
MULTI-TENANT ACCESS CONTROL FOR CLOUD SERVICES

APPROVED BY SUPERVISING COMMITTEE:

Ravi Sandhu, Ph.D., Chair

Kay A. Robbins, Ph.D.

Gregory B. White, Ph.D.

Weining Zhang, Ph.D.

Jaehong Park, Ph.D.

Accepted:
Dean, Graduate School

Copyright 2014 Bo Tang
All right reserved.

DEDICATION

I would like to dedicate this dissertation to all my family and friends. A special feeling of gratitude

to my loving parents for their words of encouragement and supports of great love. My grandparents

have always been building themselves as examples for me to understand the greatness of life and

future. My aunts, uncles and cousins have never left my side and are special.

I also dedicate this dissertation to my many friends who have supported me throughout the

process. I will always appreciate all they have done, especially Tom and Mary Misuraca for

helping me adapt to the life in San Antonio and go through hard times with their wisdom and care.

Lijuan Dai, Yun Zhang, Fang Wang, Hui Shen, Yuan Xu, Jun Ye, Zhen Gao, Wenyuan Xiao, Jian

Cui, Zhenxin Zhan, Li Xu, Weiliang Luo, Xin Jin, Xiaohuang Zhu and many more have shared with

me their wonderful journey of pursuing further education and better life across the oceans and are

important to my growth.

MULTI-TENANT ACCESS CONTROL FOR CLOUD SERVICES

by

BO TANG, M.S.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
August 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3637093
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3637093

ACKNOWLEDGEMENTS

Sincere gratitude is hereby extended to the following individuals and organizations who help

me accomplish this dissertation with their supervision, companionship and sponsorship.

Dr. Ravi Sandhu, for his wisdom, guidance and support of both my research and life throughout

my doctoral studies. Dr. Qi Li, for his mentoring of my research skills and co-authorship of my

first papers. This dissertation would not have been accomplished without their inspiring ideas,

critical comments and constant encouragement.

The other committee members of this dissertation: Dr. Kay A. Robbins, Dr. Gregory B. White,

Dr. Weining Zhang, Dr. Jaehone Park and Dr. Rajendra V. Boppana (in Proposal), for their

insightful comments and the time they devoted to reading this dissertation.

My fellow Ph.D. students in the Institute for Cyber Security (ICS) lab: Yuan Cheng, Xin

Jin, Dang Nguyen, Khalid Zaman Bijon, Yun Zhang, Tahmina Ahmed, Prosunjit Biswas, Navid

Pustchi, Zhenxin Zhan, Li Xu, Qingji Zheng, Weiliang Luo and many more, for their companion-

ship, sharing of ideas and passion.

Farhan Patwa, director of ICS, for his patient help on the OpenStack implementation and active

connections with the OpenStack community.

Dolph Mathews, the Program Technical Lead (PTL) of Keystone, for his reviews and comments

of the OSAC model and the domain trust blueprint.

This work is partially supported by grants from the National Science Foundation and AFOSR

MURI program and the UT TRANSFORM program. Parts of Chapter 3 and Chapter 4 have

appeared as [52, 53, 55]. Chapter 5 has been accepted and will appear in NSS 2014 as [54].

This Doctoral Dissertation was produced in accordance with guidelines which permit the in-
clusion as part of the Doctoral Dissertation the text of an original paper, or papers, submitted for
publication. The Doctoral Dissertation must still conform to all other requirements explained in
the “Guide for the Preparation of a Doctoral Dissertation at The University of Texas at San An-
tonio.” It must include a comprehensive abstract, a full introduction and literature review, and a
final overall conclusion. Additional material (procedural and design data as well as descriptions
of equipment) must be provided in sufficient detail to allow a clear and precise judgment to be
made of the importance and originality of the research reported.

iv

It is acceptable for this Doctoral Dissertation to include as chapters authentic copies of pa-
pers already published, provided these meet type size, margin, and legibility requirements. In such
cases, connecting texts, which provide logical bridges between different manuscripts, are manda-
tory. Where the student is not the sole author of a manuscript, the student is required to make an
explicit statement in the introductory material to that manuscript describing the student’s contri-
bution to the work and acknowledging the contribution of the other author(s). The approvals of
the Supervising Committee which precede all other material in the Doctoral Dissertation attest to
the accuracy of this statement.

August 2014

v

MULTI-TENANT ACCESS CONTROL FOR CLOUD SERVICES

Bo Tang, Ph.D.
The University of Texas at San Antonio, 2014

Supervising Professor: Ravi Sandhu, Ph.D., Chair

Multi-tenancy is one of the key features of cloud computing. In order to protect data se-

curity and privacy for each customer (tenant), cloud service providers (CSPs) apply multi-tenant

schemes to their shared services. Basically, a tenant, in its lifespan, owns a share of on-demand

cloud resources such as users, virtual machine (VM) instances and storage containers. With the

service-oriented architecture (SOA), all the services in a cloud need to support multi-tenancy and

conform with a consolidated authorization model. We call such models as multi-tenant access

control (MTAC) models which are compatible with the features of the cloud, namely, centralized

facility, agility, homogeneity and out-sourcing trust. MTAC models should be able to address

both intra-tenant and cross-tenant accesses. The former provides authorization schemes for single-

tenant scenarios. The latter enables collaboration among tenants, which is an emerging trend of

cloud evolution.

Multi-domain access control in traditional environments has been researched in various aspects

such as role-based models, policy composition and decomposition, enforcement models and so on.

However, the prior work is not directly applicable in the cloud environment or requires extra infras-

tructure for operation and administration. Furthermore, it is challenging for existing multi-domain

models to encompass attribute-based access control (ABAC) which provides more expressiveness

and flexibility especially meaningful in the cloud.

In this dissertation, we present a systematic research of MTAC models with a top-down ap-

proach. Our contributions are categorized into three layers: policy, enforcement and implemen-

tation (PEI). Starting from the policy (P) layer at the top, we propose a suite of MTAC models

including role-based models, attribute-based models and cross-tenant trust models. The role-based

models, MT-RBAC and MTAS, extend the traditional RBAC model to function in multi-tenant

vi

cloud environment and integrate two kinds of trust relations between tenants. Cross-tenant trust

models provide a taxonomy of trust relations in terms of authorization for cross-tenant accesses.

The trust models are also applicable to the attribute-based model, MT-ABAC, which similarly ex-

tends the ABACα model by means of cross-tenant trust. The P layer work builds a theoretical

foundation and a framework of trust relations in cloud-based collaborative access control.

The enforcement (E) layer in the middle addresses the architecture of how the policies in the

upper layer can be enforced to the implementations in the lower layer. Since the cloud has logically

centralized infrastructure, we propose a novel Multi-Tenant Authorization as a Service (MTAaaS)

to accommodate all the multi-tenant access control needs in a centralized service. The performance

and scalability of this service is assured by the cloud. In this setting, the policies are stored in

the central service along with the policy decision point (PDP). Each cloud service has a policy

enforcement point (PEP) sending access requests to the PDP and enforcing responses from the

PDP in a multi-tenant fashion. This architecture is prototyped using XACML implementation in

cloud environment.

The implementation (I) layer at the bottom integrates the MTAC models into the real-world

cloud system. We investigate OpenStack, one of the most popular open-source cloud systems and

extend its identity service, Keystone, with a domain-trust module which enables multi-domain

access control for OpenStack services. The domains in OpenStack are identical with tenants from

our point of view. The results of experiments show minimum performance overhead with this

newly introduced functionality.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Scope and Assumptions . 6

1.4 Thesis . 7

1.5 Summary of Contributions . 7

1.6 Organization of the Dissertation . 9

Chapter 2: Related Work . 10

2.1 Centralized Approaches . 10

2.2 Decentralized Approaches . 11

2.3 Attribute-Based Approaches . 12

2.4 Enforcement and Implementation . 13

Chapter 3: Multi-Tenant Access Control (MTAC) Models 15

3.1 MTAS . 15

3.1.1 Formalization . 15

3.1.2 Administrative MTAS (AMTAS) Model 21

3.1.3 Enhanced Trust Models . 25

viii

3.2 MT-RBAC . 27

3.2.1 Overview . 27

3.2.2 Base Model—MT-RBAC0 . 30

3.2.3 Trustee Independent Public Role—MT-RBAC1 32

3.2.4 Trustee Dependent Public Role—MT-RBAC2 34

3.2.5 Administrative MT-RBAC (AMT-RBAC) model 35

3.3 CTTM . 37

3.3.1 Motivation . 37

3.3.2 On-Demand Self-Service in the Cloud . 38

3.3.3 Tenant Trust Relations . 39

3.3.4 Formalized Model . 42

3.3.5 Role-Based CTTM . 45

3.4 MT-ABAC . 48

3.4.1 MT-ABAC Components . 48

3.4.2 Formal MT-ABAC Model . 50

3.4.3 MT-RBAC Configuration . 55

3.5 Discussions . 56

3.5.1 Role-Based Trust Models . 56

3.5.2 Constraints . 58

3.5.3 Trusts in AWS and OpenStack . 59

Chapter 4: Multi-Tenant Authorization as a Service (MTAaaS) 61

4.1 MTAaaS Architecture . 61

4.2 Policy Specifications . 62

4.2.1 MTAS Policy Specification . 62

4.2.2 MT-RBAC Policy Specification . 64

4.3 Prototype and Evaluation . 65

ix

4.4 Discussions . 70

Chapter 5: OpenStack Domain Trust Implementation 72

5.1 Background and Motivation . 72

5.2 OpenStack Access Control Model . 76

5.3 Domain Trust Model . 82

5.4 Prototype and Evaluation in OpenStack . 86

Chapter 6: Conclusion and Future Work . 89

6.1 Summary . 89

6.2 Future Work . 90

Bibliography . 91

Vita

x

LIST OF TABLES

Table 3.1 Administrative Functions in AMTAS . 22

Table 3.2 Administration functions available to tenant t in AMT-RBAC 36

Table 3.3 Trust Model Comparison. A and B represent two entities in RT or ten-

ants in MTAS and MT-RBAC. A represents the resource owner and B the

requester. 57

xi

LIST OF FIGURES

Figure 1.1 An out-sourcing case illustrating multi-tenant accesses 2

Figure 1.2 MTAC Framework Structure . 8

Figure 3.1 An abstracted model of the MTAS system. 16

Figure 3.2 MT-RBAC Model . 27

Figure 3.3 Example multi-tenant assignments in the out-sourcing case. The differ-

ences among the MT-RBAC models are also illustrated in terms of E’s

exposed roles. 30

Figure 3.4 A car rental example of cross-tenant access. 38

Figure 3.5 Cross-Tenant Trust Model . 42

Figure 3.6 Role-Based Cross-Tenant Trust Model . 45

Figure 3.7 Multi-Tenant Attribute-Based Access Control (MT-ABAC) Model 48

Figure 3.8 Multi-tenant accesses with Type-γ trusts 52

Figure 4.1 MTAaaS Architecture . 61

Figure 4.2 Example MTAS policy structure with trust relation OS . E as highlighted. 63

Figure 4.3 The MT-RBAC2 policy enables two independent authorization paths: cross-

tenant user assignment (UA) and cross-tenant role hierarchy (RH), where tr

trusts te. 65

Figure 4.4 MTAaaS Testbed Architecture . 67

Figure 4.5 Performance and scalability evaluation results 68

Figure 5.1 An DevOps use case of cross-domain accesses. 73

Figure 5.2 Core OpenStack Access Control (OSAC) model with domain trust. 77

Figure 5.3 An example administrative role hierarchy. 81

Figure 5.4 A tree structure showing characteristics of domain trust relation. 83

xii

Figure 5.5 Performance and scalability evaluation results 87

xiii

Chapter 1: INTRODUCTION

The growing predominance of cloud computing impacts every aspect of the information technol-

ogy (IT) industry [46]. It facilitates business agility and lowers costs for information systems by

using virtualization techniques over shared infrastructures in an on-demand self-service manner.

Due to the shared infrastructure, multi-tenancy is introduced as the key functioning model of cloud

services [43] segregating customer data and work space for security and privacy purposes. Thus,

the access control mechanisms supporting multi-tenant services are similar to those for distributed

environments, but they are still different because of the following characteristics of typical cloud

systems.

• Centralized Facility. Cloud services are usually presented as a pool of computing resources

which are centralized in the CSP managed facility. The consumers (tenants) should be autho-

rized full control of their temporarily “owned” resources including administration privileges.

In other words, a tenant can create users within its scope and arbitrarily grant access to them.

Hence, in this setting, pure decentralized models [40, 58] are not suitable.

• Self-Service Agility. The creation and deletion of tenants are not controlled by the CSP. A

tenant may be created by the consumer for temporary use and deleted immediately after-

wards. Thus, the authorization model, especially for cross-tenant accesses, has to be flexible

enough to cope with such agility.

• Homogeneity. For the service operation of a cloud to meet a standard service level agree-

ment (SLA), the CSP tend to build and maintain cloud systems with homogeneous archi-

tecture while only the customer configurations are different. Therefore, the access control

model in different tenants should be identical with each other while the policies are cus-

tomizable.

• Out-Sourcing Trust. Cloud users intrinsically out-source part of their IT infrastructures to

CSPs so that trust relations between these two parties are already established. Collabora-

1

tions among tenants also need similar trust relations, which can be developed through their

common trust in the CSP.

The above listed features distinguish the cloud from other distributed systems in terms of multi-

tenant authorization. It follows that access control models developed for previous distributed en-

vironments are not directly applicable to the cloud. Moreover, since multi-tenant collaborations

are essential in the cloud [37], the multi-tenant access control (MTAC) models should address not

only intra-tenant but also cross-tenant accesses. In particular, fine-grained secure resource sharing

among tenants is not enabled in today’s commercial clouds [34, 39].

1.1 Motivation

Before we discuss the multi-tenant access control problem, we need to clarify the definition of

tenants. We see from the CSP’s perspective that a tenant is a billable account owned by an orga-

nization, a department of an organization or even an individual. A tenant is not only a scope of

operations but also an independent authority and an accessing entity. As a result, unlike domains in

distributed environments, tenants in the cloud should be treated as entity components in the model

rather than an attribute of users or objects. The formal definition of tenants is given in Chapter 3.

Intra-Tenant Access Cross-Tenant Access

Auditor

Developer

Owner

ENTERPRISE (E) AUDITING FIRM (AF)

OUT-SOURCING

COMPANY (OS)

Dev.E

Acc.E

HR.E

Charlie

Alice

Bob
Cloud

Storage

Service
Dev.OS

Acc.AF

Web Portal

Web Portal

Figure 1.1: An out-sourcing case illustrating multi-tenant accesses

To better explain the problem, we use an out-sourcing example, as shown in Figure 1.1, in

which the Enterprise (E), the Out-Sourcing company (OS), and the Auditing Firm (AF) are three

2

collaborating parties sharing a common cloud storage service. E out-sources part of its application

development work to OS and external auditing tasks to AF . The cloud storage service provides

storage services for the development department of OS, the accounting department of AF , and

three of E’s departments, development, accounting, and HR, as segregated tenants. Let “.” de-

note the affiliation relation between the tenant and its organization (also called issuer) so that, for

example, Dev.E represents the tenant of E’s development department. The example cross-tenant

accesses for collaborations are as follows.

C1. Charlie as a developer in OS has to access the source code stored in Dev.E to perform his

out-sourcing job;

C2. Alice as an auditor in AF requires read-only access to financial reports stored in Acc.E; and

C3. Alice needs read-only accesses to Dev.E and Dev.OS in order to audit the out-sourcing

project.

For simplicity, in our examples we assume all the tenants are created on a single cloud service,

bringing homogeneous architecture which is often the case in cloud environments [28]. But, we do

not exclude the potential of heterogeneous collaborations among multiple cloud services or even

among multiple service models: Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS) [43]. As a common collaboration need suggests, a user may test

and deploy the source code stored in Dev.E directly on another tenant of a PaaS service. This

function requires secure collaborative accesses between the two services. In fact, SaaS services

are often hosted on PaaS clouds in which the SaaS services are regarded as tenants. A similar

situation holds between PaaS and IaaS. Thus, we treat accesses among multiple tenants, clouds,

or even service models equivalently in the abstraction level as multi-tenant accesses upon which

access control mechanisms should be enforced.

Currently, CSPs use Single Sign-On (SSO) techniques to achieve authentication and simple

authorization in federated cloud environments, but fine-grained authorization is typically not sup-

ported. NASA has integrated role-based access control (RBAC) into Nebula [42], a private cloud

3

system. While traditional RBAC enables fine-grained access control mechanisms in clouds, it lacks

the ability to manage collaborations. IBM [26] and Microsoft [25] proposed a resource sharing ap-

proach in data-centric clouds using database schema, but this approach is specialized to databases

and cannot be directly applied to other types of services. Collaboration models in traditional ac-

cess control models, such as RT [40] and dRBAC [29], use credentials to securely communicate

among collaborators. The management of credentials remains a problem which could be avoided

in cloud environments because of the existence of centralized facilities. Consequently, in order

to enable secure multi-tenant collaborations in the cloud, we need a general fine-grained access

control model for this purpose.

To achieve collaborations among cloud services, Calero et al [22] proposed a multi-tenancy

authorization system by extending RBAC with a coarse-grained trust relation. The authorization

policies and trust assertions are stored in a centralized knowledge base. The authorization decisions

are also made in a centralized policy decision point (PDP). Calero et al described an authorization

model and a trust model in an informal way, while noting that the trust relation is coarse-grained

and open for extensions.

1.2 Problem Statement

Contemporary cloud systems extend the role-based access control (RBAC) model to address multi-

tenant authorization. This exercise matches the centralized facility and homogeneity characteristics

of the cloud, since RBAC is intrinsically a centralized model initially designed for a single orga-

nization. However, in terms of self-service agility and out-sourcing trust, these models limit the

flexibility of the cloud and typically disallow cross-tenant accesses or support these only minimally.

The permissions in RBAC are presented as operations against objects which are not identifiable in

the policy since they are temporary. As a result, the authorization policies can only specify the

relation between roles and operations as role-permission assignments so that a role can only be as-

sociated with a set of operations in a tenant. Moreover, current cloud systems apply limited control

on the cross-tenant accesses. Some of them treat cross-tenant accesses more or less identical as

4

intra-tenant accesses with no extra control which is obviously needed. Hence, the current access

control solutions in cloud systems do not meet all the requirements and characteristics of the cloud

environment identified here.

In order to cover the major multi-tenant authorization requirements and cloud characteristics,

we feel it necessary to build a generic formal model since the previous models are not directly

applicable to the cloud. This model is a mixture of centralized and decentralized models. On the

one hand, all the tenants in all the services of a cloud have to comply with a uniform model which

is established by the CSP and enforced by each service. On the other hand, each tenant has full

control of the cloud computing resources within its scope. The model should be feasible in all the

three cloud service models: IaaS, PaaS and SaaS. Since IaaS is the foundation of the other two

models and less complicated in use cases, it is a reasonable environment to begin experimenting

with. Also, there are requirements for finer-grained access control. It is challenging to allow

administrators to specify authorization policies based upon objects before they are created. This

can be achieved using attribute-based access control (ABAC) approaches.

In order to develop the model described above, we still have some challenges in front of us.

Here follows the challenges we identify.

• Common Vocabulary. During the process of specifying cross-tenant authorization policies,

a tenant needs to understand the roles or other attributes in the context of another tenant and

vice versa. As a result, establishing a common vocabulary between tenants is essential.

• Policy Conflicts. The policies specified in the user tenant and the object tenant of an access

may conflict with each other. The policy decision point (PDP) should resolve the conflict

using a predefined algorithm.

• Centralized or Decentralized PDP. The policy enforcement points (PEPs) are distributed in

each service in a multi-tenant fashion. The PDP can be hosted either in each cloud service or

in a centralized authorization service. The former needs communication between services to

retrieve information needed in the policy decision process but is more efficient since the PDP

5

is closer to the cloud resources. The major drawback of the latter is the performance issue

since all the services will communicate with the authorization service for each access so that

the implementation have to be scalable in order to meet the high performance requirements.

• Administration Model. The administration of authorization policies is the concern of most

access control models. In multi-tenant cloud environments, the administration model should

allow the CSP to conduct daily operations but not intervene with tenant policies.

• Constraints. The tenants may also need to specify constraint policies to better control multi-

tenant accesses. For example, separation of duty (SoD) in a single tenant can be covered by

local tenant policies but in a multi-tenant scenario, the same problem may require CSP level

policies or remote policies to specify the constraint.

1.3 Scope and Assumptions

This research is conducted based on the following assumptions.

Standardized APIs. The CSP should have a set of standardized APIs and other necessary

facilities, in order to functionally enable cross-tenant accesses. Our research mainly focuses on

the access control of these APIs.

Authenticated Users. All the users requesting accesses are assumed to have been properly

authenticated.

These two assumptions are more or less necessary for any treatment of cross-tenant trust. The

rest of the assumptions below could be relaxed or removed but are convenient for an initial inves-

tigation of cross-tenant trust models.

One Cloud Service. For simplicity, we assume cross-tenant accesses are between tenants of a

single cloud service. We believe our models are extensible beyond a single cloud but multi-cloud

considerations are outside the scope of this dissertation.

