LAP -ABACm,n with respect to expressive

power. We show that in the finite domain, multi-attribute EAP and LAP models are equivalent with

respect to their theoretical expressive power. Additionally, we show that single and multi-attribute

EAP models are equivalent, as well as single and multi-attribute LAP models are equivalent with

respect to their theoretical expressive power.

4.1 Finite Domain EAP and LAP Models

In this section, we define a multi-attribute enumerated authorization policy ABAC model named

EAP -ABACm,n (shown in Figure 4.1(a)). To the best of our knowledge, EAP -ABACm,n is

the first such model. The Policy Machine (PM) [34] also defines a multi-attribute EAP -ABAC

model, but its interpretation of attributes is different than the traditional interpretation of attributes

as (attr. name, value) pairs. We also define a multi-attribute LAP -ABAC model named LAP -

ABACm,n (shown in Figure 4.1(b)) by abstracting its policy language and potentially accepting

any computational logic as policy language.

4.1.1 Multi-attribute EAP -ABAC (EAP -ABACm,n)

EAP -ABACm,n has m user attributes and n object attributes. Components of EAP -ABACm,n

are shown in Figure 4.1(a). The unbounded set of users and objects, and finite set of actions are

represented by U , O and A respectively. The values denoted by UL1, UL2 through ULm repre-

sent ranges of m user attribute functions named uLabel1, uLabel2 through uLabelm respectively.

Similarly, OL1 OL2 through OLn specify ranges of n object attributes. For simplicity, we do not
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Figure 4.1: Components of (a) EAP -ABACm,n and (b) LAP -ABACm,n

consider subjects or sessions, distinct from users, here. They do not materially affect the discus-

sion.

The set of policies is represented by Policy. We define one policy per action. A policy is defined

a set of policy-tuples. A policy-tuple includes subset of values for each user and object attribute.

The formal definition of the model and semantics of the authorization function are given in

Table 4.1. Segment I of the table defines basic sets and relations discussed above. Segment II

shows notation of policy tuples and defines a policy as a subset of tuples. Finally, the authorization

function is_authorized(s, a, o) is presented in Segment III. It allows a user u to perform an action

a on an object o if in the policy Policya for action a, there exists a tuple that satisfies following

conditions—(i) u possesses attribute values used in the tuple, and (ii) o is assigned attribute values

mentioned in the tuple.

4.1.2 Multi-attribute LAP -ABAC (LAP -ABACm,n)

LAP -ABACm,n is specified in Figure 4.1(b). Other than authorization policies, this model is

similar to EAP -ABACm,n. It defines a LAP as a boolean function fa that takes values of m user
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Table 4.1: EAP -ABACm,n model
I. Sets and relations

- U,O, and A (users, objects and actions respectively)
- UL1, UL2, ...ULm (finite set of values, i.e., ranges for uLabel1, uLabel2, ... , uLabelm)
- OL1, OL2, ...OLn (finite set of values, i.e., ranges for oLabel1, oLabel2, ... , oLabeln)
- uLabeli : U → 2ULi , for 1 ≤ i ≤ m;
- oLabeli : O → 2OLi , for 1 ≤ i ≤ n

II. Policy components
- Policy-tuples = (2UL1 × 2UL2 × ...× 2ULm)× (2OL1 × 2OL2 × ...× 2OLn)
- Policya ⊆ Policy-tuples
- Policy = {Policya|a ∈ A}

III. Authorization function
- is_authorized(u : U, a : A, o : O) ≡ (∃(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ...OLSn)

∈ Policya)[uLabeli(u) = ULSi, for 1 ≤ i ≤ m ∧ oLabeli(o) = OLSi, for 1 ≤ i ≤ n]

Table 4.2: LAP -ABACm,n model
I. Sets and relations

- U,O and A (finite set of users, objects and actions respectively)
- UAV1,UAV2, ...,UAVm (finite set of values, i.e., ranges for user attribute functions)
- OAV1,OAV2, ...,OAVn (finite set of values, i.e., ranges for object attribute functions)
- UA = {ua1, ua2, ..., uam} (set of user attributes); uai : U → 2UAVi , for 1 ≤ i ≤ m
- OA = {oa1, oa2, ..., oan} (set of object attributes); oai : O → 2OAVi , for 1 ≤ i ≤ n

II. Policy components
- fa : (2UAV1 , ..., 2UAVm , 2OAV1 , ..., 2OAVn)→ {true, false} (policy for a ∈ A).
- LFs = {fa|a ∈ A} ( set of all policies)

III. Authorization function
- is_authorized(u:U,a:A,o:O) ≡ fa(ua1(u), ua2(u), ..., uam(u), oa1(o), oa2(o), ...oan(o)) = true

and n object attributes as arguments. An authorization request for action a is granted if fa() is

evaluated true, for attribute values of requesting user and requested object. The formal definition

is given in Table 4.2, similar to Table 4.1.

