
FORMAL MODEL AND ANALYSIS OF USAGE CONTROL

by

Xinwen Zhang
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of the

the Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

Ravi S. Sandhu, Dissertation Director

Francesco Parisi-Presicce,
Dissertation Co-director

Larry Kerschberg

Kris Gaj

Daniel A. Menasće, Associate Dean
for Research and Graduate Studies

Lloyd J. Griffiths, Dean, The Volgenau School
of Information Technology and Engineering

Date: Summer Semester 2006
George Mason University
Fairfax, Virginia

Formal Model and Analysis of Usage Control

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Xinwen Zhang
Bachelor of Engineering

Huazhong University of Science and Technology, 1995
Master of Engineering

Huazhong University of Science and Technology, 1998

Director: Ravi S. Sandhu, Professor
Department of Information and Software Engineering

Co-director: Francesco Parisi-Presicce, Associate Professor
Department of Information and Software Engineering

Summer Semester 2006
George Mason University

Fairfax, Virginia

ii

Copyright c© 2006 by Xinwen Zhang
All Rights Reserved

iii

Dedication

To my parents, who have always inspired and encouraged me to continue my lifelong

dream.

My special dedication goes to my lovely wife, Wei Xiong, who has been always supporting

me and sharing all the difficult times with great love and sacrifices.

To my brothers and sisters, brothers-in-law and sisters-in-laws, who have given me great

support for my study.

iv

Acknowledgments

I would like to express my sincere appreciation and gratitude to my dissertation director,

Professor Ravi Sandhu, who has enlightened and guided me throughout my doctoral stud-

ies. Great thanks to Dr. Sandhu who made this work possible, and encouraged me during

my difficult times.

Special appreciation and thanks to my dissertation co-director, Professor Francesco Parisi-

Presicce, who has guided me throughout my dissertation work and has been extending my

knowledge and research skills, and discussing with me with great insights.

I am also grateful to my dissertation committee members, Professor Larry Kerschberg and

Professor Kris Gaj for their valuable comments and suggestions.

My appreciation also goes to many friends at George Mason University for their help and

to my co-authors for their collaboration.

v

Table of Contents

Page

Abstract . x
1 Introduction . 1

1.1 Usage Control . 1

1.2 Expressive Power and Safety Analysis . 4

1.3 Problem Statement . 6

1.4 Summary of Contributions . 7

1.5 Organization of the Dissertation . 8

2 Background . 9

2.1 OM-AM Framework . 9

2.2 UCONABC Model . 12

2.2.1 Core Models . 14

2.2.2 Attribute Management and Mutability 17

2.2.3 An Example . 18

3 Formal Model and Policy Specification . 21

3.1 Temporal Logic of Actions . 21

3.1.1 Building Blocks . 21

3.1.2 Temporal Formula and Semantics 23

3.1.3 Extension of TLA . 24

3.2 Logical Model of UCON . 25

3.2.1 Attributes and States . 26

3.2.2 Predicates . 27

3.2.3 Actions . 28

3.2.4 Model and Satisfaction of Formulae 32

3.3 Specification of Authorization Core Models 34

3.3.1 The ModelpreA0 . 34

3.3.2 The ModelpreA1 . 37

3.3.3 The ModelpreA2 . 39

vi

3.3.4 The ModelpreA3 . 40

3.3.5 The ModelonA0 . 41

3.3.6 The ModelonA1 . 42

3.3.7 The ModelonA2 . 42

3.3.8 The ModelonA3 . 43

3.4 Specification of Obligation Core Models 47

3.4.1 The modelpreB0 . 49

3.4.2 The ModelpreB1 . 50

3.4.3 The ModelpreB2 . 51

3.4.4 The ModelpreB3 . 51

3.4.5 The ModelonB0 . 52

3.4.6 The ModelonB1 . 53

3.4.7 The ModelonB2 . 54

3.4.8 The ModelonB3 . 54

3.5 Specification of Condition Core Models 56

3.6 Formal Specification of General UCON Models 57

3.6.1 Scheme Rules . 58

3.6.2 Completeness and Soundness . 60

3.7 Expressivity and Flexibility . 63

3.7.1 Role-based Access Control Models 63

3.7.2 Chinese Wall Policy . 65

3.7.3 Dynamic Separation of Duty . 66

3.7.4 MAC Policy with High Watermark Property 67

3.7.5 Hospital Information Systems . 68

3.8 Related Work . 69

3.9 Summary . 71

4 Expressive Power . 72

4.1 Formal Model of UCONA and UCONB 72

4.1.1 UCONA . 74

4.1.2 UCONB . 82

4.2 Expressive Power of UCONA . 85

4.2.1 A UCONA Model for iTunes-like Systems 85

4.2.2 TAM and SO-TAM . 89

vii

4.2.3 Simulating SO-TAM with UCONA 92

4.3 Expressive Power of UCONB . 104

4.3.1 An Example . 105

4.3.2 Reducing UCONA to UCONB . 107

4.3.3 Reducing UCONB to UCONA . 108

4.4 Discussion . 118

4.5 Related Work . 119

4.6 Summary . 121

5 Safety Analysis . 122

5.1 Undecidability of Safety in UCONA . 122

5.2 Safety Decidable UCONA Model . 126

5.2.1 Safety Analysis of UCONA without Creation 127

5.2.2 Safety Analysis of UCONA with Creation 131

5.3 Expressive Power of Decidable UCONA Models 143

5.3.1 RBAC Systems . 144

5.3.2 DRM applications with Consumable Rights 148

5.4 Discussion . 150

5.5 Related Work . 151

5.6 Summary . 152

6 Conclusions and Future Work . 154

6.1 Conclusions . 154

6.2 Future Work . 155

Bibliography . 157

viii

List of Tables

Table Page

4.1 Primitive actions . 77

4.2 Attributes in UCONA for iTunes-like Systems 86

ix

List of Figures

Figure Page

2.1 The OM-AM framework for security engineering 10

2.2 The OM-AM framework for RBAC systems 11

2.3 The OM-AM framework for UCON systems 12

2.4 Usage control model . 13

2.5 Continuity and mutability properties of UCON 14

2.6 UCONABC family of core models . 17

3.1 State transition of a single access with usage control actions 29

3.2 Usage control actions . 30

3.3 State transitions . 61

5.1 Safety check algorithm . 142

Abstract

FORMAL MODEL AND ANALYSIS OF USAGE CONTROL

Xinwen Zhang, Ph.D.

George Mason University, 2006

Dissertation Director: Ravi S. Sandhu

Dissertation Co-director: Francesco Parisi-Presicce

The concept of usage control (UCON) was introduced as a unified approach to captur-

ing a number of extensions for access control models and systems. In UCON, a control de-

cision is determined by three aspects: authorizations, obligations and conditions. Attribute

mutability and decision continuity are two distinct characteristics which are presented in

UCON for the first time. In this research I develop a logical model beyond the conceptual

UCON model to capture the formal semantics of these key features, and then analyze the

expressive power and safety properties of UCON.

Although the informal study of policy specification flexibility with UCON has been

conducted in previous work, the multiple control components and unique features such as

decision continuity and attribute mutability have not been formally studied. In this dis-

sertation I develop a logical model of UCON based on an extended version of Lamport’s

temporal logical of actions (TLA) to formalize the state transitions in a single usage pro-

cess. The model consists of predicates on subject and object attributes as authorizations,

subject actions as obligations, and predicates on system attributes as conditions. With these

basic terms, a usage control policy can be specified by a set of logical formulae, which are

instantiated from a fixed set of scheme rules. The policy specification language is shown

to be sound and complete. The flexibility of policy specification with UCON is shown by

expressing policies for various applications.

To formally study the expressive power of UCON by comparing with traditional access

control models, a policy-based model is developed to formalize the overall effect of a us-

age process. With this model, I prove that the general single-object typed access matrix

(SO-TAM) model can be simulated with a UCONpreA model, which is a sub-model of

UCON with only pre-authorizations. The study of the expressive power shows thatpreA

is at least as expressive as the augmented typed access matrix model (ATAM). For the ex-

pressive power of UCON pre-obligation models (preB), I prove that a general UCONpreA

model can be reduced to apreB model, and vice versa. This demonstrates that fundamen-

tally these two models have the same expressive power. For UCON ongoing authorization

and obligation models (onA andonB), the system state changes non-deterministically, de-

pending on concurrent accesses and reasons for attribute updates (e.g., ended access vs.

revoked access). The study of the expressive power for these models is left for future work.

In UCON pre-condition and ongoing condition models (preC andonC), a usage control

decision is determined by some environmental restrictions dependant on system attributes.

Since UCON core models do not capture how system attributes change, it would be inap-

propriate to compare the expressive power of UCON condition models with others.

Safety is a fundamental problem of access control models. With the policy-based

model, I first show that the general UCONpreA andpreB models have undecidable safety.

With some restrictions on the general models, I propose a UCONpreA model with de-

cidable safety. The restricted model maintains reasonable expressive power as shown by

simulating a role-based access control (RBAC) model with a specific user-role administra-

tion scheme, and a digital rights management (DRM) application with consumable rights.

The safety analysis ofonA, preB, andonB is left for future work. For UCON condition

models, since how system attributes change is not captured in UCON, the safety problem

is not a valid problem because the system state changes occur by events outside the scope

of the control of UCON model.

Chapter 1: Introduction

1.1 Usage Control

Traditional access control models such as lattice-based access control (LBAC) [7, 18, 47]

and role-based access control (RBAC) [19,50] primarily consider static authorization deci-

sions based on subjects’ pre-assigned permissions on target objects. Access matrix models

such as HRU [23] and TAM [46] use a matrix to distribute permissions at the discretion of

individual subjects. In policy-based authorization management systems [11, 17, 25, 26], a

centralized reference monitor (or distributed reference monitor with centralized adminis-

tration) checks a subject’s permission when access is requested, and the request is granted

according to system security policies at the time of the access request. Once a subject is

granted a permission, there are no further security checks for continued access.

Developments in information technology, especially in electronic commerce applica-

tions, require additional features for access control. On one side, in recent information

systems, an access control decision can be determined by many aspects, such as general

subject or object attributes, or some system constraints. For example, a professor can ac-

cess the information of the students in his class only in his office and only during working

hours. Further, an access may require some actions to be fulfilled by the subject, or by

another subject instead of the requesting subject. For example, before reading an email, a

user needs to send the acknowledgement of receipt to the sender. Traditional access con-

trol models cannot capture the multiple aspects of decisions in these applications. On the

1

2

other side, the usage of a digital object may be not only an instantaneous access or activity,

like read and write, but also temporal and transient, such as payment-based online reading,

metered by reading time or chapters, or a downloadable music file that can only be played

10 times. In these cases, a subject’s permission may decrease, expire, or be revoked along

with the usage of the object.

As traditional identity-based and role-based access control models cannot satisfy these

purposes, UCON was recently proposed to be the next generation access control model that

extends traditional access control models in multiple aspects [39] and fits new security re-

quirements. In UCON, an access may be an instantaneous action, but may also be a process

lasting for some duration with several related and subsequent actions. Actions and events

during an access process may result in changes to the system state, such as subject or object

attributes, or in changes in the status of an access (e.g., revoke an access). Usage control

can be enforced before or during an access process, or both. A usage decision in UCON is

made by policies of authorizations, obligations, and conditions (also referred as UCONABC

core models). An authorization decision of an access is determined by the subject and/or

object attributes. Obligations are actions that are required to be performed before or during

an access process. Conditions are environment restrictions that are required to be valid

before or during an access. An extreme example of UCON is the traditional access con-

trol models, in which the authorization decision is made instantly when an access request is

generated, and there is no further check after that. By considering more general subject and

object attributes, UCON is a comprehensive model to represent the underlying mechanism

of existing access control models and policies. Beyond that, by combining authorizations,

obligations, and conditions in access control decisions, UCON fundamentally extends the

3

traditional access control models and captures the access control requirements in DRM,

trust management, and other modern information systems.

Two distinguishing features of UCON beyond traditional access control models are the

continuity of access decision and the mutability of subject attributes and object attributes.

In UCON, authorization decisions are not only checked and made before an access, but

may be repeatedly checked during the access. A granted access may be revoked by the

system if some policies are not satisfied, according to the changes of the subject or object

attributes, or environmental conditions, or some obligations that are not fulfilled during the

accessing.

Mutability is a new concept introduced by UCON, but its features can be found in tra-

ditional access control models and policies. For example, in a Chinese Wall policy, if a

subject accesses an object in a conflict-of-interest set, then he/she cannot access any other

conflicting objects in the future. That means, the potential object list that the subject can

access has been changed as a side-effect of a previous access. This change, consequently,

restricts the future access of this subject. History-based access control policies can be ex-

pressed by UCON with this feature of attribute mutability. Also, mutability is useful to

specify dynamic constraints in access systems, such as separation of duty (SoD) policies,

cardinality constraints, etc. Another prospective area is consumable access. Consumable

access is becoming an important aspect in many applications, especially in DRM. For ex-

ample in a pay-per-use DRM application with fixed credit of a subject, the available access

time decreases with ongoing access.

Continuity and mutability in UCON introduce interactive and concurrent concepts into

access control. An access results in the update of subject or object attributes as side-effects.

4

These changes, in turn, may result in the change of other ongoing or future accesses by the

same subject, or to the same object, or some access that is implicitly related. That means,

an access may change not only its own state, but also the states of other accesses.

1.2 Expressive Power and Safety Analysis

The main goal of an access control model is to define and enforce security policies in a

security system. Informally, the expressive power of an access control model is the ca-

pability of expressing various policies. As a fundamental problem, expressive power has

been studied with traditional access control models since the introduction of access ma-

trix model formalized by Harrison, Russo, and Ullman (HRU) [23]. Some related work

on this aspect is summarized in Chapter 4. As UCON is claimed to fundamentally extend

traditional access control models, a natural concern is its expressive power. With general

usage-related subject and object attributes, UCON can be configured to support various

policies for different applications. Also, the features of multi-aspect decision components,

decision continuity, and attribute mutability greatly enhance its expressive power, as shown

in Chapter 3. Another approach to study the expressive power of an access control model

is to express another model by simulation, whereby the two models can be compared with

regard to their relative expressive powers. The expressive power of UCON can be studied

by simulating traditional access control models, such as access matrix models and RBAC.

A different but related and fundamental problem is the leakage of permissions in an

access control model. In an access control system, a permission is granted or an access is

authorized depending on the current state of the system. Also, the granting of a permission

may consequently change the configuration of the system, and this, in turn, may enable

5

other permissions. Typically, a configuration of a system consists of a set of subjects, a

set of objects, a set of rights, and a collection of assertions indicating whether a subject

can have a right on an object. An access control system also contains a set of policies or

rules to specify how the granting of a permission can change a system configuration or a

state. For example, in an access matrix model, in each system state the matrix contains

the rights that a subject has on an object, and there is a set of commands with which the

matrix can be changed. For UCON, both the permission distribution and state change are

determined by a set of policies. A policy refers to an access right that a subject can have

on an object, based on attribute predicates, obligation actions, and system conditions. In

a given system state, the permissions of a subject are evaluated by the attribute values,

obligation satisfactions, and system status. As a side-effect of granting an access, one or

more subject and/or object attributes can be changed, which result in a new system state.

This dynamic property makes it difficult to foresee a system state in which a subject may

have a particular right on a particular object. This is referred to as the safety problem in

access control models.

The requirement of strong expressive power and that of a tractable safety property have

been conflicting since the introduction of protection models in 1970’s. It is not a surprising

fact that for a given access control model, the more expressive power it has, the harder it is,

computationally, to carry out safety analysis.

6

1.3 Problem Statement

Park and Sandhu [38,39,51] presented the concept of mutability and continuity, and a con-

ceptual model of UCON, which consists of several core sub-models including authoriza-

tion, obligations, and conditions. Although the flexibility of policy specification has been

informally studied in [39,40,60], to formally understand the concept of UCON, especially

the comprehensive consideration of usage decisions, a formal specification of the principles

of UCON and its flexible expressive capability is necessary. With a logical specification,

we provide a tool to precisely define policies for system designers and administrators. With

a conceptual and informal model, the capability to rigorously define policy is limited. Also,

a logical specification provides the precise meaning of the new features of UCON, such as

the mutability of attributes and the continuity of usage control decisions. Finally, to ana-

lyze general properties of UCON models such as expressive power and safety problem, we

need a formal model.

For an access control model, expressive power and safety analysis are two fundamental

problems. Previous work [39, 40] has informally shown the expressive power of UCON,

while a formal study on this aspect remains to be done. Generally, the expressive power

of an access control model can be evaluated by comparing it with other models, i.e., by

simulating one model with another model. In particular, as UCON is claimed to be a

flexible and comprehensive model, we need to understand its relative expressive power

with respect to traditional access control models.

The safety problem of an access control system is to determine if a subject can get a

permission on an object in some reachable state of the system. Since UCON is shown

to have strong flexibility and expressive power for policy specification, it is a reasonable

7

conjecture, although needs to be proven, that the safety problem of UCON is undecidable

in general. How to introduce reasonable constraints on the general model and obtain a

decidable model with practical expressive power is a fundamental problem for UCON.

1.4 Summary of Contributions

This dissertation contains the following contributions.

• A logical model of UCON is developed with TLA to formalize the state transitions

in a single usage process. With this model,

– policy specifications for core UCON models are presented; and

– a fixed set of scheme rules are defined to specify general UCON policies with

the properties of soundness and completeness; and

– policy specification flexibility of UCON is illustrated by expressing various

policies.

• Policy-based formal models of UCONpreA andpreB are developed to formalize

the accumulative effect of a usage process. The expressive power ofpreA andpreB

is studied and the following results are achieved.

– By simulating SO-TAM withpreA, preA is proved to be at least as expressive

as SO-TAM.

– Further,preA is shown to be more expressive than SO-TAM and TAM, and at

least as expressive as ATAM.

– ThepreA andpreB have the same expressive power.

8

• The safety property of UCON is analyzed with the policy-based model and the fol-

lowing results are achieved.

– The safety problem of the generalpreA andpreB is undecidable.

– The safety problem is decidable for apreA model with finite attribute domains

and without creating policies, and the problem is polynomial in the number of

possible states of the system and NP-hard in the number policies in the scheme.

– The safety problem is decidable for apreA model with finite attribute domains

and creating policies, and the attribute creation graph is acyclic and there are no

cycles that include create-parent tuple in attribute update graph.

– The decidablepreA models maintain practically useful expressive power as

shown by specifying an RBAC model with a user-role assignment administra-

tive scheme and a DRM application with consumable rights.

1.5 Organization of the Dissertation

Chapter 2 first introduces the OM-AM framework of security engineering as the back-

ground of this dissertation, and then the conceptual UCON model and a motivating ex-

ample. In Chapter 3 a logical model is developed to formalize the state transitions in a

single usage process, and its flexibility of policy specification is presented. In Chapter 4

a policy-based formal model focusing on the overall effect of a usage is developed and

the expressive power of UCONpreA andpreB is studied. With this policy-based model,

the safety problem of UCONpreA is studied in Chapter 5. Chapter 6 summarizes this

dissertation and presents some directions for future work.

Chapter 2: Background

This chapter presents some background knowledge and work relevant to this dissertation.

The general OM-AM framework for security engineering is introduced in the context of

UCON, followed by the conceptual UCONABC model with its new features. The related

work regarding temporal characteristics, expressive power, and safety analysis of access

control models are presented in Chapter 3, 4, and 5, respectively.

2.1 OM-AM Framework

OM-AM framework is a layered approach to security system first proposed in the context

of role-based access control (RBAC) [48] systems. As shown in Figure 2.1, the four layers

are Objectives, Models, Architectures, and Mechanisms, surrounded by a basic require-

ment of assurance which permeates all layers. The objective layer captures the informal

specifications of a system’s security requirements (policies or goals). The model layer pro-

vides the abstract or formal interpretation of the security requirements. The architecture

layer describes the security design and implementation strategy in terms of components,

servers, brokers, etc., and their relationships. The mechanism layers focuses on concrete

implementation techniques. In a high-level view, the objectives and models are concerned

with articulatingwhatthe security goals and expressions are, and what should be achieved,

while the architectures and mechanisms addresshowto meet these requirements. OM-AM

9

10

framework is neither a top-down waterfall-style nor process-based layers (e.g., software en-

gineering process). Each layer’s mapping to adjacent layers is many-to-many, e.g., a model

can be supported by multiple architectures, while an architecture can support multiple se-

curity models. At the same time, each layer deals with distinct and independent functions,

and these functions are tightly related to other layers to some degree.

What ?

How ?

Objectives

Mechanisms

Architectures

Models

Assurance

Figure 2.1: The OM-AM framework for security engi-

neering

For the instance of RBAC systems shown in Figure 2.2, the objective layer is pol-

icy neutral since RBAC can be configured to express various policies [37]. In the model

layer, there are many RBAC models with different features. Among them, RBAC96 [50]

is the first comprehensive and well-accepted model, and ARBAC97 is an administrative

model for RBAC systems. At the architecture layer, RBAC can be supported with server-

pull, user-pull, or hybrid architectures [48]. At the implementation layer, there are many

mechanisms that can be used, such as secure cookies [43], digital certificates [41], security

assertion markup language (SAML) [35], SSL, IPSec, X.509, etc.

This dissertation focuses on the model layer of UCON. To some extent, the objective

11

What ?

How ?

Assurance

Policy neutral

Sever-pull, user-pull, federated, etc

Secure cookies,
digital certificates, SAML, etc.

RBAC96 model, ARBAC97, etc

RBAC System

Figure 2.2: The OM-AM framework for RBAC sys-

tems

and architecture layers are also involved. As shown in Figure 2.3, at the objective layer,

as UCON model is attribute-based, general subject and object attributes can be defined to

support various security policies for different application requirements. This makes UCON

policy neutral. In the model layer, the conceptual UCONABC model has been previously

proposed [39] and a formal model is presented in this dissertation. Decision components

such as authorizations, obligations, and conditions are integrated in a single model, and

can be configured to express traditional access control models and various security policies

such as separation of duty, Chinese Wall, etc. [39,59]. In the architecture layer, traditional

server-side reference monitor (SRM) or emerging client-side reference monitor (CRM) or

combination of them can be used to support a UCON system [42]. For the implementation

mechanism, existing DRM technologies, such digital watermarking, can be used in some

applications. At the same time, emerging trusted computing (TC) [1–3] technologies pro-

vide mechanisms to support client-side reference monitors to enforce UCON policies [52].

For client-side policy enforcement, remote attestation for platforms and content viewers is

12

needed. Trusted computing technologies with the support of public key infrastructure (PKI)

can be the concrete mechanisms for implementation. A UCON policy can be specified by

XML with some standard approaches such as extensible access control markup language

(XACML) [36] for security policies and extensible rights markup language (XrML) [58]

for DRM policies.

What ?

How ?

Assurance
Usage Control System

Policy neutral

UCONABC model

Server-side RM,
client-side RM, etc

DRM technologies,
attribute certificates, trustec computing,

XrML, XACML, etc.

Figure 2.3: The OM-AM framework for UCON sys-

tems

2.2 UCONABC Model

As depicted in Figure 2.4, a usage control system has six components: subjects and their

attributes, objects and their attributes, rights, authorizations, obligations, and conditions.

The authorizations, obligations and conditions are components of usage control decisions.

An authorization decision is based on the subject’s and/or object’s attributes. Obligations

are activities that have to be performed by a subject before or during an access. Conditions

are system environment restrictions which are required before or during an access.