Two Tenant Trust. For simplicity we only consider trust relations between two tenants. More

generally, there may exist trust relations for more than two tenants forming a community, a coali-

6

tion, or a federation [18].

Unidirectional Trust Relations. Each trust relation is unidirectional (like follow in Twitter) as

opposed to bidirectional (like friend in Facebook).

Unilateral Trust Relations. Each trust relation is established unilaterally by the trustor, and

remains under exclusive control of the trustor. Specifically, the trustor and only the trustor can

create, modify, and revoke a trust relation. In general, it seems unreasonable for the trustee to

unilaterally assert a trust relationship. However, it may be reasonable for a trustee to agree before

a trustor can assert trust. Also, it may be reasonable for a trustee to unilaterally revoke trust with

respect to a trustor. Treatment of these cases is outside the scope of this dissertation.

1.4 Thesis

The central thesis of this dissertation is as follows.

The problem of multi-tenant access control in the cloud can be partially solved by integrating

various types of unidirectional and unilateral trust relations between tenants into role-based and

attribute-based access control models.

1.5 Summary of Contributions

The contributions in this dissertation are summarized into three aspects.

• Policy. The multi-tenant authorization system in [22] was formalized as a role-based MTAS

model and extended with finer-grained trust relations between tenants. Furthermore, we

developed another model, the Multi-Tenant Role-Based Access Control (MT-RBAC) model,

similar to MTAS but with a different type of trust relation. We proposed a taxonomy of

the Cross-Tenant Trust Models (CTTM) in multi-tenant access control. Finally, the Multi-

Tenant Attribute-Based Access Control (MT-ABAC) model was developed to integrate more

flexibility and granularity into the policy.

• Enforcement. We proposed a centralized architecture called Multi-Tenant Authorization

7

MTAaaS Framework

M
T
A

S

M
T

-R
B

A
C

M
T

-A
B

A
C

Domain Trust in OpenStack

Policy (P)

Enforcement (E)

Implementation (I)

CTTM

Figure 1.2: MTAC Framework Structure

as a Service (MTAaaS) to enforce the policy layer models in the cloud. The specifica-

tion of policies were composed in standard eXtensible Access Control Markup Language

(XACML). Also, we built a prototype system based on SUN’s XACML implementation and

conducted experiments to validate the feasibility of the models and the service architecture.

• Implementation. We presented the OpenStack Access Control (OSAC) model in our per-

spective and integrated a novel domain trust relation in the implementation of Keystone,

the identity service of OpenStack. In the identity service API v3 [7], domain is equivalent

to tenant in our models. The PDP was implemented in both centralized and decentralized

ways. The experiments were conducted over the decentralized architecture because it is con-

sistent with the Havana release [6] of OpenStack. The results show that the extended domain

trust implementation introduces minimum performance overhead and thereby maintains the

scalability of Keystone.

Following the PEI framework for application-centric security [47], we organize our research

in three layers: Policy (P), Enforcement (E) and Implementation (I). The entire structure of our

work towards multi-tenant access control is illustrated in Figure 1.2. The accomplished works are

mainly in P layer and E layer. In future work, we plan to keep developing the P layer models

8

and refining the MTAaaS framework in the E layer as well. The models shown in P layer in

Figure 1.2 are not an exhaustive list. Additional multi-tenant access control models are planed to

be investigated in future work. Then, our eventual goal is to bring an I layer MTAaaS platform to

cloud users and developers leveraging OpenStack.

1.6 Organization of the Dissertation

Chapter 2 gives a literature review of the related works including multi-domain, delegation and

Grid solutions. Chapter 3 presents the policy layer works including MTAS, MT-RBAC, CTTM and

MT-ABAC. Chapter 4 describes the MTAaaS architecture enforcing multi-tenant access control

models in the cloud. Chapter 5 gives the formal definition of OSAC model, the domain trust

extension and experiment results of the implementation. Chapter 6 concludes the dissertation and

discusses the future work.

9

Chapter 2: RELATED WORK

Multi-tenant access control shares some basic problems with multi-domain secure interoperation

approaches in traditional distributed environments. Some solutions have already been proposed

in multi-domain circumstances. We summarize these approaches into four categories: centralized

approaches, decentralized approaches, attribute-based approaches and enforcement models.

2.1 Centralized Approaches

Role-based access control (RBAC) [27] enabling fine-grained access control does not encompass

the overall context associated with any collaborative activity [56]. Many RBAC extensions have

been proposed to address multi-domain access control in the context of roles. A typical way to

solve the context mismatch during multi-domain authorization process is establishing a common

centralized authority for all the domains collaborating with each other.

Shafig et al [49] propose a set of policy composition mechanisms using role mapping and

integer program (IP) to solve heterogeneity issues in secure multi-domain information sharing.

This approach introduces graph-based specification model for RBAC and clarifies the fundamental

problems in cross-domain authorization through roles. Zhang et al [59] propose a scalable role

and organization based access control model (ROBAC) to scale up RBAC for modeling security

policies spanning multiple organizations. ROBAC is designed specifically for organizations with

homogeneous structure in a hierarchical way. It aggregates roles and assets with organizations

and asset types respectively significantly shrinking the size of role-based access control policies.

Another RBAC extension, the group-based RBAC model (GB-RBAC) [41], is designed to foster

dynamic collaborations in distributed environments such as the Grid. With the group entity in-

troduced, GB-RBAC allows a user to be assigned a permission either through system-level roles

or group-level roles. The former is consistent with the user-role assignment in RBAC while the

latter is extended to accommodate groups of users. In this way, the administration is effectively

separated into two levels, the group-level and system-level, so that some administrative privileges

10

can be delegated to group-level administrators. In the above approaches, a centralized author-

ity is required to specify or mediate cross-domain policies. However, in cloud environment, the

only existing centralized authority is the Cloud Service Provider (CSP) who should maintain the

generic policies for all the tenants rather than for specific ones since the tenants are temporary and

self-service oriented. Thus, these approaches are not directly applicable in the cloud.

2.2 Decentralized Approaches

In order to facilitate access control in distributed systems, another line of work advocates decen-

tralized authorities extending RBAC. Role-based trust management framework (RT) [40] provides

localized authority over roles, delegation in role definition, linked roles and parameterized roles

using a few simple credential forms. It is theoretically expressive and adaptive to distributed sys-

tems. Similarly, distributed RBAC (dRBAC) [29] utilizes PKI credentials to define trust domains,

roles to define controlled activities, and role delegation across domains to represent permissions

to these activities. It is designed for highly dynamic coalition environments with multiple orga-

nizations or entities that are unwilling to rely on a third party to administer trust relationships.

Permission-Based Delegation Model (PBDM) [58] extends RBAC with flexible role and permis-

sion level delegations. In PBDM, a security administrator specifies the permissions that a user

(delegator) has authority to delegate to others (delegatees), then the delegator creates one or more

temporary delegation roles and assigns delegatees to particular roles. This mechanism provides

clear separation of security administration and delegation. It allows transitive delegations giving

control of permissions to user for decentralized management. Barka et al [17] propose a frame-

work for role-based delegation models giving a taxonomy of delegation models. This framework

clarifies the basic characteristics of delegation and its usage in RBAC.

The delegation approach requires additional administration. All the delegations of a permission

need to be kept track of well in a graph. If any of the nodes (users) change, the entire graph of

authorization will change unexpectedly.Thus, the delegation approaches also lack support of the

agility in the cloud.

11

2.3 Attribute-Based Approaches

The benefit of Attribute Based Access Control (ABAC) is prominent in multi-domain access con-

trol [33]. In RBAC and many other previous models, access to an object has to be individually

granted to locally identified subjects so that the external subject’s identity has to be pre-provisioned

in the object’s domain prior to the access request. However, ABAC avoids the need for explicit

authorizations to be directly assigned to specific subjects but to subjects with certain attributes.

Thus, with ABAC the authorization policies for both intra-domain and cross-domain accesses are

unifiable as long as the data sharing agreements and infrastructures are established.

The concept of ABAC has existed for many years. It is anticipated to be the next generation of

dominant access control models. From our perspective, ABAC is more generic than RBAC since

the role is an attribute of users as well as permissions. Some of the attributes can be conveyed as

roles but a lot more cannot be. For example, the context attributes such as the accessing location

and time are not straightforward to be described by roles. At the same time, the flexibility of

attributes further complicates the access control problems. As a result, a commonly accepted

unifying ABAC model does not yet exist.

Although ABAC models are still under development, its core entities and basic concepts have

already been specified. The earlier approach is to add attributes to the existing RBAC model. Al-

Kahtani et al [13] add attribute feature into the user-role assignment process enabling dynamic and

automatic assignments. The composite model is capable to express Mandatory Access Control

(MAC). Kuhn et al’s work [38] summaries and compares the possible ways to integrate attributes

with RBAC (RBAC-A). In general, there are three approaches namely dynamic roles, attribute-

centric and role-centric to achieve the RBAC-A models. Recently, Xin et al [36] propose a unified

ABACα model covering DAC, MAC and RBAC. The ABACα model clearly describes the rela-

tions among users, subjects and objects, as well as their attributes using its policy configuration

language. There are three configuration points in ABACα for specifying attribute constraint poli-

cies and authorization policies. The authorization decision is computed based on these policies. In

12

a more recent work of these authors [35], the ABACβ model is proposed to cover more traditional

models including a considerable number of RBAC extensions.

2.4 Enforcement and Implementation

Besides the policy layer work in the literature, there is significant related work in enforcing and

implementing access control mechanisms in multi-domain environments, especially in the cloud.

Federated identity and authorization services are included in the architecture of distributed sys-

tems to facilitate collaborative access control. Federated identity [19, 24] enables authenticating

strangers by sharing identity information among federated parties. The federation relation is intrin-

sically an equal trust relation which is meaningful in some use cases but cumbersome in supporting

the variety of collaborations. For example, the trust relation between E andOS in Figure 1.1 is ap-

parently not an equal trust since the ultimate owner of the resources to be accessed is E. Moreover,

the maintenance of federation relation becomes costly when it has to cope with the agility feature

in clouds. Some tenants are created temporarily and deleted upon completion of their jobs, while

the federation relation has to be updated accordingly. Authorization services, such as VOMS [14],

PERMIS [23] and CAS [44], aim to secure resource sharing among virtual organizations (V Os)

in grid computing systems leveraging cryptographic credentials. Although such credential-driven

approaches are viable and effective, the overhead of maintaining the public-key infrastructure for

credentials is expensive and not necessary in the cloud environment due to the existence of cen-

tralized facility and homogeneous architecture.

To enforce access control in web environments, Yuan et al [57] propose an ABAC enforcement

model. The architecture contains a centralized policy decision point (PDP) and distributed policy

enforcement points (PEP). The attributes and authorization policies are specified by distributed

attribute authorities and policy authorities. This enforcement model is designed for web services

but also feasible in other SOA systems.

As a critical part of the evolving cloud technology, authorization mechanisms for multi-tenant

collaborations are emerging in both academia and industry. Multi-tenancy in the cloud features

13

homogeneity, centralized facility, and agility comparing to the traditional multi-domain environ-

ments. Utilizing the centralized facility feature in clouds [15, 22, 30, 51] it is possible to develop

authorization services with scalable policy management modules and PDPs in a central location.

Moreover, to better clarify the trust relationships in authorization domains for cloud computing,

Perez et al [45] recently propose 29 different trust models and 8 fine-grain models in terms of con-

ditions, subjects and targets applying to a universal trust operator. They also give a centralized trust

manager architecture for IaaS clouds. This enforcement model is consistent with this dissertation.

14

Chapter 3: MULTI-TENANT ACCESS CONTROL (MTAC) MODELS

In this Chapter, we propose a suite of four MTAC models including two role-based models, one

trust model and one attribute-based model, as shown in the Policy layer of Figure 1.2. All the

role-based and attribute-based models use various types of tenant trust relations, as described in

the Cross-Tenant Trust Model (CTTM), to bridge authorization between tenants. CTTM defines

three types of tenant trust relations as Type-α, Type-β and Type-γ trust. The role-based mod-

els, Multi-Tenant Authorization System (MTAS) and Multi-Tenant Role-Based Access Control

(MT-RBAC), use Type-β and Type-γ trust respectively. The attribute-based model, Multi-Tenant

Attribute-Based Access Control (MT-ABAC), is compatible with all the three types of trust rela-

tions.

3.1 MTAS

In this section we formalize the multi-tenancy authorization system informally described in [22].

We call the resulting model as the MTAS model for ease of reference and continuity. We also

develope an administration model for MTAS (called the AMTAS model). Further, we propose two

feasible enhancements to the trust model of MTAS.

3.1.1 Formalization

Towards the goal of a general model of multi-tenant role-based access control in the cloud, we

start by abstracting the MTAS system [22] into a formalized model, as shown in Figure 3.1. There

are four entity components: tenants (T),1 users (U), permissions (P) and roles (R). In addition to

classic RBAC2, the role hierarchy model [27], the tenant component is introduced to express au-

thorization in multi-tenant environments, while other components need to be modified accordingly.

In particular the traditional RBAC entities of users, permissions and roles have tenant attributes so

that they can be identified uniquely in a multi-tenant cloud environment. This is depicted by the

1The tenant entity is generated from the concept of “issuer” in [22] for consistency and clarity.

15

Users

(U)

Tenants

(T)

Roles

(R)

User

Assignment

(UA)

Permission

Assignment

(PA)

Role

Hierarchy

(RH)

Permission

Ownership

(PO)

Issuer

Trust

(IT)

Role

Ownership

(RO)

User

Ownership

(UO)

Permissions

(P)

Trust

Figure 3.1: An abstracted model of the MTAS system.

UO, RO and PO relations in Figure 3.1. UO, RO and PO are many-to-one relations from U , R

and P respectively to T .

TENANTS. A tenant represents an organization, a department of an organization or even an

individual who uses the cloud services. From the CSP point of view, each tenant is an independent

customer.The data and operations of a tenant are isolated from each other. For example, in the

out-sourcing case described in Figure 1.1, E as an organization owns three tenants: Dev.E, Acc.E

and HR.E. They are used for different departments in E but the CSP treat them uniformly as

cloud storage service customers.

USERS. A user is an identity for an individual. It is authenticated as a federated ID [19]

which is universally unique for all the tenants in the community. Every user has an owner attribute

indicating the tenant who provides the identity. The identity is also usable by other tenants.

PERMISSIONS. A permission is a specification of a privilege to an object on a tenant, which

is specified as a service interface. A permission is denoted in a 3-tuple (privilege, tenant, ob-

ject). For example, (read, Dev.E, /root/) represents a permission of reading the “/root/” path on

Dev.E. Because the tenant attribute of a permission belongs to only one tenant, every permission

is associated with a single tenant while one tenant may have multiple permissions.

16

ROLES. A role is a job function (role name) with an tenant. A role is denoted as role(tenant,

roleName), e.g. role(Dev.E, dev) represents a developer role in tenant Dev.E. A role belongs to

a single tenant while an tenant may own multiple roles.

SESSIONS.2 A session is an instance of access created by a user. The owner attribute of the

user is inherited to the session. A session, in its lifespan, is regarded as the subject of the access.

A subset of roles that the user is assigned to can be activated in a session. In a multi-tenant cloud

environment, note that the user and the active roles in a session might not all be from the same

tenant.

Crucially, an additional tenant trust relation (TT ⊆ T × T , also written as “.”) establishes

tenant to tenant trust as will be described and formalized in detail later in this section. For

∀tr, te, tf ∈ T , TT relation is reflexive

tr . tr (3.1)

but not transitive

tr . te ∧ te . tf ; tr . tf (3.2)

and it is neither symmetric

tr . te ; te . tr (3.3)

nor anti-symmetric

tr . te ∧ te . tr ; tr = te. (3.4)

For tr . te, we call tr the trustor and te the trustee. In MTAS model, trust is always established

by the trustor allowing the trustee to view and use its own authorization statements. Therefore,

the trustee can grant one of the trustor’s roles, say rr, a trustee’s permission, say pe. This role to

permission assignment enables all users in rr to inherit pe. Further the trustee can make one of the

trustee’s roles, say re to be junior to one of the trustor’s roles, say rr. The effect of this role to role

2The session component was not discussed in [22], but we feel it indispensable in a complete formal model which
builds on RBAC, so it is included and some session related components are added in the formalization, as described
in Definition 2.

17

assignment is to make all users in rr members of re so that the permissions of re in the trustee are

also inherited by the users of rr in the trustor. The definition of MTAS trust model is given below.

Definition 1. Let A and B denote two tenants. By establishing a tenant trust relation (TT) with

B (A . B), A exposes its entire role hierarchy to B so that B is able to make the two following

assignments:

1) assigning B’s permissions to A’s roles; and

2) assigning B’s roles as junior roles to A’s roles.

For example, in the out-sourcing case as described in Figure 1.1, Bob, representing the re-

source owner Dev.E, could allow certain developers in OS to access the source code files stored

in Dev.E for them to conduct the out-sourcing job. Assume the proper permission in Dev.E

for the out-sourcing job, (edit, Dev.E, /src/) is associated to the role role(Dev.E, dev). In or-

der to achieve this cross-tenant access, with the presence of Dev.OS . Dev.E relation, Bob

can assign role(Dev.E, dev) to be a junior role of an appropriate developer role in Dev.OS, say

role(Dev.OS, dev). In this way, the users associated to role(Dev.OS, dev) are able to edit the

files under the /src/ directory in Dev.E.

The trust model solves the two key problems in collaborative role-based access control: de-

centralized authority and semantic mismatch. Since the collaborators are independent, the tenants

(decentralized authorities) desire to maintain control of their resources including data and autho-

rization settings. But in most collaborations, some level of resource sharing is inevitable and that

is why we need a trust model to keep the resource sharing process secure. By establishing a trust

relation described in Definition 1, the trustor exposes its authorization settings to the trustee while

the trustee assigns permissions of its data to the trustor. In this way, both sides contribute to cross-

tenant assignments and the accesses are under mutual control.

The semantic mismatch issue refers to the fact that the definitions of roles vary in different

domains so that no proper assignment could be made by a single authority without additional

communication with each other. In the trust model of MTAS, this issue is mitigated, because the

18

authorization settings, i.e. the role hierarchy and the role members, of the trustor are exposed to

the trustee upon the creation of the tenant trust relation. Consider the out-sourcing case. With

the presence of Dev.OS . Dev.E, Dev.E’s administrator Bob may examine the members of

Dev.OS’s roles and decide which role is appropriate to assign the permission to.

The formal definition of MTAS model is as follows.

Definition 2. The MTAS authorization model has the following components:

• U , R, P , T and S (users, roles, permissions, tenants and sessions respectively);

• UO ⊆ U × T , a many-to-one relation mapping each user to its owning tenant; correspond-

ingly, userOwner(u : U) → T , a derived function mapping a user to its owner where

userOwner(u) ∈ {t ∈ T |(u, t) ∈ UO};

• RO ⊆ R × T , a many-to-one relation mapping each role to its owning tenant; correspond-

ingly, roleOwner(r : R) → T , a derived function mapping a role to its owner where

roleOwner(r) ∈ {t ∈ T |(r, t) ∈ RO};

• PO ⊆ P × I , a many-to-one relation mapping each permission to its owning tenant; cor-

respondingly, permOwner(p : P) → T , a derived function mapping a permission to its

owner where permOwner(p) ∈ {t ∈ T |(p, t) ∈ PO};

• TT ⊆ T × T , a reflexive relation on T called tenant trust relation, also written as .;

• canUse(r : R)→ 2T , a derived function mapping a role to a set of tenants who can use the

particular role. Formally, canUse(r) = {t ∈ T |roleOwner(r) . t};

• UA ⊆ U ×R, a many-to-many user-to-role assignment relation;

• PA ⊆ P×R, a many-to-many permission-to-role assignment relation requiring (p, r) ∈ PA

only if permOwner(p) ∈ canUse(r);

• RH ⊆ R×R is a partial order on R called role hierarchy or role dominance relation, also

written as ≥, requiring r ≥ r1, only if roleOwner(r1) ∈ canUse(r);

19

• user(s : S)→ U , a function mapping each session to a single user which is constant within

the life-time of the session; and

• roles(s : S) → 2R, a function mapping each session to a subset of roles, roles(s) ⊆

{r|(∃r′ ≥ r)[(user(s), r′) ∈ UA∧userOwner(user(s)) ∈ canUse(r)]}, which can change

within s, and s has the permissions
⋃
r∈roles(s){p|(∃r′′ ≤ r)[(p, r′′) ∈ PA]}.

Note that since we are formalizing an extension of pure RBAC model [27], the user permission

assignment described in [22] is ignored in the formalization.

Role activation mechanisms determine the executable permissions inherited by a session. Be-

cause a role may inherit permissions from its junior roles in the role hierarchy, when a role is

activated in a session, its inherited roles may be either automatically activated (implicit activation)

or require explicit activation. Theoretically the former scenario is transformable to the latter by re-

cursively executing explicit activation for the junior roles. The choice between the two approaches

is left as an implementation issue in the NIST RBAC model [27]. In the RBAC96 model implicit

activation is specified [48]. In MTAS we choose to specify explicit activation in the roles(s) com-

ponent. In a session, only the permissions of the explicitly activated roles are executable to the

user.