4.2 Theoretical Expressive Power of EAP and LAP Models

This section establishes equivalence between different EAP -ABAC and LAP -ABAC models

with respect to their theoretical expressive power. We consider single and multi-attribute EAP -

ABAC and LAP -ABAC models. The relationship among the models we consider is schemati-

cally presented in Figure 4.2. Single attribute and multi-attribute models are presented on left and
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Table 4.3: Mappings
Equivalence of EAP -ABACm,n and EAP -ABAC1,1

I. From EAP -ABACm,n to EAP -ABAC1,1

- U = U,O = O,A = A
- UL = 2UL1 × 2UL2 × ...× 2ULm; OL = 2OL1 × 2OL2 × ...× 2OLn

- uLabel(u) = (uLabel1(u), uLabel2(u), ..., uLabelm(u))
- oLabel(u) = (oLabel1(o), oLabel2(o), ..., oLabeln(o))
- Policya1,1 = {((ULS1, ULS2, ..., ULSm), (OLS1, OLS2, ..., OLSn))|
(∃(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ..., OLSn) ∈ Policya) [Policya ∈ Policym,n]}

II. From EAP -ABAC1,1 to EAP -ABACm,n
- EAP -ABAC1,1 is a special case of EAP -ABACm,n.

Equivalence of EAP -ABACm,n and LAP -ABACm,n
III. From EAP -ABACm,n to LAP -ABACm,n

- UAVi = ULi, for 1 ≤ i ≤ m; OAVi = OLi, for 1 ≤ i ≤ n
- uai(u) = uLabeli(u); oai(o) = oLabeli(o)
- fa = ∨
(ULS1,ULS2,..ULSm,OLS1,OLS2,..,OLSn)∈Policya

( ∧
1≤i≤m

uai(u) = ULSi) ∧ ( ∧
1≤i≤n

oai(u) = OLSi)

IV. From LAP -ABACm,n to EAP -ABACm,n
- ULi = UAVi, for 1 ≤ i ≤ m ; OLi = OAVi, for 1 ≤ i ≤ n
- uLabeli(u) = uai(u), for 1 ≤ i ≤ m; oLabeli(o) = oai(o), for 1 ≤ i ≤ n
- Policya = {(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ..., OLSn)|

fa(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ..., OLSn) = true}

Equivalence of LAP -ABACm,n and LAP -ABAC1,1

V. From LAP -ABACm,n to LAP -ABAC1,1

- U = U ;O = O;A = A;UAV = 2UAV1 × 2UAV2 × ...× 2UAVm

- OAV = 2OAV1 × 2OAV2 × ...× 2OAVm ;ua(u) = (ua1(u), ua2(u), ..., uam(u))
-oa(u) = (oa1(u), ..., oam(u))
- fa =

∨
fam,n (ULS1,ULS2,...ULSm,OLS1,OLS2,...,OLSn)=true

ua(u) = (ULS1(u), ..., ULSm(u))∧

oa(o) = (OLS1(o), ..., OLSn(o))

VI. From LAP -ABAC1,1 to LAP -ABACm,n
- LAP -ABAC1,1 is a special case of LAP -ABACm,n.

Equivalence of EAP -ABAC1,1 and LAP -ABAC1,1

VII & VIII. From EAP -ABAC1,1 to LAP -ABAC1,1 and vice versa
- Special case of equivalence of EAP -ABACm,n and EAP -ABAC1,1 .
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Figure 4.2: Equivalence of EAP and LAP ABAC models

right side of the Y-axis respectively. Enumerated and logical-formula policy models are presented

above and below the X-axis respectively. These models all have set-valued attributes. 1

Four different equivalences are discussed here labeled one to four in Figure 4.2. They are

equivalence of (i) single and multi-attribute EAP models, (ii) multi-attribute EAP and LAP models,

(iii) single and multi-attribute LAP models, and (iv) single attribute LAP and EAP models.

The equivalence of single and multi-attribute EAP models are demonstrated in Segment I and

II in Table 4.3. In Segment I, we show that multiple attributes can be represented as a single

attribute comprising of cross product of values of multiple attributes. Segment II is trivial as

EAP -ABAC1,1 is a special case of EAP -ABACm,n. Segment III shows how to construct a LAP

formula using m user and n object attributes from a enumerated policy of same set of attributes.