The most important properties that distinguish UCON from traditional access control

13

Rights
(R)

Authoriz
ations

(A)

Subjects
(S)

Objects
(O)

Subject Attributes (SA) Object Attributes (OA)

Obliga
tions
(B)

Condi
tions
(C)

Usage
Decisions

Figure 2.4: Usage control model

models and trust management systems are the continuity of usage decisions and the mu-

tability of attributes. Continuity means that a usage control decision can be determined

and enforced not only before an access, but also during the ongoing period of the access.

Figure 2.5 shows a complete usage process consisting of three phases along the time line:

before usage, ongoing usage, and after usage. Usage control decisions can be checked and

enforced in the first two phases, named pre-decisions and ongoing-decisions, respectively1.

1In the after usage phase, no decisions are checked and enforced since there is no access control after a

subject finishes usage on an object. There can be obligations and conditions defined in this phase, which are

called post-obligations and post-conditions, respectively. Since UCON is defined as a session-based access

control model targeting the current access request and ongoing usage, post-obligations and post-conditions

are not included in the core UCON model, but should be included in related administrative models. In this

work we only focus on the core aspects of UCON, while an administrative model should be developed in the

future.

14

Mutability means that subject and/or object attributes can be updated as the results of

granting or performing an access. Along with the three phases, there are three kinds of

updates: pre-updates, ongoing-updates, and post-updates. All these updates are performed

and monitored by the system. The update of a subject or an object attribute during an access

may result in a system action to allow or revoke current access or another access, according

to the authorizations of the access. An update on the current usage may generate cascading

updates, while an update in another access can act as an external event that would cause a

change of the usage status, such as revocation. These are unique features of UCON models

because of attribute mutability and decision continuity.

before usage ongoing usage after usage

Continuity of
Decisions

pre-decision ongoing-decisions

pre-updates ongoing-updates post-updates

Mutability of
Attributes

Figure 2.5: Continuity and mutability properties of UCON

2.2.1 Core Models

For each decision component (authorizations, obligations, and conditions) in UCON, sev-

eral core models are defined based on the phase where usage control is checked and updates

are performed. For example, in authorization core models, the usage control decisions are

dependent on the subject and object attributes, which can be checked and determined in the

15

first two phases of an access. Based on the possible updates in all three phases, eight core

authorization models can be defined as follows.

• preA0: a usage control decision is determined by authorizations before the usage,

and there is no attribute update before, during, or after this usage.

• preA1: a usage control decision is determined by authorizations before the usage,

and one or more subject or object attributes are updated before this usage.

• preA2: a usage control decision is determined by authorizations before the usage,

and one or more subject or object attributes are updated during this usage.

• preA3: a usage control decision is determined by authorizations before the usage,

and one or more subject or object attributes are updated after this usage.

• onA0: usage control is checked and the decision is determined by authorizations

during the usage, and there is no attribute update before, during, or after this usage.

• onA1: usage control is checked and the decision is determined by authorizations

during the usage, and one or more subject or object attributes are updated before this

usage.

• onA2: usage control is checked and the decision is determined by authorizations

during the usage, and one or more subject or object attributes are updated during this

usage.

• onA3: usage control is checked and the decision is determined by authorizations

during the usage, and one or more subject or object attributes are updated after this

usage.

16

For ongoing authorization core models, continuous decision checks capture not only

the attribute changes from the local ongoing usage process, but also other related usage

processes. For example, a subject attribute change due to the system administrator’s action

may revoke an ongoing access to an object if any of the authorization predicates of this

access is no longer valid.

Similar obligation and condition core models can be defined. A real model is typically

a combination of multiple core models. Figure 2.6(a) shows all possible combination of

core models and their relationships, where the UCONA, UCONB, and UCONC are the

three base models at the bottom. Any two of them can be combined to form a new model,

and all together form the UCONABC model. Each of the A, B, and C models is divided

into several cases as shown in Figure 2.6(b), (c), and (d), respectively. In each of them,

the mutable cases of pre-update model (1), ongoing update model (2), and post-update

model (3) dominate the immutable model (0), while there is no ordering among the mutable

cases.2

2In [38, 39], thepreA2, preB2, and all mutable condition core models (preC1, preC2, preC3, onC1,

onC2, andonC3) are not included in the UCON core models. ForpreA2 andpreB2, the reason was that

since a decision is made before the usage, ongoing updates can be postponed to the after-usage phase in a

usage process. As in a system there may exist concurrent usage processes, ongoing updates of an usage can

affect other usages. Therefore these two core models are included here. For mutable condition core models,

subject and/or object attributes can also be updated, such as usage time and usage log. Similarly, an update in

a usage process of condition core models can affect other usage processes. Therefore, the mutable condition

core models are also included in this work.

17

UCONA
Authorizations

UCONB
Oblications

UCONC
Conditions

UCONAB UCONAC
UCONBC

UCONABC

preB0

preB1 preB2
preB3

preA0
(immutable)

preA1
(pre-update)

preA2
(on-update)

preA3
(post-update)

onA0
(immutable)

onA1
(pre-update)

onA2
(on-update)

onA3
(post-update)

onB0

onB1 onB2
onB3

preC0

preC1 preC2
preC3

onC0

onC1 onC2
onC3

(a) (b)

(c) (d)

Figure 2.6: UCONABC family of core models

2.2.2 Attribute Management and Mutability

A usage control model includes several underlying assumptions. In UCON, a usage deci-

sion is request-based, i.e., rights are not pre-assigned to subjects and permissions are com-

puted at the time of usage requests. Authorization decisions are based on subject attributes

and object attributes according to the usage control policies. Also, depending on the usage

control policies, these attributes may have to be updated and their management is a key

concern in usage control. Attribute management can be either “administrator-controlled”

or “system-controlled”.

Administrator-controlled attributes can be modified only by explicit administrative ac-

tions. These attributes are modified at the administrator’s discretion but are “immutable”

in that the system does not modify them automatically, unlike mutable attributes. Here the

administrator can be either a security officer or a user, although in general, administrative

18

actions are made by security officers. Administrator-controlled attributes are typical in tra-

ditional access control policies such as mandatory access control (MAC) and RBAC. Static

separation of duty and user-role assignment in RBAC are other examples of this case.

Unlike administrator-controlled, in system-controlled attribute management, updates

are the side effects or results of the user’s usage on objects. For instance, a subject’s credit

balance is decreased by the value of the usage on an object at the time of the usage. This

is different from the update by an administrative action because the update in this case is

done by the system while in administrator-controlled management the update involves ad-

ministrative decisions and actions. This is why system-controlled attributes are “mutable”

attributes that do not require any administrative action for updates. Attribute mutability

is considered as part of UCON core models. In this dissertation our concern lies in the

system-controlled mutability issue, where updates are made as side effects of users’ actions

on objects. Five types of access control policies with system-controlled attribute mutability

are summarized in [40], including exclusiveness, accounting, immediate access revocation,

obligations, and dynamic confinements.

2.2.3 An Example

In this section, an example motivating the new features of UCON is presented. Traditional

access control models and policies have difficulties, or lack the flexibility to specify policies

in these scenarios.

Consider a DRM application with a limited number of simultaneous usages, where an

objecto can only be accessed and simultaneously used by a maximum of 10 users at a

time. Each new access request must be granted and there is only one access generated

19

from a single user at any time. If the number of users accessing the object is 10, then

one existing user’s ongoing access is revoked when a new request is generated. There

are different possible policies to determine which user’s ongoing access must be revoked.

Among them,

(a) revocation by start time: the longest usage is revoked.

(b) revocation by idle time: the usage with the longest idle time is revoked.

(c) revocation by total usage time: the usage with the longest accumulating usage time

is revoked.

For these three different policies3, we need to define different attributes for subjects and

objects, respectively.

(a) For each subject, we define the starting time as an attribute. The list of accessing sub-

jects is defined as an object attribute, and each time a new access request is generated,

this attribute is updated by adding the requesting subject. In UCON terminology, this

is a pre-update. If the total accessing number is already 10, then the ongoing subject

with the earliest start time is revoked, and the new access is permitted. When an

access is ended by a subject or revoked by the system, the subject is removed from

the object’s accessing list. This is called a post-update.

(b) An object has the same attribute as in (a). Each subject has two attributes: the status

of the subject with a valuebusy or idle, and the continuous idle time in a single

usage process. In order to monitor the idle time, the system has to check the status

3These policies require specification of a tie-breaking rule which we ignore for the sake of simplicity.

20

and update the idle time during the entire ongoing access by means of ongoing-

update. Similar to (a), there are pre-update, revoking access, and post-update actions.

Revocation is performed with respect to the longest idle access when the total count

of ongoing accessing subjects is larger than 10.

(c) Here again an object has the same attribute as in (a). Each subject has an attribute of

accumulating usage time to record the total usage time of this subject on this object

over the subject and object life. Similar to (a) and (b), there are pre-update, revoking

access, and post-update actions. Revocation is performed with respect to the subject

with the longest usage time access when the total count of ongoing accessing subjects

is larger than 10. In addition, there is a post-update of subject attribute after the usage

(either ended by a subject or revoked by the system) by adding this usage time to the

subject’s historically accumulating accessing time.

In this example, an access is a process that interacts not only with a subject and an

object, but also with the system and other related processes which are accessing or trying

to access the same object concurrently. An access decision is no longer a single function

of (subject, object, right), but depends on the attributes of the entities (subject and object)

involved in the access, and may change the attributes of these entities. On the other side,

an access is not a simple action, but consists of a sequence of actions and events not only

from a subject, but also from the system. This example also shows that a real system is the

combination of several core models.

Chapter 3: Formal Model and Policy Specification

This chapter first reviews TLA and then defines some extensions to include past temporal

operators. A logical model is developed to formalize the state transitions in a single usage

process with this extended TLA. Policy specifications for UCON core models are pre-

sented. A set of scheme rules are proposed to specify general UCON policies and shown

to have the properties of soundness and completeness. The flexibility of the policy specifi-

cation language is illustrated at the end of this chapter.

3.1 Temporal Logic of Actions

Extending temporal logic [33] by introducing boolean valued actions, the temporal logic

of actions (TLA) [30] is a powerful tool to specify systems and their properties, especially

for interactive and concurrent systems. This section gives a brief introduction to the basic

terms and the syntax of temporal formulae, and then introduce some additional temporal

operators along with their semantics.

3.1.1 Building Blocks

Variables, values, and states are basic concepts in TLA. Values are elements of a data type.

A variable has a name likex andy, and can be assigned a value. We assume that there is

an infinite set of available variables with namesx, y, etc., to which values can be assigned.

21

22

A constant is a variable that is assigned with a fixed value. A states is characterized by

assignment of a values[[x]] to each variablex.

A function is a non-boolean expression built from variables, operator symbols, and

constants, such asx2 + y − 3. The semantics[[f]] of a functionf is a mapping from

states to values. For example,[[x2 + y − 3]] is the mapping that assigns to the states the

values[[x]]2 + s[[y]] − 3, wheres[[x]] ands[[y]] denote the values thats assigns tox andy,

respectively. Generally,

s[[f]] ≡ f(∀‘v’ : s[[v]]/v)

wheref(∀‘v’ : s[[v]]/v) is the value obtained by substitutings[[v]] for each variablev in the

expression.

A predicate is a boolean expression built from variables, operator symbols, and con-

stants, such asx = y + 1. The semantics[[P]] of a predicateP is a mapping from states to

boolean values. A states satisfies a predicateP iff s[[P]], the value of[[P]] in s, equalstrue.

An action is a boolean-valued expression formed from variables, primed variables, op-

erator symbols, and constants, such asx′ = y + 1 andx′ − 1 /∈ y′. Formally, an action

represents a relation between old states and new states, where unprimed variables refer to

the old state and the primed variables refer to the new state. Formally, an actionA is a

function assigning a booleans[[A]]t to a pair of states(s, t). For example,x′ = y + 1 has

the boolean value oft[[x]] = s[[y]] + 1. We say that(s, t) is anA step ifs[[A]]t equalstrue.

Generally:

s[[A]]t ≡ A(∀‘v’ : s[[v]]/v, t[[v]]/v′)

Since a predicateP is a boolean expression built from variables and constants, it is

23

regarded as a special action without primed variables. A pair(s, t) is aP step iff s[[P]] is

true.

3.1.2 Temporal Formula and Semantics

The basic temporal operator is¤ (“Always”). The semantics of a temporal action is defined

using the concept ofbehavior. A behaviorσ in TLA is an infinite sequence of states

< s0, s1, s2, ... > (a finite set of states can be regarded as infinite with identical repeating

states). With this idea, the semantics of an atomic formula with actions is defined as:

< s0, s1, s2, ... > [[A]] ≡ s0[[A]]s1

< s0, s1, s2, ... > [[¤A]] ≡ ∀n ≥ 0 : sn[[A]]sn+1

The same semantics can be defined for predicates since a predicate is a special form of

action.

In TLA, a formula is built from predicates and actions with logical connectors and

temporal operators. Recursively, a temporal formula is defined by the following grammar

in BNF:

< formula >:≡< predicate > | < action > |¬ < formula > |

< formula > ∧ < formula > | < formula > ∨ < formula > |

< formula >→< formula > |¤ < formula > |

A formula is an assertion about a behavior. The semantic valueσ[[F]] of a formulaF is

a boolean value on a behaviorσ. Formally,

< s0, s1, s2, ... > [[F]] ≡ s0[[F]]s1

< s0, s1, s2, ... > [[¤F]] ≡ ∀n ≥ 0 :< sn, sn+1, sn+2, ... > [[F]]

24

3.1.3 Extension of TLA

Other future operators, such as“Eventually” (♦), can be defined using the “Always” (¤)

operator. The relationship between the “Always” and the “Eventually” operators can be

expressed as:

♦F ≡ ¬¤¬F

Based on the semantics of temporal actions and formulae, we can define other temporal

operators and semantics similarly.

The “Next” and “Until” Temporal Operator

For a behavior< s0, s1, s2, ... >, the semantics of theNextoperator (©) is defined as

< s0, s1, s2, ... > [[©F]] ≡ s1[[F]]s2

Until (U) is a binary operator. A formulaFUG is true if F is alwaystrue until G is

true along the sequence of states. Formally,

< s0, s1, s2, ... > [[FUG]] ≡ ∃i ≥ 0 :
(
si[[G]]si+1 ∧ (0 ≤ j < i → sj[[F]]sj+1)

)

Note that the semantics ofFUG has no requirement onG for sj andF for si and the

following states, which is different from the “until” in the English language.

There is an equivalence between these temporal operators:

♦F ≡ (F ∨ ¬F)UF

Past Temporal Operators

TLA only defines future temporal operators like¤ and♦. In traditional temporal logic

there are past temporal operators to specify the properties during the past time compared

25

to the current time. For a behavior< s0, s1, s2, ... > in TLA, if we considers0 as the

state at the current time, thens1, s2, ... are states of the future on the time line. We use the

state sequence..., s−2, s−1 for states during the past time along this time line. Therefore, a

behavior is a state sequence:

< ..., s−2, s−1, s0, s1, s2, ... >

We can now define past temporal operators similar to the future ones:¥ (Has-always-

been), ¨ (Once), Ä (Previous), S (Since). Formally,

< ..., s−2, s−1, s0, s1, s2, ... > [[¥F]] ≡ ∀n < 0 : sn[[F]]sn+1

< ..., s−2, s−1, s0, s1, s2, ... > [[¨F]] ≡ ∃n < 0 : sn[[F]]sn+1

< ..., s−2, s−1, s0, s1, s2, ... > [[ÄF]] ≡ s−1[[F]]s0

< ..., s−2, s−1, s0, s1, s2, ... > [[FSG]] ≡

∃i < 0 :
(
si[[G]]si+1 ∧ (i < j < 0 → sj[[F]]sj+1)

)

Similar to the future operators, there are some equivalences among these past operators,

such as

¨F ≡ ¬¥¬F

¨F ≡ FS(F ∨ ¬F)

3.2 Logical Model of UCON

In this section we present a logical approach for formalizing UCON. First we describe the

basic components such as predicates and actions, then we define the logic model of UCON

with these components.

26

3.2.1 Attributes and States

A system state is a set of assignments of values to variables. In UCON, there are three

different kinds of variables: subject attributes, object attributes, and system attributes.

In UCON each entity (subject or object) is specified by a finite set of attributes. We

require that each entity has at least one attribute for identity, called name, which is unique

and cannot be changed. An attribute of an entity is denoted asent.att whereent is the

subject or object’s identity andatt is the attribute name. Hereafter, we assume that an

entity name without any attribute specified denotes its identity.

An attribute is a variable of a specific datatype, which includes a set of possible values

(domain) and operators to manipulate them. In any state of the system, all attributes of an

entity are assigned values from their corresponding domains. The datatype of an attribute

depends on what kind of attribute it is, such as group membership, role, security clearance,

credit amount, etc. The assignment of a value to an attribute is denoted byent.att = value.

System attributes are variables that are not related to a subject or an object directly,

such as system clock, location, etc. We define a special system attribute to specify the

usage status of a single access process(s, o, r). Specifically, the functionstate(s, o, r)

is a mapping from{(s, o, r)} to {initial, requesting, denied, accessing, revoked, end}.

The semantics of theinitial state is that the access(s, o, r) has not been generated, while

requesting means the access has been generated and is waiting for the system’s usage

decision;denied means that the system has denied the access request according to the

usage control policies before usage;accessing means that the system has permitted the

access and the subject has been accessing the object immediately after that. An access goes

to therevoked state when it is revoked by the system during the ongoing usage phase, or it

27

goes to anend state when a subject finishes the usage.

In UCON, a function is an expression built from one or more attributes and constants.

Formally, a function is a mapping from a set of attribute values to a new value. For instance,

in the example in Section 2.2.3, the total number of ongoing accessing subjects for an object

is a function of the object’s attribute (a list of accessing subjects).

The variables for the attributes (including subjects, objects, and the system), the func-

tions, and the constants comprise the basic terms of our logical model in UCON. A state of

a UCON system is an assignment of values to all subject attributes, object attributes, and

system attributes.

3.2.2 Predicates

A predicate is a boolean expression built from variables, functions, and constants, where

variables includes subject attributes, object attributes, and system attributes. The seman-

tics of a predicate is a mapping from system states to boolean values. A state satisfies a

predicate if the attribute values assigned in this state satisfy the predicate. For example,

the predicates.credit > $100 is true if s’s credit attribute value in the current state of

the system is larger than $100. Since a system may have very different predicates from an-

other system, the set of predicates for a general UCON model is not fixed. As examples, a

unary predicate is built from one attribute variable and constants, e.g.,s.credit ≥ $100.00,

o.classification = ‘supersecure′. A binary predicate is built from two different at-

tribute variables, e.g.,dominate(s.cleareance, o.classification), s.credit ≥ o.value,

(s, r) ∈ o.acl, whereo.acl is objecto’s access control list. Note that the two attributes

in a binary predicate can be from a single subject or object, or one subject and one object,

28

or from the system. A predicate can be defined with a number of attributes from a single

entity, or two entities, or the system.

3.2.3 Actions

There are two types of actions in UCON: usage control actions and obligation actions.

Usage Control Actions

Usage control actions include actions to update attribute values and actions to change the

status of a single access process (state(s, o, r)).

An update action changes the system state to a new state by updating the value of an

attribute. Note that only subject and object attributes can be updated in UCON. How system

attributes change is outside the scope of UCON model.

Corresponding to the point where an update is performed, there are three kinds of up-

date actions defined in UCON:preupdate, onupdate, andpostupdate. We distinguish

these three types based on the phase where these actions are performed by the system: be-

fore usage, during usage, and after usage, respectively. Essentially, each of these actions

updates an attribute value to a new value. In a real UCON system, an update action can

have an arbitrary name specified by the system or policy designer. Also, a UCON model

can have multiple updates in each phase for different attributes.

If the system performs an update successfully, the attribute value is changed to a new

value, and the action istrue, otherwise, it isfalse. Note that in our model we do not

consider the time delay of an action, and we assume that an action is always performed

instantly causing the transition to the next state1.

1In a real system, an update may be delayed or failed, or an update is performed but the target object is

29

requesting accesing end

denied revocked

denyaccess revokeaccess

permitaccess
endaccess

onupdate

initial
tryaccess

preupdate

preupdate

postupdate

postupdate

Figure 3.1: State transition of a single access with usage control

actions

Another type of usage control action is performed by a subject or the system that change

the status of an access(s, o, r). As mentioned before, there are six different possible values

of state(s, o, r) during an access life cycle. The transition from a state to another state is

a usage control action, as shown in Figure 3.1. Note this figure only shows the changes of

the usage statusstate(s, o, r) in one usage process.

We can categorize all usage control actions into two classes: actions performed by a

subject and actions performed by the system. Figure 3.2 shows these actions during the life

cycle of a usage process. They are briefly explained below.

1. tryaccess(s, o, r): generates a new access request(s, o, r), performed by subjects.

2. permitaccess(s, o, r): grants the access request of(s, o, r), performed by the system.

not available, e.g., because of network problem or storage problem. Therefore there needs to be logging and

recovering mechanisms to monitor the process. As standard approaches can be used for these purposes, the

model does not capture these aspects for the sake of simplicity.

30

before usage ongoing usage after usage

Subject Actions

tryaccess

revokeaccess
postupdate

System Actions

endaccess

preupdate
onupdate*permitaccess

denyaccess

Figure 3.2: Usage control actions

3. denyaccess(s, o, r): rejects the access request of(s, o, r), performed by the system.

4. revokeaccess(s, o, r): revokes an ongoing access(s, o, r), performed by the system.

5. endaccess(s, o, r): ends an access(s, o, r), performed by subjects.

6. preupdate(attribute): updates a subject or an object attribute before granting access

or after denying an access, performed by the system.

7. onupdate(attribute): updates a subject or an object attribute during the usage phase,

performed by the system.

8. postupdate(attribute): updates a subject or an object attribute after access, per-

formed by the system.

For a usage process, there can be multiplepreupdates, onupdate, andpostupdate

actions for different attributes before, during, and after the access, respectively. Also, in

the ongoing usage phase there may be continual or periodicalonupdate actions for a single

attribute, as the star symbol indicates in Figure 3.2.

31

Obligation Actions

In UCON an obligation is an action that must be performed by a subject before or during an

access. For an access(s, o, r), an obligation is an action described byob(sb, ob), whereob is

the obligation action name, andsb andob are the obligation subject and object, respectively.

Note thatsb and ob may be the same ass and o, or different, depending on particular

applications. For example, the downloading of a music file may require the requesting

subject to click a privacy button. The obligation is defined as

click privacy(s, privacy statement)

where the obligation subject is the same as the accessing subject, andprivacy statement

is the obligation object. As another example, a child’s watching an online movie may

need one of the parents’ agreement in advance, where the obligation subject (parent) is

different from the accessing subject. To identity what kind of obligations are required for

a usage process, predicates can be defined based on the attributes of the requesting subject

(s), the target object (o), the obligation subject (sb), and the obligation object (ob). For

example, if a parents’ obligation (e.g., clicking a statement) is needed before a child can

watch online movies, then a predicate can be defined to specify the relationship between

the access requesting subject (the child) and the obligation subject (the parent), and the

obligation action for access(s, o, watch) can be defined as

(s.parent = sb) ∧ click(sb, statement)

Note that in an obligation action, predicates are not used for control decisions, but

for identifying what obligations are required. That is, an obligation action can always be

performed whenever required, so that an obligation is not dependent on other permissions.

32

3.2.4 Model and Satisfaction of Formulae

With the predicates and actions that have been introduced, we can define a logical model

of UCON.

Definition 1. A logical model of UCON is a 5-tuple:M = (S,PA,PC,AA,AB), where

• S is a set of sequences of system states,

• PA is a finite set of authorization predicates built from the attributes of subjects and

objects,

• PC is a finite set of condition predicates built from the system attributes,

• AA is a finite set of usage control actions,

• AB is a finite set of obligation actions.