Since every user identity is available to all the tenants, UA assignments bear no constraints

on tenants. Thus, the UA assignments are always issued by the role owners as discussed in the

administration of the MTAS model in Section 3.1.2.

The trust model is embedded in the canUse function which takes effect in PA and RH as-

signments in the MTAS model. As the name suggests, the canUse(r) function returns the tenants

who can use r to make authorization assignments. The returned tenants are the trustees who are

trusted by r’s owner, say i. In order to issue PA, permission owner has to be i itself or one of the

trustees of i. Therefore, r is only assigned to permissions of i or its trustees. Similar conditions

require that only the roles of i or its trustees can be assigned as junior roles of r in RH . PA and

RH assignments enable collaborations among tenants.

20

Based on the formalization of MTAS model, we also develop a formal administrative model

and finer-grained trust models, as presented in the following sections.

3.1.2 Administrative MTAS (AMTAS) Model

The administration model, AMTAS is tightly coupled with the MTAS model, since the main prob-

lem of access control models in distributed environments is how to manage the decentralized ad-

ministrative authority. In other words, the administrative model regulates who are eligible to issue

what kind of assignments. Hence, a desirable administrative model should maintain balanced man-

agement workload and proper control for both sides.

Definition 3. The Administrative MTAS (AMTAS) model is defined by the following two rules.

Assume that A and B are two tenants and A trusts B.

• The resource requester A is responsible for managing the trust relation of A . B;

• The resource owner B is responsible for managing the cross-tenant assignments (i.e. PA

and RH) to A’s requesting roles, according to MTAS in Definition 2.

As described in Definition 3, AMTAS maintains the balance of management by introducing

“dual control”. In any cross-tenant access, the resource requesting tenant controls the trust rela-

tions which decides whether or not to allow cross-tenant assignments. The resource owner keeps

the ultimate authority of its resources and issues the assignments based on properly created and

maintained trust relations. Both the trust relations and the assignments are crucial in cross-tenant

authorization because if either is revoked or altered, the corresponding collaborative accesses will

be denied.

21

Table 3.1: Administrative Functions in AMTAS

Function Condition Update

Administrative functions available to cloud administrators:

AddTenant(t) t /∈ T T ′ = T ∪ {t}

RemoveTenant(t) t ∈ T forall te ∈ T do

RevokeTrust(t, te)

RevokeTrust(te, t)

forall userOwner(u) ≡ t do

RemoveUser(t, u)

forall roleOwner(r) ≡ t do

RemoveRole(t, r)

forall permOwner(p) ≡ i do

RemovePerm(t, p)

T ′ = T \ {t}

Administrative functions available to tenant t:

AddUser(t, u) userOwner(u) ≡ t ∧ u /∈ U U ′ = U ∪ {u}

RemoveUser(t, u) userOwner(u) ≡ t ∧ u ∈ U forall {r : R|(u, r) ∈ UA} do

RevokeUser(t, u, r)

U ′ = U \ {u}

AddRole(t, r) t = roleOwner(r) ∧ r /∈ R R′ = R ∪ {r}

Continued on next page�

22

Table 3.1: Administrative Functions in AMTAS (Contd.)

Function Condition Update

RemoveRole(t, r) t = roleOwner(r) ∧ r ∈ R forall {u : U |(u, r) ∈ UA} do

RevokeUser(t, u, r)

forall {p : P |(p, r) ∈ PA} do

RevokePerm(t, p, r)

forall {rasc : R|(rasc, r) ∈ RH} do

RevokeRH(t, rasc, r)

forall {rdesc : R|(r, rdesc) ∈ RH} do

RevokeRH(t, r, rdesc)

R′ = R \ {r}

AddPerm(t, p) permOwner(p) ≡ t∧ p /∈ P P ′ = P ∪ {p}

RemovePerm(t, p) permOwner(r) ≡ t∧ p ∈ P forall {r : R|(p, r) ∈ PA} do

RevokePerm(t, p, r)

P ′ = P \ {p}

AssignUser(t, u, r) t = roleOwner(r) ∧ u ∈ U UA′ = UA ∪ {(u, r)}

RevokeUser(t, u, r) t = roleOwner(r) ∧ u ∈

U ∧ (u, r) ∈ UA

UA′ = UA \ {(u, r)}

AssignPerm(t, p, r) t = permOwner(p) ∧ t ∈

canUse(r)

PA′ = PA ∪ {(p, r)}

RevokePerm(t, p, r) t = permOwner(p) ∧ t ∈

canUse(r) ∧ (p, r) ∈ PA

PA′ = PA \ {(p, r)}

AssignRH(t, rasc, r) t = roleOwner(r) ∧ t ∈

canUse(rasc)∧

¬(rasc � r) ∧ ¬(r ≥ rasc)
†

≥′=≥ ∪{r2, r3 : R|r2 ≥ rasc ∧ r ≥

r3 ∧ roleOwner(r3) ∈

canUse(r2) • (r2, r3)} ‡

Continued on next page�

23

Table 3.1: Administrative Functions in AMTAS (Contd.)

Function Condition Update

RevokeRH(t, rasc, r) t = roleOwner(r) ∧ t ∈

canUse(rasc) ∧ rasc � r

≥′= (� \{(rasc, r)})∗ §

AssignTrust(t, te) te ∈ T .′=. ∪{(t, te)}

RevokeTrust(t, te) te ∈ T ∧ t . te ∧ t 6= te
¶ .′=. \{(t, te)} [

† The notation “�” represents an immediate inheritance relation. This condition prevents cycle

creation in the role hierarchy.

‡ All the roles senior to rasc become senior to all the roles junior to r.

§ The notation “∗” represents recursive updates for the entire role hierarchy.

¶ A tenant cannot refuse to trust itself. Otherwise, improper revocation of assignments may occur.

[By revoking the trust relation, the canUse() function of ttenant’s roles automatically updates ac-

cordingly as well as PA and RH .

�

Table 3.1 provides the core logic of administrative functions of AMTAS. The functions are

presented in a three-column format with function names, conditions and updates. There are two

parts of administrative functions available to two different levels of administration. The cloud

administrators are roles empowered to add and remove tenants 3. Along with the removal of a

tenant, its correlated trust relations, users, roles and permissions should also be removed. Even

though the users are globally available, the removal of their owning tenants will result in removal

of the users as well since the identity of the users depends on their owners. The removal of users

will result in revocation of correlated UA. As cross-tenant UA is allowed, some assignments

authorized by other tenants may also be removed. The same situation happens when a tenant is

trying to remove one of its roles. In this way, cross-tenant authorization assignments are controlled

3Although in contemporary clouds the administration commands tend to integrate self-service features without
intervention by cloud administrators, they are also required to follow the built-in rules specified by the CSP.

24

by the resource owners (the permission owners in AMTAS).

The functions of assigning and revoking trust relations are controlled by the resource re-

questers. When a revocation of a trust relation is issued the trustor, the question of whether the

correlated cross-tenant assignments (PA and RH) specified by the trustee are automatically re-

moved or not are left as an implementation issue. For simplicity of our discussion, we choose

the former. It is worth to note that the policy decision results are not affected by the choice since

according to Definition 2 the authorization assignments will not function without the proper trust

relation when the corresponding cross-tenant accesses are being checked.

3.1.3 Enhanced Trust Models

The trust model discussed in Definition 1 enables collaborative access control among tenants.

However, the unnecessary exposure of the trustor’s authorization settings raises privacy issues.

Therefore, we propose two natural enhancements to the trust model.

Trustor-Centric Public Role (TCPR)

As the name suggests, TCPR introduces the public role constraint for trustors. The public roles

are included in a predefined subset of a trustor’s roles exposed to all of the trustees. It is formally

defined as follows.

Definition 4. The trustor-centric public role (TCPR) model inherits all the components from MTAS

in Definition 2, while the following modifications are applied:

• PT (t : T)→ 2R, a function mapping an tenant to a set of its public roles which are the only

roles that i expose to its trustees; and

• canUse(r : R)→ 2T is modified to canUse(r) = {t} ∪ {t1 ∈ t|t . t1 ∧ r ∈ PT (t)}, where

t = roleOwner(r).

By introducingPT (t), the exposure surface of the t’s roles in TCPR is much smaller than that in

MTAS trust model. Accordingly, only if r ∈ PT (t), then r can be used by t’s trustees. Otherwise,

25

it can only be used internally by t .

Since the public roles in TCPR are defined in terms of the trustor t, if PT (t) is modified, then

all the trust relations with the common trustor are influenced. Hence, in practice PT (t) tends to

contain more public roles than necessary to make sure the availability of all the collaborations that

t is using. Therefore, we give a more fine-grained enhancement to the trust model.

Relation-Centric Public Role (RCPR)

In contrast with TCPR, RCPR enforces the public role constraints for trust relations instead of

trustors. The public roles are included in a predefined subset of the trustor’s roles exposed to the

trustee in a specific trust relation. The formal definition follows.

Definition 5. The relation-centric public role (RCPR) model inherits all the components from

MTAS in Definition 2, while the following modifications are applied:

• PR(tt : TT)→ 2R, a function mapping a tenant trust relation to a set of the trustor’s public

roles; and

• canUse(r : R)→ 2T is modified to canUse(r) = {t} ∪ {t1 ∈ I|t . t1 ∧ r ∈ PR(t . t1)},

where t = roleOwner(r).

In RCPR, the public roles of the trustor are defined per trust relation so that the role exposure of

the trustor is accurately expressed and enforced. With this fine-grained constraint, MTAS systems

may achieve minimum exposure of the trustor’s roles in collaborations.

The tenant trust relation (Type-β) in MTAS allows the trustee to give access to the trustor. It is

applicable in some use cases that the trustor is willing to expose its users and roles to the trustee.

However, in some other use cases, the trustor treats its users as sensitive information and does not

want to disclose even to the trustees. Thereby, we propose another type (Type-γ) of tenant trust

relation allowing the trustee to take access from the trustor. In this way, only roles and permission

need to be expose to the trustees. Similar to MTAS, MT-RBAC, as proposed in the following

section, facilitates multi-tenant access control using Type-γ trust.

26

Users

(U)

Tenants

(T)

Roles

(R)

User

Assignment

(UA)

Permission

Assignment

(PA)

Role

Hierarchy

(RH)

Permission

Ownership

(PO)

Tenant

Trust

(TT)

Role

Ownership

(RO)

User

Ownership

(UO)

Sessions

(S)

Permissions

(P)

Constraints

Trust

user(s) roles(s)

Issuers

(I)

Tenant

Ownership

(TO)

Figure 3.2: MT-RBAC Model

3.2 MT-RBAC

To achieve fine-grained access control for multi-tenant collaborations in the cloud, we develop a

family of three MT-RBAC models with increasingly finer-grained trust relations.

3.2.1 Overview

MT-RBAC models, as shown in Figure 3.2, have six entity components: issuers (I), tenants (T),

users (U), permissions (P), roles (R) and sessions (S). The traditional RBAC [27] entities of users,

permissions and roles now have a tenant attribute so that they can be uniquely identified as depicted

by the user-ownership (UO), permission-ownership (PO) and role-ownership (RO) relations re-

spectively in Figure 3.2. All three relations are many-to-one relations from users, permissions

and roles respectively to their owner tenants. Further, another many-to-one relation representing

tenant-ownership (TO) exists between tenants and issuers.

ISSUERS. An issuer is a client of a single or multiple cloud services. Typically, it is either an

27

organization or an individual who is able to administer its own tenants in the cloud services. For

simplicity, we consider a single cloud scenario in this disseration, so the name of the cloud service

is not explicitly specified. For instance, in the out-sourcing example, E, OS and AF represent

three issuers respectively in a single cloud storage service.

TENANTS. A tenant is an exclusive virtual partition of a cloud service leased from a cloud

service provider. An issuer may own multiple tenants while a tenant belongs to a single issuer. Let

“.” denote the tenant-issuer relation. For example, Dev.OS represents the tenant Dev of OS.4

USERS. A user is an identifier for an individual person associated with a single tenant. An

individual can act as different users in different tenants. Let “@” denote the user-tenant relation.

For example, Alice@Acc.AF and Alice@Acc.E are two different users in tenants Acc.AF and

Acc.E respectively, even if they belong to a single person, Alice.5

ROLES. A role is a job function (role name) associated with a tenant. A role belongs to

a single tenant while a tenant may own multiple roles. Let “#” denote the role-tenant relation

roleName#tenant. For example, dev#Dev.E represents a developer role in tenant Dev.E.

PERMISSIONS. A permission is a specification of a privilege to an object in a tenant. A

permission is associated with a single tenant while a tenant may have multiple permissions. Let

“%” denote the permission-tenant relation (privilege, object)%tenant. For example,

(read, /root/)%Dev.E represents a permission to read the “/root/” path on Dev.E.

SESSIONS. A session is an instance of activity established by a user. A subset of roles that

the user is assigned to can be activated in a session. Note that in multi-tenant cloud environments

the user and the active roles of a session are not necessarily from a single tenant.

Crucially, in order to address collaborations among tenants, MT-RBAC introduces a role-based

trust relation, Tenant Trust (TT), as illustrated in Figure 3.2.

TT is reflexive but not transitive, symmetric or anti-symmetric. In MT-RBAC, a trust relation

4In a more general treatment we would identify the cloud service explicitly in a three part name such as
Dev.OS.CloudService.

5Other user models are possible. For instance, the users of a same person can be combined into one universal ID
using federated identity [18, 19, 32]. However, since this mechanism is not fully supported in contemporary clouds,
MT-RBAC models do not require a universal ID for an individual. The particular user model chosen does not materially
impact the essentials of MT-RBAC. For completeness we do need a concrete user model.

28

is always established by the truster’s issuer. It enables the trustee’s issuer to add trustee’s users to

truster’s roles. This can be done directly on a per user basis by assigning one of B’s (trustee’s)

users to one of A’s (truster’s) roles via UA. Alternately it can be done indirectly by assigning one

of B’s roles, say r1, to be senior to one of A’s roles, say r2, via RH . Thereby all members of r1

become members of r2 and A’s permissions associated with r2 are granted to the B’s users in r1.

We emphasize that trust is established at the granularity of tenants. For example, if AF asserts

Acc.AF E Acc.E, there is no trust from Acc.AF to HR.E or Dev.E. The formalization of TT

and its effects are described in Definition 6 as follows.

Definition 6. The tenant trust relation, also written as “E”. By asserting A E B, A’s issuer

exposes A’s roles to B’s issuer so that B’s issuer can and can only make the following two kinds

of assignments:

• assigning B’s users to A’s roles; and

• assigning A’s roles as junior roles to B’s roles.

Different MT-RBAC models vary in the granularity of the trust relations, specifically in the

truster’s role exposure. The left part of Figure 3.3 shows the role hierarchy of Dev.E in the out-

sourcing example. Since MT-RBAC0 does not enforce any constraint on the trust relation, the

entire Dev.E role structure is exposed to all Dev.E’s trustees (more precisely to their issuers). In

MT-RBAC1, suppose the employee role emp#Dev.E is a private role while the others are public.

The private role is never exposed to other tenants. Conversely, the public roles are exposed to all

the trustees’ issuers. Crucially, during cross-tenant accesses, the permissions associated with the

private role cannot be inherited directly or even indirectly through the public roles. In MT-RBAC2,

public role sets are customized for different trustees. Suppose the accountant role acc#Dev.E

and the manager role mgr#Dev.E have to be exposed in the collaboration with Acc.AF while

mgr#Dev.E and the developer role dev#Dev.E need to be exposed to Dev.OS for the out-

sourcing project. Accordingly, as illustrated in Figure 3.3, there are two different public role sets

to these two trustees respectively. Note that even if mgr#Dev.E is public in both collaborations,

29

⊴

Tenant: Dev.E Tenant: Acc.AF

Tenant: Dev.OS

⊴

⊴

Alice

@ACC.AF

Charlie

@DEV.OS
dev#Dev.OS

acc#Acc.AF

(read, /root/)

%Dev.E

dev#Dev.E

mgr#Dev.E)

MT-RBAC0
exposed roles
to all trustees

MT-RBAC1
public roles
to all trustees

MT-RBAC2
public roles
to Dev.OS

MT-RBAC2
public roles
to Acc.AF

Permission Assignment (PA)User Assignment (UA) Role Hierarchy (RH)

acc#Dev.E

emp#Dev.E

Figure 3.3: Example multi-tenant assignments in the out-sourcing case. The differences among
the MT-RBAC models are also illustrated in terms of E’s exposed roles.

for either one, it only inherits permissions from the junior roles in the corresponding public role

set. For example, since acc#Dev.E is a private role to Dev.OS and a public role to Acc.AF , its

permissions are only inherited to Acc.AF but not to Dev.OS.

3.2.2 Base Model—MT-RBAC0

In order to enable secure cross-tenant collaborations, the base model is formally defined as follows.

Definition 7. The Base Model MT-RBAC0 has the following components.

• T , U , R, P and S are finite sets of tenants, users, roles, permissions and sessions respec-

tively;

• userOwner(u : U)→ T , a function mapping a tenant-specific user to its owning tenant;

• roleOwner(r : R)→ T , a function mapping a tenant-specific role to its owning tenant;

• permOwner(p : P) → T , a function mapping a tenant-specific permission to its owning

tenant;

30

• TT ⊆ T × T is a many-to-many reflexive relation on T , also written as “E”;

• canUse(r : R) → 2T , a function mapping a role to a set of tenants who can use the role;

formally, canUse(r) = {t ∈ T |roleOwner(r) E t};

• UA ⊆ U ×R, a many-to-many user-to-role assignment relation requiring (u, r) ∈ UA only

if userOwner(u) ∈ canUse(r);

• PA ⊆ P×R, a many-to-many permission-to-role assignment relation requiring (p, r) ∈ PA

only if permOwner(p) = roleOwner(r);

• RH ⊆ R×R is a partial order on R called role hierarchy or role dominance relation, also

written as “≥”, requiring r2 ≥ r1 only if roleOwner(r2) ∈ canUse(r1);

• user(s : S)→ U , a function mapping each session to a single user which is constant within

the life-time of the session; and

• roles(s : S) → 2R, a function mapping each session to a subset of roles, roles(s) ⊆

{r|(∃r′ ≥ r)[(user(s), r′) ∈ UA∧userOwner(user(s)) ∈ canUse(r)]}, which can change

with time, and s has the permissions
⋃
r∈roles(s){p|(∃r′′ ≤ r)[(p, r′′) ∈ PA]}.

Note that the introduction of the derived canUse function provides convenient means for TT to

take effect upon UA and RH . For a given role r ∈ R, the statement roleOwner(r) ∈ canUse(r)

is always true since TT is reflexive. Hence, intra-tenant assignments are always under the authority

of the tenant’s owner issuer.

A trustee (more precisely its issuer) can assign a truster’s permissions to the trustee’s users only

at the granularity of the truster’s roles. In the spirit of RBAC, MT-RBAC does not allow individual

permissions of the truster to be assigned to the trustee’s users or roles.

Role activation mechanisms determine the executable permissions in a session. Because a role

may inherit permissions from its junior roles in the role hierarchy, when a role is activated in a

session, its inherited roles may be either automatically activated (implicit activation) or require

31

explicit activation. The choice between the two approaches is left as an implementation issue in

the NIST RBAC model [27]. In the RBAC96 model implicit activation is specified [48]. In MT-

RBAC, we choose to specify explicit activation in the roles(s) component. In a session, only the

permissions of the explicitly activated roles are available. An alternate forumulation of MT-RBAC

with implicit activation can also be developed.

The revocation of a TT relation tr E te can be asserted by tr’s issuer. This operation will auto-

matically eliminate the trustee te from canUse(r) for each of {r ∈ R|(r, tr) ∈ RO}. Moreover, as

the formal description of UA and RH in Definition 7 suggests, all the relevant cross-tenant assign-

ments (i.e., UA and RH) issued by te’s issuer will be revoked automatically, as well as the active

roles in the sessions of te’s users. In this way the permissions in tr are not able to be inherited to te

after revocation.6 If the removed trust relation is subsequently restored, the trustee’s issuer would

have to redefine and reissue all the cross-tenant assignments from scratch.

MT-RBAC0 enables multi-tenant collaborations by means of TT . However the coarse-grained

trust relation may lead to breaches in protection of sensitive information. For example, in the base

model, a truster needs to expose all the organization role structure to its trustees. A more important

issue is that trustees can obtain more sensitive information by assigning their users to the sensitive

roles they can use. Therefore, MT-RBAC0 may only be suitable for collaborations among closely

related tenants such as departments of a single organization.

3.2.3 Trustee Independent Public Role—MT-RBAC1

A natural enhancement to address the granularity limitations of the base model is to classify the

components for collaborations into public ones and private ones. In this setting, collaborations

only take place on the public components of the resource owner. The truster’s roles can be simply

classified into two disjoint sets: public roles and private roles. Since the truster’s public roles

are public equally to all the trustees, we name this mechanism as trustee independent public role

6For simplicity and security in model level, the corresponding cross-tenant assignments issued by trustee’s issuer
are automatically cleared as soon as the trust relation is revoked. Depending upon implementation, trustee’s issuer
may also choose to manually clear or even keep the nonfunctional hanging cross-tenant assignments for future use
although it is not recommended.

32

(TIPR) which provides more expressiveness and granularity than TT in MT-RBAC0.