Segment IV shows the converse. Similar to Segment I, Segment V shows how a logical formula

of multiple user and object attributes can be represented as a logical formula of single user and

object attributes. Segment VI is trivial as LAP -ABAC1,1 is a special case of LAP -ABACm,n.

The equivalence of single attribute EAP and LAP models, as in Segment VII and VIII, is a special

case of the equivalence of multi-attribute EAP and LAP models given in Segments III and IV.

1Policy tuples are represented differently in EAP -ABAC1,1 and EAP -ABACm,n models. The former
uses atomic valued tuples (e.g. (manager, TS)) and the later (see Chapter 3) uses set valued tuples (e.g.
({manager} {TS})). The net effect is essentially the same.

42



4.3 Beyond Expressive Power

In practice, usefulness of an access control system depends on many other aspects beyond its ex-

pressive power. For example, in the NIST special publication Guidelines for Access Control System

Evaluation Metrics [44], the authors divide these aspects into four categories including (i) admin-

istration, (ii) enforcement, (iii) performance and (iv) support. In this section, we mostly focus on

administrative properties. We compare the aforementioned models from two perspectives—single-

attribute vs multi-attribute and enumerated vs logical-formula authorization policy.

4.3.1 Single Attribute vs Multiple Attributes

We have seen earlier that EAP -ABAC1,1 is equivalent to EAP -ABACm,n and LAP -ABAC1,1

is equivalent to LAP -ABACm,n. But, in practice this may not be useful because of many reasons

including the following.

Attribute-value assignments and administration. Ranges of each attribute intrinsically sep-

arate their values. For example, if role and location are two different attributes, values of these

attributes are inherently distinguished. As a result, attribute-value assignments to users and ob-

jects and administration of these values (add or remove existing values) can be separated using

semantics of individual attributes.

Privacy concern. If we combine values of more than one attribute into single attribute values,

a user may expose more credential than required in a particular context. For example, combining

values role and location, we may create values {manager@campus, manager@home}. If so, a

user cannot hide role when the context requires only his location.

Larger set to manage. Combining values of more than one attribute together, we often need

to manage larger set of values. For example, if there are ten possible values of role and ten possible

values of location, by combining them we may need to manage one hundred values.
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Table 4.4: Different representations of Authread policy where Authread states that mng can access
TS objects from either office or home locations.

(i) mng ∈ role(u) ∧ (office ∈ location(u) ∨home ∈ location(u) ) ∧ TS ∈ sensitivity(o)

(ii) ((mng ∈ role(u) ∧ office ∈ location(u)) ∨(mng ∈ role(u) ∧ home ∈ location(u)) )

∧TS ∈ sensitivity(o)
(iii) ((mng ∈ role(u) ∧ office ∈ location(u) ∧ TS ∈ sensitivity(o)) ∨

((mng ∈ role(u) ∧ home ∈ location(u) ∧ TS ∈ sensitivity(o))

4.3.2 Enumerated vs Logical-Formula Authorization Policy

In this section, we consider pros and cons of logical-formula and enumerated authorization policy.

Usually, logical formula allows us powerful language constructs to formulate even complicated

business logic and policies in a succinct way. Logical formulas often support large number of

logical and relational operators which make it easy to set up new policies. On the downside,

logical formulas impose little constraint on the structure, size or style of the authorization policy.

As a result, policies are heterogeneous in nature having different sizes and styles. Even a single

policy can be represented in so many ways. For example, Table 4.4 shows how a policy Authread

can be represented in three different forms. The heterogeneity across multiple policies and lack of a

canonical form make it difficult to understand, update or administer existing policies. For example,

to update Authread so that manager no longer gets access from home, different representations of

the policy need to be updated in different ways. Required changes to policies are highlighted in

Table 4.4. These changes require manual effort by an administrator to update them. In a different

aspect, LAPs are often monolithic, making it difficult to distinguish sub-policies.

On the other hand, enumerated authorization policies (EAPs), have a distinct form of represen-

tation. Thus, in EAP -ABAC models, policies are homogeneous and sub-policies in a policy can

be presented in one or more tuples, and a policy is a set of such tuples. Different tuples are distin-

guishable from each other and can be thought of as micro-policies. Thus, policies in enumerated

tuples are polylithic as opposed to monolithic in logical formula.

On the flip side, an EAP can be very large as it does not allow conditional expressions. For

example, the condition age(u) ≥ 18, should be achieved by enumerating all possible ages greater
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Figure 4.3: Pros and cons of enumerated and logical-formula authorization policy

or equal 18. Another disadvantage is that when we add/remove attributes from the system, existing

EAPs may require to be updated.