A state is a set of assignments of values to attributes, that is, a function on the set of

subjects and their attributes, the set of objects and their attributes, and the set of system

attributes. The setAA includes update actions and the actions changing the status of an

access(s, o, r).

A preassumption of our logical model is that all predicates and actions are computable,

e.g., a predicate is a computable function of attribute values. In practice they would need

to be efficiently computable.

A logical formula is built from predicates and actions with logic connectors and tem-

poral operators.

Definition 2. A logical formula in UCON is defined by the following grammar in BNF:

33

ø ::= a|p|(¬ø)|(ø ∧ ø)|(ø → ø)|¤ø|♦ø| © ø|øUø|¥ø|¨ø|Ä ø|øSø|

wherea is an action,p is a predicate.

If in a state sequencesq of a modelM, a states satisfies a formulaø, we write

M, sq, s ² ø. The satisfaction relation² is defined by induction on the structure ofø

and only fors0 ∈ sq. Specifically,

1. M, sq, s0 ² p iff s0[[p]], wherep ∈ PA ∪ PC.

2. M, sq, s0 ² a iff s0[[a]]s1, wherea ∈ AA ∪ AB, ands1 is the next state ofs0 in sq.

3. M, sq, s0 ² ¬ø iff M, sq, s0 2 ø.

4. M, sq, s0 ² ø1 ∧ ø2 iff M, sq, s0 ² ø1 andM, sq, s0 ² ø2.

5. M, sq, s0 ² ø1 → ø2 iff M, sq, s0 2 ø1 orM, sq, s0 ² ø2.

6. M, sq, s0 ² ¤ø iff ∀n ≥ 0 : M, sq, sn ² ø.

7. M, sq, s0 ² ♦ø iff ∃n ≥ 0 : M, sq, sn ² ø.

8. M, sq, s0 ² ©ø iff M, sq, s1 ² ø.

9. M, sq, s0 ² ø1Uø2 iff ∃i ≥ 0 : M, sq, si ² ø2 ∧ (0 ≤ j < i →M, sq, sj ² ø1)

10. M, sq, s0 ² ¥ø iff ∀n < 0 : M, sq, sn ² ø.

11. M, sq, s0 ² ¨ø iff ∃n < 0 : M, sq, sn ² ø.

12. M, sq, s0 ² Äø iff M, sq, s−1 ² ø.

13. M, sq, s0 ² ø1Sø2 iff ∃i < 0 : M, sq, si ² ø2 ∧ (i < j ≤ 0 →M, sq, sj ² ø1)

34

3.3 Specification of Authorization Core Models

For each decision component in UCON, several core models are defined based on the phase

where updates are performed. This section presents the policy specifications of UCON

authorization core models. Obligation and condition models are illustrated in the next two

sections.

In authorization core models, usage control decisions are dependent on the subject and

object attributes, which can be checked and determined in the first two phases of an access.

Based on the possible updates in all three phases, eight core authorization models can be

defined as shown in Section 2.2.1.

3.3.1 The ModelpreA0

As presented in [39,51], most traditional access control models can be expressed aspreA0

model, in which an authorization decision is determined by the system before the access

happens, and there is no update for subject or object attributes. The usage control policy is:

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r) ∧ (p1 ∧ ... ∧ pi)

)

wherep1, ..., pi are predicates built from subject and/or object attributes, which are pre-

authorization predicates. Thepermitaccess action grants the permission tos and starts

the access. This policy states that apermitaccess action implies that the authorization

predicates must be true “before” the current system state. Note that inpreA0, there are no

attribute updates before thepermitaccess action.

There are several assumptions made in the policy specification for this and all other core

models in this chapter. First, a UCON policy is referred as a set of logical formulae for a

single usage process(s, o, r), that is, we focus on the specification of system state changes

35

during a single usage process of a core model, while the interactions between concurrent

usage processes are not captured by our policy specifications. Also in this chapter, we

assume that before an access request is generated, the requesting subject and the target

object exist in the system, i.e., creating and destroying subjects and objects are not specified

in our logical model.

Another assumption is that the time line is bounded during the life time of a single

usage process. That is, thetryaccess is always the first action in a single usage process,

all past temporal operators do not refer to any state before thetryaccess in the local usage

process, and all future operators do not refer to any state after the nexttryaccess of the

same subject to the same object.

Negated predicates are not required explicitly, since we can always define a new pred-

icate equivalent to a negated one. A disjunctive form of authorization predicates can also

be specified by having one policy for each component, so that for an access permission

(s, o, r), a system may have multiple policies for it. In a single usage process, at least one

of them is satisfied by the model.

All authorization policies in UCON are defined for positive permissions (to enable per-

missions). For an access request, if there is no policy to enable the permission according

to the attribute values, then the access is denied by default. This is sometimes called the

closed system assumption, whereby no policy is specified to deny an access in a system.

The same holds for obligation and condition core models.

The policy defined above states that the authorization predicates are checked when an

access requested is generated, and there is no other check before thepermitaccess action.

An alternative approach is to check the authorization predicates just before an access is

36

granted, as the following formula states.

permitaccess(s, o, r) → ¨tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pi)

In this formula, the predicates are required to be true just in the state of thepermitaccess

action, ignoring how attributes can change after thetryaccess action and before this state.

Another alternative policy more restrictive than the above two policies is:

permitaccess(s, o, r) → ¨tryaccess(s, o, r)∧(
(p1∧· · ·∧pi)Spermitaccess(s, o, r)

)
,

which states that the authorization predicates must be true from thetryaccess action to the

permitaccess action. We use the original one as ourpreA0 policy specification as it is

the least restrictive one, and satisfies theminimum requirementof apreA0 model. Another

reason is that, in thepreA1 model (in next subsection), attribute updates are defined after

tryaccess action and beforepermitaccess action, and after these updates, the authoriza-

tion predicates may not be true inpreA1, so the authorization check is performed when

the access requested is generated. AspreA1 dominatespreA0 in the family of UCON core

models, we use the same approach forpreA0.

Example 1 In mandatory access control (MAC), each subject is assigned a security clear-

ance, and each object is assigned a security classification. Both clearance and classification

are labels in a lattice structure. A subject’s clearance and an object’s classification are com-

pared to enforce security policies, such as the simple property and the star property. If the

security clearance and classification are defined as attributes of subjects and objects, re-

spectively, MAC as in Bell-LaPadula can be expressed in UCON with twopreA0 policies

as shown below.

1. permitaccess(s, o, read) →

¨
(
tryaccess(s, o, read) ∧ dominate(s.clearance, o.classification)

)

37

2. permitaccess(s, o, write) →

¨
(
tryaccess(s, o, write) ∧ dominate(o.classification, s.clearance)

)

wheredominate is a binary predicate on a subject’s clearance and an object’s classification,

anddominate(x, y) is true iff x is a higher level label in the lattice thany. 2

Example 2 Discretionary access control (DAC) model with access control list (ACL) can

be expressed with apreA0 policy. A subject attribute is its identity, and an object attribute

is an access control listacl of pairs(id, r), whereid is a subject’s identity, andr is a right

with which this subject can access this object.

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r) ∧ ((s.id, r) ∈ o.acl)

)
2

Besides MAC and DAC, many other examples ofpreA0 policies can be similarly spec-

ified. Section 3.7 shows some of them.

3.3.2 The ModelpreA1

In preA1, an authorization decision is checked before an access, and there are one or more

update actions before the system grants the permission to the subject. The usage control

policy is:

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r) ∧ (p1 ∧ ... ∧ pi)

)

2. permitaccess(s, o, r) → ¨preupdate(attribute)

whereattribute is either a subject or an object attribute. The first rule is the same as in

preA0. The second rule says that when apermitaccess occurs, there is apreupdate action

that occurred before it. For multiple updates on different attributes, this rule is:

permitaccess(s, o, r) → ¨preupdate1(attribute1) ∧ ¨preupdate2(attribute2) ∧ . . .

38

For simplicity we only include one update action in all core models. Also, without loss

of generality, we assume that in each logical formula there is at most one update for an

attribute, as multiple updates on the same attribute have the same effect as the last one.

The two rules in this policy can be specified in a single rule as the following shows.

permitaccess(s, o, r) →

¨
(
tryaccess(s, o, r) ∧ (p1 ∧ ... ∧ pi)

) ∧ ¨preupdate(attribute)

According to the assumption mentioned in Section 3.3.1, the time line is bounded dur-

ing the local usage process, so in this policy the “Once” operator does not refer to any past

state beforetryaccess in a single usage process. Therefore inpreA1, thepreupdate action

is performed after thetryaccess, the authorization predicates are required to betrue before

thepreupdate, and there is no constraint after the update action.

Example 3 In a DRM pay-per-use application, a subject has a numerical valued attribute

of credit, and an object has a numerical valued attribute ofvalue. A read access can

be approved when a subject’scredit is more than an object’svalue. Before the access

can start, an update to the subject’scredit is performed by the system by subtracting the

object’svalue. The policy is:

1. permitaccess(Alice, ebook1, read) → ¨
(
tryaccess(Alice, ebook1, read) ∧

(Alice.credit ≥ ebook1.value)
) ∧ ¨preupdate(Alice.credit)

preupdate(Alice.credit) : Alice.credit′ = Alice.credit− ebook1.value

This rule specifies that whenever Alice’s credit is more than the value of ebook1, she can

get the reading permission, and the granting of the permission to Alice implies an update of

her credit. Thepreupdate results in a new value of Alice’s credit by subtracting ebook1’s

value from the original credit. 2

39

3.3.3 The ModelpreA2

In preA2, an authorization decision is checked and enforced before an access, and there

are one or more update actions during the usage process. Although these updates cannot

change the decision regarding the current ongoing usage, they may affect other ongoing or

subsequent accesses from this subject or to this object. The policy forpreA2 is:

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r) ∧ (p1 ∧ ... ∧ pi)

)

2. permitaccess(s, o, r) → ♦
(
onupdate(attribute) ∧ ♦endaccess(s, o, r)

)

The first rule is the same as that inpreA0. The second rule states that there is an ongoing

update before theendaccess action and after thepermitaccess action. In case when an

update is necessary in each state during the ongoing-usage phase, this rule is expressed as

permitaccess(s, o, r) → onupdate(attribute) U endaccess(s, o, r)

This rule states that after thepermitaccess action, the attribute is updated in each

state “until” theendaccess action. Since apermitaccess action changes the value of

state(s, o, r) to accessing, andendaccess changes it toend, this policy is equivalent to

the following.

¤
(
(state(s, o, r) = accessing) → onupdate(attribute)

)

In preA2, since the authorization check is performed before the access, there is no

revocation during the usage process in this and other pre-authorization models.

For a more general case when the ongoing update of an attribute is only needed when

particular predicates are true, (e.g., a subject’s idle time is updated only when the access

status isidle), the policy is:

40

¤
(
(state(s, o, r) = accessing) ∧ pu1 · · · ∧ puj → onupdate(attribute)

)

wherepu1, . . . , puj are predicates that trigger the update action when they are satisfied.

3.3.4 The ModelpreA3

In preA3, an authorization decision is checked before the access, and there are one or more

update actions after the usage process. The usage control policy is:

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r) ∧ (p1 ∧ ... ∧ pi)

)

2. endaccess(s, o, r) → ♦postupdate(attribute)

The first rule is the same as inpreA2. The second rule says that apostupdate action must

be performed by the system after an access is ended by a subject. Similar topreA2, no

authorization is enforced after granting the access, so there is no revocation in this model.

Example 4 In a DRM membership-based application, a readers has attributesexpense and

readingGroup, and a booko has attributesreadingGroup andreadingCost. A subject

can read any book in his/her own reading group. The policy is:

1. permitaccess(s, o, read) →

¨
(
tryaccess(s, o, read)∧ (s.readingGroup = o.readingGroup)

)

2. endaccess(s, o, read) → ♦postupdate(s.expense)

postupdate(s.expense) : s.expense′ = s.expense + o.readingCost

In this example, the authorization policy states that if boths and o belong to the same

reading group,s can read the book and his/her expense is updated by adding the cost of

this book after the access. 2

41

3.3.5 The ModelonA0

In the pre-authorization models, there is no security check after a system grants a permis-

sion. In onA0, authorizations are enforced during an access period. The usage control

policy is given below.

1. ¤
(¬(p1 ∧ ... ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

In this model, ongoing authorization predicates (p1, ...,pi) have to be satisfied in any state

during the access period (after the actionpermitaccess), otherwise the access is revoked

by the system immediately.

This policy can also be specified as the following formula with“Until” operator.

permitaccess(s, o, r) →

(p1 ∧ ... ∧ pi) U
(
revokeaccess(s, o, r) ∨ endaccess(s, o, r)

)

which indicates that if a usage is permitted, the authorization predicates are true until this

usage process is revoked by the system or ended by the subject. Since therevokeaccess

action changesstate(s, o, r) from accessing to revoked, andendaccess action changes

state(s, o, r) from accessing to end, this formula is equivalent to the original one. Simi-

larly we can use both approaches in other ongoing models (in this and next two sections).

Since we are specifying the core aspects of UCON, pre-authorization rules are not in-

cluded in ongoing-authorization models, and for simplicity thetryaccess action implied

by thepermitaccess action is ignored. The same holds for other ongoing core models. In

practice, an application may require a combination of several core models. We discuss this

in Section 3.6.

42

Example 5 In an organization, a user Bob (with roleemployee) has a temporary position to

conduct a short-term project with a certificate oftemp cert. While Bob is accessing some

sensitive information, his digital certificate (temp cert) for this project is being checked

repeatedly. If his certificate (number) is in the Certification Revocation List (CRL) of the

organization, his temporary role membership is revoked and he cannot access the informa-

tion any more. The policy is:

1. ¤
(¬((Bob.role = employee) ∧ (Bob.temp cert /∈ CRL)) ∧ (state(Bob, o, r) =

accessing) → revokeaccess(Bob, o, r)
)

2

3.3.6 The ModelonA1

In onA1, the authorization decision is enforced during the usage process, and there are one

or more update actions before a subject starts to access an object. The control policy is:

1. permitaccess(s, o, r) → ¨tryaccess(s, o, r) ∧ ¨preupdate(attribute)

2. ¤
(¬(p1 ∧ ... ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

The first rule implies a pre-update action before thepermitaccess action, which is similar

to preA1. But unlike inpreA1, the pre-decision based on authorization predicates is ig-

nored in this rule since there is no authorization check before a subject starts to access an

object inonA1.

3.3.7 The ModelonA2

In onA2, there are one or more update actions during a usage period. The control policy is:

1. ¤
(¬(p1 ∧ ... ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

43

2. permitaccess(s, o, r) →

♦
(
onupdate(attribute) ∧ ♦(endaccess(s, o, r) ∨ revokeaccess(s, o, r))

)

Again, in the second rule, we only specify that there is only one update action during the

ongoing-usage phase. In applications where an update is required in every ongoing state,

the third rule is changed to:

permitaccess(s, o, r) →

onupdate(attribute) U (endaccess(s, o, r) ∨ revokeaccess(s, o, r))

Similar topreA2, this rule can be specified as:

¤
(
(state(s, o, r) = accessing) → onupdate(attribute)

)

or, more generally,

¤
(
(state(s, o, r) = accessing) ∧ pu1 · · · ∧ puj → onupdate(attribute)

)

wherepu1, . . . , puj are predicates that require the update when they are satisfied.

3.3.8 The ModelonA3

In onA3, update action is required after a usage process. The control policy is:

1. ¤
(¬(p1 ∧ ... ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

2. endaccess(s, o, r) → ♦postupdate(attribute)

3. revokeaccess(s, o, r) → ♦postupdate(attribute)

In many applications, the update after an access ended by a subject, is different from the

one after an access is revoked by the system, as shown in the second and third rules. Here

44

we simply use the same action name ofpostupdate, but they may change an attribute to

different values, or update different attributes. For example, an ended access may update

the total usage time of the subject, while a revoked access may update another attribute to

record the time and reason of this revocation for auditing purposes. If the updates are the

same for two cases, these two rules can be combined as in

endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(attribute)

Example 6 Consider the usage control policies for the example in Section 2.2.3. In this

example, an object attribute is a set of accessing subjectsaccessingS = {s|state(s, o, r) =

accessing}. We also define the systemclock as a system attribute. For the different policies

we define different subject attributes.

(a) Revocation by the earliest start time

We define the starting time (startT ime) as a subject attribute. The usage control

policy can be specified as a combination ofonA1 andonA3 as follows.

1. permitaccess(s, o, r) →

¨tryaccess(s, o, r)∧¨preupdate(o.accessingS)∧¨preupdate(s.startT ime)

preupdate(o.accessingS) : o.accessingS ′ = o.accessingS ∪ {s}

preupdate(s.startT ime) : s.startT ime′ = sys.clock

2. ¤
(¬(|o.accessingS| ≤ 10) ∧ (state(s, o, r) = accessing) ∧ (s.startT ime =

MinstartT ime(o.accessingS)) → revokeaccess(s, o, r)
)

3. endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(o.accessingS) ∧

♦postupdate(s.startT ime)

45

postUpdate(o.accessingS) : o.accessingS ′ = o.accessingS − {s}

postUpdate(s.startT ime) : s.startT ime′ = null

where|o.accessingS| is the number of accessing subjects with objecto, and

MinstartT ime(o.accessingS) is the earliest start time fromaccessingS. The first rule

is aonA1 rule specifying that whenever a subject tries to access the object, there must

be two pre-updates before the subject starts to access, one updatingaccessingS by

adding this requesting subject, and another updatings.startT ime by assigning the

current system clock. The second rule says that when the total number of access-

ing users is larger than 10, and the subject’sstartT ime is the earliest one, its ac-

cess is revoked. The third rule specifies two post-updates needed when the access is

ended or is revoked, one updatingaccessingS by removing the subject, and another

one updatings.startT ime by assigning the valuenull, which means the subject is

not involved in an access. The post-updates are the same for bothendaccess and

revokeaccess actions in this system.

(b) Revocation by the longest idle time

We define two subject attributes: the status of the usage (status with valuebusy or

idle) and the accumulative idle time in a single usage period (idleT ime). The usage

control policy is a combination ofonA1, onA2, andonA3 as follows.

1. permitaccess(s, o, r) →

¨tryaccess(s, o, r)∧¨preupdate(o.accessingS)∧¨preupdate(s.idleT ime)

preupdate(o.accessingS) : o.accessingS ′ = o.accessingS ∪ {s}

preupdate(s.idleT ime) : s.idleT ime′ = 0

46

2. ¤
(¬(|o.accessingS| ≤ 10) ∧ (state(s, o, r) = accessing) ∧ (s.idleT ime =

MaxidleT ime(o.accessingS)) → revokeaccess(s, o, r)
)

3. ¤
(
(state(s, o, r) = accessing)∧(s.status = idle) → onupdate(s.idleT ime)

)

onupdate(s.idleT ime) : s.idleT ime′ = s.idleT ime + 1

4. endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(o.accessingS)

postupdate(o.accessingS) : o.accessingS ′ = o.accessingS − {s}

whereMaxidleT ime(o.accessingS) is the largestidleT ime in the object’saccessingS

attribute. Rules (1) and (4) are similar to (1) and (3) in (a), respectively, except that

in rule (1), one pre-update action is to initialize the subject’sidleT ime. In rule (2),

the revocation is determined by thes.idleT ime. Rule (3) specifies the mutability of

the subject attribute by saying that there must be a continuous update ofs.idleT ime

performed by the system whenever the status of the subject isidle.

(c) Revocation by the longest total usage time

We define the accumulating usage timeusageT ime as a subject attribute. The con-

trol policy is a combination ofonA1 andonA3 as follows.

1. permitaccess(s, o, r) →

¨tryaccess(s, o, r) ∧ ¨preupdate(o.accessingS)

preupdate(o.accessingS) : o.accessingS ′ = o.accessingS ∪ {s}

2. ¤
(¬(|o.accessingS| ≤ 10)∧ (state(s, o, r) = accessing)∧ (s.usageT ime =

MaxusageT ime(o.accessingS)) → revokeaccess(s, o, r)
)

3. endaccess(s, o, r) ∨ revokeaccess(s, o, r) →

♦postupdate(s.usageT ime)∧ ♦postupdate(o.accesingS)

47

postupdate(o.accesingS) : o.accessingS ′ = o.accessingS − {s}

postupdate(s.usageT ime) : s.usageT imes′ = s.usageT ime + sys.periodT

whereMaxusageT ime(o.accessingS) is the largestusageT ime in accessingS. Rule

(1) is the same as in the previous case except that there is only one pre-update action;

rule (2) specifies that the revocation is determined by the total usage time of the

subject. Rule (3) says that after each usage, there must be an update onusageT ime

by adding this usage time to the old value. Heresys.periodT is a system attribute

to record this accessing’s period. A system attribute may be defined and updated

repeatedly along a usage process to record a single access’s period. While the update

of system attributes is not included in UCON core models, for simplicity we just use

an attribute to conceptually illustrate the post-update action. Note that the revocation

is determined by a subject’s historically accumulating total usage time before this

ongoing access. The time of an ongoing access is not considered in theusageT ime

attribute of a subject. 2

3.4 Specification of Obligation Core Models

Obligations and conditions are two important components in the usage decision of UCON,

besides authorizations. In this section we discuss the logical approach to obligations. The

specification of conditions is discussed in the next section.

Because of the continuity of a usage decision, there are two types of obligations in

UCON.

1. pre-obligations: obligations that must have been performed before a subject starts to

access an object.

48

2. ongoing-obligations: obligations that must be performed during a usage process.

Obligations that have to be performed after an access, since they only affect the future

usage process, are considered as global obligations [39, 51]. For example, an action of a

user clicking an agreement button before playing a music file is regarded as an obligation,

while the payment action of a monthly billing is a global obligation, because this action

does not affect the current usage access. In UCON an administration model is needed to

capture global obligations. In this work, we only focus on the session-based usage control

model, in which only obligations before and during the usage process are considered. The

global obligations will be described in our future work.

Similar to authorization core models, we distinguish different obligation core models

based on the phase where updates are performed as shown below.

• preB0: a usage control decision is determined by obligations before the access, and

there is no attribute update before, during, or after the usage.

• preB1: a usage control decision is determined by obligations before the access, and

one or more subject or object attributes are updated before the usage.

• preB2: a usage control decision is determined by obligations before the access, and

one or more subject or object attributes are updated during the usage.

• preB3: a usage control decision is determined by obligations before the access, and

one or more subject or object attributes are updated after the usage.

• onB0: usage control is checked and the decision is determined by obligations during

the access, and there is no attribute update before, during, or after the usage.

49

• onB1: usage control is checked and the decision is determined by obligations during

the access, and one or more subject or object attributes are updated before the usage.

• onB2: usage control is checked and the decision is determined by obligations during

the access, and one or more subject or object attributes are updated during the usage.

• onB3: usage control is checked and the decision is determined by obligations during

the access, and one or more subject or object attributes are updated after the usage.

In ongoing obligation core models, obligation actions may be required continually (i.e.,

in each ongoing state of the system), like the satisfaction of predicates in ongoing autho-

rization models. Ongoing obligation actions may also be needed periodically, or in any

state when some conditions are satisfied, e.g., when an event happens. For example, a user

has to click an advertisement at 30 minute intervals or every 20 web pages accessed. For

these purposes, attribute predicates can be defined to specify the conditions when obligation

actions are needed.