Definition 8. MT-RBAC1 inherits all the components from MT-RBAC0 as described in Definition 7,

while the following modifications are applied.

• PTI(t : T) → 2R, a new function mapping a tenant to a set of roles which is the trustee

independent public role (TIPR) set of the tenant; and

• canUse(r : R) → 2T is modified to canUse(r) = {t} ∪ {te ∈ T |t E te ∧ r ∈ PTI(t)},

where (r, t) ∈ RO.

Note that the truster’s permissions associated with the public roles can be inherited externally

to the trustees, but those associated with the private roles can only be inherited internally within

the truster. For example, in Figure 3.3, since the employee role emp#Dev.E is a private role, its

permissions should never be used in cross-tenant accesses. Further, if PTI(t) consists of the entire

role set of t, then MT-RBAC1 is identical to MT-RBAC0. Therefore, MT-RBAC1 is a more general

model than the base model.

MT-RBAC1 provides enhanced security by introducing TIPR so that only public roles are

exposed to the trustees. Besides, it enables finer-grained control for the resource owner’s issuer,

say ir, who can revoke a specific cross-tenant access from a trustee, say te by removing the rel-

evant roles from PTI(tr) while not disrupting the other cross-tenant accesses from te. A public

role should be automatically removed from PTI(tr) as soon as the corresponding trust relation

with tr comes to an end. However, in practice a trustee independent public role may be used in

multiple trust relations so that the bindings of the public role and its corresponding trust relations

should be carefully managed; otherwise the public role may be unnecessarily maintained or un-

willingly removed. Therefore, MT-RBAC1 is only suitable for a single type or very similar types

of collaborations.

In MT-RBAC1, the PTI(t) function lacks the expressiveness to describe various public role

sets for different trustees. To achieve the least privilege principle in multi-tenant collaborations,

we propose MT-RBAC2 which is the most fine-grained model in the MT-RBAC family.

33

3.2.4 Trustee Dependent Public Role—MT-RBAC2

Unlike MT-RBAC1 treating all the trustees equally, MT-RBAC2 supports different public role sets

specifically for different trustees. With respect to every established trust relation, the truster’s

issuer can designate disjoint sets of public roles and private roles with respect to the trustee. This

mechanism is called trustee dependent public role (TDPR) which provides more expressiveness

and flexibility for the truster’s issuer to maintain cross-tenant accesses for different trustees. The

formal definition of MT-RBAC2 follows.

Definition 9. MT-RBAC2 inherits all the components from MT-RBAC0 as described in Definition 7,

while the following modifications are applied.

• PTD(tr, te : T) → 2R, a new function mapping a pair of truster and trustee tenants to a set

of roles which is the trustee dependent public role (TDPR) set of the truster to the trustee;

and

• canUse(r : R) → 2T is modified to canUse(r) = {t} ∪ {te ∈ T |t E te ∧ r ∈ PTD(t, te)},

where (r, t) ∈ RO.

Note that if for every trustee te the PTD(tr, te) function returns the same set of public roles,

then MT-RBAC2 is equivalent to MT-RBAC1. Thus, MT-RBAC2 is more general than MT-RBAC1

and the most general model in the MT-RBAC model family.

Comparing to MT-RBAC1, the revocation process in MT-RBAC2 is much simpler. The re-

vocation of a cross-tenant access can be easily achieved by removing the relevant roles from the

specific TDPR set. This operation is executed by the truster’s issuer and will not affect other

accesses from other trustees.

MT-RBAC2 supports various types of collaborations since TDPR sets are maintained per

truster-trustee pair. The truster’s issuer has to maintain a TDPR set for each trustee.

34

3.2.5 Administrative MT-RBAC (AMT-RBAC) model

The administration of tenant trust relations and authorization assignments is critical in MT-RBAC.

Since TT is embedded in the cross-tenant assignments (i.e., UA and RH) as described in Defini-

tion 7, the management of tenant trust relations also controls cross-tenant accesses.

The core idea of the administrative model for MT-RBAC is dual control, meaning both of the

truster’s and the trustee’s issuers have complementary power of authority to control cross-tenant

accesses. The cross-tenant assignments are created and maintained by the trustee’s issuer. The

effectiveness of cross-tenant assignments depends on the corresponding trust relations which are

under the control of the truster’s issuer. In this way, the security and efficiency of the administra-

tion process are convenient for both parties. The truster’s issuer deals with the overall trust and

constraints for a trustee. The trustee’s issuer deals with the finer details of the trustee’s users.

Definition 10. The Administrative MT-RBAC (AMT-RBAC) model requires both issuers of the col-

laborating tenants, iA the resource owner A’s issuer and iB the requester B’s issuer, to manage

the tenant trust relations and the cross-tenant authorization assignments separately as follows.

• iA is responsible for managing the tenant trust relation of A E B; and

• iB is responsible for managing the cross-tenant assignments (i.e., UA and RH) to A’s roles,

according to Definition 7.

Note that the resource owner’s issuer delegates the management of the cross-tenant autho-

rization assignments to the resource requester’s issuer. With the carefully defined cooperative

mechanisms, in AMT-RBAC the resource owner’s issuer retains the critical management authority

(managing trust relations) while the maintenance of cross-tenant assignments is given away to the

resource requester’s issuer who is more knowledgable of the requesting users and roles.

In Table 3.2, we give the formal specification of the exact administration functions of AMT-

RBAC for a single issuer i along with the corresponding preconditions and updates to MT-RBAC

policies.

35

Table 3.2: Administration functions available to tenant t in AMT-RBAC
Function Precondition Update

assignUser(t, r, u) (t, i) ∈ TO ∧ (u, t) ∈ UO ∧ t ∈
canUse(r)

UA′ = UA ∪ {(u, r)}

revokeUser(t, r, u) (t, i) ∈ TO ∧ (u, t) ∈ UO ∧ t ∈
canUse(r) ∧ (u, r) ∈ UA

UA′ = UA \ {(u, r)}

assignPerm(t, r, p) (t, i) ∈ TO ∧ (r, t) ∈ RO ∧ (p, t) ∈ PO PA′ = PA ∪ {(p, r)}
revokePerm(t, r, p) (t, i) ∈ TO∧(r, t) ∈ RO∧(p, t) ∈ PO∧

(p, r) ∈ PA
PA′ = PA \ {(p, r)}

assignRH
(t, rasc, rdesc)

(t, i) ∈ TO ∧ (rasc, t) ∈ RO ∧ t ∈
canUse(rdesc) ∧ ¬(rasc �
rdesc)

† ∧ ¬(rdesc ≥ rasc)
‡

≥′=≥ ∪{r, q : R|r ≥
rasc ∧ rdesc ≥ q ∧
roleOwner(r) ∈
canUse(q) • (r, q)}

revokeRH
(t, rasc, rdesc)

(t, i) ∈ TO ∧ (rasc, t) ∈ RO ∧ t ∈
canUse(rdesc) ∧ rasc � rdesc

≥′= (� \{(rasc, rdesc)})∗ §

assignTrust(t, t1) t1 ∈ T E′=E ∪{(t, t1)}
revokeTrust(t, t1) t1 ∈ T ∧ t 6= t1 ∧ t E t1 E′=E \{(t, t1)} ¶
addTenant(t) i ∈ I ∧ t /∈ T T ′ = T ∪ {t}
deleteTenant(t) (t, i) ∈ TO ∧ t ∈ T [∀t1 : T ⇒ revokeTrust(t, t1)]

[∀t2 : T ⇒ revokeTrust(t2, t)]
UA′ = UA \ {(u, r)|(u, t) ∈
UO ∧ (r, t) ∈ RO}
PA′ = PA \ {(p, r)|(p, t) ∈
PO ∧ (r, t) ∈ RO}
RH ′ = RH \ {(r, r′)|(r, t) ∈
RO ∧ (r′, t) ∈ RO}
U ′ = U \ {u|(u, t) ∈ UO}
UO′ = UO \ {(u, t)|u /∈ U}
R′ = R \ {r|(r, t) ∈ RO}
RO′ = RO \ {(r, t)|r /∈ R}
P ′ = P \ {p|(p, t) ∈ PO}
PO′ = PO \ {(p, t)|p /∈ P}
T ′ = T \ {t}
TO′ = TO \ {(t, i)}

† The notation “�” represents an immediate inheritance relation. For example, rasc � rdesc means that rasc is
a parent of rdesc.

‡ This condition avoids the creation of role cycles which is discussed in Section 3.5.2.
§ The notation “∗” represents recursive updates for the entire RH assignments. Implied RH relations are

preserved after revocation.
¶ The revocation of a trust relation automatically triggers updates in the canUse() function of all t’s roles and

then corresponding UA and RH accordingly.

36

Note that both of the assignTrust and revokeTrust functions result in automatic updates of

the canUse function for each of the truster’s roles. Moreover, since the public role sets in MT-

RBAC1 and MT-RBAC2 also can be modified by the truster’s issuer, the return sets of canUse(r)

for the truster’s roles are updated accordingly. Because canUse function is updated, the trustee’s

cross-tenant assignments, UA andRH , and their authorized cross-tenant accesses are also updated

accordingly. In this way, the cross-tenant assignments are not only controlled by the trustee’s

issuer, but also manageable by the truster’s issuer.

3.3 CTTM

In a social context, trust has several connotations. Definitions of trust typically refer to a situation

characterized by the following aspects. One party (trustor) is willing to rely on the actions of

another party (trustee) with respect to the future. In addition, the trustor (voluntarily or forcedly)

abandons control over the actions performed by the trustee [8]. This definition of trust is also

applicable in the virtual world, including cloud computing. For example, cloud consumers trust

cloud providers to manage their data while cloud providers trust cloud consumers to use their

computing resources responsibly. These two trust relations are both established by a service level

agreement (SLA) which regulates the responsibilities of each party.

3.3.1 Motivation

The trust relation between two tenants of a cloud service provider is analogous to the trust relation

between a car rental company, say AVIS, and a customer organization, say UTSA. Let AV IS

and UTSA represent two tenants in a Platform as a Service (PaaS) [43] for AVIS and UTSA

respectively. The PaaS is in charge of hosting applications for its tenants. Figure 3.4 illustrates an

example of cross-tenant access needs between these two tenants.

Assume AVIS and UTSA have an agreement about discounted car rental price from AVIS

exclusively for UTSA students. The agreement itself is an established trust relation created outside

of the PaaS. In traditional practices, AVIS may give away coupons on UTSA campus or send

37

Tenant: UTSA Tenant: AVIS

Discount Bob

: users : permissions

Figure 3.4: A car rental example of cross-tenant access.

coupon code to UTSA mailing lists. These approaches provide little control to the distribution of

coupons and their use. Thus, controlling access of the discount privilege in the cyber domain is

critical in the overall trust relationship.

In this example, the user information of UTSA is stored in the cloud, more specifically in

the PaaS, where the discount privilege of AVIS can also be accessed. Thus, the access control

mechanisms of cross-tenant accesses from UTSA users to AV IS permissions are provided by

the PaaS. For instance, Bob as a student user in UTSA wants to access the discount permission

in AV IS, as shown in Figure 3.4. In order to securely enable this cross-tenant access, the PaaS

should support an appropriate trust model regulating who builds the trust and who executes the

trust.

3.3.2 On-Demand Self-Service in the Cloud

On-demand self-service is one of the essential characteristics of the cloud [43]. CSPs provide

centralized facilities of computing resources which are pooled to serve multiple consumers using

a multi-tenant model, with different physical and virtual resources dynamically assigned and re-

assigned according to consumer demand. A consumer can unilaterally provision the computing

resources as needed automatically without human interaction with the CSP. Moreover, the tenants

and users can only be treated as temporary entities since a user can easily create a cloud user ac-

38

count, get a tenant in a cloud service for some tasks and release the tenant when the job is done.

The user account may also be removed after usage.

In cross-tenant accesses, the self-service feature requires agility in the trust model. The trustor

and the trustee may be created on-demand so that the trust relation between them should be estab-

lished and destroyed easily. Additionally, a trust negotiation process for a bilateral trust may not be

suitable in this environment. Instead, unilateral trust relations asserted by the trustor better match

the on-demand self-service feature of the cloud.

Cross-Tenant Trust Model (CTTM) consists of different types of unilateral trust relations which

reflect different needs in access control between two tenants, the trustor and the trustee. In this sec-

tion, we first present an analysis of the tenant trust (TT) relations and discuss their types and usage.

Then, we give a formalization of CTTM and its role-based extension (RB-CTTM). Furthermore,

in order to argue the feasibility of the cross-tenant trust models in the cloud, we propose a multi-

tenant authorization as a service (MTAaaS) platform to facilitate the enforcement.

3.3.3 Tenant Trust Relations

Before we discuss the formalization of CTTM, we first give an analysis of tenant trust (TT) rela-

tions which is the crucial part of our cross-tenant access control models. TT (also written as “E”)

is a binary relation from the trustor to the trustee. Let “≡” denote the same tenant relation. For

example, “A ≡ B” means that A and B are the same tenant. Let T be the set of all tenants. For

∀A,B,C ∈ T , a TT relation is reflexive

A E A (3.5)

but not transitive

A E B ∧B E C ; A E C (3.6)

and it is neither symmetric

A E B ; B E A (3.7)

39

nor antisymmetric

A E B ∧B E A; A ≡ B. (3.8)

Statement (3.5) requires that a tenant always trusts itself since intra-tenant accesses are not

influenced by the trust relations. In order to control the propagation of trust relations and cross-

tenant accesses enabled by the trust relations, Statement (3.6) requires that a trust relation can

only be directly defined by the trustor but is never inferred from indirect combination of other

trust relations. Statement (3.7) and (3.8) basically require that a trust relation is unidirectional

and independent in each direction. A single tenant can be the trustor in one trust relation and the

trustee in another. Together these statements characterize the building and basic characteristics of

cross-tenant trust.

Turning to the usage of TT , we identify four potential types of trust relations to enable and

control cross-tenant accesses.

• Type-α: trustor can give access to trustee.

• Type-β: trustee can give access to trustor.

• Type-γ: trustee can take access from trustor.

• Type-δ: trustor can take access from trustee.

The terms of “giving” and “taking” accesses distinguish the authorities of issuing cross-tenant

assignments. Sticking with the car rental example, AV IS giving access to UTSA is equivalent to

AV IS assigning AV IS’s permissions to UTSA’s users. Conversely, UTSA taking access from

AV IS means UTSA can make the same assignment.

Type-α trust (also written as “Eα”) is most intuitive since it is closest to familiar real world trust

relations. For example, by establishing AV IS Eα UTSA, AV IS can obtain user information in

UTSA and assign cross-tenant accesses from UTSA’s users to AV IS’s permissions. In this type

of trust relation, the trustor (AV IS) holds the authority of assigning its own permissions to the

trustee’s users and requires visibility to the trustee’s (UTSA’s) user information. Nevertheless,

40

user information is also considered as sensitive information for UTSA and UTSA may wish to

limit its exposure. Note that the trust is unilaterally asserted by the trustor AV IS which enables

visibility into UTSA’s user information without any involvement of UTSA. In such cases, Type-α

trust is not suitable.

Type-β trust (also written as “Eβ”) alters the direction of the trust relation in Type-α trust so

that the trustor (UTSA) can control the exposure of its user information which is necessary for

the trustee (AV IS) to make cross-tenant authorization assignments. In the car rental example, by

establishing UTSA Eβ AV IS, UTSA explicitly exposes its user information to AV IS so that

AV IS can assign its permissions to UTSA’s users based on UTSA’s user information. In this

way, access to the discount permission is controlled by both the trustor (UTSA) and the trustee

(AV IS) together. No single party can unilaterally authorize a cross-tenant access.

In Type-γ trust (also written as “Eγ”), the cross-tenant access is also controlled by both the

trustor and the trustee together. But it is very different than Type-β trust. By establishing the trust

relation, the trustor delegates the control of cross-tenant authorization assignments to the trustee.

Thus, in order to maintain the control of cross-tenant accesses, the trustor doesn’t issue cross-tenant

assignments but just appropriately manage the trust relations which is required for the assignments

to take effect. For instance, by establishing AV IS Eγ UTSA, AV IS delegates UTSA to assign

cross-tenant access from UTSA’s users to AV IS’s permissions. Because UTSA is more familiar

with the organization of its user information, UTSA is more knowledgable to assign its users to

AV IS’s permissions such as discounts. For instance UTSA can determine which users within

UTSA get the discount, e.g., full-time students but not part-time students.

Type-δ trust relation does not provide meaningful use cases since the trustor holds all the con-

trol of the cross-tenant assignments of the trustee’s permissions. For example, UTSA, or any other

tenants in the cloud service, can unilaterally trust AV IS and assign AV IS’s permission to its own

users. In this kind of situation, cross-tenant accesses cannot be controlled by the permission own-

ers. Thus, Type-δ trust relation has little practical usage in cross-tenant access control, and we will

ignore it henceforth.

41

Tenants

(T)

Users

(U)
Authorization

Assignment

(AA)

Permissions

(P)

Permission

Ownership

(PO)

User

Ownership

(UO)

Tenant Trust (TT)

Figure 3.5: Cross-Tenant Trust Model

3.3.4 Formalized Model

In the formalization of CTTM, as shown in Figure 3.5, there are three entity components: users

(U), permissions (P) and tenants (T). Both the U and P components exist in most of the formal-

ized access control models since they are critical in expressing an access. A novel component T is

introduced to express accesses in multi-tenant environments in which the other components should

fit. In particular a user in U and a permission in P are owned respectively by a tenant in T so that

they can be identified uniquely in a multi-tenant access in cloud environments. This is depicted by

the UO and PO relations in Figure 3.5. PO is a many-to-one relation from P to T .

UO may be a many-to-one relation or a many-to-many relation from U to T depending on

implementation. In a many-to-many case, a user may be associated with multiple tenants out of

which if the permission owner trusts one or more, then the access can be granted to the user.

Here, conflict of permissions7 may happen during the policy evaluation process because various

trust relations are invoked for one user. This problem is out of the scope of this dissertation. For

simplicity, we choose to define UO as a many-to-one relation in CTTM formalization.

7Conflict may arise if negative permissions are allowed in the access control policy.

42

TENANTS. A tenant is an exclusive virtual partition of a cloud service leased from a CSP [52].

In practice a tenant is usually mapped to a project, a department, or an organization. Cloud user

activities and resource accesses are defined within the domain of a tenant. For example, UTSA

is a tenant created for UTSA as an organization customer of the PaaS service so that UTSA can

manage its users and resources in the domain of UTSA tenant8.

USERS. A user is an identifier for an individual or a process in a tenant. Each user has a single

owner tenant while a tenant has multiple users. A user is formed by a username and a tenant and

is written in the format of “username@tenant”. Note that an individual or a process may possess

multiple users in different tenants. These users are treated independently. In the car rental example,

Bob@UTSA is a user acting for Bob in UTSA.

PERMISSIONS. A permission is a specification of a privilege in a tenant. It is formed

by a permission name and a tenant and is written in the format of “permission_name%tenant”.

Each permission has a single owner tenant while a tenant has multiple permissions. For example,

discount%AV IS represents the discount permission in AV IS.

The formal definition of CTTM follows.

Definition 11. The cross-tenant trust model (CTTM) has the following components.

• T , U , and P are finite sets of tenants, users, and permissions respectively;

• UO ⊆ U×T , is a many-to-one relation mapping each user to its owner tenant; correspond-

ingly, userOwner(u : U) → T , is a function mapping a user to its owner tenant where

userOwner(u) = t iff (u, t) ∈ UO;

• PO ⊆ P × T , is a many-to-one relation mapping each permission to its owner tenant;

correspondingly, permOwner(p : P)→ T , is a function mapping a permission to its owner

tenant where permOwner(p) = t iff (p, t) ∈ PO;

8In a more general treatment we would identify the cloud service explicitly in a two part name such as
UTSA.CloudService.

43

• TT ⊆ T × T is a many-to-many tenant trust relation on T , also written as “E”; depending

on the system TT can be one of Type-α, Type-β or Type-γ;

• AA ⊆ U×P , a many-to-many user-to-permission assignment relation, also written as “←”,

requiring that u← p only if

permOwner(p) ≡ userOwner(u) ∨

permOwner(p) Eα userOwner(u) ∨

userOwner(u) Eβ permOwner(p) ∨

permOwner(p) Eγ userOwner(u),

where only one of the E requirements can apply depending on the nature of TT .9

In Definition 11, AA represents a set of multi-tenant assignments, including cross-tenant and

intra-tenant assignments. AA should comply with the conditions specified in the definition. Intra-

tenant assignments are always prohibited, since permOwner(p) ≡ userOwner(u) is always true

and moreover TT is reflexive for each type of trust. For cross-tenant assignments, the permission

owner should be the trustor either in a Type-α or a Type-γ trust relation, or the trustee in a Type-

β trust relation, while the user owner is on the other end of the trust relations. For example, in

order to enable the cross-tenant assignment “Bob@UTSA← discount%AV IS”, the appropriate

one of the following three trust relations should exist: AV IS Eα UTSA, UTSA Eβ AV IS, or

AV IS Eγ UTSA, depending on the nature of TT .