Administration Using Micro-Policies

The policy Authread mentioned above can be represented using micro-policies as {({mng}, {office},

{TS}), ({mng}, {home}, {TS})}. In order to update the policy so that manager can no longer ac-

cess from home, we can remove the second tuple resulting Authread ≡ {({mng}, {office}, {TS})}.

Similarly, we can add new micro-policies adding new tuples to Authread.

Thus, in term of administration, the minimum administrative units in EAP are micro-policies

represented by policy tuples. So, it is possible that an EAP can be managed by multiple admin-

istrators at the most fine grained level of micro-policies. Design of an administrative model to

manage micro-policies is beyond the scope of this dissertation. We postulate that as policy up-

date can be done by merely adding or removing policy tuples, it can be done programmatically in

EAP -ABAC model. Figure 4.3 shows pros and cons of EAP -ABAC and LAP -ABAC models.

Table 4.5 presents a detailed comparison.
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Table 4.5: Comparison of LAP and EAP

Characteristics of
LAPs (considering
ABACα/HGABAC)

EAPs (value enumeration
for positive attribute-values)

Definition
distinguishing features logical-formula enumeration

Syntax
Representation expression set

Morphism
polymorphic (single policy can
be represented many ways)

unique representation

Policy type
macro-policy,
possibly cohesive sub-policies

micro-policy,
disjointed sub-policies

Divisibility monolithic polylithic
Size usually concise usually large

Language
propositional/
first-order logic formula

equivalent to DNF
of logical formula

Semantics

Set of granted privileges
dynamic (may change on addition/
removal of attribute-values)

static (privilege is explicitly
granted)

Required attribute-value
assgnments for granting
privileges

partial assignments may
grant privilege

requires complete assignment

Administration

Cost of reviewing policy NP-complete
polynomial
(in number of tuples)

Granting new privilege manual update add new tuples
Remove existing privileges manual update remove tuples

Minimum administrative unit entire policy micro-policy
scalability not scalable scalable

Application

Convenient for
specifying new policy,
administration using range
of attribute-values

updating policy,
fine grained administration

Suitable environment
open, loosely administered system,
distributed administration

close, tightly administered
system
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Chapter 5: ENFORCEMENT OF EAP1,1 MODELS

In this chapter, we demonstrate usefulness of EAP models by demonstrating enforcement in ap-

plication contexts. We particularly use EAP1,1 to design a protection model for JSON documents.

We have implemented this protection model in OpenStack Swift storage. The implementation al-

lows “policy-based selective access” of stored OpenStack Swift objects instead of Swift’s default

“all/no access”. In the following sections of this chapter, we briefly discuss motivations for this

work, required background of JSON documents, enforcement models, security-policy syntax and

finally implementation and its evaluation.

5.1 Motivation

JavaScript Object Notation (JSON) is a human and machine-readable representation for text data.

It is widely used because of its simple and concise structure. For example, Twitter uses JSON as

the only supported format for exchange of data starting from API v1.1 [9], and YouTube recom-

mends uses of JSON for speed from its latest API. JSON is being adapted increasingly in large

and scalable document databases such as MongoDB [6], Apache Casandra [1] and CouchDB [2].

Besides these, JSON is also widely used in lightweight data storages for example in configuration

files, online catalogs or applications with embedded storage.

In spite of high adoption from industry, JSON has received little attention from academic re-

searchers. To the best of our knowledge, there is no formal work published on the protection of

JSON documents.

On the other hand, considerable work has been done for protection of XML documents. Al-

though syntactically JSON and XML formats are different, semantically both of them form a rooted

tree hierarchical structure. In fact, JSON data can equivalently be represented in XML form and

vice versa. This brings an obvious question—whether we can utilize authorization models used

for XML documents for protection of JSON data?

Before we answer the preceding question, we look into some of the salient characteristics of
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data represented in JSON (or XML) format, given below.

• Hierarchical relationship. Data often exhibits hierarchical relationship. For example, a

residential address consists of pieces like house number, street name, district/town and state

name organized into a strictly hierarchical structure.

• Semantical association. Different pieces of data are often related semantically and may

need same level of protection. For example, phone number, email address, Skype name may

all represent contact information and require same level of protection.

• Scatteredness. Related information can be scattered around a document. For example,

different pieces of contact information might be located in different places in a document.

Some pieces of data can even be repeated in more than one place in the same document or

across documents.

Interestingly, most XML authorization models [15–17, 37] consider structural hierarchy only.