3.4.1 The modelpreB0

Similar to the modelpreA0, the policy ofpreB0 is:

1. permitaccess(s, o, r) → ¨tryaccess(s, o, r) ∧ (¨ob1 ∧ ¨ob2 ∧ · · · ∧ ¨obi),

whereob1, . . . , obi are obligation actions for access(s, o, r). This rule requires that an

access can be granted only after all the obligations are satisfied. The difference between

preB0 andpreA0 is that, inpreB0, all the obligations are satisfied before an access re-

quested is granted, and generally may not be performed in the same state, so that the “Once”

50

operator is applied for each of them in the policy formula. InpreA0, instead, the autho-

rization predicates are checked in a single state. As mentioned in Section 3.3.2, the “Once”

operator does not refer to any state before thetryaccess action in a single access process.

This indicates that all obligation actions are for the current access request.

Note that here we just ignore the authorization factors (attribute predicates), since we

are focusing on the obligation core model.

Example 7In an online electronic marketing system, in order to place an order, a customer

has to click a button to agree to the order policies. We define an actionclick agreement

as an obligation for each order, where the obligation subject is the same as the ordering

subject, and theagree statement is the obligation object. The usage control policy is:

1. permitaccess(s, o, order) →

¨tryaccess(s, o, order) ∧ ¨click agreement(s, agree statement) 2

3.4.2 The ModelpreB1

In preB1, usage control is decided by obligations before the access, and there must be

update(s) before the access. Similar topreA1, the policy is:

1. permitaccess(s, o, r) → ¨tryaccess(s, o, r) ∧ (¨ob1 ∧ ¨ob2 ∧ · · · ∧ ¨obi) ∧

¨preupdate(attribute)

This rule is similar to that inpreB0 except that an update action must be performed

after tryaccess and beforepremitaccess, as the “Once” operator does not refer to any

state before thetryaccesss action in a single usage process.

51

3.4.3 The ModelpreB2

Similar to preA2, in preB2 the usage control decision is checked before an access and

update action(s) can be performed during the access. The policy is:

1. permitaccess(s, o, r) → ¨tryaccess(s, o, r) ∧ (¨ob1 ∧ ¨ob2 ∧ · · · ∧ ¨obi)

2. permitaccess(s, o, r) → ♦
(
onupdate(attribute) ∧ ♦endaccess(s, o, r)

)

For the case where an update is required in every state during the ongoing usage phase,

the second rule becomes:

permitaccess(s, o, r) → onupdate(attribute) U endaccess(s, o, r)

or

¤
(
(state(s, o, r) = accessing) → onupdate(attribute)

)

or, more generally,

¤
(
(state(s, o, r) = accessing) ∧ pu1 · · · ∧ puj → onupdate(attribute)

)

wherepu1, . . . , puj are predicates that require the update when they are satisfied.

3.4.4 The ModelpreB3

Similar topreA3, in preB3 the obligations are checked before the access, and there are one

or more update actions after the usage process. The usage control policy is:

1. permitaccess(s, o, r) → ¨tryaccess(s, o, r) ∧ (¨ob1 ∧ ¨ob2 ∧ · · · ∧ ¨obi)

2. endaccess(s, o, r) → ♦postupdate(attribute)

52

The first rule is the same as those inpreB2. The second rule says that apostupdate

action must be performed by the system after an access is ended by a subject. Since the

control policy is not enforced after granting the access, there is no revocation in this and

other pre-obligation models.

Example 8 In the Example in Section 3.4.1, a customer’sorderList is updated by adding

the ordered item after he/she places an order. This can be expressed with apreB3 policy as

the following.

1. permitaccess(s, o, order) →

¨tryaccess(s, o, order) ∧ ¨click agreement(s, agree statement)

2. endaccess(s, o, order) → ♦postupdate(s.orderList)

postupdate(s.orderList) : s.orderList′ = s.orderList ∪ {o} 2

3.4.5 The ModelonB0

In onB0, the usage control policy is enforced during an access period. The policy is:

1. ¤
(¬(

∧
i(pi1 ∧ · · · ∧ piki

→ obi)) ∧ (state(s, o, r) = accessing) →

revokeaccess(s, o, r)
)

In this policy, obi is an obligation action required in an ongoing state of the system

when predicatespi1, . . . , piki
, defined on subject and/or object attributes, are true. Similar

to onA0, the policy specifies that after thepermitaccess, either all the obligations are

satisfied when the subject isaccessing the object, or the access is revoked immediately.

When obligations are required in every ongoing state, this policy is:

¤
(¬(

∧
i(true → obi))∧(state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

53

or

¤
(¬(

∧
i obi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

Example 9 In order to use an online provider service, an advertisement banner must be

opened on the client’s side, or the service is disconnected. This can be expressed in the

onB0 model as follows.

1. ¤
(¬open ad(s, ad banner)∧(state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

In this policy,open ad is an obligation action on the obligation objectad banner, that

must be true during the whole accessing process. 2

3.4.6 The ModelonB1

In onB1, there are one or more update actions before a subject starts to access an object.

The policy is:

1. ¤
(¬(

∧
i(pi1 ∧ · · · ∧ piki

→ obi)) ∧ (state(s, o, r) = accessing) →

revokeaccess(s, o, r)
)

2. permitaccess(s, o, r) → ¨tryaccess(s, o, r) ∧ ¨preupdate(attribute)

The first rule is the same as inonB0, while the second rule specifies that there is an

update action before accessing the object. Since there is no usage control check before a

subject starts to access an object, the second rule does not imply any obligation before the

permitaccess action.

54

3.4.7 The ModelonB2

In onB2, there are one or more update actions during an access process. The policy is:

1. ¤
(¬(

∧
i(pi1 ∧ · · · ∧ piki

→ obi)) ∧ (state(s, o, r) = accessing) →

revokeaccess(s, o, r)
)

2. permitaccess(s, o, r) → ♦
(
onupdate(attribute) ∧ ♦endaccess(s, o, r)

)

Similar to preB2, for the cases where an update is required in every state during the

ongoing access, the second rule becomes

permitaccess(s, o, r) → onupdate(attribute) U endaccess(s, o, r)

or

¤
(
(state(s, o, r) = accessing) → onupdate(attribute)

)

or, more generally,

¤
(
(state(s, o, r) = accessing) ∧ pu1 · · · ∧ puj → onupdate(attribute)

)

wherepu1, . . . , puj are predicates that require the update when they are satisfied.

3.4.8 The ModelonB3

In onB3, there must be update action(s) after a usage process. The control policy is:

1. ¤
(¬(

∧
i(pi1 ∧ · · · ∧ piki

→ obi)) ∧ (state(s, o, r) = accessing) →

revokeaccess(s, o, r)
)

2. endaccess(s, o, r) → ♦postupdate(attribute)

55

3. revokeaccess(s, o, r) → ♦postupdate(attribute)

Similar toonA3, the post-update after an access is ended by a subject may be different from

the one after an access is revoked by the system, as shown by different rules.

Example 10 In an online accessing application, a user needs to click an advertisement

every 30 minutes. A subject attributeUsageT ime is the ongoing usage time in a single

session. The policy can be specified as a combination policy ofonB1, onB2, andonB3 as

follows.

1. ¤
(¬((s.UsageT ime mod 30 = 0) → click ad(s, ad banner)) ∧ (state(s, o, r) =

accessing) → revokeaccess(s, o, r)
)

2. permitaccess(s, o, r) → ¨preupdate(s.UsageT ime)

preupdate(s.UsageT ime) : s.UsageT ime′ = 0

3. ¤
(
(state(s, o, r) = accessing) → onupdate(s.UsageT ime)

)

onupdate(s.UsagtT ime) : s.UsageT ime′ = s.UsageT ime + 1

4. endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(s.UsageT ime)

postupdate(s.UsageT ime) : s.UsageT ime′ = 0

In this policy, theclick ad is an ongoing obligation action that must be performed when

theUsageT ime is a multiple number of 30. Herepreupdate andpostupdate actions are

needed to reset this attribute when the subject starts and ends (or be revoked by the system)

the access, respectively. An ongoing update is used to record the accumulative usage time.

Here we simplify this update by the increment ofUsageT ime in each ongoing state. 2

56

3.5 Specification of Condition Core Models

Conditions are environmental restrictions that have to be valid before or during a usage pro-

cess. Formally, a condition is a state predicate built from system attribute(s). For example,

a subject obtains a permission only when the system clock is in daytime, or in a particular

period during daytime.

Based on the point when a condition for a usage is checked, there are two types of

conditions:

1. pre-conditions: conditions that must be true before an access.

2. ongoing-conditions: conditions that must be true during the process of accessing an

object.

Similar to the authorization and obligation core models, a set of core conditions models

can be defined, by replacing the authorization predicates or obligation actions with system

attributes in decision rules. For simplicity only thepreC0 andonC0 core models are illus-

trated here. Note that in a condition core model, while the system attributes determine a

usage decision, the system attribute changes are not captured in the model. As in autho-

rization and obligation core models, all updates in a condition core model are performed

on subject and/or object attributes.

The policy for the modelpreC0 is expressed by:

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r) ∧ (pc1 ∧ ... ∧ pci)

)

wherepc1, ...,pci are condition predicates built from system attributes. This policy is very

similar to that ofpreA0 andpreB0, except that the decision is determined by predicates of

57

system attributes, instead of the subject’s and object’s attributes inpreA0, and obligation

actions inpreB0.

The policy ofonC0 is:

1. ¤
(¬(pc1 ∧ ... ∧ pci) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

This policy is similar to that ofonA0 andonB0 except for the condition predicates.

Example 11 Suppose that a day-shift user (with roledayshifter) can access an object

only during daytime. We define the local timecurrentT as a system attribute, denoting an

environment status, not an attribute of any subject or object. This is a combined model of

preA0, preC0, andonC0. The policy can be expressed as the following:

1. permitaccess(s, o, r) →

¨
(
tryaccess(s, o, r) ∧ (s.role = dayshifter) ∧ (8am ≤ currentT ≤ 5pm)

)

2. ¤
(¬(8am ≤ currentT ≤ 5pm) ∧ (state(s, o, r) = accessing) →

revokeaccess(s, o, r)
)

2

The first rule specifies the pre-authorization and pre-condition built from the subject’s

role name and the system time. The second rule specifies the ongoing condition built from

the system time.

3.6 Formal Specification of General UCON Models

After specifying the core models in UCON, we study the formal semantics of a general

UCON model in this section. Specifically, we show that a general UCON policy can be

expressed with a set of logical formulae instantiated from a fixed set of scheme rules, and a

58

set of logical formulae instantiated from these rules can be satisfied by at least one UCON

model. These two properties are regarded as the completeness and soundness of our policy

specification language.

3.6.1 Scheme Rules

In general, a usage control decision is determined by authorizations, obligations, and con-

ditions. As shown in the core models in previous sections, authorizations are specified by

predicates on subject and object attributes, obligations by subject actions, and conditions

by predicates on system attributes. Therefore a general usage decision is a combination of

these components.

For an access(s, o, r), let pa1, . . . , pai be a set of authorization predicates,ob1, . . . , obj

be a set of obligation actions, andpc1, . . . , pck be a set of condition predicates. According

to the specifications of the core models explained in previous sections, a UCON policy can

be specified by two kinds of logical rules: a usage control decision rule and an update rule.

The following control rules (CRs) are specified for the pre-decision and ongoing decision

of a single usage process, respectively.

CR1: permitaccess(s, o, r) →

¨
(
tryaccess(s, o, r) ∧ (

∧
ni

pani
) ∧ (

∧
nk

pcnk
)
) ∧ (

∧
nj

¨obnj
)

CR2: ¤
(¬(

(
∧

ni
pani

) ∧ (
∧

nj
(pbnj1 ∧ · · · ∧ pbnjknj

→ obnj
)) ∧ (

∧
nk

pcnk
)
) ∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

where1 ≤ ni ≤ i, 1 ≤ nj ≤ j, 1 ≤ nk ≤ k, andpbnj1, . . . , pbnjjknj
are predicates to

determine when the ongoing obligationobnj
is required.

59

An access request can be granted if its pre-decision components are true; while an

ongoing access can be continued if all ongoing decision components are true. For an access,

its pre-decision and ongoing decision components may or may not be the same.

The three types of update actions can be specified as the following update rules (URs).

UR1: permitaccess(s, o, r) → ¨preupdate(attribute)

UR2: permitaccess(s, o, r) → ♦
(
ondupate(attribute) ∧

♦(endaccess(s, o, r) ∨ revokeaccess(s, o, r))
)

UR3: ¤
(
(state(s, o, r) = accessing) → onupdate(attribute)

)

UR4: ¤
(
(state(s, o, r) = accessing) ∧ pu1 ∧ . . . puj → onupdate(attribute)

)

UR5: endaccess(s, o, r) → ♦postupdate(attribute)

UR6: revokeaccess(s, o, r) → ♦postupdate(attribute)

whereUR1 is for pre-updates,UR2, UR3, andUR4 are for ongoing updates, andUR5

andUR6 are for post-updates. Herepu1, . . . , puj are predicates that trigger an update when

satisfied during an access. For simplicity, we only include a single attribute in each update.

Different rules can update the same attribute, or more generally different attributes. Also,

a rule can update multiple attributes as we have explained in previous sections.

Both the control rules and update rules presented here areschemaof real logical for-

mulae in a UCON policy. A rule in a real system is an instantiations of one of these rules.

A policy in the core models in previous sections can be specified by an instance formula of

a control rule and an instantiated formula of an update rule. In general, a UCON policy can

60

be a combination of multiple core models, which are specified by a set of the control rules

and update rules.

3.6.2 Completeness and Soundness

The fixed set of scheme rules have the properties of completeness and soundness for UCON

policy specification. Specifically, a UCON policy consists of a set of logical formulae, but

at most one of them is instantiated from a scheme rule. For example, there is at most

one formula instantiated fromCR1, as any two of them can be combined into one with

conjunctive authorization predicates, obligation actions, and condition predicates from both

of them. On the other hand, for a set of logical formulae, each instantiated from a unique

scheme rule, there is at least one model that can satisfy them.

Theorem 1. (Completeness) Any UCON policy can be specified by a non-empty set of

control rules and a set of update rules, each of which is instantiated from a unique scheme

rule.

Proof. This is trivially true by definition, as from the construction of the control rules

and update rules, we knowCR1 and CR2 are not in conflict since they imply control

decisions in different phases in a single usage process. The same holds for the update

rules. Furthermore, the set of control rules specifies all possible decisions in a single usage

process, and the set of update rules specify all possible updates in a single usage process.

Therefore a general UCON policy can be specified by a non-empty set of control rules and

a set of update rules. 2

By completeness we mean that a general UCON model introduced in Section 2.2.1 and

conceptually defined in [38, 39] can be formally defined with our logical model. That is,

61

the set of scheme rules is adequate to specify policies for all UCON core models and any

combination of them.

Theorem 2. (Soundness) For a non-empty set of control rules and a set of update rules,

each of which is instantiated from a unique scheme rule, there is at least one UCON model

in which the system state transitions satisfy these rules.

Proof. We construct a UCON model to satisfy eight logical formulae for a single access

(s, o, r), one for a unique scheme rule. Consider the two control rulesCR1′ andCR2′,

which are instantiations ofCR1 andCR2, respectively, and six update rules,UR1′, . . . ,

UR6′, one for each unique scheme update rule, respectively. Without loss of generality, we

assume that all the attributes in these update rules are different, since, as we have mentioned

in Section 3.3, multiple updates on the same attribute can be reduced to a single update.

Consider a system where a state is specified by the attributes (subject’s, object’s, and the

system’s) in all of the rules. Initially the system state iss0, andstate(s, o, r) = initial.

The state transitions are constructed with the following steps and illustrated in Figure 3.3.

s1

preupdate
(UR1') s3

permitaccess
s4 s7

onupdates
(UR2', UR3', UR4')

s9

postupdate
(UR5')

revokeaccess

s5

s0

tryaccess

denyaccess

s2

postupdate
(UR6')

s6

s8

endaccess

Figure 3.3: State transitions

• In s0, the subjects generates an access request (tryaccess) to o with right r, the value

62

of state(s, o, r) is changed torequesting, and the system’s new state iss1. The other

attributes have the same values as ins0.

• With the subject and object attributes and system attributes ins1, if any of the pred-

icates specified inCR1′ is not satisfied, or at least one obligation actions inCR1′

is not performed, then the system state changes via the actiondenyaccess(s, o, r) to

s2, wherestate(s, o, r) = denied.

• In s1, if all the predicates inCR1′ are satisfied, and all the obligations are performed

by the corresponding subjects defined inCR1′, the update action inUR1′ is per-

formed, and the system state changes tos3.

• In s3 the permitaccess(s, o, r) action is performed by the system and the system

state changes tos4, wherestate(s, o, r) = accessing.

• If any predicate or obligation action included inCR2′ is not satisfied ins4, the access

is revoked, and system state changes tos5, wherestate(s, o, r) = revoked.

• In s5, the update action inUR6′ is performed, and the system state changes tos6.

• If all the predicates and obligation actions included inCR2′ are satisfied ins4, the

update actions inUR2′ and UR3′ are performed by the system ins4. If all the

predicates inUR4′ are satisfied ins4, perform the update action inUR4′ and the

system state changes tos7.

• In s7 the subjects ends the access and the system state changes tos8, where the

system attributestate(s, o, r) = end.

• The update action inUR5′ is performed ins8, and the system state changes tos9.

63

With simple model checking, we can verify that all the rules are satisfied in these state

transitions. That is, this model satisfies the set of logical formula. Therefore, any set of

control rules and update rules can be satisfied by at least one UCON model. 2

3.7 Expressivity and Flexibility

UCON is the first model to bring authorization, obligation, and condition together into

access control. Both mutability and continuity are rarely discussed in traditional access

control models and applications. In this section we apply the proposed logical specification

language to show how to express policies in various applications.

3.7.1 Role-based Access Control Models

In RBAC [50], a role is a collection of permissions, and a permission is a pair (object, right)

implying the right to the object. A role can be assigned to a user by an administrator or

a security officer. A user can be assigned to a set of roles. In a session, a user activates

a subset of his roles and obtains all the permissions associated with these activated roles.

Roles may be organized in a partial order hierarchy, in which high-level roles (senior roles)

inherit the permissions assigned to low-level roles (junior roles). RBAC can be expressed

as pre-authorization models in UCON, in which user-role assignments can be regarded as

subject attributes, permission-role assignments can be regarded as object attributes, and the

partial order relation between roles in role hierarchy is expressed by attribute predicates.

Example 12 Consider an RBAC1 model [50] where all rolesR are in a partial order

hierarchy with respect to domination relation≥. A subject (a user in RBAC1) has an

attributeactRole with value a subset ofR, the activated roles in a session. An object has

64

an attributeperRole with value a set of pairs(role, r) wherer is a right. A permission

(o, r) is assigned to arole iff (role, r) ∈ o.perRole. The predicaterpar(role, o) is true if

there existsrole′ such thatrole ≥ role′ and(role′, r) ∈ o.perRole.

The usage control policy for RBAC1 is expressed by:

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r)∧(role ∈ s.actRole)∧rpar(role, o)

)

This is a basicpreA0 policy specifying that ifrole is in the subject’sactRole attribute

andrpar(role, o) is true, then the subject can be granted access to the object with the right

r. 2

RBAC with constraints can also be expressed with a UCON model. There are many

types of constraints that can be defined in RBAC, such as mutually exclusive roles, car-

dinality, prerequisite roles, etc. [50]. With appropriate attributes defined for subjects and

objects, we can specify RBAC models with constraints using UCON.

Example 13 Consider an RBAC2 model with an exclusive constraint, whererole1 can

be activated by a user only ifrole3 is not activated in the same session. Each object has

the same attributes defined in the previous example. For each subject, besides the attribute

actRole, the attributeasgRole = {role1, role2, . . . , rolen} denotes explicit user-role as-

signments. We can express this model in UCONpreA1 as follows:

1. permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r)∧ (role1 ∈ s.asgRole) ∧ (role1 /∈

s.actRole) ∧ (role3 /∈ s.actRole) ∧ rpar(role1, o)
) ∧ ¨preupdate(s.actRole)

preupdate(s.actRole) : s.actRole′ = s.actRole ∪ {role1}

This rule specifies that the permission(s, o, r) can be granted ifrole1 is in the subject’s

asgRole but not inactRole (i.e.,role1 is assigned tos but not activated),rpar(role1, o) is

65

true, androle3 is not in the value of the attributeactRole of the subject. Thepermitaccess

action implies a pre-update action of the subject’sactRole attribute by addingrole1 to it.

2

3.7.2 Chinese Wall Policy

The original Chinese Wall policy [15] prevents information flow between companies in

conflict of interest. More generally, if a subject accesses an object in a conflict-of-interest

set, then this subject cannot access any other object in this set in the future. We define an

attribute to store the usage history of a subject: each time this subject generates an access

request to an object, this attribute is checked and the authorization decision is determined

by the history. In the meantime this attribute is updated to record this access information if

the access request is approved. We show the policy with the following example.

Example 14 Consider a system with a set of conflict object classesC = {c1, c2, . . . , cn}.

An object attributeclass indicates which class it belongs to. A subject attribute is defined

asac = {cs1 , cs2 , . . . , csm}, wheres1, . . . , sm are integers from 1 ton, to record the classes

that a subject has accessed. Another subject attribute isao = {o1, o2, . . . , ok}, which stores

the objects that the subject has accessed. If a subject has accessed an object, the Chinese

Wall policy is:

1. permitaccess(s, o, read) → ¨
(
tryaccess(s, o, read) ∧ (o ∈ s.ao)

)

For an access request for an object not in the subject’sao, the policy is:

1. permitaccess(s, o, read) → ¨
(
tryaccess(s, o, read)∧ (o /∈ s.ao) ∧ (o.class /∈

s.ac)
) ∧ ¨preupdate(s.ac) ∧ ¨preupdate(s.ao)

66

preupdate(s.ac) : s.ac′ = s.ac ∪ {o.class}

preupdate(s.ao) : s.ao′ = s.ao ∪ {o}

The first one is apreA0 policy, which specifies that when a subject wants to access an

object accessed before, the access request is approved and there is no update. The second

one is apreA1 policy because of the update of the subject’s attributes. Specifically, if an

object’s conflict set is not in a subject’sac list, this subject can access this object, and both

ac andao must be updated before the access. Note that in this system there are two policies

for the permission(s, o, read). In a real access period, only one of them is satisfied, as we

mentioned in Section 3.3.1. 2

3.7.3 Dynamic Separation of Duty

Dynamic separation of duty (DSoD) is a basic access control policy in many security sys-

tems. The concept of mutability for exclusiveness [40] is presented to capture the attribute

mutability property in DSoD. Specifically, an object attribute is defined to store the history

of the subjects accessing this object. Here we present a simple example of object-based

DSoD from [54].

Example 15 In a check issuing system, a check is prepared by a subject in theclerk role

and issued by a subject in thesupervisor role. A subject may have both aclerk role

and asupervisor role at the same time, but a subject is not allowed to issue a check that

is prepared by himself. For each object, the two attributespreparer andissuer store the

subjects that prepare and issue this object, respectively. Initially the values ofpreparer and

issuer are bothnull (not available). Each subject has two attributes:sid (subject identity)

androle. A predicate≥ is defined to specify the dominance relation between two roles.

67

The policies forprepare andissue are specified as follows, respectively.