The revocation of cross-tenant authorization assignments in CTTM can be achieved in two

ways. One way is revoking the assignment by the assignment issuer (executor of the trust relation)

which is the trustor in Type-α and Type-β trust or the trustee in Type-γ trust. Since the tenant trust

relations are required in authorizing cross-tenant accesses, the other way to revoke a cross-tenant

AA is removing all the TT it depends on by the respective trustors (builder of the trust relation)

who are the permission owners in both Type-α and Type-γ trust or the user owner in Type-β

trust. Note that by removing a trust relation, all of the authorization assignments depending on the

9One could consider allowing TT to include a mix of theE relations but this is likely to be confusing and overkill.

44

Users

(U)

Tenants

(T)

Roles

(R)
User

Assignment

(UA)

Permission

Assignment

(PA)

Permissions

(P)

Permission

Ownership

(PO)

Role

Ownership

(RO)

Tenant Trust (TT)

Role Hierarchy (RH)

Figure 3.6: Role-Based Cross-Tenant Trust Model

particular trust relation are automatically revoked10. Moreover, removing a trust relation does not

affect intra-tenant assignments.

3.3.5 Role-Based CTTM

Role-based access control (RBAC) models [27, 48] have been utilized by enterprise information

systems for decades. The introduction of roles intermediates the authorization assignments from

users to permissions and easies administration of access control policies. The benefit of roles

is also applicable to CTTM. Due to the on-demand self-service feature of the cloud, managing

the authorization assignments from users directly to permissions is subject to dynamic changes

of users and tenants. Therefore, we propose a reasonable extension of CTTM, role-based CTTM

(RB-CTTM) in which each user can have different roles in different tenants and a role belongs to

a single tenant so that a change of the user does not affect the entire authorization assignment.

The RB-CTTM model, as shown in Figure 3.6, contains four entity components: users (U),

roles (R), permissions (P), and tenants (T). The definition of T and P are identical to those in
10For simplicity and security at the model level, we assume that the corresponding cross-tenant assignments are

automatically revoked as soon as the trust relation is removed. Depending upon implementation, the assignment issuer
may also choose to manually clear or even keep the nonfunctional hanging cross-tenant assignments for future use.

45

CTTM while the definition of U is changed. Users are no longer owned by tenants but the roles

are, while users are members of roles. RO depicts the many-to-one ownership relation from R to

T .

USERS. A user is a global identity of an individual or a process. It is authenticated as a

federated ID [19] which is globally unique for all the tenants in the cloud service. A user can

be assigned to multiple roles in multiple tenants. In the car rental example, Bob is a user with

the student role in UTSA. At the same time, he could also be a member of the customer role in

AV IS. In this way, having different roles in different tenants does not change the user identity.

ROLES. A role is a job function associated with a tenant. A role belongs to a single tenant

while a tenant may own multiple roles. Basically, a role is a pair of role name and tenant and is

written in the format of “role_name#tenant”. Sticking with the car rental example, the student

role in UTSA is noted as student#UTSA which is not associated with any tenant other than

UTSA.

The formal definition of RB-CTTM follows.

Definition 12. The role-based cross-tenant trust model (RB-CTTM) has the following components.

• T , P , TT and PO are unchanged from CTTM; U and R are finite sets of global users and

roles respectively;

• RO ⊆ R×T , is a many-to-one relation mapping each role to its owner tenant; correspond-

ingly, roleOwner(r : R) → T , is a function mapping a role to its owner tenant where

roleOwner(u) = t iff (r, t) ∈ RO;

• UA ⊆ U ×R, is a many-to-many user-to-role assignment relation;

• PA ⊆ P × R, is a many-to-many permission-to-role assignment relation requiring that

(p, r) ∈ PA only if

permOwner(p) ≡ roleOwner(r) ∨

permOwner(p) Eα roleOwner(r) ∨

46

roleOwner(r) Eβ permOwner(p) ∨

permOwner(p) Eγ roleOwner(r),

where only one of the E requirements can apply depending on the nature of TT ;

• RH ⊆ R×R is a partial order on R called role hierarchy or role dominance relation, also

written as “≥”, requiring that r2 ≥ r1 only if

roleOwner(r1) ≡ roleOwner(r2) ∨

roleOwner(r1) Eα roleOwner(r2) ∨

roleOwner(r2) Eβ roleOwner(r1) ∨

roleOwner(r1) Eγ roleOwner(r2),

where only one of the E requirements can apply depending on the nature of TT .

Note that in order to enable role activation, a session entity component and corresponding

functions could also be added to RB-CTTM like those in RBAC. However, we do not discuss

session here since it is not the core idea of our proposal.

Since the users are global in RB-CTTM, UA is an arbitrary relation without limitation of ten-

ants, unlike RH and PA. Both RH and PA are tenant-aware assignments with can be intra-tenant

or cross-tenant. Intra-tenant RH and PA are similar to those with the same names respectively in

RBAC models [27]. Each cross-tenant assignment requires at least one appropriate trust relation

as specified in Definition 12.

With RH senior roles inherit permissions from their junior roles so that the permissions are

transitively inherited to the users. We can authorize a cross-tenant access from a role to a permis-

sion in different tenants through either RH or PA. But, it is worth noting that in a Type-γ trust

relation, cross-tenant PA is not recommended to be allowed. If the trustor (the permission owner)

allows the trustee (the role owner) to make cross-tenant PA, then the trustor will never know which

trustee’s roles inherit the permissions, let alone controlling the inheritance. A better practice could

be making only intra-tenant PA and cross-tenant RH . In this way, the trustor can at least control

the inheritance of its own permissions by PA.

47

Association Constraints
Creator /

Owner

Authz

P

SA OA

UA

U

O

T

TA

CP1. Constraints at creation

and modification time

C
P

2
. C

o
n
s
tra

in
ts

 a
t c

re
a
tio

n

a
n
d
 m

o
d
ifi

c
a
tio

n
 tim

e

C
P

3
.
C

o
n
s
tr

a
in

ts
 a

t
c
re

a
ti
o
n

a
n
d
 m

o
d
ifi

c
a
ti
o
n
 t
im

e

CP5.

Authorization

Policy

S

CP4. Constraints at creation

and modification time

Figure 3.7: Multi-Tenant Attribute-Based Access Control (MT-ABAC) Model

3.4 MT-ABAC

In this section, we formally introduce the MT-ABAC model, explain the authorization process for

multi-tenant accesses and configure it to cover MT-RBAC [52] model.

3.4.1 MT-ABAC Components

The core components of MT-ABAC model, as shown in Figure 3.7, are: Tenants (T), Users (U),

Subjects (S), Objects (O), Tenant Attributes (TA), User Attributes (UA), Subject Attributes (SA),

Object Attributes (OA), Permissions (P), authorization policies and constraint policies for creation

and modifications of TA, UA, SA, and OA.

Tenants represent isolated operation domains leased by a cloud service consumer. In real-

world clouds, tenants may also be regarded as “domains” or “accounts” etc. A tenant is also an

acting entity who creates users and objects of its own and has ultimate authority within its scope.

48

A tenant may represent a company, a project team, or even an individual.

Users are identifiers for acting entities inside a tenant. A user can be associated to an employee

of the company, a team member of the project, or even the individual himself who owns the tenant.

A user is created and managed by a single tenant who may own multiple users. The existence of

the users relies on the owning tenant.11 If a tenant is removed, the users inside the tenant will be

deleted automatically.

Subjects represent access sessions of corresponding users to objects. A user can access objects

only through the subjects created by himself. In practice, a subject embodies itself as a credential

issued by the identity and access management services [7] in the cloud while its attributes, such as

assigned roles, tenant, or clearance of the particular access, are also contained in the credential.

Objects are pieces or collections of the cloud resources inside a tenant. Typical objects are

virtual machines (VMs) or VM imagesin IaaS, application instances in PaaS and units of user data

in SaaS. In multi-tenant schemes, an object belongs and only belongs to a single tenant.

Permissions represent privileges for subjects accessing objects. Since the object types are

typically consistent in a single cloud, the object access methods can be easily unified, such as

create, read, update and delete (CRUD) operations.

Authorization policies are functions evaluating each access decision. An authorization policy

takes subject, object and requested permissions as parameters and returns an authorization decision

based on correlated attributes. The decision yields to one of the following: “allow”, “deny” or

“don’t know” which indicates the decision cannot be reached for many reasons including condition

not applicable, necessary attributes not found or conflict of multiple policies, etc.

Constraints are conditions for the creation and modification of UA, SA and OA. The change

of attributes will happen only if the conditions are satisfied. The constraints also apply to the

outcome of the changes.

11In real world cloud systems, such as OpenStack [6], the situation may vary. A user may be independent to a
tenant. OpenStack requires the capability to create and manage subjects associated to a tenant in order to get access to
the objects inside the tenant.

49

3.4.2 Formal MT-ABAC Model

The formal definition of MT-ABAC follows.

Definition 13 (Base Model). The base model of MT-ABAC has the following components:

• T , U , S, O and P are finite sets of tenants, users, subjects, objects and permissions respec-

tively;

• TA, UA, SA, and OA are finite sets of functions representing tenant attributes, user at-

tributes, subject attributes, and object attributes respectively;

• Scope : TA ∪ UA ∪ SA ∪ OA → {atomic values}, an attribute scope function returning

a finite set of atomic values;

• attrType : TA ∪ UA ∪ SA ∪ OA → {set, atomic}, an attribute type function mapping

each attribute to its type which is either set or atomic;

• utid : U → T , an atomic attribute in UA mapping each user to its owning tenant;

• otid : O → T , an atomic attribute in OA mapping each object to its owning tenant;

• sowner : S → U , an atomic attribute in SA mapping each subject to its owning user;

• trustees : T → 2T , a set attribute in TA mapping each tenant to its trustee tenants;

• CP[1-5] are policy configuration points for constraints and authorization policy functions;

• cstrTU : T × U → {True, False}, a constraint policy function at CP1 requiring t ∈

T ∧ u ∈ U ∧ u.utid ≡ t; 12

• cstrTO : T × O → {True, False}, a constraint policy function at CP2 requiring t ∈

T ∧ o ∈ O ∧ o.otid ≡ t;
12The “.” operator is used to denote the attribute function given the first operand as an entity and the second operand

as an attribute name. The function returns the corresponding attribute value.

50

• cstrUS : U × S → {True, False}, a constraint policy function at CP3 requiring u ∈

U ∧ s ∈ S ∧ s.sowner ≡ u;

• cstrSO : S × O → {True, False}, a constraint policy function at CP4 requiring s ∈

S ∧ o ∈ O ∧ s.sowner.utid ∈ o.otid.trustees; and

• canAccess : S×O×P → {True, False}, an authorization policy function at CP5 requir-

ing s ∈ S ∧ o ∈ O ∧ s.sowner.utid ∈ o.otid.trustees.

All the four entity components, T , U , S and O as shown double circled in Figure 3.7, have

associated attributes. T is the set of existing tenants 13 and TA is the set of attributes for tenants in

T . Each attribute in TA maps a tenant in T to a corresponding attribute value which is either set or

atomic depending on the attrType of the specific attribute. Similarly, U , S and O are associated

with UA, SA and OA respectively as specified in Definition 13.

Some special attributes are mandatory in the MT-ABAC model. As a special attribute in UA,

utidmaps each user to its owning tenant. A user, in its lifetime, is associated with its owning tenant

so as an object. The owner of an object is specified with the otid attribute in OA. The situation for

subjects is a little different. A subject is created by its owning user, specified with sowner. Note

that a subject may be able to access an object from a tenant different with its owning user’s owning

tenant while the appropriate trust relation between the two tenants exists as specified in cstrSO

and canAccess. Constraint cstrTU and cstrTO require the accessing tenant’s ownership of users

and objects respectively. In the case of multi-tenancy, each user and object belongs to a single

tenant. Each user can create multiple subjects of its own while each subject is only controlled by

its owning user as specified in the prerequisite of the constraint cstrUS.

The trust relation is indispensable in MT-ABAC in order to control cross-tenant accesses. For

simplicity, we only use Type-γ trust [53] in the MT-ABAC model which can be easily extended

to support multiple types of trusts by adding trust-type-specific “trustees” attribute, such as “α-

trustees”, “β-trustees” and “γ-trustees”. Figure 3.8a shows an example of intra-tenant access re-
13The creation and deletion of tenants are controlled by the cloud service provider (CSP) either manually or auto-

matically. Users and objects are controlled by the owning tenants. Subjects are controlled by the owning users.

51

subject

ownership

permission

inheritance
u user s subject o object

(a) no trust required

Tenant A Tenant BTenant A Tenant B

u u

s s s

o oo

(b) require A trust B

u

s

o

u

s s

o o

Figure 3.8: Multi-tenant accesses with Type-γ trusts

quiring no trust (tenants trust themselves by default). Figure 3.8b illustrates how a user from a

trustee tenant can obtain cross-tenant access to the object in the trustor tenant. The trust relation is

always established by the trustor and referred during the process of authorization decision.

Note that a subject is not tenant-specific since its sowner attribute indirectly indicates its re-

lationship with a single tenant. In fact, a subject is only associated with its owning user and the

accessing object both of which are tenant-specific. Only if the subject’s tenant is trusted by the

object’s tenant, the access request will be evaluated with other authorization policies; otherwise,

the request will be denied. Formally,

s.sowner.utid ∈ o.otid.trustees (3.9)

can be extended to address all the three types of trust relations as the following.

s.sowner.utid ∈ o.otid.α−trustees (3.10)

o.otid ∈ s.sowner.utid.β−trustees (3.11)

52

s.sowner.utid ∈ o.otid.γ−trustees. (3.12)

Policy Configuration Points

In MT-ABAC, there are totally five policy configuration points (PCP). CP1 through CP4 specify the

constraints for the creation and modification of attributes controlling the state transitions of each

entity. CP5 specifies the authorization policies based on attributes depending on the accessing state.

Even if the policies at different configuration points may be specified by different authorities, their

policies may affect the authorization decision. The constraint policies are specified by the CSP

since some cloud-level constraints define the access control model for all the tenants, such as

cardinality and separation of duty. Meanwhile, some constraints are customizable by tenants in

CP3 and CP4, because users and objects are owned by tenants who should be able to control the

access behavior between them. The authorization policy is maintained by each tenant as well as

some tenant attributes, such as the trustees attribute in TA.

Typically, the policy configuration languages (PCL) in all the PCPs are common in format and

logical structure [36] so that they can be easily compiled together during policy decision time. In

some cases, external PCPs may require PCL translation or mapping for making proper decisions.

On top of the potential PCL translation problem, the policy resolution algorithm is also critical

in the policy decision process. Similar problems have been identified and solved in multi-domain

literature [49,50]. Since the multi-tenant cloud environment does not distinguish the problems from

the previous ones, we treat them as solved problems with no more discussion in this dissertation.

Meta-Attribute

Meta-attributes [35] are not included in the base model but useful specifying meta information

associated with attributes. In another word, meta-attributes are attributes of attributes. Thus, a

meta-attribute is also an attribute function given the scope of the associated attribute as a parameter.

The type of a meta-attribute is either set or atomic. Moreover, a meta-attribute may also have meta-

attributes forming cascading structure of meta-attributes. For example, in multi-tenant environment

53

if a role as a user attribute is only valid in a tenant, we call it a tenant-specific role which can be

captured by the tenant meta-attribute associated with the role attribute. In this way, the tenant meta-

attribute links the role to the attributes of the tenant. For convenience, we still use the “.” operator

to note the relation between an attribute and its meta-attribute. Thus, a user u’s role attribute

u.urole may be associated with cascaded meta-attributes, such as u.urole.roleOwner.trustees

conveying the trustees of the role’s owing tenant.

Attribute Mapping

Even though most of the attributes tend to be common for all the tenants, the needs to allow

customized attributes in each tenant may lead to the attribute mapping problem between tenants.

The attributes, such as name, gender, date of birth and creation time, are absolute values and

usually uniform across all the tenants. Others, like roles, department and classification, are more

likely to be tenant-specific. For cross-tenant accesses, the policy decision may become unreliable

if the remote and local attributes are not properly mapped to a uniform format or value.

There are two major factors of attributes need to be mapped in cross-tenant scenarios, the at-

tribute name and the attribute value.The direction of mapping is always from the remote tenant to

the local tenant in terms of the object to be accessed. In other words, the attributes are mapped

from the user’s owning tenant to the object’s owning tenant. The mapping policy can be specified

by either tenant before cross-tenant accesses happen. It is straightforward to map the attribute

names between tenants since each tenant may give different names to a same attribute. For exam-

ple, in some tenants the roles attribute is name “roles” in UA while in other tenants it is named

“groups” instead following their convention. In cases like this, the remote attribute name is directly

associated with the local corresponding name.

In cases of attribute value mapping, the situation is much more sophisticated since the types

and ranges of the attribute values may not be the same in the local and the remote tenants. For

instance, an “age group” attribute may be either set or atomic and the ranges may vary in different

tenants. Furthermore, a same value of an attribute may be perceived differently in the two tenants.

54

For example, the “roles” attribute may have a “manager” value which represents different levels

of job positions in different organizations. As a result, in order to express the complex mapping

relations between attribute values, we need a systematic mapping solution which is recognized

here but beyond the scope of this dissertation.

3.4.3 MT-RBAC Configuration

As a unified model, MT-ABAC can be configured to various MTAC models including MT-RBAC.

In this section, we present the MT-RBAC configuration using MT-ABAC.

The roles in MT-RBAC are tenant-specific and associated with users, sessions and permissions.

In MT-ABAC, roles are presented as set attributes in UA, SA and OA. When assigned, each role

has a meta-attribute of its owning tenant, namely “roleOwner”. The user-role assignments are

represented by the role attributes in UA. For simplicity, we assume there are two permissions, read

and write available for role-permission assignments which are represented by the “rroles” and the

“wroles” respectively in OA. The roles assigned to a user may be associated with different tenants

who trust the user’s owning tenant (to make the assignments). The role hierarchy assignment is

specified as a set attribute “role_hrchy” in TA and maintained by each tenant. Hence, the constraint

policies in CP1 should contain the following requirement.

u.utid ∈ u.urole.roleOwner.trustees (3.13)

and

∀r′ ≤ r : r.roleOwner ∈ r′.roleOwner.trustees. (3.14)

The roles of a subject is always a subset of its owning user’s roles. This constraint is specified

in CP3 as the following.

s.sroles ⊆ s.sowner.uroles. (3.15)

Since cross-tenant permission-role assignments are not allowed in MT-RBAC, the “rroles” and

the“wroles” of an object should contain only roles belong to the object’s owning tenant. Moreover,

55

all the roles of a subject and their junior roles should belong to tenants who are trusted by the

object’s owning tenant. The following constraints should be configured in CP4.

∀rr ∈ o.rroles, wr ∈ o.wroles : rr.roleOwner ≡ wr.roleOwner ≡ o.otid (3.16)

and

∀r ∈ s.sroles, r′ ≤ r : r′.roleOwner ∈ o.otid.trustees. (3.17)

3.5 Discussions

The formal role-based and attribute-based MTAC models are presented above. In this section, the

comparison of role-based trust models, the constraints needed in multi-tenant collaborations and

the trusts supported in real-world clouds are discussed.

3.5.1 Role-Based Trust Models

Role-Based Trust Models are effective in terms of access control for collaboration in distributed

environments. Trust relations, in certain forms, are established among administrative domains

for sharing. The effects of different trust models vary in different aspects. We hereby identify

some crucial differences among three role base trust models: Role-based Trust-management (RT)

framework [40], Multi-Tenancy Authorization System (MTAS) [22, 55], and our new approach

MT-RBAC in this dissertation, as shown in Table 3.3.

RT is a family of Role-based Trust-management language using credentials to express trust

relations and policies in distributed authorization. In this dissertation, we only discuss the key

features of RT0 which is the base model in the family. RT0 provides four types of multi-domain

assignments (credentials): simple member, simple inclusion, linking inclusion, and intersection

inclusion. The former two are compatible with MTAS and MT-RBAC which do not support the

latter two.

56

Table 3.3: Trust Model Comparison. A and B represent two entities in RT or tenants in MTAS
and MT-RBAC. A represents the resource owner and B the requester.

RT MTAS MT-RBAC
trust relation required A trust B B trust A A trust B

trust assigner A B A

authorization assigner A A B

User Assignment (UA) U → A.R U → A.R B.U → B.R ∪A.R

Permission Assignment (PA) A.P → A.R A.P → A.R ∪B.R B.P → B.R

Role Hierarchy (RH) A.R ≤ B.R A.R ≤ B.R A.R ≤ B.R

require common vocabulary Yes No No
require centralized facility No Yes Yes

First, we compare the models in terms of the trust and authorization assignment authorities as

well as the required trust relations for collaborations. In RT the trust assignment and the authoriza-

tion assignment are coupled in a credential so that both of them are assigned by the resource owner

who trusts the requester. Conversely, in MTAS and MT-RBAC the two assignments are decoupled

and issued by different parties. The unique feature of MT-RBAC is that the resource owner trusts

the requester not only to access the resources but also for its issuer to authorize the access that is

to make authorization assignments for the owner’s permissions. Further, the direction of a trust

relation is special in MTAS where the resource owner has to be trusted by the resource requester

before making appropriate authorization assignments.

Then, the models are examined respectively with the three kinds of authorization assignments:

UA, PA, and RH . With UA users are allowed to be assigned by resource owners to their own

roles in RT and MTAS, while in MT-RBAC the resource requester (trustee) can only assign its

own users to the roles of itself or the resource owner (truster) who trusts the requester. Cross-

domain permission assignments are not allowed in RT or in MT-RBAC, but possible in MTAS.