These models have an implicit assumption that information has been organized in the intended

hierarchical form. These models attach authorization policies directly on nodes in the XML tree

and propagate them using the hierarchical structure. For example, Damiani et al. [29] specify

authorization policy as a tuple 〈subject, object, action, sign, type〉 where subject is specified as

user, user group, IP address or semantic name; object is specified with XPath expression; example

of actions are read or write; signs are positive and negative; and example of types are local, global

and DTD (Document Type Definition) which determines the level of propagation. In this model,

if similar data items requiring same level of protection are placed in structurally unrelated nodes,

it is required to attach same authorization policy to all these nodes. This results in duplication

of authorization policies which is caused by lack of recognition of semantical association and

scatteredness properties.

Duplication incurs significant overhead in maintenance of authorization policies. For instance,

if requirements for storing or publishing contact information (e.g. email, phone, fax) change, it
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Figure 5.1: Synopsis of (a) existing XML models and, (b) the proposed model

is required to update policies for all different pieces of data that represent contact information.

Organizations often collect different types of data including personal identifiable information of

employees and customers. So, they need to comply to different internal and external requirements

including from government and standard bodies. This increases the likelihood that authorization

requirements change frequently over time.

While most XML authorization models directly identify nodes in their authorization policies,

our proposed model adds a level of abstraction by using security-label attribute values. The pro-

posed model specifies two types of policies, called authorization policies and labeling policies.

Authorization policies are specified using security-label attribute values. These values are assigned

to JSON data using labeling policies. A conceptual overview of existing XML authorization mod-

els and our proposed model is shown schematically in Figures 5.1(a) and 5.1(b) respectively. By

using security-label attribute values to connect nodes and policies, we can assign to same attribute-

values to semantically related or scattered data. This eliminates the need to specify duplicated

policies.

The proposed model additionally offers flexibility in specification and maintenance of autho-

rization and labeling policies. These two types of policies can now be managed separately and

independently. For instance, given security-label attribute values, higher level, organization-wide

policy makers can specify authorization policies using these values without knowing details of

JSON structure. On the other hand, local administrators knowledgeable about details of specific

JSON documents can specify labeling policies.

The presented model can easily be generalized for data represented in trees and be instantiated

for other representations, for example, YAML. For simplicity, we only focus on JSON here.
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Figure 5.2: The Attribute-based Operational Model (AtOM)

Table 5.1: Definition of AtOM
I. Sets and relations

- U, JE and A (set of users, JSON elements and actions respectively)
- JEH (hierarchy of JSON elements, represented by �j)
- UL and ULH (finite set of uLabel values and their partial order denoted as �ul respectively)
- SL and SLH (finite set of security-label values and their partial order denoted as �ol respectively)
- uLabel and sLabel (attribute functions on users and JSON objects respectively)

Formally, uLabel : U → 2UL; oLabel : JO → 2SL

II. Policy components
- Policy-tuples = UL× SL
- Policya ⊆ Policy-tuples for a ∈ A
- Policy = {Policya|a ∈ A}

III. Authorization function
- can_access(u : U, a : A, o : JE) = (∃(ul, sl) ∈ Policya)[ul ∈ uLabel(u) ∧ sl ∈ oLabel(o)]
- is_authorized(u : U, a : A, jei : JE) ≡ ∃jej[(can_access(u, a, jej)) ∧ jei �ol jej]

5.2 The Operational Model

This section presents the Attribute-based Operational Model (AtOM) for protection of JSON doc-

uments. AtOM adapts enumerated authorization policies from [23, 24].

Figure 5.2 presents components of AtOM. In the figure, the set of users is represented by U .

Each user is assigned to one or more values of an attribute named user-label or uLabel in short.

These values are selected from the set of all possible user-label values UL which are partially

ordered. The partial order is represented by ULH . An example showing user-label values and

hierarchy is presented in Figure 5.3(a). On the other hand, the set of JSON elements are specified

as JE. JSON elements may subsume other JSON elements, and form a tree structured hierarchy.
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Figure 5.3: An example showing (a) user-label values, (b) security-label values and (c) annotated
JSON tree

Table 5.2: Example of an authorization policy and authorization requests
I. Enumerated authorization policies

Policyread ≡ {(manager,sensitive), (HR,employment), (employee, enterprise), (guest, public)}
II. Authorization requests

is_authorized(Alice, read, emp-rec) = true, assuming uLabel(Alice) = {manager}
is_authorized(Bob, read, emp-rec) = false, assuming uLabel(Bob) = {employee}
is_authorized(Bob, read, con-info) = true, assuming uLabel(Bob) = {employee}
is_authorized(Charlie, read, sen-info) = false, assuming uLabel(Charlie) = {HR}

The hierarchy is represented by JEH. Each JSON element is assigned values of an attribute named

security-label or sLabel in short. These values are selected from the set of security-label values

SL which are also partially ordered. The partial order is represented by SLH. An example showing

security-label values and hierarchy is presented in Figure 5.3(b). A JSON tree annotated with

security-label values is given in Figure 5.3(c). These components and relationship among them are

formally specified in Segment I of Table 5.1.