1. permitaccess(s, o, prepare) → ¨
(
tryaccess(s, o, prepare) ∧ (s.role ≥ clerk) ∧

(o.preparer = null)
) ∧ ¨preupdate(o.preparer)

preupdate(o.preparer) : o.preparer′ = s.sid

2. permitaccess(s, o, issue) →

¨
(
tryaccess(s, o, issue)∧s.role ≥ supervisor)∧(o.preparer 6= null)∧(o.issuer =

null) ∧ (o.preparer 6= s.sid)
) ∧ ¨preupdate(o.issuer)

preupdate(o.issuer) : o.issuer′ = s.sid

Both policies arepreA1 ones. The first one says that a subject with a role dominatingclerk

can prepare a check, and this check’spreparer attribute is set to the subject’s identity. The

second one specifies that a subject with a role dominatingsupervisor can issue a check

only if this subject is not the one who prepares this check. 2

3.7.4 MAC Policy with High Watermark Property

In traditional MAC, a subject’s clearance is assigned by a system administrator, and cannot

be changed unless the administrator assigns a new label to it. This can be expressed with

a UCONpreA0 model as shown in Section 3.3. With the high watermark property, the

security clearance can be updated as a result of the user’s access actions, and this update

has to follow some predefined policies. We show this property in MAC as apreA1 model.

Example 16 SupposeL is a lattice of security labels with relation≥. A subject has

two attributes,clearance to represent the current label, andmaxClear to represent the

maximum clearance label. An object has one attribute,classification. All these attributes

have as value domain the latticeL. The authorization policy forread is:

68

1. permitaccess(s, o, read) → ¨
(
tryaccess(s, o, read) ∧

(s.maxClear ≥ o.classification)
) ∧ ¨preupdate(s.clearance)

preupdate(s.clearance) : s.clearance′ = LUB(s.clearance, o.classification)

whereLUB is a function that returns the least upper bound of two labels. 2

3.7.5 Hospital Information Systems

In this section we show some examples of hospital information systems that require not

only authorizations, but also obligations and conditions.

Example 17 Suppose that a doctor (s) can perform (r) a particular operation (o) only if he

has operated more than 3 times before2. This can be expressed as apreA1 model. The total

times of the operations that a doctor has performed is stored as the subject attributeexp.

The policy is:

1. permitaccess(s, o, perform) →

¨
(
tryaccess(s, o, perform)∧(s.role = doctor)∧(s.exp > 3)

)∧¨preupdate(s.exp)

preupdate(s.exp) : s.exp′ = s.exp + 1 2

Example 18 In this example, a doctor can perform an operation on a patient only if the

patient agrees to it on a consent form. This agreement is an obligation to be completed

before the operation, where the patient is the obligation subject, and the consent is the

2The examples in this section just show applications of our logical specification language, but do not

provide a complete system specification. In this example, some other attribute predicates or conditions may

enable a doctor to perform an operation at the beginning (whenexp ≤ 3), e.g., in the presence of senior

doctors, which are not included here.

69

obligation object. This model can be expressed by a combination ofpreA0 andpreB0.

The policy is:

1. permitaccess(s, o, operate) →

¨
(
tryaccess(s, o, operate) ∧ (s.role = doctor) ∧ ¨ob agree(o, consent)

)

The pre-decision components of this policy are a conjunction of an authorization pred-

icate and an obligation, both of which must be satisfied before the access can start.2

Example 19 In this example, a junior doctor can perform an operation only when there is a

senior doctor monitoring the operation. An ongoing obligation(s1.role = senior doctor)∧

ob monitor(s1, s2) is defined wheres1 is the obligation subject ands2 is the obligation ob-

ject. This model is a combination ofpreA0 andonB0.

1. permitaccess(s, o, operate) →

¨
(
tryaccess(s, o, operate) ∧ (s.role = junior doctor)

)

2. ¤
(¬((s1.role = senior doctor) ∧ ob monitor(s1, s)) ∧ (state(s, o, operate) =

accessing) → revokeaccess(s, o, operate)
)

2

3.8 Related Work

Bertino et al. [8–10] introduce a temporal authorization model for database management

systems. In this model, a subject has permissions on an object during some time intervals,

or a subject’s permission is temporally dependent on an authorization rule. For example,

a subject can access a file only for one week. Our authorization model is different: we

consider the temporal characteristics in a single usage period, with mutable attributes of

subject and object before, during and after an access, that is, the temporal properties are

70

the result of the mutability of subject and object attributes, which change due to the side-

effects of accesses and usages. In contrast, Bertino et al.’s model focuses on the validity of

authorization policies with time period, and the temporal property of a policy is not related

to an access action, but dependent on the system administration policies. Gal et al. [20]

propose a temporal data authorization model (TDAM) for access control to temporal data.

This work is orthogonal to our approach, since we focus on the temporal authorization

and usage process, while TDAM focuses on the temporal attributes of data. For formal

specifications with temporal logic in security policies, Siewe et al. [53] apply interval

temporal logic to express and compose access control polices, and Hansen and Sharp [22]

introduce an approach for the analysis of security protocols using interval logic. The main

difference in our approach is that we focus on the atomic actions and temporal properties

during a single usage process, while their approaches focus on a higher level of system

policies or security protocols.

Joshi et al. [27] presented a generalized temporal RBAC model (GTRBAC) to specify

temporal constraints in role activation, user-role assignment, and role-permission assign-

ment. For example, a user can only activate a role for a particular duration. The concept of

temporal constraint is different from the mutability of UCON since it does not have update

actions. The dependency constraint in GTRBAC [28] is similar to the concept of obliga-

tion in UCON, but the dependency is more like the implication relation between events in

GTRBAC, i.e., if an event happens, it triggers another event; while in UCON, obligations

are explicit required actions to permit an access.

Bettini et al. [12, 13] present concepts of provisions and obligation in policy manage-

ment: provisions are conditions or actions performed by a subject before the authorization

71

decision, while obligations are conditions or actions performed after an access. In our

model, we distinguish between conditions and obligations. All the actions that a subject

has to perform before usage are regarded as obligations, while for future actions, we con-

sider them as the obligations for future usage requests or long-term obligations. Chomicki

and Lobo [16] investigate the conflicts and constraints of historical actions in policies. In

their paper, actions are application activities, and constraints are expressed with linear-time

temporal connectors. In our paper we define obligations as actions required by an access,

and represent the logic approach with TLA.

3.9 Summary

In this chapter I have developed a formal model of UCON with temporal logic of actions.

A model is given by a set of system states in a single usage process, specified by a set of

subjects and their attributes, a set of objects and their attributes, and the system attributes.

The authorization predicates are built from subject and object attributes. Actions are the

state transitions of the system, including usage control actions to update attributes and

accessing status of a usage process, and obligation actions that have to be satisfied before

or during an access. Conditions are predicates on system attributes. Temporal formulae

represent usage control policies and are built from authorization predicates, actions, and

system predicates. I prove that a fixed set of scheme rules can be used in general UCON

policy specifications with soundness and completeness properties. The flexibility of the

policy language is illustrated by expressing policies for various applications. The powerful

specification capability of the extended TLA strengthens UCON with precise modeling and

specification.

Chapter 4: Expressive Power

The policy specification flexibility of UCON has been conceptually shown in previous work

and formally illustrated in the previous chapter. This chapter studies the expressive power

of UCON by simulating some traditional access control models. For this purpose a formal

UCON model is defined to formalize the accumulative effect of a usage process. The

relative expressive power of UCON authorization models (UCONA) and UCON obligation

models (UCONB) are studied.

In UCON condition models, a usage control decision is determined by some environ-

mental restrictions dependant on system attributes. Since how system attributes change is

not captured in UCON core models, the expressive power cannot be compared with other

models.

4.1 Formal Model of UCONA and UCONB

The logical model of UCON developed in Chapter 3 can precisely capture the new features

of UCON, such as the attribute mutability and the decision continuity, but it is not appro-

priate to compare its expressive power to that of other access control models. The main

reason is that the logical model specifies the detailed state change of the system in a single

usage process, while for the expressive power, the overall effect of a usage process needs to

be formulated. This is further motivated by the safety analysis of UCON, since the safety

problem focuses on the permission propagation as the accumulative result of a sequence of

72

73

usage processes.

As another reason, the creating and destroying of subjects and objects are not formu-

lated in the logical model developed in Chapter 3, since the logical model focuses on the

temporal characteristics of the system state in a single usage process, and the accessing

subject and the target object must exist in the system before the access request, as assumed

in Section 3.3.1, that is, the logical model is developed to specify policies for UCON core

models, where creating and destroying of subjects and objects are not included. Practically,

all objects except the objects in the initial state are created in a system, and an object can be

destroyed by a subject under particular circumstances. For example, in UCON, a derivative

object is “derived from the original work” [38, 39]. “To provide mutual protection on the

rights of all involved subjects (consumer, provider, and/or identifiee subjects), just like the

original object, these derivative objects also have to be considered as target objects and

must hold UCON properties and relations with other components” [38, 39]. That is, an

object can be created from an existing object and includes some information of the original

object, and needs to be protected. Usage log and payment information are typical derived

objects in UCON. Although previously mentioned, the creating and destroying of subjects

and objects are not included in UCON core models. To make the model more practical

and complete to express policies for real systems, the policies of what kind of subjects and

objects can be created, and how a subject or an object can be destroyed should be captured

by a UCON model.

Because of these reasons, in this chapter a new formal model is proposed to capture

the global effect of a usage process and the accumulative result of a sequence of usage

74

processes. Specifically, a single usage process is atomic, and all usage processes are seri-

alized in a system. By serialized processes we mean that there is no interference between

any two usage processes, so that the net effect is as though the individual usage processes

executed serially one after another. We do not specify precisely how the serialization is

achieved, since there are many standard techniques known for this purpose. The details of

how to achieve serialization is an implementation-level issue as opposed to a model-level

issue. Based on this, a set of policies are defined to specify the authorization predicates

for usages, and sequences of primitive actions as the side-effect results. Also, policies for

creating and destroying subjects and objects are defined.

This section presents the formal definition of UCONA (specifically,preA) and UCONB

(specifically,preB). Some components of the models are introduced in Chapter 3, but for

the consistency and completeness of the presentation they are re-defined in this chapter.

4.1.1 UCONA

Subjects, Objects, and Rights

The subject, object and right abstractions are well known in access control. Generally

speaking, a subject is an active object that can invoke some access requests or execute

some permissions on another object, such as a process that opens a file for reading. A

subject, in turn, can be accessed by another subject, e.g., a process can be created, stopped

or killed by another process. Following the general concepts in traditional access control

models, we consider the set of subjects in UCONA to be a subset of the set of objects. The

objects that are not subjects are called pure objects. We require that each object is specified

with an identity, called name, which is unique and cannot be changed, and cannot be reused

75

after the object is destroyed in the system. This unique name in many cases will not be the

identity of a user. For example, a process executing on behalf of a user will have a process

identity and not a user identity.

Rights are a set of privileges that a subject can hold and execute on an object, such as

read, write, pause, etc. In access control systems, a right enables the access of a subject

to an object in a particular mode, referred to as a permission. Formally, a permission is

a triple (s, o, r), wheres, o, r are a subject, object, and right, respectively. In UCONA, a

permission is enabled by an authorization rule in a policy.

The set of subjects, objects, and rights are denoted asS, O, andR, respectively, where

S ⊆ O.

Attributes, Values, and States

Each object is specified with a non-empty and finite set of attributes. An attribute of an

object is denoted aso.a whereo is the object name (i.e., the object’s unique identity) and

a is the attribute name. Note that an object name without any attribute specified denotes

its identity attribute. Without loss of generality, we assume that in a system, every object

has the same fixed set of attribute namesATT . The domain of the attributea is denoted as

dom(a), and we assume that fora ∈ ATT , null /∈ dom(a).

An assignment of an attribute maps its attribute name to a value in its domain, denoted

aso.a = v, wherev ∈ dom(a) ∪ {null}. The set of assignments for all objects’ attributes

collectively constitute a state of the system.

Definition 3. A system state, or state, is a pair (O, σ), whereO is a set of objects, and

σ : O × ATT → ⋃
a∈ATT dom(a) ∪ {null} is a function that assigns a value ornull to

76

each attribute of each object, whereσ(o, a) ∈ dom(a) ∪ {null}.

Predicates

Definition 4. A predicatep(s, o) is a boolean-valued polynomially computable function1

built from a set of a subjects’s and an objecto’s attributes and constants.

The semantics of a predicate is a mapping from states to boolean values. A state satisfies

a predicate if the attribute values assigned in this state satisfy this predicate. Similar to the

previous chapter, unary and binary predicates can be defined based on a single object or

two different objects.

Primitive Actions

A protection system evolves by the activities of the subjects, such as requesting and per-

forming one or a sequence of accesses, which in turn may generate new objects in the

system, or update the values of attributes corresponding to a set of usage control policies

(defined shortly). Three kinds of primitive actions are defined in UCONA.

Definition 5. A Primitive action(or simplyaction) is a state transition of a system. Three

primitive actions of UCONA are defined as in the Table 4.1, wheret = (O, σ) and t′ =

(O′, σ′) are the states before and after a single primitive action.

A createObject action introduces a new object into the system, and requires that

the new object not be in the system before the creation. Each attribute of the newly

created object has the default value ofnull. Normally a createObject is followed by

1As a predicate takes at most two parameters of objects, the function is polynomial in the number of object

attributes and the size of their value domains.

77

Actions Conditions New States

createObject o′ o′ /∈ O O′ = O ∪ {o′}
∀o ∈ O, a ∈ ATT, σ′(o.a) = σ(o.a)
∀a ∈ ATT, σ′(o′.a) = null

destroyObject o o ∈ O O′ = O − {o}
∀o ∈ O′, ∀a ∈ ATT, δ′(o.a) = δ(o.a)

updateAttribute o.a: o ∈ O, a ∈ ATT O′ = O
o.a = v′ v′ ∈ dom(a) ∪ {null} ∀ent ∈ O, att ∈ ATT , σ′(ent.att) = σ(ent.att)

if ent 6= o andatt 6= a, σ′(o.a) = v′

Table 4.1: Primitive actions

updateAttribute actions to assign values to its attributes. ThedestroyObject removes an

existing object and its attributes from the system. For simplicity we assume that the identity

of an object is unique during the system’s life cycle, and cannot be reused even after the

object is destroyed. TheupdateAttribute action updates the value of an attributeo.a from

v to the new valuev′ which can be a constant, or the result generated by a polynomially

computable function built from the old valuev and other attribute values of the subject and

object parameters of the policy.

UCONA Policy

Satisfied predicates on attributes in UCONA affect the system in two ways. First, a set of

satisfied predicates can authorize a permission so that a subject can access an object with a

particular right. Second, a set of satisfied predicates may authorize the system to move to a

new state with a sequence of primitive actions, e.g., by creating a new object, or updating

attribute values, which result from the allowed access. These actions, in turn, may make

other predicates satisfied, and then enable other permissions and system state changes. The

safety analysis of UCONA (in the next chapter) focuses on the interactions between these

two aspects, e.g, the permissions authorized by a system state and the state changes caused

78

by the actions.

Access authorizations and the state transitions are specified by a set of pre-defined

policies in a system.

Definition 6. A policy of UCONA consists of a name, two parameter objects, an authoriza-

tion rule, and a sequence of primitive actions as follows:

policy name(s, o):

p1 ∧ p2 ∧ · · · ∧ pi → permit(s, o, r)

act1; act2; . . . ; actk

wheres ando are the subject and object parameters;p1, p2, . . . , pi are predicates based on

s’s ando’s attributes and constants;permit(s, o, r) is a predicate which indicates that a

permission(s, o, r) is authorized by the system iftrue; act1, act2, . . . , actk are primitive

actions that are performed ons or o or their attributes.

We assume thats is the active object in a policy, so it is the subject that attempts an

operation requiring the rightr on the target objecto. It is also possible to haves = o,

wherein a subject performs some operation on itself.

A policy includes two parts. The first part is an authorization rule consisting of a con-

junction of attribute predicates, called theconditionof the policy, followed by apermit

predicate implied by the condition. The second part is a sequence of primitive actions,

called thebodyof the policy. The first part specifies a permission authorized by the state

of the system, while the second part is the side-effect of executing this permission, thereby

changing the current state of the system to a new state. Note that there may be policies

that have no actions but only authorization rules, e.g., similar to thepreA0 in the previous

79

chapter. Enforcing a policy without actions causes no state transition of the system. In

any state, a permission that is notpermitted explicitlyby a policy is denied by default. In

general the UCONA model only considers positive permissions.

As it shows, a policy here includes the authorization predicates for a usage and the

resulting actions. Instead of using thepremitaccess action as that in the logical model, the

permit predicate indicates whether an access is permitted or not, and hides the individual

actions in the usage process, that is, the new policy specifies the overall effects on the

system state for a usage process. This approach captures the essential aspect of system

state transitions and permission propagations caused by the attribute mutability of UCON,

while maintaining the simplicity of the policy specifications.

Note that by the policy definition we assume that all the authorization predicates in a

policy are considered as pre-authorizations, and all the updates as post-updates. That is,

the UCONA model defined in this section ispreA3. As all usage processes are serialized in

a UCONA system, and a policy captures the overall effects of the system state after a usage

process, the updates in a policy can also be considered as pre-updates or ongoing updates,

which would make the modelpreA1 or preA2, respectively. All expressive power and

safety analysis results derived forpreA3 thereby also hold forpreA1 andpreA2. For the

sake of simplicity, we assume without loss of generality that the UCONA model considered

in this chapter and next chapter is apreA3 model.

Definition 7. A policy is acreating policyif it contains acreateObject action in its body;

otherwise, it isnon-creating.

A policy is enforced when an access requested is generated. Therefore, at least one of

its parameters exists in the system before the request, and a creating policy can contain at

80

most onecreateObject action. Without loss of generality, we assume that, in a creating

policy, the first parameters which is theparentobject must exist before the actions, and

o is created as achild object. Hence, UCONA is a single-parent creation model. Also,

we can assume that, in a policy, there is at most one update action for any attribute of

an object, since multiple updates on the same attribute can be reduced to a single update

with the value of the last one. Negated predicates are not explicitly required since we can

always define new predicates equivalent to negated predicates. For example, instead of

¬(s.credit > $1000), we use(s.credit ≤ $1000). Similarly, disjunction of predicates is

not explicitly required since it can be expressed by a set of individual policies, one for each

component of the disjunction.

A policy is enforced by replacing the two parameters with a pair of actual subject and

object names when the subject generates an access request on the object with a particu-

lar right. If the condition of the policy and all the conditions for the primitive actions are

satisfied, then the permission is authorized, and all the primitive actions are performed.

Otherwise, the permission is not granted, and the system does not change state. As men-

tioned, we assume that all accesses in a system are serialized, and that the enforcement of

each policy is atomic, either an access is granted and all the primitive actions are completed,

or the system state does not change.

Example 20 Suppose that a document can only be issued by ascientist(with rolesci). For

anonymoususers, this document can only be read 10 times. We define the available times

(readT imes) as an object attribute. Each time an anonymous user is authorized to read a

document, this attribute is updated by decreasing it by one. The policies in this application

are:

81

create doc(s, doc):

(s.role = sci) → permit(s, doc, create)

createObject doc

updateAttribute: doc.readT imes′ = 10

read doc(s, doc):

(s.role = anonymous) ∧ (doc.readT imes > 0) → permit(s, doc, read)

updateAttribute: doc.readT imes′ = doc.readT imes− 1

The first creating policy specifies that a subject in the rolesci cancreatea new document,

and thereadT imes attribute of this new object is set to10. In the second policy, a subject

with role anonymous can be authorized toread a document if itsreadT imes attribute is

positive; as a result of this permission, the value of the attributereadT imes is decreased

by one. 2

UCONA Protection System

A formal representation of a UCONA system can be defined with the basic components

that we have introduced.

Definition 8. A UCONA schemeis a 4-tuple(ATT, R, P, C), whereATT is a finite set of

attribute names,R is a finite set of rights,P is a finite set of predicates, andC is a finite

set of policies. A UCONA protection system(or simplysystem) is specified by a UCONA

scheme and an initial state(O0, σ0).

Definition 9. Given a UCONA system, thepermission functionof a statet = (O, σ) is

ρt : O×O → 2R, and ifr ∈ ρt(s, o), then in the statet, the subjects can access the object

82

o with the rightr according to at least one policy.

The functionρt maps a pair (subject, object)2 to a set of generic rights, according

to their attribute-value assignments in statet and the set of policies in the scheme. In a

particular state, the value ofρt(s, o) can be determined by trying each policy in the scheme

with the attribute-value assignments ofs ando. With the finite number of predicates in a

policy and the finite number of policies in a scheme, the complexity of computingρt for a

pair (s, o) isO(|P | × |C|).

Definition 10. For two states(Ot, σt) and(Ot′ , σt′) of a system:

• t ³c t′ (c ∈ C) if there exist a pair of objects(o1, o2) (o1 ∈ Ot) such that the policy

c(o1, o2) can be enforced in the statet and the system state changes tot′;

• t ³C t′ if there exist ac ∈ C such thatt ³c t′;

• t ÃC t′ if there exist a sequence of statest1, t2, . . . , tn such thatt ³C t1 ³C

t2 · · · ³C tn ³C t′.

A transition historyfrom statet to statet′ is denoted ast ÃC t′, or simplyt Ã t′.

4.1.2 UCONB

A usage control decision in UCONB is determined by obligation actions. The subject

and object attribute predicates, system states, primitive actions, permission function, and

system state transition history are defined as in UCONA. Besides that, a UCONB policy

includes one or more obligation actions.

2Note that a subject is also an object in the model.

83

Definition 11. An obligation actionis represented by a boolean-valued expression built

from an obligation name, an obligation subject, and an obligation object.

Definition 12. A policy of UCONB consists of a name, a set of parameter objects, an

obligation rule, and a sequence of actions as follows:

policy name(s, o, sb1, ob1, sb2, ob2, . . . , sbj, obj):

p1∧p2∧· · ·∧pi∧ b1(sb1, ob1)∧b2(sb2, ob2) · · ·∧bj(sbj, obj) → permit(s, o, r)

act1; act2; . . . ; actk

wheres ando are the requesting subject and the target object of the access;sb1, ob1, . . . , sbj, obj

are the obligation subjects and objects for the obligationb1, . . . , bj, respectively;p1, . . . , pi

are predicates based on the attributes of all parameter subjects and objects3; permit(s, o, r)

is the decision predicate;act1, act2, . . . , actk are primitive actions that are performed ons

or o or their attributes.

A UCONB policy includes two parts: an obligation rule consisting of a conjunction of

predicates and actions, which is called theconditionof the policy, followed by apermit

action implied by the condition, and a sequence of primitive actions, which is called the

bodyof the policy. Attribute predicates in a UCONB policy identify what kind of obliga-

tions are required for the usage. For example, a child’s downloading of a movie requires

his/her parent to sign an agreement. A predicate is needed to bind the requesting subject

3Because of the informal conceptual model of UCON preB given in [39], it is ambiguous how to fully

formulate it. We describe one approach here. Specifically, the predicates in a UCONB policy capture the

predicategetPreOBL in Definition 8 in [39], but is more powerful than needed just for this purpose. For

instance, they allow the testing of attributes of obligation subjects and obligation objects, which is not used

in the subsequent construction of this chapter.

84

and obligation subject. The predicates in a UCONB policy are not for authorization rea-

son, e.g., the relation of the obligation subject and the requesting subject cannot enable the

permission of the access.

Considering the general case that an obligation subject can be the requesting subject,

and an obligation object can be the target object, we write a UCONB policy as follows.

policy name(o1, o2, . . . , om):

p1(osp1, oop1)∧p2(osp2, oop2)∧· · ·∧pi(ospi, oopi)∧ b1(osb1, oob1)∧b2(osb2, oob2) · · ·∧

bj(osbj, oobj) → permit(o1, o2, r)

act1; act2; . . . ; actk

wheresp1, op1, . . . , spi, opi and sb1, ob1, . . . , sbj, obj are integers from 1 tom. By

convention,o1 is the accessing subject, ando2 is the target object. In a creating policy,o2

is the child object. The actionsact1, . . . , actk are limited too1 ando2.