The inheritance of permissions through RH is always from the resource owner to the requester in

all three models.

Last but not least, we discuss the necessity of a prerequisite to enable collaborations with

role based trust models. Common vocabulary is a term introduced in RT [40] requiring both

collaborators of a trust relation to use a mutually understandable definitions of roles. Thus the

57

semantic mismatch issue in decentralized collaboration is mitigated. However, there is no such

requirement in MTAS and MT-RBAC since their trust relations allow exposure of the truster’s roles

to the trustee so that the definition of roles is perceivable to the administrator within a common

centralized facility such as an AaaS platform.

Although these role-based trust models foster collaborations in the cloud, a unified and consol-

idated trust framework is not currently available. We anticipate research in this field will establish

foundations for the evolution of cloud computing.

3.5.2 Constraints

We now identify several issues introduced by extending RBAC to the multi-tenant environment

and discuss potential constraints to mitigate these issues.

Cyclic Role Hierarchy. A “role cycle” may be formed across tenants in MTAS systems without

proper constraints. This may lead to violation of the security principal [31] in interoperation.

Similar problems in secure interoperation have been addressed in multi-domain environment [49].

Some computational challenges discussed in [31] remains in the multi-tenant cloud environment.

In order to prevent the formation of role cycles, constraints should be enforced over assignments or

sessions. The former is achieved by checking role cycles whenever a cross-issuer RH assignment

is issued. Even if there are role-cycles in assignments, the latter prohibits all the roles in a cyclic

hierarchy from being activated in the same session. Note that the AssignRH function in AMTAS

includes these provisions.

Separation of Duties. During collaborations with MTAS, we identify two levels of separation

of duties (SoD), issuer level and role level. For issuer level SoD, one collaborating issuer cannot

execute two conflict responsibilities. For instance, SOX [10] compliant companies are not suppose

to hire the same third-party as both consultant and auditor. This constraint could be enforced over

trust relations. The role level SoD is straightforward. Two roles attached to conflict duties are

not suppose to be activated for one user in a session. In the out-sourcing example as shown in

Figure 1.1, a QA role and a developer role in either issuer, E or OS, should not be obtained by a

58

single user in a same session. In more general cases, the two roles with conflict duties may come

from different tenant. Also, the conflict duties may be associated with different cloud services. In

this case, the constraint policy composition process can become very complicated [16]. Thus, the

CSP should be responsible to identify potential conflict roles. Each tenant should be aware of the

SoD problems and specify proper constraint policies in the reference with the conflict roles.

Chinese Wall. The conflict of interests among issuers also needs to be managed. For example,

two competing issuers should not be trusted by a single issuer so that the security and privacy of

the trustee issuer’s sensitive information are protected against the competitors. This situation is

already abstracted and addressed by the Chinese Wall model [21] which can be integrated in the

centralized AaaS platform to avoid conflict of interests. Essentially, the issuers are grouped into

“conflict of interest (COI) classes” and by mandatory ruling all issuers are allowed to trust at most

one issuer belonging to each such conflict of interest class. The CSP or a third-party authority

should be responsible to maintain the COI classes. In this way, no cross-issuer access will be

assigned or permitted by the other conflict of interest issuers.

3.5.3 Trusts in AWS and OpenStack

As needs of multi-tenant collaboration keep growing, more and more cloud software vendors are

trying to establish cross-tenant or cross-issuer access control mechanisms. Amazon, as one of

the biggest public cloud service providers, allows its user to establish trust between two accounts,

for example Production and Development, in Amazon Web Services (AWS) in order to simplify

user management between Production and Development and many other use cases [9]. Account

is comparable with issuer in MTAS or tenant in MT-RBAC. Moreover, the unilateral trust relation

between accounts is very similar to the trust relation between issuers but the types are different.

Take the Production and Development account use case for example. In order to allow cross-

account accesses in AWS, the Production account, the trustor, establishes a trust relation with the

Development account, the trustee, first. Then the Production account specify an authorization

assignment allowing only developers, as one of the roles, from the Development account to access

59

some of its resources. As described above, the AWS account trust does not provide dual control

feature and some offline communications, such as the role names, are required.

OpenStack is an open source cloud computing platform for public and private clouds [5]. The

trust mechanism inside OpenStack is built on the basis of user-level delegation. Use the same

Production and Development account example. The concept of account or issuer are close to the

concept of domain in OpenStack. It provides administrative boundary for users and projects. In

OpenStack, a user Paul in Production domain can set up a trust relation with another user David in

Development domain. The trustee user David can inherit a subset of Paul’s roles and access project

resources in the Production. The collaboration is enabled and fully controlled by Paul. This trust

relation is flexible and easy to achieve collaboration. However, improper use of this trust may result

in breaches of security boundaries between domains. If MTAS is integrated in OpenStack, domain

administrators will be in charge of maintaining the trust relations and authorization assignments.

Hence the risk of access control breaches caused by user behavior can be lowered. Again, dual

control mechanism is introduced between domain administrators.

In fact, there are some other types of trusts to choose from [52, 53, 55]. Different types of trust

relations may suit different needs for collaboration. However, a consolidated access control model

for cross-tenant collaboration in the real world cloud is still not generally available.

60

Chapter 4: MULTI-TENANT AUTHORIZATION AS A SERVICE

(MTAAAS)

Now that both of the role-based and attribute-based MTAC models have been proposed in Chap-

ter 3, we move our focus to the lower enforcement layer. Particularly, enforcement refers to the

architecture of the authorization service which is capable of accommondating all the MTAC mod-

els in the cloud environment. In this chapter, we introduce the MTAaaS architecture, the policy

specification of MTAC models in XACML and a prototype system evaluating the performance and

scalability of the proposed models.

4.1 MTAaaS Architecture

In order to foster fine-grained access control in collaborative cloud environments, we propose

Multi-Tenant Authorization as a Service (MTAaaS) as a novel service model providing an inde-

pendent authorization infrastructure in a multi-tenancy manner. This service can be integrated with

the existing cloud services to manage and process authorizations for them. MTAaaS is compatible

with all the MTAC models as described in Chapter 3.

Service A

Policy Decision Point (PDP)

PEP / PIP

Service B Service X

Authorization
PoliciesMTAaaS

Trust
Policies

PEP / PIP PEP / PIP

Figure 4.1: MTAaaS Architecture

Figure 4.1 illustrates the architecture of the MTAaaS in which the cloud services use a com-

mon authorization service (i.e., MTAaaS) by associating each service with a distributed PEP/PIP

61

module in a multi-tenant way. The PEP/PIP module is a combination of a policy enforcement

point (PEP) and a policy information point (PIP). The PEPs parse the requests from end users

and generate normalized (XACML format) requests to the centralized policy decision point (PDP)

module which refers to authorization and trust policies stored in the centralized policy repository.1

The PIPs collect attributes and other context information related with authorization and make them

available for the PDP. After the decision is made, an XACML format response will be sent back to

the requesting PEP to take effect with respect to the requested access. The integrity and authentic-

ity of communication messages should be guaranteed, say via long-lived TLS connections between

PEPs and the central PDP. For simplicity, they are not included in the prototype implementation.

The prototype can be extended to a cloud authorization service with distributed PDPs.

4.2 Policy Specifications

In order to demonstrate the feasibility of the MTAC models, we give the policy specification here

in extensible access control markup language (XACML) [12]. The normative specification of

RBAC policies with XACML2.0 language has been proposed by OASIS XACML TC [11]. Its

Role PolicySet (RPS) and Permission PolicySet (PPS), representing UA and PA respectively,

are also used with the MTAS and MT-RBAC policy specifications. Additionally, a novel Trust

PolicySet (TPS) is added to express the trust relation, as illustrated in the following.

In order to accommodate various attributes, the MT-ABAC policy specification uses the default

structure of XACML since it is designed to express attribute-based policies. Similar to role-based

models, the TPS is added in each tenant’s policy sets to specify the trust relations.

4.2.1 MTAS Policy Specification

In order to better explain how MTAS XACML policy work in the MTAaaS architecture, we develop

an example policy structure as shown in Figure 4.2 using the out-sourcing example as described in

1Note that the locations of the policies may vary in different implementation. Policy discovery mechanisms may
be needed in distributed environments and is left as an implementation issue.

62

Role <PolicySet> (RPS:OS:...)

<Target>
 subject-role = OS:…

<PolicySetIdReference>

<PolicySetIdReference>

<Target>
 subject-tenant = OS

Trust <PolicySet> (TPS:OS)

<Target>
 resource-tenant = OS

Perm. <PolicySet> (PPS:OS)

Role <PolicySet> (RPS:E:...)

<Target>
 subject-role = E:…

<PolicySetIdReference>

<Target>
 resource-tenant = E

Perm. <PolicySet> (PPS:E)

PA

RHUA

PA

UA

RH

<PolicySetIdReference>

<Target>
 subject-tenant = E

Trust <PolicySet> (TPS:E)

Cross-Issuer UA

Role <PolicySet> (RPS:E)

Role <PolicySet> (RPS:OS:...)

<Target>
 subject-role = OS:…

<PolicySetIdReference>

Cross-Issuer
RH

Cross-Issuer PA

Dev.OS policysets Dev.E policysets

trust

Figure 4.2: Example MTAS policy structure with trust relation OS . E as highlighted.

Figure 1.1.2 For instance, Charlie as a user in OS with a manager role in E, namely E:manager,

requests to access a permission to create a repository in E, namely E:cr. Following the convention

in XACML we use “:” as the delimiter of namespaces. At the PDP end, OS’s TPS, written as

TPS:OS, states OS . E which is simply adding RPS : E as a referenced PolicySet. E’s RPS,

written as RPS:E, states that E:manager dominates E:employee which is the employee role in

E. Meanwhile, E’s PPS, written as PPS:E, states that E:employee is permitted to have the

permission E:cr. As a start, the request is sent from PEP to PDP where TPS:OS is invoked since

the subject tenant attribute in the request has value OS. According to MTAS, as long as the trust

relation OS . E exists, TPS:OS is able to reference both RPS:OS and RPS:E. Thus, the re-

quest is forwarded to both. A dead end will be reached inRPS:OS since the requested permission

is in E. In RPS:E, the request is forwarded to RPS:E:manager and then to RPS:E:employee

due to the role hierarchy assignment. The PDP will probe into the referenced PPS:E policies

from RPS:E along the process and find a match in PPS:E:cr. Then, a permit decision will be

2For simplicity, we use E and OS to represent tenants Dev.E and Dev.OS respectively in the example policies.

63

responded to PEP who will grant Charlie the requested access.

If Charlie uses another role OS:manager requesting the same permission, the authoriza-

tion path is different. At the PDP end, E states that OS:manager dominates E:employee and

OS:manager has permission E:cr. When the request is forwarded to RPS:E through the same

trust relation above, PDP will look into the policies inside RPS:E. The RPS:OS:manager will

be reached and will forward the request to both PPS:E:cr and RPS:E:employee. Both paths

representing cross-tenant PA and RH respectively will return a permit for the request.

In this example, we can clearly see that cross-tenant accesses are properly controlled by MTAS

policies. The policy specification could be directly used in MTAS implementation.

4.2.2 MT-RBAC Policy Specification

We specify MT-RBAC policies in extensible access control markup language (XACML). Accord-

ing to the normative specification of RBAC policies [11], we keep using the Role PolicySet (RPS)

and the Permission PolicySet (PPS), representing UA and PA respectively in MT-RBAC. Addi-

tionally, a novel Trust PolicySet (TPS) is added. In order to express MT-RBAC1 and MT-RBAC2

policies, we also introduce TIPR PolicySet (IPS) and TDPR PolicySet (DPS). In this section,

we present an MT-RBAC2 policy example and the corresponding authorization process.

Cross-Tenant UA: starting from the upper RPS in Figure 4.3, a user in te sends a request to

access tr’s resource. If the user is already assigned to a role in tr, RPS will forward the request

to tr’s TPS who checks if tr E te. If the trust relation does not exist, the request will be denied;

otherwise, tr’s DPS will check if the user’s role in tr is in PTD(tr, te). If the role is public to te,

tr’s PPS associated with the role will check the resources and actions in the request. If these do

not match the policy rules, the request will be forwarded to the DPS again to verify the visibility

of the junior roles to te. This process will execute recursively until a match in PPS rules is found

or the lowest role visible to te in tr’s role hierarchy is reached. If a match is found, the PDP will

respond with a permit, otherwise the PDP will check other authorization paths in the policy tree

for a match. If finally no match is found, a deny response will be returned to the PEP.

64

Role <PolicySet>

<Target>

 subject-role = tr:…

 subject-tenant = te

<PolicySetIdReference>

Trust <PolicySet> tr

<PolicySetIdReference>

<Target>

 subject-tenant = tr

Trust <PolicySet>

<PolicySetIdReference>

<Target>

 subject-tenant = te

Trust <PolicySet> <PolicySetIdReference>

<Target>

 resource-id = tr:…

Permission <PolicySet>

Role <PolicySet>

<Target>

 subject-role = te:…

<PolicySetIdReference>

Trust <PolicySet> te

<PolicySetIdReference>

<Target>

 subject-tenant = te

Trust <PolicySet>

<PolicySetIdReference>

<Target>

 resource-id = te:…

Permission <PolicySet>

TDPR <PolicySet> tr

<PolicySetIdReference>

<Target>

 subject-tenant = tr

TDPR <PolicySet>

TDPR <PolicySet> te

Cross-Tenant RH

RH

PA

RH

PA

Cross-Tenant UA

UA

<PolicySetIdReference>

<Target>

 subject-tenant = te

 object-role = tr:…

TDPR <PolicySet>

<PolicySetIdReference>

<Target>

 subject-tenant = te

TDPR <PolicySet>

Figure 4.3: The MT-RBAC2 policy enables two independent authorization paths: cross-tenant user
assignment (UA) and cross-tenant role hierarchy (RH), where tr trusts te.

Cross-Tenant RH: starting from the lower RPS in Figure 4.3, the request from a user of a

te’s role will first be sent to te’s TPS. The te’s TPS and the subsequent DPS will forward the

user’s request because it is an intra-tenant request. Then, the request will arrive to the PPS of the

user’s role in te. The recursive process of retrieving a proper junior role will take place. Since a

cross-tenantRH assignment to a junior role in tr exists, the request will be forwarded to tr’sDPS

during the recursive process. The steps afterwards is similar as described in the other authorization

path.

The authorization paths in the other MT-RBAC models are similar. The IPS in MT-RBAC1

specification enforces TIPR similarly as the DPS in MT-RBAC2 enforcing TDPR in the exam-

ple above.

4.3 Prototype and Evaluation

The prototype system has a centralized PDP and multiple distributed Policy Enforcement Points

(PEPs) which are in charge of forwarding access requests to the PDP and enforcing authorization

65

decisions for corresponding cloud services. Since each service is built-in with multi-tenancy, the

MTAS model will aggregate the permissions in various services for each tenant. In practice, the

PDP can be built in fully distributed manner to achieve better performance. However, the policy

discovery algorithms in a distributed environment are beyond the scope of our discussion and

the policy discovery latency is unpredictable due to various factors in implementation. Thus, a

centralized deployment is better to show the metrics for experiment purpose.

The PDP and PEP modules are compiled, deployed and evaluated on virtual machines (VMs)

created in a private cloud system running Joyent Cloud [3]. The PDP is installed on a 64-bit Linux

CentOS 6 system with 2.5 GHz dedicated CPUs. The PEPs are built upon SmartMachines [3] with

SmartOS 1.8.1, 256 MB RAM and shared CPUs. SmartMachine CPU caps are set to 350 meaning

each can use 3.5 CPUs in maximum. The VMs for PDPs and PEPs are deployed in different

security zones with different networks and physical racks so that the performance evaluation results

are not affected by virtualization level interference. All the machines in the prototype are connected

through data center networks. The architecture of our testbed is described in Figure 4.4. We

used eight PEP servers with the same flavor to send concurrent requests to a centralized PDP

server which is equipped with various hardware capacities for scalability tests. The automated

test controller (ATC) synchronizes the code of the system with all the VMs, runs the PDP service

on a particular testing server and configures the PEPs to send all the requests to the server. The

experiment results are also collected by the ATC. It is deployed on a SmartMachine with SmartOS

1.8.4, 1 GB RAM and shared CPUs. The testbed architecturally simulates an authorization service

implementing the MTAS model and supports controlled experiments in a commercial-standard

cloud system.

Experiments and Results

In order to measure the scalability of PDPs, we define a computing capacity unit as 1 GB RAM and

1 Core CPU. Since standard commodity hardware dominates the cloud, VM CPU frequencies are

usually identical with each other in the same environment. Thus, the number of CPU cores, rather

66

Service 1

Policy Decision Point (PDP)

PEP1

Service 2

PEP2

Service 8

PEP8

...

Automated Test Controller (ATC)

Figure 4.4: MTAaaS Testbed Architecture

than value of CPU frequency, is regarded as proportional to hardware capability. For example,

a PDP with 2GB RAM and 2 Core CPU is considered as of 2 unit computing capacity which

doubles hardware capability of its 1 unit counterparts. In our experiments we have PDPs running

on 1 unit, 2 unit and 4 unit servers respectively. At the PEP end, we have 8 SmartMachines of the

same capacity to generate authorization requests so that the volumes of PEP requests can be scaled

proportionally with the PDP capacity.

Performance. Policy decision latency is one of the most important metics in performance

evaluation of access control systems. An MTAS decision process consists of several procedures:

subject and resource verification, attribute searching and retrieving referenced policy files. These

procedures takes policy decision time at the PDP end. We call this effect authorization overhead

which is inevitable.

Figure 4.5a compares the policy evaluation delay in RBAC and the three MT-RBAC models.

Note that in RBAC cross-tenant access requests are not supported. Due to the caching mechanisms

of the operating system, as the number of concurrent requests increases, the average policy decision

delay decreases dramatically until it reaches a stable state. RBAC has the least delay of 4.01

ms, while MT-RBAC0 has 6.92 ms delay. The evaluation of TP policies contributes to the extra

delay of MT-RBAC0, compared to RBAC. Since IPS and DPS evaluations incur the similar I/O

operations to TP evaluations, the authorization delay for MT-RBAC1 and MT-RBAC2 are similar.

67

 0

 5

 10

 15

 20

 25

 30

10 20 30 40 50 60 70 80 90 100

P
D

P
 R

es
p

o
n

se
 D

el
ay

 (
m

s)

Concurrent Requests (x10)

MT-RBAC0

MT-RBAC1

MT-RBAC2

RBAC

(a) PDP Performance

 0

 10

 20

 30

 40

 50

 60

 70

1 10 100 1000

D
o

w
n

lo
ad

 T
im

e
(m

s)

Concurrent Requests (x10)

NoAuth
RBAC

MT-RBAC2

(b) Client-End Performance

 0

 10

 20

 30

 40

 50

 60

10 1k 10k

P
D

P
 R

es
p

o
n

se
 D

el
ay

 (
m

s)

Concurrent Requests

1xPEP

2xPEP

4xPEP

8xPEP

(c) PDP Response Delay with various PEP amount

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9 10

P
D

P
 R

es
p

o
n

se
 D

el
ay

 (
m

s)

Concurrent Requests (x16k)

1CPU/1GB RAM
2CPU/2GB RAM
4CPU/4GB RAM
8CPU/8GB RAM

(d) PDP Response Delay with various hardware ca-
pability

 0

 50

 100

 150

 200

 250

 300

 350

1 2 4 8

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
)

PDP Capability (x1CPU/1GB RAM)

1x8x20 req

10x8x20 req

100x8x20 req

1000x8x20 req

(e) Scalability Results with 10 tenants

 0

 50

 100

 150

 200

 250

 300

 350

10 100 1000

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
)

Number of Tenants

1CPU/1GB RAM

2CPU/2GB RAM

4CPU/4GB RAM

8CPU/8GB RAM

(f) Policy Complexity Scalability Results

Figure 4.5: Performance and scalability evaluation results

68

MT-RBAC1 and MT-RBAC2 have the most delay of 11.75 ms and 12.18 ms, respectively. MT-

RBAC models introduce acceptable evaluation overheads compared to RBAC.

Figure 4.5b shows a comparison of delays at the client-end of the CloudStorage service. The

delays are observed upon a 1KB file downloading task with or without authorization through

RBAC or MT-RBAC2. According to the experiment result, we observe that MT-RBAC2 intro-

duces around 12 ms authorization delay which we believe is acceptable for file downloading tasks

in cloud storage services.

We evaluate the authorization overhead of our prototype system with MTAS by sending con-

current sample requests from various numbers of PEPs to a 4-unit PDP. We use ten disjoint pairs of

sample requests and responses representing intra-tenant and cross-tenant accesses. The horizontal

axis represents the count of concurrent requests sent by PEPs and the vertical axis shows the av-

erage PDP response delay measured at the PEP end. At the beginning, the average response time

falls steeply as concurrent requests from each PEP increase. Since the policy files are loaded at run

time at the PDP end, it takes longer time to respond for the first requests and then as the caching

mechanisms of the operating system function, the average response latency tends to reach a stable

state. For our prototype system, as shown in Figure 4.5c, the average PDP response delay at the

stable state is around 12 ms which is acceptable for ordinary deployment in the cloud.