In Figure 5.2, the set of authorization policies is represented by Policy. There exists one au-

thorization policy per action which is shown by the one-to-one relation between Policy and the

action A. In Table 5.1, Policyread presents the authorization policy for action read. An authoriza-

tion policy may contain one or more micro-policies, and one micro-policy can be associated with

more than one authorization policy. This is represented by the many-to-many relation between

Policy and Policy-tuples. Policyread, as mentioned above, contains four policy-tuples including

(manager, sensitive). The tuple (manager, sensitive) in policy Policyread specifies that users who

are manager can read objects that have been assigned values sensitive. Formally, we represent a

51



policy-tuple as a pair of atomic values (ul, sl) where ul ∈ UL and sl ∈ SL. The formal definition

of policies and policy-tuples is given in Segment II of Table 5.1. We use the terms policy-tuples

and micro-policies equivalently to represent sub-policies.

The authorization function is_authorized() is specified in Section III of Table 5.1. We define

the helper function can_access(u, a, o) which specifies that the user u can access the object o for

action a if there exists a policy-tuple in Policya that allows it. A user is authorized to perform

an action on the requested JSON element if he can access the requested element and all its sub-

elements. For example, let us assume, Alice as a manager wants to read emp-rec which has been

assigned value enterprise as shown in Figure 5.3(c). The tuple (manager, sensitive) in Policyread

specifies that Alice can read object labeled with sensitive or junior values. Thus, the request

is_authorized(Alice, read, emp_rec) is evaluated as true. On the other hand, assuming Bob as an

employee, the request is_authorized(Bob, read, emp-rec) is evaluated as false as an employee can-

not read sen-info which is sub-element of emp-rec. Additional examples of authorization request

are given in Segment II of Table 5.2.

5.3 Labeling Policies

In this section, we discuss specification of labeling policies for the operational model given in

Section 5.2. We broadly categorize the policies used in the operational model into specification of

authorization policies and assignment of security-label values or labeling policies. Policy scope of

the operational model is schematically shown in Figure 5.4. Here, we focus on the later type of

policies.

We specify two different approaches to assign security-label values to elements in a JSON

document, viz. content-based and path-based. These approaches are fundamentally different in

how a JSON element is specified. While a path is described starting from the root node of the tree,

content is specified starting from the leaf nodes of the tree. These two contrasting approaches offer

flexibility in assignments and propagation of security-label values.

52



Figure 5.4: Policy scope

Figure 5.5: Demonstration of (a) assignment of security label values and (b) assignment controls

5.3.1 Control on Labeling Policies

For specification of labeling policies, we define two types of restriction that control assignments

and propagations of security-label values. In the first type, we restrict how security-label values

are selected and assigned on tree nodes. We call this assignment-control. In the second type, we

specify how assigned values are propagated along nodes in the tree. We call this propagation-

control.

The motivation of assignment-control is to restrict arbitrary assignments of security-label val-

ues. This enables administrators to restrict future assignments after some assignments have been

carried out. These controls are specified during the assignments. If any attempting assignment does

not comply with assignment-controls of existing assignments, it will be rejected. We define five
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Figure 5.6: Assignments with assignment controls

possible options for assignment-control as no-restiction, senior-up, senior-down, junior-up and

junior-down. The type no-restriction does not specify any restriction. If we assign a value valuei

in nodei, with senior-up restriction, all up/ancestors of nodei must be assigned values senior to

valuei possibly including valuei. In type senior-down restriction, all down/descendants of nodei

must be assigned values senior to valuei possibly including valuei. Similarly, the types junior-up

and junior-down, specify that ancestors and descendants of nodei must be assigned values junior to

valuei, possibly including valuei. Figure 5.5 schematically illustrates assignment-control. In Fig-

ure 5.6, the node con-info is assigned a value enterprise with option junior-down which regulates

that its descendant nodes namely {email, work-phone} must be assigned values enterprise or its

juniors, in this case from the set {enterprise, public} (using security-label values given in Figure

5.3(b)). In the same figure, the node sen-info is assigned value sensitive with option senior-down

which mandates that its descendant nodes namely {SSN, salary} must be assigned values from

sensitive or its seniors, in this case from the set {sensitive}.

Once we assign security-label values on an element in a JSON tree, the value can be propagated

to other elements in the tree. We define following types for propagation-control as no-prop, one-

level up, one-level down, cascading up and cascading down. Assigned values are not propagated in

type no-prop. From a node, assigned values are propagated to parent and all its siblings in the type

one-level up. Assigned values are propagated to all ancestor nodes in type cascading up. Similarly,

from a selected item, assigned values are propagated to direct children in type one-level down and

to all descendants in type cascading down.