The obligations defined here are all pre-obligations, and all updates are post-updates,

that is, the model defined in this subsection ispreB3. Similar to UCONA, as all usage

processes are serialized in a UCONB system, and a policy captures the overall effects of

the system state after a usage process, the updates in a policy can also be considered as pre-

updates or ongoing updates, which would make the modelpreB1 or preB2, respectively.

All expressive power and safety analysis results derived forpreB3 thereby also hold for

preB1 andpreB2. For the sake of simplicity, we assume without loss of generality that the

UCONB model considered in this chapter and next chapter is apreB3 model.

Example 21Alice (s) candownloadan online movie (o) only if her parent(sb) signs an

agreement(ob). Alice’s credit is reduced by subtracting the movies’svalue. The policy is:

download movie(s, o, sb, agreement)

85

(s.parent = sb) ∧ sign(sb, agreement) → (s, o, download)

updateAttribute: s.credit′ = s.credit− o.value 2

Example 22Bob (s) canopenan email (o) only after he clicks theacknowledgementbutton

(ob). The email’sflagattribute is changed to “read”. The policy is:

open email(s, o, ack)

click(s, ack) → (s, o, open)

updateAttribute: o.flag′ = “read” 2

Definition 13. A UCONB schemeis a 5-tuple(ATT, R, P,B,C), whereATT is a set of

attribute names,R is a set of rights,P is a set of predicates,B is a set of obligation actions,

andC is a set of policies. A UCONB protection system(or simplysystem) is specified by a

UCONB scheme and an initial state(O0, σ0).

4.2 Expressive Power of UCONA

In this section, I first informally show the expressive power of UCONA with a DRM ap-

plication. Then I formally demonstrate the expressive power of UCONA by simulating

Single-Object Typed Access Matrix model (SO-TAM), which is known to have equivalent

expressive power to TAM [21]. This proves that UCONA at least has the expressive power

of TAM. The construction is easily extended to show the same result between UCONA and

augmented TAM (ATAM) as discussed at the end of this section.

4.2.1 A UCONA Model for iTunes-like Systems

Apple iTunes is a popular online music downloading and legally sharing service. A user

can register and order music files from an iTunes server, and authorize a set of platforms

86

to play these files. In this section I specify the core functions of iTunes-like systems with

UCONA polices. This is a simplified version of the actual iTunes system.

Subjects, Objects, and Attributes

The objects in an iTunes-like system include users, iTunes servers, platforms, and music

files. The corresponding attributes are defined in Table 4.2.

Objects Attribute Value

user registered a boolean value to indicate if a user is registered or not
credit a numerical value of the credit balance of a user’s account
orderList a set of music files that a user has ordered
platformList a set of platforms that a user authorizes to play music

iTunes server regUsers a set of registered users (e.g., accounts)
platform authorizedBy a user that authorizes this platform

localList a set of music files that stored locally in a platform
music file owner the user that owns this file

price a numerical value of the music file’s price

Table 4.2: Attributes in UCONA for iTunes-like Systems

Policies

Before ordering and downloading a music file, a user needs to register with an iTunes

server. The following policy captures this.

user register(s, u):

true → permit(s, u, register)

createObject u;

updateAttribute : s.regUsers′ = s.regUsers ∪ {u};

updateAttribute : u.registered′ = true;

updateAttribute : u.platformList′ = ø;

87

updateAttribute : u.orderList′ = ø;

updateAttribute : u.credit′ = 0.00;

wheres is an iTunes server andu is a user. After registration, a new object (the user) is

created, and the attributes are set to their initial values.

An order of a music file can be specified as the following policy.

order(u,m):

(u.registered = true) ∧ (u.credit ≥ m.price) ∧ (m /∈ u.orderList) →

permit(u, m, order)

updateAttribute : u.orderList′ = u.orderList ∪ {m};

updateAttribute : m.owner′ = u;

updateAttribute : u.credit′ = u.credit−m.price;

whereu is a user andm is a music file. This policy checks if the user has sufficient

credit and if the music file has not been previously purchased by the user, in which case

the user can place the order. As a result, the user’sorderList attribute and the music file’s

owner attribute are updated, and the user’s credit is decreased by the price of the music file

(e.g.,$0.99 in current iTunes service).

To play downloaded music, a user needs to authorize a platform. By default, a user

can authorize at most five platforms in current iTunes service. Conversely a user can also

de-authorize a platform. The following policies specify these.

authorize platform(u, p):

(u.registered = true)∧(|u.platformList| < 5)∧(p /∈ u.platformList) →

permit(u, p, authorize)

88

updateAttribute : u.platformList′ = u.platformList ∪ {p};

updateAttribute : p.authorizedBy′ = u;

deauthorize platform(u, p):

(u.registered = true)∧(p ∈ u.platformList) → permit(u, p, deauthorize)

updateAttribute : u.platformList′ = u.platformList− {p};

updateAttribute : p.authorizedBy′ = null;

whereu is a user andp is a platform.

Finally, a platform can play a music file if it is authorized by a user, and the music file

is owned by the same user, as the following policy indicates.

play(p,m):

(p.authorizedby 6= null)∧(m.owner 6= null)∧(p.authorizedby = m.owner) →

permit(p, m, play)

wherep is a platform andm is a music file.

Note that these UCONA policies only capture the core functions of an iTunes service.

Some actions are regarded as external or administrative actions and not included in this

UCONA model. Among them,

• a user’s credit is increased by charging the user’s credit card or redeeming a gift

certificate;

• a music file is exported to external devices, e.g., by burning a CD. Since the music

file is changed to a different format (e.g., mp3 or wma) after burning, the licence

89

information is lost. Thus this new file is considered as a different object, and its

usage is not captured in this model.

4.2.2 TAM and SO-TAM

The formal study of the expressive power of UCON is performed by simulating traditional

access control models using UCON. Since the access matrix model is well studied and

widely applied, in this work I compare the expressive power of UCONA and some access

matrix models. Specifically, I simulate SO-TAM, which has the same expressive power as

TAM, with UCONA.

The key innovation of TAM [46], the typed access matrix model, is to introduce strong

types of subjects and objects into the traditional access matrix model formalized by Har-

rison, Russo, and Ullman (HRU) [23], and the strong type concept is motivated by the

schematic protection model (SPM) [45]. In TAM, rights are distributed through a matrix,

in which each subject is represented by a row and a column, while a pure object is rep-

resented by a column. An access control policy is enforced by checking the presence of

corresponding right in the particular cell; e.g., the cell[s, o] contains that rights thats pos-

sesses foro. Each object is created to be of a particular type that cannot be changed. A

TAM scheme includes a fixed set of rightsRGT , a fixed set of typesTY P , and a fixed

set of commandsCOM . A TAM system state is defined by a tuple(SUB, OBJ, f, M),

whereSUB is a set of subjects,OBJ is a set of objects,SUB ⊆ OBJ , f is a type func-

tion f : OBJ → TY P , andM(SUB, OBJ) is a configuration, whereM is a matrix, and

M [s, o] ⊆ RGT is the content of the cell[s, o]. A TAM system is specified by a TAM

scheme and an initial state(SUB0, OBJ0, f0,M0).

90

The presence of some rights in a matrix cell not only gives the subject those rights on

the object, but may authorize a subject to change the matrix by entering or removing rights

in some cells, or creating and deleting rows and columns. This change in a system state is

conducted by executing commands in TAM. A command in TAM has the following general

format.

Commandα(X1 : t1, X2 : t2, . . . , Xk : tk)

if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]

then

op1; op2; . . . ; opn

end

whereX1, X2, . . . , Xk are subject or object parameters whose type aret1, t2, . . . , tk, re-

spectively;r1, r2, . . . , rm are rights;s1, s2, . . . , sm and o1, o2, . . . , om are integers

between 1 andk; op1, . . . , opn are primitive operations. Theif part of the command is

called the condition ofα. A command is invoked by substituting actual subjects and ob-

jects of the appropriate types as parameters. The operations are executed sequentially if the

condition is true. There must be at least one subject type in a TAM command. One or more

subjects collectively execute the command. Detailed specification of who actually invokes

the command is not explicitly given in TAM. There are six primitive operations in TAM:

enterr into [s, o]; create subjects of typets; create objecto of typeto; deleter from [s, o];

destroy subjects; destroy objecto; The first three are regarded as monotonic operations,

while the last three are non-monotonic operations.

Single-Object TAM (SO-TAM) is restricted from TAM such that all primitive opera-

tions in a command are performed on a single object. That means, SO-TAM can check the

91

presence of rights in any number of cells, but can only modify cells along a single column

in the matrix. Furthermore, a single SO-TAM command can create or destroy at most one

object, which is also the object whose cells are modified. The creation operation (if any)

must therefore occur as the first in the sequence of operations and the destroying oper-

ation (if any) as the last. Without loss of generality, we can assume that, for a command

α(X1 : t1, X2 : t2, . . . , Xk : tk), Xk is the object on which all the operations are performed.

If the commandα contains a “create object” operation, thenXk is the object created.

Example 23 Of the two commands below,reviewdoc is a SO-TAM command, while

share ownership is not, since the two primitive operations in this command are performed

on two different objects.

commandreviewdoc(s : sci, so : sec off, po : pat off, o : doc)

if own ∈ [s, o] then

enterreview in [so, o];

enterreview in [po, o];

end

commandshare ownership(s1 : ts1, s2 : ts2, o1 : to1, o2 : to2)

if own ∈ [s1, o1] ∧ own ∈ [s2, o2] then

enterown in [s1, o2];

enterown in [s2, o1];

end 2

92

4.2.3 Simulating SO-TAM with UCONA

To compare the expressive power of UCONA and SO-TAM, we simulate a general SO-

TAM system with a UCONA system. A construction similar to the one in [21] is used in

this simulation.

Theorem 3. UCONA is at least as expressive as SO-TAM.

Proof. For a SO-TAM systemT with scheme(RGT, TY P, COM) and an initial state

(SUB0, OBJ0, f0,M0), we construct a UCONA systemUa with scheme(ATT, R, P, C)

and an initial state(Oo, AM0) to simulate it. Specifically,R = RGT∪{create, destroy, null},

wherenull is a special right that is used for the intermediate policies during the simulation.

We can simply consider it as an unknown right without any practical meaning; We can also

ensure thatcreate /∈ RGT anddestroy /∈ RGT . P andC are attribute predicates and

policies which are defined during the simulation shown shortly.ATT is a set of attributes

defined below.

1. type ∈ TY P ∪ {syn}: the type of a subject or object wheresyn 6∈ TY P .

2. acl ⊆ SUB ×RGT : the access control list of an object.

3. cc ∈ {token} ∪ {αi|α ∈ COM, 0 ≤ i ≤ K, 1 ≤ j ≤ l}, whereK is the maximum

number of parameters in all the commands, andl is the number of commands inT .

The value of this attribute is the current command that the object is involved in. An

object whosecc has valueαi is involved inα as theith parameter. Fori = 0, α0 is a

value used only for a special objectSY N . The valuetoken specifies that no ongoing

command is being performed with this object, so the object is available for a new

command to start.

93

4. param ⊆ {poi}, 1 ≤ i ≤ K. This attribute records the parameter objects in a

simulation.poi ∈ SY N.param indicates that theith parameter object is present.

5. present ⊆ {prsti}, 1 ≤ i ≤ M , whereM is the maximum number of condition

components in all the commands. This attribute records the condition information in

a command.prsti ∈ Xoi.present iff ri ∈ [Xsi, Xoi] and this is theith condition part

in a command.

6. opt ⊆ {opti}, 1 ≤ i ≤ N , attribute recording the primitive operations placed in

a command, whereN is the maximum number of primitive operations in all the

commands.

7. condition ∈ {true, false}: attribute to specify whether all the condition parts are

satisfied in a command.

8. opt done ∈ {true, false}: attribute to specify whether all the primitive operations

have been performed in a command.

How the initial state(SUB0, OBJ0, f0, M0) of T is mapped into the initial state(Oo, AM0)

of Ua is shown next.

• O0 = OBJ0 ∪ {SY N}

• ∀o ∈ OBJ0, o.acl = {(s, r)|s ∈ SUB0, r ∈ M0(s, o)}

• SY N.acl = ø

• ∀o ∈ OBJ0, o.type = f0(o)

• SY N.type = syn

94

• ∀o ∈ O0, o.cc = token

• ∀o ∈ O0, o.param = ø

• ∀o ∈ O0, o.present = ø

• ∀o ∈ O0, o.opt = ø

• ∀o ∈ O0, o.condition = false

• ∀o ∈ O0, o.opt done = false

A right present in a cell enables the access right of the subject to the object, this is

expressed as a set policies inUa, with the object’sacl attribute without any actions, as

shown below.

policy phase0 r (X1, X2):

(
(X1, r) ∈ X2.acl

) → permit(X1, X2, r)

Since we need a policy for each generic right, the number of policies in this set is

|RGT |.

The commands in the TAM scheme are simulated one by one, where each of them is

reduced to a linear number of policies on the number of parameters, condition components,

and primitive actions in a command. As a policy involves only a subject and an object, the

basic idea of this simulation is to create a special objectSY N with typesyn, and put the

condition information of the command in the attributes of this special object by a set of

policies. If all the conditions are satisfied, then the operations on the single object can be

performed by another set of policies. With the existence of non-monotonic operations in

SO-TAM commands, a condition in a command may not be satisfied if other commands

95

are executed to change the matrix at the same time. So we need a synchronization between

commands such that all the commands are simulated serially. That is, we require a serial-

ized simulation in which only one command is performed at one time. This can be done by

checking and updating the attributes ofSY N .

Let α be a command inT as the following:

Commandα(X1 : t1, X2 : t2, . . . , Xk : tk)

if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]

then

[create object Xk of type tk];

. . .

enter ri into [Xpi, Xk];

. . .

remove rj from [Xpj, Xk];

. . .

enter/remove rn into/from [Xpn, Xk];

[destroy object Xk];

end

wherek is the number of parameters;m is the number of condition parts;n is the number

of primitive operations except creating and destroying;1 ≤ i, j ≤ n; pi andpj are integers

from 1 tok. The creating and destroying operations are optional inα. If there is any, the

creating operation must be the first one, and the destroying operation must be the last one.

For this general command, five phases are used to simulate it inUa, each of which

includes a bounded set of policies. We explain the details phase by phase.

96

Phase I: This phase initializes the simulation by the following policy withSY N .

α phaseI SY N (SY N, SY N):

(SY N.cc = token) → permit(SY N, SY N, null)

updateAttribute : SY N.cc′ = α0

This policy checksSY N ’s cc attribute. If the value istoken, the execution of a new

command can be started, and this attribute’s value is updated to the command name. Note

that there is only one object (SY N) in the system withsyn type, so we do not need to

checkSY N ’s type.

After this policy, the simulation serially enforces the following policies for each param-

eterXi in α, where1 ≤ i ≤ k.

α phaseI Xi ti (SY N, X):

(SY N.cc = α0)∧ (poi /∈ SY N.param)∧ (X.type = ti)∧ (X.cc = token) →

permit(SY N,X, null)

updateAttribute : X.cc′ = αi

updateAttribute : SY N.param′ = SY N.param ∪ {poi}

This policy updates thecc attribute ofX toαi to prevent interference from other commands.

At the same time, the valueαi indicates thatX is the ith parameter inα with type ti.

As each command requires exactly one parameter object ofXi, the presence ofpoi in

SY N.param indicates this.

Note that ifXk is an object that is created inα, the policy betweenSY N andXk is not

included in this phase. So for a command withk parameters, there arek + 1 policies in

this phase if there is no creating operation in this command; otherwise, there arek policies.

97

Since all the operations are performed on a single object, there is at most one creating

action in a SO-TAM command.

Phase II: This phase includes a set of policies to check the condition parts inα. Specif-

ically, for each condition partrj ∈ [Xsj, Xoj] where1 ≤ j ≤ m, we create two policies:

one policy to updateXoj ’s present attribute, and another to updateSY N ’s attribute based

on this change.

α phaseII rj Xsj Xoj (X1, X2):

(X1.cc = αsj)∧(X2.cc = αoj)∧
(
(X1, rj) ∈ X2.acl

) → permit(X1, X2, null)

updateAttribute : X2.present′ = X2.present ∪ {prstj}

α phaseII rj SY N Xoj (SY N, X):

(SY N.cc = α0)∧(X.cc = αoj)∧(prstj ∈ X.present) → permit(SY N,X, null)

updateAttribute : SY N.present′ = SY N.present ∪ {prstj}

For a command withm condition parts, there are2m policies in this phase.

Phase III: After the simulation in Phase II, all the condition parts have been recorded

in SY N ’s present attribute. In this phase there is one policy to create the objectXk (if α

is a creating command) and update its attributes.

If α is a creating command, the creation must be the first operation in the command.

The following simulates it.

α phaseIII SY N Xk create (SY N, X):

(SY N.cc = α0)∧ (prst1 ∈ SY N.present)∧ (prst2 ∈ SY N.present)∧· · ·∧

(prstm ∈ SY N.present) → permit(SY N, X, create)

98

createObject X

updateAttribute : X.type′ = tk

updateAttribute : X.cc′ = αk

updateAttribute : X.condition′ = true

updateAttribute : SY N.condition′ = true

updateAttribute : SY N.param′ = SY N.param ∪ {pok}

This policy first creates a new object with typetk as the parameterXk in α. At the same

time, thecondition attribute of this new object is changed totrue since all the conditions

parts have been satisfied.

If α is not a creating command, the following policy just updatesXk’s condition value

based on the evaluations in Phase II.

α phaseIII SY N Xk (SY N,X):

(SY N.cc = α0) ∧ (X.cc = αk) ∧ (prst1 ∈ SY N.present) ∧ (prst2 ∈

SY N.present) ∧ · · · ∧ (prstm ∈ SY N.present) → permit(SY N,X, null)

updateAttribute : SY N.condition′ = true

updateAttribute : X.condition′ = true

Phase IV: After Phase III,Xk’s attribute has been updated according to the condition

in α. In this phase, the primitive operations inα are simulated one by one. Basically, each

operation except creating (included in Phase III ifα has this) and destroying (included in

phase V ifα has this) is simulated by a policy in this phase. Specifically, for a primitive

operation:enter ri into [Xpi, Xk], we have the following policy:

α phaseIV Xpi Xk enter ri (X1, X2):

(X1.cc = αpi)∧(X2.cc = αk)∧(X2.condition = true) → permit(X1, X2, null)

99

updateAttribute : X2.acl′ = X2.acl ∪ {(X1, ri)}

updateAttribute : X2.opt
′ = X2.opt ∪ {opti}

The first action in this policy updatesX2’s acl attribute by adding(X1, r) if X1 andX2

are thepith andkth parameters inα, respectively. The second action records the fact that

this primitive operation has been completed.

For a primitive operation:remove rj from [Xpj, Xk], we have the following policy:

α phaseIV Xpj Xk remove rj (X1, X2):

(X1.cc = αpj)∧(X2.cc = αk)∧(X2.condition = true) → permit(X1, X2, null)

updateAttribute : X2.acl′ = X2.acl − {(X1, rj)}

updateAttribute : X2.opt
′ = X2.opt ∪ {optj}

Similarly, the first action in this policy updatesX2’s acl attribute by removing(X1, r)

if X1 andX2 are thepjth andkth parameters inα, respectively. The second action records

the fact that this primitive operation has been completed.

For a command withn primitive operations except creating and destroying, there aren

policies to simulate them in this phase.

Phase V: After all the operations (on the objectXk) have been completed, we need to

reset the attributes of all the subjects and objects involved in this command for the next

command. At first we need a policy to notice that all the operations, except destroyingXk

if α includes it, have been completed.

α phaseV SY N Xk (SY N,X):

(SY N.cc = α0) ∧ (X.cc = αk) ∧ (opt1 ∈ X.opt) ∧ · · · ∧ (optn ∈ X.opt) →

permit(SY N,X, null)

100

updateAttribute : X.opt done′ = true

updateAttribute : SY N.opt done′ = true

If α has a destroy operation, the destroy must be the last operation in the command.

The following policy simulates it.

α phaseV SY N Xk destroy (SY N, X):

(SY N.cc = α0)∧(X.cc = αk)∧(SY N.opt done = true) → permit(SY N, X, destroy)

destroyObject X;

updateAttribute : SY N.param′ = SY N.param− {pok}

After this step, all the primitive operations have been completed. We need to reset

all the subjects’ and objects’ attributes for the next command. Similar to the policies in

Phase I, a set of policies betweenSY N and the parameter entities are applied to reset their

attributes as the following shows, , where1 ≤ i ≤ k

α phaseV SY N Xi Success (SY N, X):

(SY N.cc = α0)∧(X.cc = αi)∧(SY N.opt done = true) → permit(SY N,X, null)

updateAttribute : X.cc′ = token

updateAttribute : X.present′ = ø

updateAttribute : X.opt′ = ø

updateAttribute : X.condition′ = false

updateAttribute : X.opt done′ = false

updateAttribute : SY N.param′ = SY N.param− {poi}

This policy checks if all the primitive operations inα have been performed. From Phase

IV, we can see that a primitive operation can be performed only ifSY N.condition is true,

101

that means, all condition parts inα are true. Note that ifXk is destroyed inα, then the

corresponding resetting policy is not needed here. After all the attributes of the parameter

objects have been reset (SY N.param is empty), we need to reset theSY N ’s attributes.

α phaseV SY N Success (SY N, SY N):

(SY N.cc = α0) ∧ (SY N.opt done = true) ∧ (|SY N.param| = 0) →

permit(SY N, SY N, null)

updateAttribute : SY N.cc′ = token

updateAttribute : SY N.present′ = ø

updateAttribute : SY N.opt′ = ø

updateAttribute : SY N.condition′ = false

updateAttribute : SY N.opt done′ = false

After this policy, the system is ready to execute another command.

A resetting process may also be needed if any condition part is not satisfied with the

actual parameters; i.e., in Phase II, if a condition part (say,rj ∈ [Xsj, Xoj]) is not satisfied,

thenprstj /∈ SY N.present and the simulation cannot go further. In this case, either a new

parameter object can be captured, or the all the parameters andSY N can be reset for a

rollback. The following policy can reset an object so that another object can be captured as

the parameter, where1 ≤ i ≤ k.

α phaseV SY N Xi Rollback (SY N,X):

(SY N.cc = α0)∧(SY N.condition = false)∧(X.cc = αi) → permit(SY N,X, null)

updateAttribute : X.cc′ = token

updateAttribute : X.present′ = ø

updateAttribute : SY N.param′ = SY N.param− {poi}

102

This policy states that ifSY N.condition is false, the attributes ofXi can be reset, and

poi is removed fromSY N.param so that another object can be captured as parameterXi.

The value ofSY N.condition is false if either some policies in Phase II have not been exe-

cuted, or at least one of the condition part checks in Phase II has failed so that the condition

evaluation policy in Phase III is not executed. For the first case, the simulation ofα can be

restarted after resettings. For the second case, the condition ofα is not satisfied with the ob-

ject parameters. So they can be reset and other objects can be involved with the policies in

Phase I. Since this policy requiresSY N.condition = false, thenX.condition = false,

X.opt = ø, andX.opt done = false, and there are no updates for them.

SY N ’s attributes can also be reset with the following policy for rollback whenSY N.param

is empty.