The PDP hardware capacity is also an important factor of PDP response delay. Figure 4.5d

illustrates the performance of PDP on different servers with 1, 2, 4 and 8 units of hardware capacity

respectively. The experiments are conducted with 8 PEPs and 1000 tenants. The result shows that

with the same hardware capacity, the response delay is relatively stable. It is reasonable that more

powerful PDP causes less response delay which drops around 80% between 1-unit and 2-unit

PDPs. This outcome leads us to test the throughput scalability of the prototype system.

Scalability. Dynamic scaling is one of the key features of cloud computing. Authorization

mechanisms in the cloud also needs to be scalable. We evaluate the scalability of our prototype

from both capacity and policy complexity view points. A scalable system should have its per-

formance improvement proportional to the hardware capacity increase. In the mean time, the

69

complexity of policy also influences the system performance. In our experiments, we identify the

number of tenants as the major factor in the authorization overhead. Thus, we also measure the

scalability by increasing the number of tenants in orders of magnitude.

The capacity scalability evaluation compares the authorization overhead of PDPs with vari-

ous computing capacity units. The throughput of authorization requests is calculated using the

following formula.

Throughput =
1

Average_Delay × CPU_Utilization
(4.1)

The results shown in Figure 4.5e give a clear view that the speedup of PDP servers increases the

throughput proportionally. The result is validated against multiple scales of concurrent requests.

The policy complexity scalability evaluation takes the number of tenants into account to mea-

sure the trend of how the policy complexity affects the performance of the system. Figure 4.5f

plots the results with the number of tenants on the x-axis and the authorization overhead on the

y-axis. In the experiment, the total concurrent requests number is 160,000 which is fairly dispersed

to all the tenants. The trend shows that the increase of tenants does not cause steep drop of the

system performance and is inverse proportional with the throughput. Consequently, it is reasonable

to believe that the prototype is scalable in the cloud environment.

4.4 Discussions

The centralized architecture of MTAaaS may suffer from efficiency issues because each authoriza-

tion request needs to be handled by the centralized PDP before the user can access the requested

cloud resources. The implementation solution in OpenStack is distributing the PDP into each cloud

service so that the authorization decision can be made inside each service. However, this kind of so-

lutions also has drawbacks. Firstly, the complexity of policy management increases tremendously

since the policies should be located close to the distributed PDPs for performance reason. Then,

the consistency and security of policy become problems. Secondly, the distributed PDPs need to

70

be synchronized in order to keep the consistency of authorization decisions. The synchronization

process turns out to be a management overhead. Last but not the least, the identity service issue

credentials for authenticated users so that the cloud services can verify their identity. To maintain

the PKI-based credentials, all the cloud services need to talk to the identity service intermittently

to update their copies of the credential revocation list which is checked for every verification. The

cost of maintaining the PKI mechanism is also inevitable. As a result, the distributed PDP solution

also suffers from efficiency problems.

71

Chapter 5: OPENSTACK DOMAIN TRUST IMPLEMENTATION

In previous chapters, we have discussed the policy layer and the enforcement layer models for

MTAC. In this chapter, we present our work at the implementation layer, particularly in Open-

Stack [6], an open-source cloud platform. The general concept of a tenant in a cloud maps to the

concept of domain in the Havana release of OpenStack.1 We propose a domain trust implementa-

tion enforcing multi-domain access control, which is essentially the MTAC models integrated with

OpenStack.

5.1 Background and Motivation

The identity service in OpenStack, called Keystone, is used to manage users as globally available

resources. More specifically, the administrator of a domain can view all the user information and

assign any user to roles controlled by that domain. Each user, as created, belongs to a single

domain and the domain owner or administrator can only see and manage users within the domain.

So far, the use cases of cross-domain access have not been carefully addressed in OpenStack.

In this section, we use a DevOps [1] example to explain why we need cross-domain accesses

in the cloud and the potential security problems without proper control. Also, we discuss the pros

and cons of existing cross-domain authorization solutions.

Motivation

DevOps is a newly emerged software development methodology that stresses collaboration among

software development, quality assurance (QA) and operations. Numerous companies are actively

practicing DevOps since it aims to help organizations rapidly produce software products and ser-

vices [1]. When DevOps for an organization comes into play in an OpenStack cloud, cross-domain

accesses become inevitable and requires proper access control. Figure 5.1 shows the authorization

1Previous releases of OpenStack employed the term tenant for what has now come to be called project in Open-
Stack. The term tenant is no longer used in OpenStack. In this dissertation we use the term tenant as a generic concept
in cloud computing, while domain is specific to OpenStack as its realization of a tenant.

72

User / Group Role OperationDomain Scope
user-role-project

assignment

ROLES

COMPUTE
SERVICE

IMAGE
SERVICE

NETWORK
SERVICE

SALES
PROJECT

HR
PROJECT

DEVELOPMENT DOMAIN PRODUCTION DOMAIN

SALES
PROJECT

HR
PROJECT

USERS /
GROUPS

admin

Create VM Delete VMCreate VM

operator

Owen

PROJECTS

Dan

Add Image Add Image

Add IP

DOMAINS

TOKEN
INFO

POLICY
RULES

tester

Tom

developer

STORAGE
SERVICE

List Files Edit File

Create VM

Add Image

List Files

Add Router

Figure 5.1: An DevOps use case of cross-domain accesses.

related components in OpenStack giving cross-domain accesses for a DevOps use case. The token

information is managed by the centralized identity service who issues the tokens for users. The

users use their tokens to request access to cloud services. The authorization policies and PDPs are

distributed in each cloud service.

Suppose the organization has two domains in the cloud: Production and Development. Produc-

tion hosts live applications supporting the organization’s daily business requiring strict controls on

changes. Meanwhile, Development consists of development and testing environments, basically a

sandbox, where developers and testers can freely conduct experiments with the cloud resources.

The isolation of the two domains is mandatory for best practice and compliance reasons. Each

domain contains its own set of users, groups, projects and controlled access to the full-spectrum of

cloud services, such as compute, image and network. As shown in Figure 5.1, Owen is an operator

in Production. Dan and Tom are a developer and a tester respectively in Development. Each do-

main has two independent projects: Sales and HR. The users are assigned necessary permissions

73

to access projects in their owning domains to accomplish their daily jobs. For instance, in a De-

vOps case the infrastructure of a live application in Sales.Production2 needs to be modified by a

developer. Dan as a developer in Development assigned that job needs to be authorized to access

the application in Sales.Production. The Production administrator may prefer not to create another

user account for Dan in Production but to assign Dan a developer role in Sales.Production instead,

for the following benefits.

• Dan does not have to switch between user accounts in different domains.

• Intra-domain and cross-domain assignments can be distinguished.

• The Production administrator can avoid removing the temporary user after the completion

of the DevOps case.

This example is a typical use case for organizations using either public or community clouds.

By design, OpenStack supports cross-domain assignments however they are treated indifferently

than intra-domain assignments. For example, Production’s administrator can assign any user from

other domains to roles in Production’s projects. This approach may cause a series of problems as

the following.

a) The Production administrator should be able to retrieve the user information and the role

assignments in Development in order to issue proper cross-domain assignments.

b) The Development administrator should be able control the cross-domain authorization.

c) Since DevOps jobs are usually temporary, the management of cross-domain authorization

should be flexible.

d) Additional constraints upon cross-domain accesses should be supported.

2We use “.” to represent the ownership relation between projects and domains. For example, Sales.Production
refers to the Sales project in Production domain.

74

On the one hand, the visibility of a user’s roles inside its owning domain provides crucial

information for other domain administrators to authorize access of the user since the users in

OpenStack are not global but identifiable inside each domain. On the other hand, the user owner

needs to monitor or constrain the roles assigned to its users in other domains in order to prevent

violations of security principals in multi-domain interoperation [16,49]. In this setting, both of the

collaborating domains should have control over the cross-domain access.

The visibility issue in Problem a) can be solved by centralizing the administration of all cross-

domain assignments to the cloud administrator but the administrative overhead may become over-

whelming. Moreover, it is inappropriate for the cloud administrator to be so involved in the man-

agement of individual domains for security and privacy reasons. To address Problem b), mecha-

nisms involving both domain administrators, in other words “dual-control”, should be introduced.

For Problem c) we need a rapid means to enable or disable cross-domain assignments for better

efficiency. Regarding Problem d), constraints like acyclic role hierarchy, separation of duty and

conflict of interests need to be addressed in cross-domain access control.

Existing Approaches

We have found similar problems in Microsoft Windows Active Directory (AD). An AD, compa-

rable with the identity service in OpenStack, maintains various types of trust relations allowing

users in one domain to access resources in another [4]. But they are not directly applicable in the

cloud environment since AD is designed to manage identities for a centralized authority but not

decentralized ones like in the cloud.

Currently, OpenStack Keystone supports user-level delegation. In particular, a user can del-

egate a part of his or her permissions to another user through a trust relation. The trustee can

impersonate the trustor to perform a subset of the permissions that the trustor has been authorized.

Issuing a trust relation does not require involvement of the domain administrators so that Problem

b) still exists. In addition, it requires a single user to have all the permissions that the requesting

user needs in the target project and limits the capability of cross-domain collaborations.

75

Amazon Web Service (AWS) allows delegating access across accounts (accounts are compara-

ble to OpenStack domains). By creating a trust relation and associating an assumed role with it, the

trustor account authorizes the users from the trustee account to access permissions associated with

the assumed role in the trustor account. In this way, cross-account accesses are enabled. However,

the trust relation cannot support customized control other than the assumed role or be constrained.

Scope and Assumptions

In this dissertation we assume that cross-domain authorization only happens in a single cloud.

Nevertheless, the model we propose may be extended to federated cloud scenarios. We assume

the users in our models are properly authenticated as supported by Keystone. Our discussion and

implementation are based on the Havana release of OpenStack [6].

5.2 OpenStack Access Control Model

In this section, we present the core OpenStack Access Control (OSAC) model based on the Open-

Stack Identity API v3 [7] which is currently the latest stable version. Since OpenStack is a rapidly

changing system solving practical problems, we feel it impossible and unnecessary to model every

feature in OpenStack identity service. Instead, we keep only the core components in the model

and formally present how they interplay with each other in the authorization and administration

processes. Hence, the term core OpenStack Access Control model. For simplicity we will often

omit the core prefix.

Core OSAC

Core OSAC extends the traditional RBAC model [27] to support multi-tenancy. The model ele-

ments and relations are defined in Figure 5.2. OSAC contains eight core entity components: Users

(U), Groups (G), Projects (P), Domains (D), Roles (R), Services (S), Operations (O) and Tokens

(T). Other entities in the OpenStack Identity API are regarded as implementation specific such as

credentials, regions and endpoints. Each of the entities has a globally unique resource identifier

76

Users

(U)

Domains

(D)

Roles

(R)

User

Assignment

(UA)

Permission

Assignment

(PA)

Project

Ownership

(PO)

Project-Role Pair

(PRP)

Projects

(P)

Tokens

(T)

User

Ownership

(UO)

Services

(S)

user_token

token_project

Groups

(G)

Group

Ownership

(GO)

User

Group

(UG)

Group

Assignment

(GA)

token_roles

PRMS

Operations

(OP)

Object

Types

(OT)

ot_service

Domain Trust

(DT)

Figure 5.2: Core OpenStack Access Control (OSAC) model with domain trust.

provided by the identity service. The Domain Trust (DT) relationship is shown in dashed lines

since it is not currently part of OpenStack but is proposed as an extension in this dissertation.

Users and Groups. A user represents an individual who can authenticate and access cloud

resources. In OpenStack, users are the only consumers of cloud resources. A group is simply

a collection of users. Each user or group is owned by one and only one domain. Each group

contains only users in its owning domain. Since groups share the nature of users, for convenience

we understand “users” to mean “users or groups” in the rest of this dissertation.

Projects. A project is a scope and/or a container of cloud resources. A project manages

multiple services and a service segregates its resources into multiple projects. Using a project

and a service, we can locate a specific set of resources. For example, the compute service of

Sales.Production project manages the virtual machine (VM) instances of production applications

for the sales department. Each project is owned by one and only one domain.

Domains. A domain is an administrative boundary of users, groups and projects. Domains are

77

mutually exclusive. Each user, group and project belongs to one and only one domain.

Roles. Roles are global names which are used to associate users with any of the projects. A

user is assigned a role with respect to a project, in other words to a project-role pair.3 Users can be

authorized permissions only through roles. The functions of roles may vary drastically in different

services depending on the nature of the service.

Services. A service represents a distributed cloud service. Since OpenStack and most of other

cloud systems are designed following service-oriented architecture (SOA) model, cloud applica-

tions and resources are delivered to the customers as services. The core service types in OpenStack

include compute, image, identity, volume and network.

Object Types and Operations.4 An object type represents a kind of cloud resources such as

VM or image. Each service may provide multiple object types. For example, within the network

service, IP and port are different object types. An operation is an access method to the object types.

General operations are create, read, update and delete (CRUD) interacting with object types. For

example, a typical permission “Delete VM” is a combination of delete operation and VM object

type. Note that in cloud environments we cannot specify a particular object in the policy since

the objects are created “on-demand”. Thus, the finest-grained access control unit is a collection of

objects identified by a specific object type and a specific project.

As a role-based authorization model, the central part of OSAC is the assignments related to

roles: user assignment (UA), group assignment (GA) and permission assignment (PA) as illustrated

in Figure 5.2. Both groups and users are assigned to project-role pairs but permissions are assigned

to roles. As a result, the permissions assigned to a role populates across all the projects. For

example, if Dan is assigned a developer role in both Sales.Development and HR.Development,

the permissions available to Dan through the developer role in both projects are identical. This

arrangement embodies the multi-tenant nature of cloud resources and provides great flexibility for

the assignments as long as the definition of roles is consistent within each service. It is worth

3Users can also be assigned a domain-role pair. This is for administrative usage only and will be discussed in
Section 5.2.

4For clarity, we introduce object types and operations as components of permissions to the OSAC model. There is
no specification of these two concepts in the identity service API.

78

noting that user assignments and group assignments are managed centrally in the identity service

which permission assignments are distributed into each service.

Tokens. A token represents a subject acting on behalf of a user. A token is issued by the identity

service for an authenticated user and then validated by other services whenever the user requests

cloud resource accesses. A token may be expired or revoked during its lifetime. The content

of a token is encrypted with public key infrastructure (PKI) so that it cannot be altered during

transportation. It reveals all the information needed to authorize the access including the accessing

user, the target project5, all the assigned roles in the project6 and service catalogs. The function

user_tokens returns the set of tokens that are associated with a user, the function token_project

returns the target project and the function token_roles returns the roles assigned to the user in

the target project. Typically a user is issued one token for each project. Thus, in a particular

project, the permissions available to the user are the permissions assigned to the roles revealed in

the correlated token.

We summarize the above in the following definition.

Definition 14. Core OSAC model has the following components.

• U , G, P , D, R, S, OT , OP and T are finite sets of users, groups, projects, domains, roles,

services, object types, operations and tokens respectively.

• user_owner : U → D, a function mapping a user to its owning domain. Equivalently

viewed as a many-to-one relation UO ⊆ U ×D.

• group_owner : G → D, a function mapping a group to its owning domain. Equivalently

viewed as a many-to-one relation GO ⊆ G×D.

• project_owner : P → D, a function mapping a project to its owning domain. Equivalently

viewed as a many-to-one relation PO ⊆ P ×D.

5The accessing scope may be project, domain, or even unscoped. For ordinary accesses, a token is scoped to a
project

6Currently, OpenStack does not support activating an arbitrary subset of roles assigned to a user in the project.

79

• UG ⊆ U ×G, a many-to-many relation assigning users to groups where the user and group

must be owned by the same domain.

• PRP = P ×R, the set of project-role pairs.

• PERMS = OT ×OP , the set of permissions.

• ot_service : OT → S, a function mapping an object type to its associated service.

• PA ⊆ PERMS ×R, a many-to-many permission to role assignment relation.

• UA ⊆ U × PRP , a many-to-many user to project-role assignment relation.

• GA ⊆ G× PRP , a many-to-many group to project-role assignment relation.

• user_tokens : U → 2T , a function mapping a user to a set of tokens; correspondingly,

token_user : T → U , mapping of a token to its owning user.

• token_project : T → P , a function mapping a token to its target project.

• token_roles : T → 2R, a function mapping token to its set of roles. Formally,

token_roles(t) = {r ∈ R|(token_user(t), (token_project(t), r)) ∈ UA} ∪

(
⋃
g∈user_groups(token_user(t) {r ∈ R|(g, (token_project(t), r)) ∈ GA}).

• avail_token_perms : T → 2PERMS , the permissions available to a user through a token,

Formally,

avail_token_perms(t) =
⋃
r∈token_roles(t){perm ∈ PERMS|(perms, r) ∈ PA}.

Role hierarchy (RH) is not supported in OSAC but it could be a reasonable extension for con-

venience. Depending on operation needs, the hierarchy relation may be added upon roles or to

project-role pairs. Both approaches allow specification of role-hierarchy assignments in the cen-

tralized identity service while the former also supports distributed assignment since different ser-

vice may build different structures of role hierarchy as needed. Consideration of these extensions

is beyond the scope of this dissertation.

80

Cloud_Admin

(CA)

Development

Domain_Admin

(DDA)

Production

Domain_Admin

(PDA)

Sales.Development

Project_Admin

(SDPA)

HR.Development

Project_Admin

(HDPA)

Sales.Production

Project_Admin

(SPPA)

HR.Production

Project_Admin

(HPPA)

Figure 5.3: An example administrative role hierarchy.

Administrative OSAC Model

As described previously, the identity information of all the entities including services, domains,

users, groups, projects and roles are stored and managed by the Keystone identity service in Open-

Stack, as are the assignments associating users and groups with roles in domains or projects. It

is worth to note that the permission assignments are separately maintained by each cloud service

provider in a policy file. The policy file for the identity service specifies the permissions to manage

identities and assignments for administrator roles.

The administrative OSAC (AOSAC) model consists of three levels of administrative roles:

cloud_admin, domain_admin and project_admin. As their names indicate, cloud_admin refers

to top-level administrators with the CSP managing all the information in the identity service;

domain_admin at the middle-level is able to conduct administrative tasks within the associ-

ated domain; and project_admin at the bottom-level take the responsibility of managing UA

and GA assignments for the associated project. A user can only be assigned to cloud_admin

role at the installation time of the cloud or by other users with the cloud_admin role afterwards.

The domain_admin and project_admin roles are assigned to users by associating the users with

the “admin” role in a specific domain or project respectively. Figure 5.3 illustrates an example

administrative role hierarchy in AOSAC.

In the DevOps example described in Section 5.1, Development domain_admin (DDA) and

81

Production domain_admin (PDA) roles are assigned to users owned by each domain respec-

tively. A PDA can list and view users, groups and projects in Production. He or she can also

assign roles, including the “admin” role, in a project of Production to a user. A Sales.Production

project_admin (SPPA) can assign roles other than the “admin” role in Sales.Production to a

user. Note that a PDA or a SPPA can assign Dennis@Development to the “developer” role

in Sales.Production. As a result, DevOps cross-domain accesses may be authorized. However,

the administrative boundary of the two domains are intersected with each other. This may lead to

unwanted authorization in cross-domain collaboration, such as the DevOps example.

5.3 Domain Trust Model

In order to achieve additional control for cross-domain accesses, we propose domain trust models

integrating with the OSAC model. From the description in the previous sections, we observe that

domains are introduced as administrative boundaries. Bridging domains using trust relations gives

a controlled way to allow cross-boundary collaborations. For a user to have roles in a project,

a proper trust relation needs to be established between the owning domains of the user and the

project.

Domain Trust Relation

The definitions of trust relations vary in different application scenarios. In the field of access

control, either explicit or implicit trust relation is essential to decentralized authorization [20].

Thus, in order to properly authorize cross-domain accesses, we have to specify what a trust relation

means and how the trust relation interacts with the existing access control model.

Trust is a complicated concept and has been treated in different ways in the context of access

control. The following is a list of characteristics related to domain trust relations. Figure 5.4

depicts the potential combinations.

Protocol (Two-party vs Federation). Two-party trust is established between two domains.

A federation trust exists in an alliance or cooperative association in which a participant that is a

82

Trust

Two-party Federation

Unilateral Bilateral

BidirectionalUnidirectional Bidirectional

TransitiveNon-Transitive

Figure 5.4: A tree structure showing characteristics of domain trust relation.

domain trusts all other participants and it is also true in return.

Initiation (Bilateral vs Unilateral). When the trustor creates a trust relation, if the trustee is

required to confirm, then the trust relation is regarded as bilateral otherwise unilateral. It is worth

to note that transferring a unilateral trust relation to a bilateral one is much easier than doing the

reverse.

Direction (Bidirectional vs Unidirectional). A bidirectional trust relation requires the actions

enabled through the trust relation are equally available for the trustor and the trustee. Conversely,

a unidirectional trust, as the name refers, requires availability of the actions only on one side.

Transitivity (Transitive vs Non-transitive). For domain A, B and C, if A trusts B and B trusts

C it is implied that A trusts C, then the trust relation is transitive. Otherwise, the trust relation is

non-transitive.