54



Figure 5.7: Content-based labeling model

Table 5.3: Definition of content-based labeling
I. Basic sets and relations

- QO (set of query objects)
- AC (assignment control) AC= {no-restriction, senior-up, junior-up}
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}
- SCOPE ⊆ AC × PC
- SL (set of security-label values)

II. Assignments of security-label values
- LabelAssignments ⊆ QO × SCOPE × 2SL

5.3.2 Content-based Labeling

This section shows how to assign security-label values by matching content and propagating the

labels.

We adapt the concept of query object available in MongoDB [6] which matches content in a

JSON document. Query objects discover content starting from the value nodes of the JSON tree. A

query object accepts regular expression to find value nodes or key nodes conveniently. MongoDB

has built-in functions to express regular expressions and compare values matched by the regular

expressions.

A model to assign security-label values based on query objects is given in Figure 5.7. In the

figure, QO represents the set of all query objects and SL is the set of security-label values. The set

AC represents assignment-control and PC represents propagation-control discussed earlier. AC

and PC together define labeling scopes. A labeling scope determines how values are assigned and
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Table 5.4: Examples of query objects and content-based labeling policies
I. Query objects

- ob1 = {“email": { $regex:“/.*@example.com/"} } (matches email addresses
from domain example.com)

- ob2 = { $elemMatch: { $regex: “RE_EMAIL” } } (matches any key having value
corresponding to the given regular expression)

- ob3 = {$elemMatch:{ $regex: “RE_SSN"}, $elemMatch: {“RE_CREDIT_CARD"}}
(matches all objects containing both social security and credit card number)

II. LabelAssignments
- LabelAssignments= { (ob1, (no-prop, unrestricted), {enterprise}), (ob2,

(no-prop, unrestricted), {enterprise}), (ob3, (no-prop, restricted), { sensitive} }

Figure 5.8: Path-based labeling model

propagated in the tree. As content is matched from the value/leaf nodes of the tree, we consider

assignment and propagation control only for the ancestors of the matching nodes.

The formal definition of the model is given in Table 5.3. Segment I of the table specifies

basic sets and relations. In Segment II, the relation LabelAssignments defines rules for assigning

security-label values. An assignment rule is a triple of a query object to match content, a scope

and a set of values to be assigned. Section I of Table 5.4 gives some examples of query objects

and their interpretation in plain English. Segment II of Table 5.4, presents examples of assignment

policies based on query objects.
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Table 5.5: Definition of path-based labeling
I. Basic sets and relations

- JPath (set of JSONPaths).
- AC (assignment control) AC= {no-restriction, senior-down, junior-down}.
- PC (propagation control) PC = {no-prop, one-level-up, cascade-up}.
- SCOPE ⊆ AC × PC, relation to assign and propagate values.
- SL (set of security-label values).

II. Assignments of security-label values
- LabelAssignments ⊆ JPath× SCOPE × 2SL (assign security-label values on

JSON elements matched and propagate values based on defined scope)

Table 5.6: Examples of JSONPath and path-based labeling policies
I. JSONPaths

- path-to-email=$.emp-rec.con-info.email
- path-to-salary=$.emp-rec.sen-info.salary

II. LabelAssignments
- LabelAssignments= { (path-to-email, (no-prop, unrestricted), {enterprise}),

(path-to-salary, (no-prop, unrestricted), {sensitive}) }

5.3.3 Path-based Labeling

In this section, we show how we assign security-label values by matching paths in the JSON tree

and propagating them along the tree.

We adapt JSONPath [38] to specify path-based labeling policies. This model is very similar to

the content-based labeling model except we use JSONPath instead of query objects. While, query

objects are matched starting from the leaf nodes, JSONPath specifies elements starting from the

root node (or any node in case of relative path) and traverses towards a leaf of the tree. As a result,

this model apply assignment control and propagation control towards descendants of matching

nodes. The components of the model and its formal definition are given in Figure 5.8 and Table 5.5

respectively. Examples of JSON paths and path based labeling policies are presented in Segment I

and II of Table 5.6.
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Figure 5.9: Reference architecture of the implementation testbed

Figure 5.10: Implementation in OpenStack IaaS cloud platform

5.3.4 Implementation in OpenStack Swift

We have implemented our proposed operational model and path-based labeling scheme in Open-

Stack IaaS cloud platform using OpenStack Keystone as the authorization service provider and

OpenStack Swift as the storage service provider. Our choice of OpenStack is motivated by its

support for independent and inter-operable services and a well defined RESTful API set.