α phaseV SY N Rollback (SY N, SY N):

(SY N.cc = α0) ∧ (SY N.condition = false) ∧ (|SY N.param| = 0) →

permit(SY N, SY N, null)

updateAttribute : SY N.cc′ = token

updateAttribute : SY N.present′ = ø

This policy is applicable only whenSY N.condition = false, which impliesSY N.opt =

ø andSY N.opt done = false since no primitive actions have been performed.

For a command withk parameters, there are at most2k + 3 policies in this phase.

As a summary, for the execution of a single command inT with a set of actual objects,

the same set of objects are used throughout all these five phases. Specifically, in Phase I,

a policy is used withSY N and each object to ensure that the object is the corresponding

parameter in the simulated command. Then, in Phase II, a set of policies is used to check

103

the condition parts of the command between two parameter objects. If all the condition

parts are satisfied, the creation (if any) and enter/remove rights operations are simulated

in Phase III and IV, respectively. In Phase V, the destroy operation (if any) is performed

and all objects are reset by updating their attributes. The net effect of the simulation is to

update attributeacl of the object (Xk) where all operations are performed in the command.

Through this 5-phase process, the commandα can be simulated by3k + 2m + n + 5

policies at most. This shows that a SO-TAM scheme can be simulated by a UCON scheme

with at mostl(3K+2M +N +5)+|RGT | policies, wherel is the number of the commands

in a SO-TAM scheme,K, M , andN are the maximum number of parameters, condition

parts, and primitive operations in all commands, respectively. After the mapping of the

initial state of SO-TAM to UCONA, each step in SO-TAM can be simulated with these set

of policies with the same set of parameters.

Hence, we conclude that a SO-TAM system can be mapped to a UCONA system with a

bounded simulation, which means that a command in the SO-TAM system can be simulated

with a bounded number of policies in UCONA, and the same set of parameters is used in

the simulation. That is, the number of the steps in the simulation is independent of the

number of the objects in the system state. This proves that UCONA is at least as expressive

as SO-TAM. 2

From [21] we can find that SO-TAM is strongly equivalent to TAM in expressive power,

which implies a bounded simulation. Therefore we can easily conclude that UCONA is at

least as expressive as TAM. Furthermore, we have the following result.

Theorem 4. UCONA is at least as expressive as ATAM.

Proof. ATAM is similar to TAM except that it allows testing for presence of rights

104

in commands which TAM does not permit. The predicates in UCONA can easily test for

the absence of rights such asr /∈ [s, o] by means of the predicate(s, r) /∈ o.acl in a

UCON authorization rule. Therefore, we can simulate SO-ATAM by the same mechanism

as introduced in the proof of Theorem 3 for the UCONA simulation of SO-TAM. We can

conclude that UCONA has at least the expressive power of SO-ATAM, which has been

proven to be as expressive as ATAM [21] by bounded simulation. So for any ATAM system,

we can simulate it with a SO-ATAM system, which in turn, can be mapped to a UCONA

system with bounded simulation. This proves that UCONA is at least as expressive as

ATAM. 2

Corollary 1. UCONA is more expressive than TAM.

Proof. It has been shown that ATAM is equivalent to TAM but only if the simulation of

each ATAM command is allowed to be done by an unbounded number of TAM commands

[21]. Further ATAM cannot be simulated using only a bounded number of TAM commands.

Therefore we can find a system in ATAM, which can be mapped to a UCONA system with

bounded simulation and cannot be mapped to a TAM system with bounded simulation.

Therefore, UCONA is more expressive than TAM. 2

4.3 Expressive Power of UCONB

This section compares the expressive power of UCONA and UCONB. First, I show that a

general UCONA (preA3) model can be reduced to a UCONB (preB3) model. Then I show

that a general UCONB (preB3) model can be reduced to a UCONA (preA3) model. This

verifies that these two models have the same expressive power.

105

4.3.1 An Example

Before formally comparing the expressive power between UCONA and UCONB, an intu-

itive example is presented here to show the basic idea of the reductions.

Suppose a facility (e.g., an office) can be used only by a faculty in the ITE school, and

the faculty needs to sign a statement that the usage of this facility is for academic activities

of the ITE school. In the UCON model, this is an obligation for accessing the facility. A

policy can be defined with pre-authorization and pre-obligation, where the authorization

predicate is the role membership requirement of ITE faculty, and the obligation action is to

sign the statement, with the requesting subject as the obligation subject and the statement

as the obligation object. The following policy specifies this.

UCONAB access(s, o, ob)

(s.role = ITE faculty)∧(o.statement = ob)∧sign(s, ob) → permit(s, o, r)

An access of a subject to the object with this policy can be simulated with two steps in a

UCONA system, wheresigned is a subject attribute to record the statement that the subject

has signed. In the first step, the subjectsigns the statement, with an authorization policy

where the predicate is trivially true, and an update to attributesigned. In the second step, a

subject accesses the object with the attributesrole andsigned. The two UCONA policies

are defined as the follows.

UCONA sign statement(s, ob)

true → permit(s, ob, sign)

updateAttribute : s.signed′ = ob

106

UCONA access(s, o)

(s.role = ITE faculty) ∧ (s.signed = o.statement) → permit(s, o, r)

updateAttribute : s.signed′ = null

In the first policy, as the result of the signing statement permission, thesigned attribute

of the subject is updated to record the statement object. In the second policy, both the

subject’srole andsigned are checked before the access, and thesigned is updated to the

initial value after the access. This shows how the original UCON policy (a combination of

UCONA and UCONB) can be simulated with two UCONA policies.

For the other direction, consider the case that the model only requires the membership

of the ITE faculty, that is, the policy is a pure authorization policy as in the following.

UCONA access(s, o)

(s.role = ITE faculty) → permit(s, o, r)

To simulate this UCONA policy with a UCONB policy, an obligationtry access(s, o)

is defined wheres is the requesting subject ando is the target object, and this obligation is

trivially true. The policy is:

UCONB access(s, o, statement)

(s.role = ITE faculty) ∧ try access(s, o) → permit(s, o, r)

where predicate(s.role = ITE faculty) is a predicate to identify the that obligation

try access(s, o) is required for this access, where the obligation subjects must be an ITE

faculty member.

107

4.3.2 Reducing UCONA to UCONB

Lemma 1. A general UCONA system can be reduced to a UCONB system.

Proof. For a UCONA systemUa with scheme(ATTa, Ra, Pa, Ca), we construct a

UCONB systemUb with scheme(ATTb, Rb, Pb, Bb, Cb), whereATTb = ATTa, Rb =

Ra ∪ {null}, Pb = Pa. There is a single obligation actiontry access which is trivially

true. The policiesCb are constructed as in the following steps.

First, consider a policyca ∈ Ca as the following:

ca(s, o):

p1 ∧ p2 ∧ · · · ∧ pi → permit(s, o, r)

act1; act2; . . . ; actk

wherep1, . . . , pi are predicates built on attributes ofs and/oro; act1, . . . , actk are primitive

actions ons and/oro.

The following policycb ∈ Cb is defined in the UCONB system to simulateca.

cb(s, o):

p1 ∧ p2 ∧ · · · ∧ pi ∧ try access(s, o) → permit(s, o, r)

act1; act2; . . . ; actk

Here predicatesp1, . . . , pi are not for authorization purpose, but to identify that a particular

obligation is required, in which the obligation subject (s) and the obligation object (o) must

satisfy these predicates. The actions incb are the same as that inca. Therefore with the

same statet of Ua andUb, if t ³ca(s,o) ta andt ³cb(s,o) tb, thenta = tb. This proves that

Ua can be reduced toUb. 2

108

4.3.3 Reducing UCONB to UCONA

This reduction is more complex since a UCONB policy can have more than two param-

eters while a UCONA policy only takes two parameters. For a general UCONB system

Ub with scheme(ATTb, Rb, Pb, Bb, Cb), we construct a UCONA systemUa with scheme

(ATTa, Ra, Pa, Ca). The construction is performed with two cases.

Lemma 2. A general UCONB system can be reduced to a UCONA system.

Proof. This is proved by the following two cases.

Case 1:sb = s and ob = o for all obligations

In this case, letATTa = ATTb ∪ {ob satisfied} andRa = Rb ∪ {rb
i |bi ∈ Bb}, where

dom(ob satisfied) ⊆ O ×B. Consider a policycb ∈ Cb as the following:

cb(s, o):

p1 ∧ p2 ∧ · · · ∧ pi ∧ b1(s, o) ∧ · · · ∧ bj(s, o) → permit(s, o, r)

act1; act2; . . . ; actk

wherep1, . . . , pi are predicates built on the attributes ofs and/oro; b1, . . . , bj are obligation

actions;act1, . . . , actk are primitive actions ons and/oro.

To simulate this policy inUa, a set of policies is defined inUa as the following.

ca1(s, o):

true → permit(s, o, rb
1)

updateAttribute : s.ob satisfied′ = s.ob satisfied ∪ (o, b1)

. . .

109

caj(s, o):

true → permit(s, o, rb
j)

updateAttribute : s.ob satisfied′ = s.ob satisfied ∪ (o, bj)

ca(s, o):

p1∧p2∧· · ·∧pi∧ ((o, b1) ∈ s.ob satisifed)∧. . . ((o, bj) ∈ s.ob satisifed) →

permit(s, o, r)

updateAttribute : s.ob satisfied′ = ø

act1; act2; . . . ; actk

Enforcing these policies with the same parameter subject and object results in the same

state transition in bothUa andUb. Specifically, the firstj policies enables to perform

the obligations and record the results in the subject attributeob satisfied. The last policy

captures the same predicates, permission, as well as primitive actions as incb. An update

action resets theob satisfied attribute to empty for future access with this subject.

With fixed sets of obligation actions and policies inUb, the number of policies inUa is

O(|Cb| × |Bb|).

Case 2:sb 6= s or ob 6= o in any obligation policy

If in a policy in Ub, an obligation subject is not the subject requesting access, or an obliga-

tion object is not the accessing target object, the reduction is different since a UCONA pol-

icy only has two parameters. We use an approach similar to reducing SO-TAM to UCONA.

Note that a predicate is built on attributes of at most two objects.

First, a subjectSY N is introduced inUa. Similar to case 1,Ra = Rb ∪ {rb
i |bi ∈

110

Bb}. ATTa = ATTb ∪ {cp, param, predicate, obligation, condition, update}, where the

semantics and value domains are as follows.

• cp ∈ {token} ∪ {cn
b |cb ∈ Cb, 0 ≤ n ≤ M}, whereM is the maximum number of

parameters in all the polices inCb. The value of this attribute is the current policy in

which an object is a parameter. An object whosecp has valuecn
b is involved incb as

thenth parameter. Forn = 0, c0
b is a value used only forSY N . The valuetoken

specifies that no policy is being enforced with this object.

• param ⊆ {pon}, 1 ≤ n ≤ K. This attribute records the parameter objects in a

simulation.poi ∈ SY N.param indicates that theith parameter object is present.

• predicate ⊆ {predn}, 1 ≤ n ≤ M , whereM is the maximum number of predicates

in all the policies inCb. This attribute records the predicate information in a policy.

We havepredn ∈ SY N.predicate iff the nth predicate in an obligation policy is

true.

• obligation ⊆ {oblign}, 1 ≤ n ≤ J , whereJ is the maximum number of obligations

in all the policies inCb. This attribute records the satisfaction of obligations.

• condition ∈ {true, false}: attribute to specify whether all predicates and obliga-

tions are satisfied in a policy.

• update ∈ {true, false}: attribute to specify whether all the update actions have

been performed in an obligation policy.

Consider a general UCONB policy as the following.

111

cb(o1, o2, . . . , om):

p1(osp1, oop1)∧p2(osp2, oop2)∧· · ·∧pi(ospi, oopi)∧ b1(osb1, oob1)∧b2(osb2, oob2) · · ·∧

bj(osbj, oobj) → permit(o1, o2, r)

[createObject o2]

up1; up2; . . . ; upk;

[destoryObject o1];

[destoryObject o2];

wheresp1, op1, . . . , spi, opi andsb1, ob1, . . . , sbj, obj are integers from 1 tom. Note

that by convention,o1 is the accessing subject, ando2 is the target object. Ifcb a creating

policy, o2 is the child object, and, without loss of generality, we assume that the first ac-

tion is the creation, and the last two actions are destroy actions ifcb includes these. The

simulation has five phases.

Phase I: This phase initializes a simulation ofcb, starting by the following policy with

SY N .

ca phaseI SY N (SY N, SY N):

(SY N.cp = token) → permit(SY N, SY N, null)

updateAttribute : SY N.cp′ = c0
b

This policy checksSY N ’s cp attribute: if the value istoken, the execution of a new

policy can be started, and this attribute’s value is updated to the policy name.

We need a set of policies to set the corresponding attributes to the involved objects in a

policy. Specifically, for a parameteron in cb, where1 ≤ n ≤ m.

ca phaseI on (SY N, o):

(SY N.cp = c0
b)∧(pon /∈ SY N.param)∧(o.cp = token) → permit(SY N, o, null)

112

updateAttribute : o.cp′ = cn
b

updateAttribute : SY N.param′ = SY N.param ∪ {pon}

This policy updates thecp attribute ofo to cn
b to prevent interference from other policies.

At the same time, the valuecn
b indicates thato is thenth parameter incb. Also the update

of SY N.param prevents taking more than one parameter object ofon at a time.

Note that ifcb is a creating policy, theno2 is the child object, and policyca phaseI o2

is not included in the simulation. For a policy withm parameters, there arem + 1 policies

in this phase if there is no creating operation in this policy; otherwise, there arem policies

since there is at most one creating action incb.

Phase II: This phase includes a set of policies to check the predicates and obligations

in cb. Specifically, for a predicatepn(ospn, oopn) where1 ≤ n ≤ i and1 ≤ spn, opn ≤ m,

we define two policies: one to update theospn’s predicate attribute, and another to update

SY N ’s attribute based on this change.

ca phaseII pn ospn oopn (o1, o2):

(o1.cp = cspn
b) ∧ (o2.cp = copn

b) ∧ pn(o1, o2) → permit(o1, o2, null)

updateAttribute : o1.predicate′ = o1.predicate ∪ {predn}

ca phaseII pn SY N ospn (SY N, o):

(SY N.cp = c0
b)∧(o.cp = cspn

b)∧(predn ∈ o.predicate) → permit(SY N, o, null)

updateAttribute : SY N.predicate′ = SY N.predicate ∪ {predn}

For an obligation actionbn(osbn, oobn) required bycb, where1 ≤ n ≤ j, an authoriza-

tion policy is defined to allow the obligation action; there are also two policies to update

attributes to capture the obligation satisfaction, as shown in the following.

113

ca phaseII bn osbn oobn (o1, o2):

(o1.cp = csbn
b) ∧ (o2.cp = cobn

b) → permit(o1, o2, r
b
n)

updateAttribute : o1.obligation′ = o1.obligation ∪ {oblign}

ca phaseII bn SY N osbn (SY N, o):

(SY N.cp = c0
b)∧(o.cp = csbn

b)∧(oblign ∈ o.obligation) → permit(SY N, o, null)

updateAttribute : SY N.obligation′ = SY N.obligation ∪ {oblign}

As cb hasi predicates andj obligations, there are2(i + j) policies in this phase.

Phase III: After the simulation in Phase II, all the satisfied predicates and obligations

have been recorded inSY N ’s attributes. In this phase there is one policy to create the

objecto2 (if cb is a creating policy) and update its attributes.

If cb is a creating policy, the creation is the first action in the body. The following

simulates it.

ca phaseIII SY N o2 create (SY N, o):

(SY N.cp = c0
b) ∧ (pred1 ∈ SY N.predicate) ∧ (pred2 ∈ SY N.predicate) ∧

· · · ∧ (predi ∈ SY N.predicate)∧

(obligi ∈ SY N.obligation) ∧ (oblig2 ∈ SY N.obligation) ∧ · · · ∧ (obligj ∈

SY N.obligation) → permit(SY N, o, create)

createObject o

updateAttribute : o.cp′ = c2
b

updateAttribute : o.condition′ = true

updateAttribute : SY N.condition′ = true

updateAttribute : SY N.param′ = SY N.param ∪ {po2}

114

This policy first creates a new object as the parametero2 in cb. At the same time, the

condition attribute ofo2 andSY N is assigned to be true since all the conditions parts have

been satisfied.

If cb is not a creating policy, the following policy just updatesSY N ando2’s condition

value based on the evaluations in Phase II.

ca phaseIII SY N o2 (SY N, o):

(SY N.cp = c0
b) ∧ (o.cp = c2

b) ∧ (pred1 ∈ SY N.predicate) ∧ (pred2 ∈

SY N.predicate) ∧ · · · ∧ (predi ∈ SY N.predicate)∧

(oblig1 ∈ SY N.obligation) ∧ (oblig2 ∈ SY N.obligation) ∧ · · · ∧ (obligj ∈

SY N.obligation) → permit(SY N, o, null)

updateAttribute : SY N.condition′ = true

updateAttribute : o.condition′ = true

Phase IV: After Phase III,o2’s attribute has been updated according to the conditions

in cb. In this phase, update actions are simulated with the following policy.

ca phaseIV o1 o2 (o1, o2):

(o1.cp = c1
b) ∧ (o2.cp = c2

b) ∧ (o2.condition = true) → permit(o1, o2, r)

up1, . . . , upk;

updateAttribute o2.update′ = true;

The last update indicates that all updates incb are performed. Note that as an obligation

policy, cb only can updateo1’s ando2’s attributes. So only one policy is needed.

Phase V: After all the updates have been completed, we need to reset the attributes of

all the subjects and objects involved in this policy for other policies. At first we need a

policy to notice that all the operations, except destroy, have been completed.

115

ca phaseV SY N o2 (SY N, o):

(SY N.cp = c0
b)∧ (o.cp = c2

b)∧ (o.update = true) → permit(SY N, o, null)

updateAttribute : SY N.update′ = true

If cb has one destroy action, then it is the last action in the body. Ifcb has two destroy

actions, then they are the last two actions in the body. The following policies are needed.

ca phaseV SY N o1 destroy (SY N, o):

(SY N.cp = c0
b)∧(o.cp = c1

b)∧(SY N.update = true) → permit(SY N, o, destroy)

destroyObject o

updateAttribute SY N.param′ = SY N.param− {po1};

ca phaseV SY N o2 destroy (SY N, o):

(SY N.cp = c0
b)∧(o.cp = c2

b)∧(SY N.update = true) → permit(SY N, o, destroy)

destroyObject o

updateAttribute SY N.param′ = SY N.param− {po2};

After this step, all the primitive operations have been completed. We need to reset all

the subjects’ and objects’ attributes. Similar to the policies in Phase I, a set of policies

betweenSY N and the parameter objects are defined as follows, where1 ≤ n ≤ m.

ca phaseV SY N on Success (SY N, o):

(SY N.cp = c0
b)∧(o.cp = cn

b)∧(SY N.update = true) → permit(SY N, o, null)

updateAttribute : o.cp′ = token

updateAttribute : o.predicate′ = ø

updateAttribute : o.obligation′ = ø

116

updateAttribute : o.condition′ = false

updateAttribute : o.update′ = false

updateAttribute SY N.param′ = SY N.param− {pon};

This policy checks if all the update actions incb have been performed. From Phase

IV, this occurs only ifSY N.condition is true, that means, all predicates and obligations

are satisfied, and all update actions have been finished. Note that ifo1 or o2 is destroyed

in cb, then the corresponding resetting policy is not presented here. After all the objects’

attributes have been reset, we need to reset theSY N ’s attributes.

ca phaseV SY N Success (SY N, SY N):

(SY N.cp = c0
b)∧(SY N.update = true)∧(|SY N.param| = 0) → permit(SY N, SY N, null)

updateAttribute : SY N.cp′ = token

updateAttribute : SY N.prdicate′ = ø

updateAttribute : SY N.obligation′ = ø

updateAttribute : SY N.condition′ = false

updateAttribute : SY N.update′ = false

After this policy, the system is ready to execute another policy.

A resetting process may be also needed if any conditions part is not satisfied with the

parameters; i.e., in Phase II, if predicatepn or obligationbn is not satisfied, thenpredn /∈

SY N.predicate or oblign /∈ SY N.obligation and the simulation cannot go further. In this

case, either a new parameter object can be captured, or all parameters andSY N can be

reset for rollback. The following policy can reset an object so that another object can be

captured as the parameter, where1 ≤ n ≤ m.

117

ca phaseV SY N on Rollback (SY N, o):

(SY N.cp = c0
b)∧(SY N.condition = false)∧(o.cp = cn

b) → permit(SY N, o, null)

updateAttribute : o.cp′ = token

updateAttribute : o.predicate′ = ø

updateAttribute : o.obligation′ = ø

updateAttribute : SY N.param′ = SY N.param− {pon}

This policy states that ifSY N.condition is false, then the attributes ofon can be reset,

andpon removed fromSY N.param so that another object can be captured as parameter

Xi. The value ofSY N.condition is false if either some policies in Phase II have not

been executed, or at least one of the condition part (predicate or obligation) in Phase II has

failed so that the condition evaluation policy in Phase III is not executed. For the first case,

the simulation ofcb can be restarted after resettings. For the second case, the condition

of cb is not satisfied with the object parameters. So these objects can be reset and other

objects can be involved with the policies in Phase I. Note that since this policy requires

SY N.condition = false, theno.condition = false ando.update = false.

Finally, the following policy is needed for the rollback ofSY N

α phaseV SY N Rollback (SY N, SY N):

(SY N.cc = α0) ∧ (SY N.condition = false) ∧ (|SY N.param| = 0) →

permit(SY N, SY N, null)

updateAttribute : SY N.cp′ = token

updateAttribute : SY N.predicate′ = ø

updateAttribute : SY N.obligation′ = ø

For a policy withm parameters, there are at most2m + 3 policies in this phase.

118

From these five phases, a general UCONB policy can be simulated with a linear number

of UCONA policies, based on the number of parameters, the number of predicates, and

the number of obligation actions. This proves that a UCONB model can be reduced to a

UCONA model. 2

With Lemma 1 and 2, the following theorem can be derived.

Theorem 5. UCONA and UCONB have the same expressive power.

Proof. This is a derivation from Lemma 1 and 2. 2

4.4 Discussion

As mentioned in Section 4.1, the UCONA model we have studied till now is apreA3 model,

since we consider the predicates in a policy as pre-authorizations and the updates as post-

updates. According to the definition of the model, we can also consider the updates as

pre-updates or ongoing updates. As the simulation in this chapter is built on the overall

effect of a usage process, it does not depend on when the updates are performed during a

usage process. Therefore, all the expressive power results ofpreA3 are valid forpreA1 and

preA2 models.

Corollary 2. UCONpreA1 andpreA2 are at least as expressive as ATAM, respectively.

Proof. A simulation process similar to that ofpreA3 can be used to prove this corollary.

Note that this result does not show any relative expressive power betweenpreA1,

preA2, andpreA3. This is a topic for future work.

Similarly, according to Theorem 5, a pre-authorization model has the same expressive

power of a corresponding pre-obligation model, as the follows shows.

119

Corollary 3. UCON preA1 and preB1 have the same expressive power, andpreA2 and

preB2 have the same expressive power.

Proof. A simulation process similar to that betweenpreA3 andpreB3 can be used to

prove this corollary.

Again, this does not imply any relative expressive power betweenpreB1, preB2, and

preB3.

In ongoing authorization models, the authorizations are checked repeatedly during the

usage process, and updates can be performed before, during, or after the usage. For a

command of TAM, the condition (the presences of rights in cells) is checked before all

primitive operations are performed, and there may be some primitive operations that can

make the condition false, i.e., by deleting rights from cells; that is, a condition may not be

true during the usage. Therefore the simulation presented in this chapter cannot be used

to compare the expressive power between UCON ongoing authorization models and TAM.