In this dissertation, the domain trust relation is specified as a two-party, unilateral, unidirec-

tional and non-transitive relation. Moreover, it is reflexive meaning each domain trusts itself. It is

functionally defined as the following.

Definition 15. If and only if Domain A trusts Domain B, also written as “A � B”, A or B can

perform unidirectional cross-domain authorization.

The actions enabled through a domain trust relation depend on the trust types defined as fol-

lows.

83

Definition 16. Based on collaborative access control needs, the domain trust relation described

in Definition 15 can be categorized into three useful types.

• Type-α, requires visibility of the trustee’s user information for the trustor to assign trustee’s

users to roles in trustor’s projects, written as “�α”.

• Type-β, requires the trustor to expose its user information for the trustee to assign trustor’s

users to roles in trustee’s projects, written as “�β”.

• Type-γ, requires the trustor to expose its project information for the trustee to assign trustee’s

users to roles in trustor’s projects, written as “�γ”.

Note that the trust types defined in Definition 16 are consistent with those described in Sec-

tion 3.3.3. Type-α Trust is used implicitly in current OpenStack since the trustor domain_admin

and project_admin can see the users in all the domains and assign them to roles in the trustor’s

projects. Type-α Trust is only useful when user related information is not sensitive and available

across domains by default. In contrast, Type-β Trust and Type-γ Trust protect user information

as sensitive property of each domain. Both of them require dual control. In particular, the trustor

manages the trust relation while the trustee manages cross-domain authorization. In this way,

cross-domain accesses can be revoked by either end of the trust relation.

OSAC Domain Trust

Since we have specifically defined the domain trust relation above, integrating it with OSAC be-

comes straightforward. The formal definition of the OSAC Domain Trust (OSAC-DT) model

follows.

Definition 17. The OSAC-DT model extends the OSAC model in Definition 14 with the following

modifications.

• DT ⊆ D ×D, a many-to-many trust relation on D, also written as “�”.

84

• UA is modified to require that (u, (p, r)) ∈ UA only if

project_owner(p) ≡ user_owner(u) ∨

project_owner(p) Eα user_owner(u) ∨

user_owner(u) Eβ project_owner(p) ∨

project_owner(p) Eγ user_owner(u).

• GA is modified to require that (g, (p, r)) ∈ GA only if

project_owner(p) ≡ group_owner(g) ∨

project_owner(p) Eα group_owner(g) ∨

group_owner(g) Eβ project_owner(p) ∨

project_owner(p) Eγ group_owner(g).

The modification focuses on the effect of the domain trust relation introduced. Particularly,

the project owner has to have proper trust relation with the user owner for UA and GA to take

effect. The trust relations are checked during both authorization time and accessing time. The

appropriate trust relations need to exist before the cross-domain assignment is issued. If a trust

relation is revoked, then the correlated cross-domain assignments and accesses should be revoked

either automatically or manually depending upon implementation.

OSAC-DT allows the three types of trust relations to coexist with each other. A specific

cross-domain UA or GA is effective as long as the trust relation between the user or group

and the project domains satisfy the condition described in Definition 17. In fact, combining

Type-α and Type-β trusts we could achieve a bilateral trust relation. For example, only if both

Production �α Development and Development �β Production exists, then cross-domain au-

thorization by Production is enabled.

By introducing explicit domain trust relation, the following constraints may be enforced over

cross-domain authorization.

Separation of Duties (SoD). Some of the collaborations among domains may have conflict of

interests which should be addressed by additional constraint policy and lists of mutually exclusive

85

domains.

Minimum Exposure. In collaboration, the over-exposure of user or project information in-

creases security and privacy risks. An effective solution is limiting exposure of information based

on each domain or each trust requirements.

Cardinality. A domain may limit the number of domains to be trusted. For example, some

domains , such as Production, require high-level security and allow only one trusted domain at a

time for temporary access if necessary.

The constraints listed above and a lot more are previously not available without domain trust

relations.

Domain Trust Administration

The administrative OSAC-DT (AOSAC-DT) model extends the AOSAC model by the administra-

tion of domain trust relations and their enabled actions. Since the trust relation is unilateral, only

the cloud_admin and the domain_admin of the trustor have the permission to create and revoke a

specific domain trust relation. The trust relation enables the project_admin and domain_admin

of the trustor, in case of Type-α trust, or the trustee, in case of Type-β trust or Type-γ trust, to view

the user or project information necessary for them to make cross-domain authorization.

5.4 Prototype and Evaluation in OpenStack

To further explore the feasibility of our OSAC-DT model, we implement a prototype system based

on the Havana release of Keystone source code [6]. Furthermore, we conduct experiments on the

prototype system in terms of performance and scalability. The results indicate that the integrated

domain trust introduces minimum authorization overhead.

Implementation Overview The architecture of our prototype follows the Keystone design.

The domain trust verification process intercepts the authentication process. Before Keystone is-

sues the token for a requesting user, the domain trust relations stored in the MySQL database are

checked. Only if the requesting user’s owning domain is trusted by the target project’s owning

86

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

T
o

k
en

 I
ss

.
D

el
ay

 (
m

s)

Req. Numbers (x100)

intra-domain
cross-domain

(a) Performance results

7

7.2

7.4

7.6

7.8

8

1 2 4 8

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
)

Keystone Capability (x1CPU/1GB)

intra-domain

cross-domain

(b) Scalability results

Figure 5.5: Performance and scalability evaluation results

domain, then the token issuing process can go through. Otherwise, an “unauthorized” response

will be returned. For proof of concept purpose, we implement only Type-γ trust in the prototype

system. It is straightforward to extend the implementation other types of domain trust relations

discussed in Section 5.3 and similar evaluation results are predicted because the domain trust veri-

fication processes are similar.

Evalutation The implementation and experiments are conducted in experimental Devstack [2]

deployments in a private cloud. The core OpenStack services, including Keystone, are running on a

single VM. The requesting clients are from the same data center network of the private cloud. Since

only Keystone code is modified, the experiments focus on evaluating the token issuing process

including sequential processes of authentication, domain trust verification, token composition and

network transmission, etc.

The experiments simulate sequential token requests for one hundred users and projects owned

by ten independent domains. Each user is associated with both intra-domain and cross-domain

assignments through ten different roles. As Figure 5.5a shows, the x-axis represents the requests

per user and the y-axis indicates the latency between request time and response time from the client

end, also known as the token issuing delay. Comparing the token issuing delay of intra-domain

and cross-domain access requests, the domain trust verification process costs 0.96 ms on average

87

or 0.7% performance overhead which is acceptable.

Figure 5.5b presents the results for scalability tests on our prototype system. The x-axis repre-

sents the capability of the VM running Devstack in the unit of “1CPU/1GB RAM”. The y-axis is

the calculated throughput for the token issuing process. The plotted diagram shows that with ten

requests per user, the throughput increase of the prototype system is proportional to the increase of

the capability of Keystone servers from 1 unit to 8 units so that the system is scalable and adding

the domain trust does not cause scalability problem.

88

Chapter 6: CONCLUSION AND FUTURE WORK

This chapter summarizes the contributions of this dissertation and the identified research directions

for future studies of MTAC.

6.1 Summary

In this work, we propose a full stack of multi-tenant access control solutions for cloud services.

The motivating example is the collaboration among multiple tenants in the daily business of en-

terprises. It is distinguished with the traditional multi-domain approaches by the characteristics

of the emerging cloud environments. We use a top-down methodology in the research referring

the PEI stack. Firstly, the policy layer models at the top are designed. Then, the enforcement

layer architecture in the middle are developed to accommodate all the upper layer models. Finally,

the prototype implementation of our models upon the architecture is based on a real-world cloud

system.

In the policy layer, we give MTAC models both in role-based and attribute-based manners. The

MTAS and MT-RBAC models are both role-based while the MT-ABAC model is attribute-based.

Further, we summarize the generic types of trust relations and a unified framework of cross-tenant

trust models which describes our basic approach in solving multi-tenant authorization problems.

In order to enforce our models, we develop a centralized authorization service architecture

named MTAaaS. It has a centralized PDP and distributed PEPs for each tenant. The feasibility of

MTAaaS is tested agains a prototype system using XACML in a cloud environment. The experi-

ment results show that the performance and scalability of the prototype are acceptable.

Lastly, we integrate the MTAC models into OpenStack, a popular open-source cloud system.

Keystone, as the centralized identity service of OpenStack, is modified to support domain trust

which is consistent with our MTAC models. The experiment results against the modified Keystone

service are also reported.

All in all, this work consists of research in all the three layers of multi-tenant access control for

89

cloud services. It is believed to be valid and useful in contemporary cloud systems.

6.2 Future Work

Besides the completed work above, some potential directions as listed in the following which could

be addressed in our future work.

1. The MT-ABAC model may be explored in administration, enforcement and implementation.

2. More and finer-grained trust models may be investigated. Trust negotiation and graded trust

relations may be introduced.

3. Multi-Tenant Provenance-Based Access Control (MT-PBAC) and Multi-Tenant Risk-Adaptable

Access Control (MT-RAdAC) could become other potential multi-tenant access control mod-

els compatible with the MTAaaS platform.

4. Last but not least, extending MTAaaS OpenStack API to support attribute-based MTAC

models.

90

BIBLIOGRAPHY

[1] DevOps. http://en.wikipedia.org/wiki/DevOps.

[2] Devstack. http://www.devstack.org.

[3] Joyent SmartOS. http://smartos.org/.

[4] Microsoft windows active directory. http://en.wikipedia.org/wiki/Active_Directory.

[5] OpenStack. http://www.openstack.org/.

[6] OpenStack Havana Release. http://www.openstack.org/software/havana.

[7] Openstack identity service API v3 (STABLE). http://developer.openstack.org/api-ref-
identity-v3.html.

[8] Trust (social sciences). http://en.wikipedia.org/wiki/Trust_ (social_sciences).

[9] Walkthrough: Cross-account API access using IAM roles. http://docs.aws.amazon.com/IAM/
latest/UserGuide/cross-acct-access-walkthrough.html.

[10] Sarbanes-Oxley Act (SOX). Public Law 107-204, 2002.

[11] Core and hierarchical role based access control (RBAC) profile of XACML v2.0. OASIS
Standard, 2005.

[12] OASIS eXtensible Access Control Markup Language (XACML) v2.0 specification set.
http://www.oasis-open.org/committees/xacml/, 2005.

[13] Mohammad A. Al-Kahtani and Ravi S. Sandhu. A model for attribute-based user-role as-
signment. In Proceedings of the 18th Annual Conference on Computer Security Applications
(ACSAC), pages 353–362, 2002.

[14] R. Alfieri, R. Cecchini, V. Ciaschini, Luca dell’Agnello, Á Frohner, K. Lőrentey, and
F. Spataro. From gridmap-file to VOMS: managing authorization in a grid environment.
Future Gener. Comput. Syst., 21(4):549–558, 2005.

[15] A. Almutairi, M. Sarfraz, S. Basalamah, W.G. Aref, and A. Ghafoor. A distributed access
control architecture for cloud computing. IEEE Software, 29(2):36–44, 2012.

[16] Nathalie Baracaldo, Amirreza Masoumzadeh, and James Joshi. A secure, constraint-aware
role-based access control interoperation framework. In Proceedings of the 5th International
Conference on Network and System Security (NSS), pages 200–207. IEEE, 2011.

[17] E. Barka and R. Sandhu. Framework for role-based delegation models. In Proceedings of the
16th Annual Conference on Computer Security Applications (ACSAC), pages 168 –176, 12
2000.

91

[18] Rafae Bhatti, Elisa Bertino, and Arif Ghafoor. X-FEDERATE: A policy engineering frame-
work for federated access management. IEEE Transactions on Software and Engineering,
32:330–346, 2006.

[19] Rafae Bhatti, Elisa Bertino, and Arif Ghafoor. An integrated approach to federated identity
and privilege management in open systems. CACM, 50(2):81–87, 2007.

[20] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In Proceed-
ings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173. IEEE, 1996.

[21] D.F.C. Brewer and M.J. Nash. The chinese wall security policy. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 206–214, 1989.

[22] Jose M. Alcaraz Calero, Nigel Edwards, Johannes Kirschnick, Lawrence Wilcock, and Mike
Wray. Toward a multi-tenancy authorization system for cloud services. IEEE Security &
Privacy, Nov/Dec 2010:48–55, 2010.

[23] David W. Chadwick and Alexander Otenko. The PERMIS X.509 role based privilege man-
agement infrastructure. In Future Generation Computer Systems, pages 135–140. Elsevier,
2002.

[24] DavidW. Chadwick. Federated identity management. In Foundations of Security Analysis
and Design V, volume 5705 of Lecture Notes in Computer Science, pages 96–120. Springer
Berlin Heidelberg, 2009.

[25] Frederick Chong, Gianpaolo Carraro, and Roger Wolter. Multi-tenant data architecture.
http://msdn.microsoft.com/en-us/library/aa479086.aspx, 2006.

[26] Raul F Chong. Designing a database for multi-tenancy on the cloud. http://www.ibm.com/
developerworks/data/library/techarticle/m-1201dbdesigncloud/index.h tml, 2012.

[27] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chan-
dramouli. Proposed NIST standard for role-based access control. ACM Transactions on
Information and System Security (TISSEC), 4(3):224–274, August 2001.

[28] I. Foster, Yong Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-degree
compared. In Grid Computing Environments Workshop (GCE), pages 1–10, 2008.

[29] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. dRBAC: distributed role-
based access control for dynamic coalition environments. In Proceedings of the 22nd Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 411–420, 2002.

[30] Samy Gerges, Sherif Khattab, Hesham Hassan, and Fatma Omara. Scalable multi-tenant au-
thorization in highly collaborative cloud applications. International Journal of Cloud Com-
puting and Services Science (IJ-CLOSER), 2(2):106–115, 2013.

[31] Li Gong and Xiaolei Qian. Computational issues in secure interoperation. IEEE Transactions
on Software Engineering, 22(1):43–52, 1996.

92

[32] Michael T. Goodrich, Roberto Tamassia, and Danfeng (Daphne) Yao. Notarized federated ID
management and authentication. J. Comput. Secur., 16(4):399–418, 2008.

[33] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Arthur R. Friedman, Alan J. Lang, Margaret M.
Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, and Karen Scarfone. Guide to
attribute based access control (ABAC) definition and considerations (draft). NIST special
publication 800-162, April 2013.

[34] Diane Jermyn. Health care not yet ready to share. https://secure.globeadvisor.com/servlet/
ArticleNews/story/gam/20110610/SRCLOUDHEALTH0610ATL, 2011.

[35] Xin Jin. Attribute-based access control models and implementation in cloud infrastructure as
a service. Spring 2014.

[36] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control model
covering DAC, MAC and RBAC. In Data and Applications Security and Privacy XXVI,
pages 41–55. Springer, 2012.

[37] Jay Judkowitz. Taking advantage of multi-tenancy to build collaborative clouds.
http://communities.intel.com/community/datastack/cloudbuilder/blog/2011/04/29/taking-
advantage-of-multi-tenancy-to-build-collaborative-clouds, 2011.

[38] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding attributes to role-based
access control. Computer, 43(6):79–81, 2010.

[39] Anil Kurmus, Moitrayee Gupta, Roman Pletka, Christian Cachin, and Robert Haas. A com-
parison of secure multi-tenancy architectures for filesystem storage clouds. In Middleware,
pages 471–490, 2011.

[40] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust-
management framework. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 114–130, 2002.

[41] Qi Li, Xinwen Zhang, Mingwei Xu, and Jianping Wu. Towards secure dynamic collabora-
tions with Group-Based RBAC model. Computers & Security, 28(5):260–275, 2009.

[42] Joshua McKenty. Nebula’s implementation of role based access control (RBAC).
http://nebula.nasa.gov/blog/2010/06/03/nebulas-implementation-role-based-access-control-
rbac/, 2010.

[43] Peter Mell and Timothy Grance. The NIST definition of cloud computing. Special Publication
800-145, 2011.

[44] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community authorization
service for group collaboration. In Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks (POLICY), pages 50–59. IEEE, 2002.

93

[45] Juan M Marin Perez, Jorge Bernal Bernabe, Jose M Alcaraz Calero, Felix J Garcia Clemente,
Gregorio Martinez Perez, and Antonio F Gomez Skarmeta. Taxonomy of trust relationships
in authorization domains for cloud computing. The Journal of Supercomputing, pages 1–25,
2014.

[46] Christy Pettey and Rob van der Meulen. Gartner outlines five cloud computing trends that
will affect cloud strategy through 2015. Press Release, 2012.

[47] Ravi Sandhu. The PEI framework for application-centric security. In Proceedings of the
1st International Workshop on Security and Communication Networks (IWSCN), pages 1–6,
2009.

[48] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, 1996.

[49] Basit Shafiq, James BD Joshi, Elisa Bertino, and Arif Ghafoor. Secure interoperation in a
multidomain environment employing RBAC policies. IEEE Transactions on Knowledge and
Data Engineering, 17(11):1557–1577, 2005.

[50] Mohamed Shehab, Elisa Bertino, and Arif Ghafoor. SERAT: SEcure role mApping technique
for decentralized secure interoperability. In Proceedings of the 10th ACM symposium on
Access control models and technologies (SACMAT), pages 159–167, 2005.

[51] Hassan Takabi and James B. D. Joshi. Semantic-based policy management for cloud com-
puting environments. International Journal of Cloud Computing, 1(2):119–144, 01 2012.

[52] Bo Tang, Qi Li, and Ravi Sandhu. A multi-tenant RBAC model for collaborative cloud
services. In Proceedings of the 11th IEEE Conference on Privacy, Security and Trust (PST),
2013.

[53] Bo Tang and Ravi Sandhu. Cross-tenant trust models in cloud computing. In Proceedings of
the 14th IEEE Conference on Information Reuse and Integration (IRI), 2013.

[54] Bo Tang and Ravi Sandhu. Extending openstack access control with domain trust. In Pro-
ceedings of the 8th International Conference on Network and System Security (NSS), 2014.

[55] Bo Tang, Ravi Sandhu, and Qi Li. Multi-tenancy authorization models for collaborative cloud
services. In Proceedings of the 14th International Conference on Collaboration Technologies
and Systems (CTS), 2013.

[56] William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-Phil Hong. Access control in col-
laborative systems. ACM Computing Surveys (CSUR), 37(1):29–41, 2005.

[57] E. Yuan and J. Tong. Attributed based access control (ABAC) for web services. In Pro-
ceedings of the IEEE International Conference on Web Services (ICWS)., pages 561–569,
2005.

94

[58] Xinwen Zhang, Sejong Oh, and Ravi S. Sandhu. PBDM: a flexible delegation model in
RBAC. In Proceedings of the 8th ACM symposium on Access control models and technologies
(SACMAT), pages 149–157. ACM, 2003.

[59] Zhixiong Zhang, Xinwen Zhang, and Ravi Sandhu. ROBAC: Scalable role and organization
based access control models. In Proceedings of the International Conference on Collabora-
tive Computing: Networking, Applications and Worksharing (CollaborateCom), pages 1–9.
IEEE, 2006.

95

VITA

Bo Tang was born in Wuhan, Hubei, China. After completing his schoolwork at Wuhan No.11
High School in 2003, Bo entered Huazhong University of Science and Technology in Wuhan.
He received both a Bachelor of Engineering in information security and a Bachelor of Arts in
English from Huazhong University of Science and Technology in June 2007. During the following
three years, he was employed as an information security engineer at Ping An Insurance Group of
China in Shenzhen, Guangdong, China. In August 2010, Bo entered the Graduate School of The
University of Texas at San Antonio. He earned a Master of Science in computer science with a
concentration of computer and information security from The University of Texas at San Antonio
in May 2014.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Motivation
	Problem Statement
	Scope and Assumptions
	Thesis
	Summary of Contributions
	Organization of the Dissertation

	Chapter 2: Related Work
	Centralized Approaches
	Decentralized Approaches
	Attribute-Based Approaches
	Enforcement and Implementation

	Chapter 3: Multi-Tenant Access Control (MTAC) Models
	MTAS
	Formalization
	Administrative MTAS (AMTAS) Model
	Enhanced Trust Models

	MT-RBAC
	Overview
	Base Model—MT-RBAC0
	Trustee Independent Public Role—MT-RBAC1
	Trustee Dependent Public Role—MT-RBAC2
	Administrative MT-RBAC (AMT-RBAC) model

	CTTM
	Motivation
	On-Demand Self-Service in the Cloud
	Tenant Trust Relations
	Formalized Model
	Role-Based CTTM

	MT-ABAC
	MT-ABAC Components
	Formal MT-ABAC Model
	MT-RBAC Configuration

	Discussions
	Role-Based Trust Models
	Constraints
	Trusts in AWS and OpenStack

	Chapter 4: Multi-Tenant Authorization as a Service (MTAaaS)
	MTAaaS Architecture
	Policy Specifications
	MTAS Policy Specification
	MT-RBAC Policy Specification

	Prototype and Evaluation
	Discussions

	Chapter 5: OpenStack Domain Trust Implementation
	Background and Motivation
	OpenStack Access Control Model
	Domain Trust Model
	Prototype and Evaluation in OpenStack

	Chapter 6: Conclusion and Future Work
	Summary
	Future Work

	Bibliography
	Vita
	Blank Page