We have modified OpenStack Keystone and Swift services to accommodate required changes.

A reference architecture of our testbed is given in Figure 5.9. Details of the implementation is

shown in Figure 5.10. Required changes are presented as highlighted rectangles in Figure 5.10.
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5.3.5 Changes in OpenStack Keystone

OpenStack Keystone uses roles and role-based policies to provide authorization decisions. In our

implementation, we uses roles to hold user-label attribute values. A set of valid security-label

values are also stored as part of the Keystone service.

Among two different types of policies, authorization and labeling policies, the former is man-

aged in the Keystone service. We assume, a higher level administrators (possibly at the level

of organization) adds, removes or updates these authorization policies. We add a policy table in

Keystone database to store these enumerated authorization policies.

5.3.6 Changes in OpenStack Swift

In Swift side, we store security-label values assigned to JSON objects and path-based labeling

policies applied to them. Security-label values and labeling policies are stored as metadata of the

stored objects, which are JSON documents in this case. For simplicity, we assume object owner

(Swift account holder in this case) can update security-label values or labeling policies for a stored

JSON document.

During the evaluation, we intercept every request to Swift (from the Swift-proxy server) and

reroute the request to be passed through JSONAuth plugin, if it is a request for a JSON document.

In this case, the request additionally carries a requested path and authorization policies applicable

to the user. JSONAuth plug-in retrieves the requested JSON document, applies path-based label-

ing policies to annotate the document and uses authorization policies to determine if the user is

authorized for the requested content of the file.

5.3.7 Evaluation

An evaluation of our implementation is shown in Figure 5.11. The evaluation has been carried

out against concurrent download requests to the Swift Proxy server. The X-axis shows size of

the JSON document requested for downloading. On the other hand, the Y-axis shows the average
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Figure 5.11: Performance evaluation

download time for 10 concurrent request. Our evaluation shows a performance hit of nearly 60%

over no authorization protection.
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Chapter 6: CONCLUSION AND FUTURE WORK

6.1 Summary

In this dissertation, we conduct a systematic study of Enumerated Authorization Policy (EAP) for

ABAC. We have developed a representative, simple EAP ABAC model—EAP-ABAC1,1. For the

sake of clarity and emphasis on different elements of the model, we present EAP-ABAC1,1 as a

family of models. We have investigated how the defined models are comparable to other existing

EAP models. We also demonstrate capability of the defined models by configuring traditional

LBAC and RBAC models in them.

We compare theoretical expressive power of EAP based ABAC models to logical-formula au-

thorization policy ABAC models. In this regard, we present a finite-attribute, finite-domain ABAC

model for enumerated authorization policies and investigate its relationship with logical-formula

authorization policy ABAC models in the finite domain. We show that these models (EAP-ABAC

and LAP-ABAC) are equivalent in their theoretical expressive power. We further respectively show

that single and multi-attribute ABAC models are equally expressive.

As proof-of-concepts, we demonstrate how EAP ABAC models can be enforced in different

application contexts. We have designed an enhanced EAP-ABAC1,1 model to protect JSON docu-

ments. While most of the existing XML protection model consider only hierarchical structure of

underlying data, we additionally identify two more inherent characteristics of data— semantical

association and scatteredness and consider them in the design. Finally, we have outlined how EAP-

ABAC1,1 can be used in OpenStack Swift to enhance its “all/no access” paradigm to “policy-based

selective access”.

6.2 Future Work

• Variation of EAP models. In this work, I focus on developing the concepts of EAP models.

The proposed models involve attributes of positive values only. Many other types of EAP
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models can be developed, for example, models involving negative attribute values where

negative value means absence of a value. In contrast to positive valued model where granted

permissions is monotonically increasing with addition of micro-policies, negative valued

models deviate from this characteristics which make these models more interesting to inves-

tigate.

• Administrative Models. EAP ABAC model demonstrate itself as a viable alternate to

logical-formula ABAC models with respect to theoretical expressive power. To take EAP

models to the next step, it is worth to investigate their administrative flexibilities (if any).

• Combining Enumerated and Logical-formula ABAC. We have shown enumerated au-

thorization policy ABAC models as a viable alternate to Logical-formula Authorization Pol-

icy (LAP) ABAC models. These models have corresponding pros and cons. For example,

logical-formula authorization policies are easy to set up but might be difficult to administer.

On the other hand, enumerated authorization policy would be difficult to set up due to ver-

bosity but be easy to administer. As a result, it is worth to investigate how to combine pros of

these two models where authorization policies is setup with logical-formula but administered

using enumerated policy.
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