The same holds for ATAM, since adding a right into a cell in an ATAM command can

make the condition false during the access. The study of expressive power for ongoing

authorization and obligation models is a topic for future work.

4.5 Related Work

Expressive power and safety analysis are conflicting objectives in an access control system

since HRU [23]. HRU has good expressive power but the safety problem is undecidable

in general. Sandhu’s Schematic Protection Model (SPM) has sufficient expressive power

to simulate many protection models, while sustaining efficient safety analysis [45]. SPM

introduces the notion of strong security type for subjects and objects: each subject and

120

object is associated with a security type when created, and this type does not change after

creation. The principle behind the strong type is that all instances of a type are treated as

having similar behaviors.

For expressive power, SPM is less expressive than the monotonic HRU [44]. Ammann

and Sandhu extended SPM to ESPM (Extended SPM) [5] by allowing multi-parent cre-

ations. The ESPM model is equivalent in expressive power to the monotonic HRU, while

retaining the positive safety properties of SPM [5]. Later, Ammann, Lipton, and Sandhu

[4] generalized that result that single-parent creation is less expressive than multi-parent

creation in monotonic models, while it has equivalent expressive power in non-monotonic

models.

Both SPM and ESPM are monotonic models, and they are not as expressive as non-

monotonic HRU models. Sandhu [46] introduced TAM which generalizes HRU by intro-

ducing strong-typed subjects and objects. Both the HRU and TAM models only check the

presence of a rightr in the matrix cell[s, o], wheres is the row representing a subject and

o is the column representing an object. Motivated by separation of duty policies, Ammann

and Sandhu [6] extended TAM to the ATAM to allow checking the absence of rights in a

cell. Ganta [21] has shown that TAM is weakly equivalent to ATAM in expressive power,

but not strongly equivalent. Weakly equivalent means that a model can simulate another

model possibly using an unbounded number of operations in the simulation to simulate a

single operation in the simulated model, while strongly equivalence means that the simu-

lation only requires a bounded number of operations. Some variations of TAM and ATAM

have been studied in [21]. Specifically, SO-TAM is strongly equivalent to TAM in expres-

sive power, and single-object ATAM (SO-ATAM) is strongly equivalent to ATAM. Instead

121

of using simulation between different models, Tripunitara and Li [57] map each access

control model to a state-transition system and compare the expressive power by preserving

some security properties, such as safety. As a result of this approach, TAM is shown to be

less expressive than ATAM.

4.6 Summary

In this chapter I have investigated the expressive power of UCON, which is a long-standing

fundamental problem in access control systems. With a formal model of UCONA and

UCONB, I first illustrate the expressive power with an iTunes application. Then I simulate

SO-TAM with UCONA, which demonstrates its ability to simulate TAM and ATAM. This

formally proves that UCONA is at least as expressive as ATAM and more expressive than

TAM. Furthermore, I prove that a general UCONA model can be reduced to a UCONB

model, and vice versa. This formally shows that UCONA and UCONB have the same

expressive power.

Chapter 5: Safety Analysis

Along with expressive power, safety is another fundamental problem in an access control

model. This chapter first shows that the safety problem in general UCONA and UCONB

is undecidable. Then a decidable model is obtained by imposing some restrictions, and

its expressive power is studied by simulating an RBAC model and a DRM application.

Without explicitly mentioning, the UCONA model in this chapter ispreA3, as defined in

Chapter 4, and the results are also valid forpreA1 and preA2. The safety problem of

ongoing authorization models and obligation models is discussed at the end of this chapter.

Similar to the expressive power problem, for UCON condition models, as the system

state changes caused by environmental information are not captured in UCON core models,

safety is a function of the system environment.

5.1 Undecidability of Safety in UCONA

In a UCON system, the safety question asks that, from an initial state of the system, whether

or not a subject can obtain a permission on an object after a sequence of enforced policies,

i.e., by updating attributes and creating/destroying objects. As the safety of a general TAM

model is undecidable, and we have already shown in Chapter 4 that a general TAM can be

polynomially reduced to a UCONA model, it follows that the safety of UCONA is unde-

cidable. For the sake of completeness, we prove this with a direct reduction to the Halting

122

123

problem of a Turing machine. A construction similar to the undecidability proof of HRU

[23] is used.

Theorem 6. The safety problem of a UCONA system is undecidable.

Proof. We show that a general Turing machine with one-directional single tape [55]

can be simulated with a UCONA system, in which a particular permission leakage cor-

responds to the accept state of the Turing machine. A Turing machineM is a 7-tuple:

{Q, Σ, Γ, δ, q0, qaccept, qreject}, where:

• Q is a finite set of states,

• Σ is a finite set, the input alphabet not containing the specialblank symbol,

• Γ is a finite set, the tape alphabet, withblank ∈ Γ andΣ ⊆ Γ,

• δ : Q× Γ → Q× Γ× {L,R} is the transition function,

• q0, qaccept, qreject ∈ Q are the start state, accept state, and reject state, respectively,

whereqaccept 6= qreject.

Initially, M is in the stateq0. Each cell on the tape holdsblank. The movement ofM

is determined byδ: if δ(q, x) = (p, y, L), M is in the stateq with the tape head scanning

a cell holdingx, the head writesy on this cell, moves one cell to the left on the tape, and

M enters the statep. If the head is at the left end, there is no movement. Similarly for

δ(q, x) = (p, y, R), but the head moves one cell to the right.

We construct a UCONA system to simulate a Turing machineM introduced above,

where the set of objects in a state of the UCONA system is used to simulate the cells in the

tape ofM. The UCONA scheme is(ATT, R, P, C), whereR = Q∪{moveleft, moveright, create}

124

andATT = {state, cell, parent, end}. For an object, the value ofstate is eithernull or

the state ofM if its head is positioned on this cell, the value ofcell is the content in the

cell that the head is scanning, theparent attribute stores an object identity, andend is a

boolean value to show whether the head is on the right most cell of the part of the tape used

so far. The set of predicatesP and policiesC are shown in the simulation process.

The initial state(O0, σ0) of the UCONA system includes a single objecto0 and its

attribute assignments:

• o0.state = q0

• o0.cell = blank

• o0.parent = null

• o0.end = true

For the state transitionδ(q, x) = (p, y, L), the following policy is defined to simulate it:

policy moveleft(o1, o2):

(o2.parent = o1)∧(o2.state = q)∧(o2.cell = x) → permit(o1, o2,moveleft)

updateAttribute : o2.state′ = null;

updateAttribute : o2.cell
′ = y;

updateAttribute : o1.state′ = p;

In this policy, the two objects are connected by theparent attribute. When the Turing

machine is inq0, sinceo0’s parent value isnull, the left movement cannot happen. In a

state when the Turing machine’s state isq and the cell containsx, the left movement is

simulated with a policy with parameterso1 ando2, whereo2’s parent value iso1, and the

policy updates their attributes to simulate the movement.

125

If the head is not scanning the right most cell, the state transitionδ(q, x) = (p, y, R)

can be simulated with thepolicy moveright, which is similar to thepolicy moveleft;

otherwise it is simulated with thepolicy create, in which a new object is created.

policy moveright(o1, o2):

(o1.end = false) ∧ (o2.parent = o1) ∧ (o1.state = q) ∧ (o1.cell = x) →

permit(o1, o2,moveright)

updateAttribute : o1.state′ = null;

updateAttribute : o1.cell
′ = y;

updateAttribute : o2.state′ = p;

policy create(o1, o2):

(o1.end = true) ∧ (o1.state = q) ∧ (o1.cell = x) → permit(o1, o2, create)

updateAttribute : o1.state′ = null;

updateAttribute : o1.cell
′ = y;

updateAttribute : o1.end′ = false;

createSubject o2;

updateAttribute : o2.parent′ = o1;

updateAttribute : o2.state′ = p;

updateAttribute : o2.end′ = true;

updateAttribute : o2.cell
′ = blank;

In a particular state of the UCONA system, only one of the three rights (moveleft,

moveright, andcreate) is authorized according to one of the above policies, since the

state attribute is non-null only for one object. Each policy assigns a non-null value to an

126

object’sstate, and sets another one tonull. The attributeend is true only for one object.

Therefore, this UCONA system with these policies can simulate the operations ofM.

We need another policy to authorize a particular permission depending on thestate

attribute of an object.

policy q(o1, o2):

(o1.state = qf) → permit(o1, o2, qf)

For a Turing machine, it is undecidable to check if the stateqf can be reached from the

initial state. Therefore, with the scheme of UCONA, the granting of the permissionqf of a

subject to an object is also undecidable. This completes the undecidability proof.2

From Chapter 4 it is known that UCONB has the same expressive power as UCONB

model shown by bounded simulation. This implies the following result.

Corollary 4. The safety problem of a general UCONB model is undecidable.

Proof. From Lemma 1, for any UCONA system, there is a UCONB system that can sim-

ulate it polynomially in the number of policies, policy parameters, and predicates. There-

fore in above proof, we can use a UCONB system to simulate the UCONA system, which in

turn, can simulate the Turing machine. This derives the safety undecidability of UCONB.

2

5.2 Safety Decidable UCONA Model

Since the safety in a general model is undecidable, in this section we study the safety prop-

erty of UCONA models by imposing some restrictions. First we prove that a model with

finite attribute domains and without creating policies is safety decidable. Then we relax this

127

model by allowing restricted creating policies and obtain a more general decidable model.

Finally we illustrate the expressive power of these restricted but decidable models.

5.2.1 Safety Analysis of UCONA without Creation

In a UCONA system, if the value domain for each attribute is finite, then each object has

a finite number of attribute-value assignments. Furthermore, if the system does not have

any creating policies, then the set of all possible objects in a system state is also finite and

fixed, and therefore the total number of possible states of the system is finite, and the safety

problem can be checked in the finite set of system states. This leads to the following result.

Theorem 7. The safety problem of a UCONA system is decidable if:

1. the value domain of each attribute is finite, and

2. there is no creating policy in the scheme.

Proof. The total number of states of a system is finite and bounded a-priori since there

are no new created objects and each object has only a finite number of attribute-value

assignments. The safety problem is reduced to the reachability problem of a finite state

machine, which is decidable.

Consider a system specified by a scheme(ATT, R, P, C) and an initial statet0 =

(O0, σ0). We consider the safety check of a permission(s, o, r) in the following analy-

sis.

A system statet is characterized by a set of attribute assignments{o.a = v|o ∈ O, a ∈

ATT, v ∈ dom(a)∪{null}}, whereO ⊆ O0. (Note that destroy actions are allowed, hence

O is a subset ofO0.) SinceO0 is finite, and all the domains for the attributes inATT are

128

finite, the setQ of all possible states of the system is finite. With this state set, we construct

a deterministic finite automatonFA = (Q, Σ, δ, q0, Qf) to show that the safety problem is

decidable. TheFA consists of:

• the finite set of statesQ = {t|t = (O, σ), O ⊆ O0}.

• the alphabetΣ = C ×Oo ×Oo.

• the transition functionδ : Q× Σ → Q.

• the start stateq0 = to.

• the accept statesQf = {t|r ∈ ρt(s, o)}, a subset of states in which(s, o, r) is autho-

rized by a policy with the corresponding attribute values ofs ando.

The state transition function inFA can be constructed through the following algorithm:

1. For a statet = (O, σ), an object pair(o1, o2), and a policyc, if o1 ∈ O ando2 ∈ O,

and the all the predicates inc are true with the attribute-value assignments ofo1

ando2 in t (that means, the permission inc is authorized in this state), and all the

conditions of the actions inc are satisfied, do the following:

(a) Perform all the actions inc, if there are any. Define a state transition fromt to

t′ with input c(o1, o2) if t ³c(o1,o2) t′. That is,t′ is the state derived fromt by

enforcing the policyc with objectso1 ando2 as parameters. If the update actions

do not change the attribute values (i.e., the new value in an update action is the

same as the old value) and there is no destroy action, define a state transition

from t to itself with inputc(o1, o2).

129

(b) If the body ofc is empty, define a state transition fromt to itself with input

c(o1, o2).

2. If any one of the predicates inc is not true with the attribute-value assignments ofo1

ando2 in t, define a state transition fromt to itself with inputc(o1, o2).

3. If o1 /∈ O or o2 /∈ O (i.e., o1 or o2 is destroyed in previous states), define a state

transition fromt to itself with inputc(o1, o2).

4. Repeat above steps in the initial state and every derived state of the system with every

policy and every possible pair of objects in the initial state.

This algorithm terminates since there is only a finite number of states, policies, and

pairs of objects. Through this algorithm, all the state transitions and accept states inFA

have been defined. The accept states are those that authorize the permission(s, o, r).

By the construction, for each historyt0 Ã t of the UCONA system, there is an input,

the sequence of instantiated non-creating policies int0 Ã t, with which theFA moves

from the initial statet0 to t. Also, for each state reachable from the initial state inFA, we

can construct a history of the UCONA system from the initial state to this state by using the

policies and object pairs in each transition step. ThereforeFA can simulate any history of

the UCONA system.

It is a known fact that the problem of determining whether an accept state can be reached

is decidable in a finite automaton. This proves that the safety problem in the UCONA

system is decidable. 2

Corollary 5. The complexity of safety analysis for a UCONA system without creating poli-

cies and with a finite domain of each attribute is polynomial in the number of possible

130

states in the system.

Proof. Consider the finite automaton in Theorem 7 as a directed graph. The safety

check for a permission(s, o, r) is to find a path from the initial state to an accept state,

which is called as the PATH problem. It is known that the PATH problem of a graph is

polynomial in the number of nodes. That means, the complexity of the safety problem is

polynomial to the size of all possible states of the system. 2

From a different view, the complexity of the safety problem for a UCONA system with-

out creating policies and with a finite domain of each attribute is NP-hard in the number of

policies in the scheme. This can be proved by simulating a monotonic mono-operational

HRU without creates, which has a NP-complete safety problem in the number of commands

[23,46].

Theorem 8. The complexity of safety problem for a UCONA system with finite sets of

attribute domains and without creation is NP-hard in the number of policies in the scheme.

Proof. From Theorem 3 in Chapter 4 we already know that a SO-TAM system can

be reduced to a UCONA system with bounded simulation, while SO-TAM is equivalent

to TAM, which, in turn, can simulate any form of HRU model [46]. Thus, for a mono-

tonic mono-operational HRU model without creation, it can be polynomially reduced to a

UCONA system with the following features:

1. there is no creating or destroying policy;

2. the domain of an object’s access control list (attributeacl) is finite since there is no

creation, and all other attributes introduced in the proof of Theorem 3 have finite

domains.

131

From Theorem 7, this UCONA model is decidable. It is known that safety in a mono-

tonic mono-operational HRU is NP-complete. Also it has been shown in the proof of

Theorem 3 that a monotonic mono-operational HRU model can be reduced to this UCONA

model polynomially. These imply that the safety problem of a general decidable UCONA

model in Theorem 7 is NP-hard, since it subsumes the monotonic mono-operational HRU.

2

This result is not conflicting with Corollary 5, since the polynomial complexity of safety

analysis in Corollary 5 is in the size of all possible states of a system, which is generally

exponential to the number of the objects in the initial state and the sizes of attribute do-

mains. On the other hand, in Theorem 8 the number of the policies in the scheme is the

parameter of the problem.

5.2.2 Safety Analysis of UCONA with Creation

The decidable model introduced above does not allow the creation of new objects in a

system. In this section we relax this assumption and allow a restricted form of creation.

Intuitively, if the subject’s attribute values have to be updated in a creating policy, and there

is no policy that can update this subject’s attribute values to its previous values, then there

is a finite number of objects that can be created in the system, and the safety is decidable

by tracing all possible system states. We will see in Section 5.3 that there are examples of

useful systems that meet this requirement. We keep the assumption of finite value domain

for each attribute.

Definition 14. An attribute-value assignment tuple(or simplyattribute tuple) is a function

τ : ATT → ⋃
a∈ATT dom(a) ∪ {null} that assigns a value ornull to each attribute in

132

ATT , whereτ(a) ∈ dom(a) ∪ {null}.

For a system with a finite domain for each attribute, there is only a finite set of at-

tribute tuples, which is denoted asAT P. In any system statet = (Ot, σt), for each object

o ∈ Ot, its attribute tupleτo in statet is the attribute-value assignments ofo in this state.

Specifically,∀a ∈ ATT, τo(a) = σt(o.a), whereτo ∈ AT P.

Example 24 Consider a UCONA scheme withATT = {a, b}, anddom(a) = dom(b) =

{0, 1}. TheAT P of this scheme is{(a = null, b = null), (a = null, b = 0), (a =

null, b = 1), (a = 0, b = null), (a = 0, b = 0), (a = 0, b = 1), (a = 1, b = null),

(a = 1, b = 0), (a = 1, b = 1)}. In each state of the system, an object’s attribute-value

assignment is indicated by one ofAT P. 2

Grounding of Policies

For safety analysis, we generate a set ofgroundpolicies with agroundingprocess, for each

policy in a UCONA scheme. Intuitively, grounding a policy is to evaluate the policy with all

possible attribute tuples of the object parameters, and only those satisfying the predicates

in the policy are considered in the safety analysis.

Consider the following generic UCONA policy

c(s, o):

p1 ∧ p2 ∧ · · · ∧ pi → permit(s, o, r)

[createObject o];

up1; . . . ; upm;

upm+1; . . . ; upn;

[destroyObject o];

133

[destroyObject s];

where thecreateObject anddestroyObject actions are optional, andp1, . . . , pi are predi-

cates ons’s ando’s attributes. Ifc is a creating policy, these predicates are only based ons’s

attributes. Without loss of generality, we assume thatup1, . . . , upm are update actions on

o’s attributes, andupm+1, . . . , upn are update actions ons’s attributes, and for any attribute

of an object there is at most one update in the policy. In a real command, any of the actions

can be optional. For example, for a command that includes adestroyObject o action, all

update actions ono can be removed since they have no effect on the new system state.

The grounding process works as follows. For any two attribute tuplesτs, τo ∈ AT P ,

if all the predicatesp1, . . . , pi are true withs’s attribute tupleτs ando’s attribute tupleτo,

then a ground policyc(s : τs, o : τo) is generated with the following format1:

c(s : τs, o : τo):

true → permit(s, o, r)

[createObject o];

updateAttributeTuple o : τo → τ ′o;

updateAttributeTuple s : τs → τ ′s;

[destroyObject o];

[destroyObject s];

1Note that a different policy format is used in a ground policy from the original UCONA policy. Specif-

ically, in a ground policy, each object parameter is associated with an attribute tuple, and all updates of

attributes are reduced to twoupdateAttributeTuple actions on the parameter objects. Therefore a single

UCONA policy can generate at most|AT P| × |AT P| ground policies. A ground policyc(s : τs, o : τo) can

be executed only when the subject’s attribute tuple isτs and the object’s attribute tuple isτo.

134

whereτ ′o is the attribute tuple ofo after the update actionsup1, . . . , upm, andτ ′s is the

attribute tuple ofs after the update actionsupm+1, . . . , upn. If c is a creating policy, the

predicatesp1, . . . , pi are evaluated withτs only, and we can considerτo(a) = null for all

a ∈ ATT .

This process is repeated with every possible attribute tupleτs andτo. Since each object

has a finite number of attribute tuples, for any policy this grounding process is guaranteed

to terminate, and a finite number of ground policies is generated. The set of ground policies

is denoted asCn.

With this grounding process, the predicate evaluation in each policy is pre-processed by

considering all possible attribute tuples in a system. This simplifies the subsequent safety

analysis.

Example 25 This example illustrates the grounding process for a policy and does not

necessarily have a practical interpretation. For simplicity letATT = {a} anddom(a) =

{1, 2, 3}. The policy

c(s, o):

(s.a > o.a) → permit(s, o, r)

updateAttribute : o.a′ = o.a + 1;

generates the following three policies in the grounding process.

c(s : (a = 2), o : (a = 1))

true → permit(s, o, r);

updateAttributeTuple o : (a = 1) → (a = 2);

c(s : (a = 3), o : (a = 1))

true → permit(s, o, r);

135

updateAttributeTuple o : (a = 1) → (a = 2);

c(s : (a = 3), o : (a = 2))

true → permit(s, o, r);

updateAttributeTuple o : (a = 2) → (a = 3);

For two attribute tuplesτs andτo as attribute-value assignments ofs ando respectively,

if s.a > o.a is not true (e.g.,s.a = 1, o.a = 2), no ground policy is generated. Here by

definition we assume that the predicates.a > o.a is false if eithers.a = null or o.a = null.

2

Our goal is to use the finite set of ground policies to study the safety property of a

UCONA system. With the following result, the change of the system state caused by en-

forcing an original policy can be simulated by enforcing a ground policy.

Lemma 3. Given two statest = (O, σ) andt′ = (O′, σ′) in a UCONA system,

1. if t ³c(s,o) t′, wherec ∈ C, then there is a ground policycn generated fromc such

that t ³cn(s:τs,o:τo) t′, whereτs, τo ∈ AT P.

2. if t ³cn(s:τs,o:τo) t′, wherecn ∈ Cn, then there is a policyc ∈ C such thatt ³c(s,o) t′,

whereτs, τo ∈ AT P.

Proof. For the first case, letτs(a) = σ(s.a) andτo(a) = σ(o.a) for eacha ∈ ATT .

Sincet ³c(s,o) t′, all the predicates inc are satisfied withs ando’s attribute values in the

statet. According to the grounding process, triviallycn(s : τs, o : τo) is a valid ground

policy generated fromc. Also based on the grounding process, for a primitive action inc, if

it is not an update action, then it is included incn; if it is an update actionupdateAttribute :

s.a = v′, wherea ∈ ATT , v′ ∈ dom(a), thenupdateAttributeTuple : τs → τ ′s is included

136

in cn(s : τs, o : τo), andτ ′s(a) = v′. Therefore with the actions incn(s : τs, o : τo), the

system state changes to the same state as withc(s, o).

In the second case, supposet ³cn(s:τs,o:τo) t′, wherecn ∈ Cn. Sincecn can be enforced

in t, the attribute-value assignments ofs ando areτs andτo in t, respectively. According

to the grounding process, this implies that all the predicates in the policyc, from whichcn

is generated, are satisfied by these assignments. Therefore the policyc can be applied int.

Also, bothc andcn have the same non-update actions, and all the update actions inc have

the same effect with theupdateAttributeTuple action(s) incn, hencet ³c(s,o) t′. 2

This lemma shows that from the same system state, a single step by enforcing a policy

can be simulated with a single step with a ground policy, and vice versa. The following

shows that a history of the system with the original policies can be simulated by a history

with ground policies.

Lemma 4. For a UCONA system with initial statet0,

1. if t0 ÃC t, then there is a transition historyt0 ÃCn t.

2. if t0 ÃCn t, then there is a transition historyt0 ÃC t.

Proof. The first case can be proved by induction on the number of steps int0 ÃC t.

Basis step: Supposet0 ³c(s,o) t, wherec ∈ C. According to Lemma 3, there is a

ground policycn ∈ Cn such thatt0 ³cn(s:τs,o:τo) t.

Induction step: Assume that for every historyt0 ÃC t′ with k steps, there is a history

t0 ÃCn t′. Consider a historyt0 ÃC t of lengthk + 1 and lett′ ³c(s,o) t be the(k + 1)th

step. Sincec can be enforced int′, according to Lemma 3, there is a ground policycn ∈ Cn

such thatt′ ³cn(s:τs,o:τo) t. By induction hypothesis, there exists a historyt0 ÃCn t. This

137

completes the induction step and the proof of the first case. A similar approach can be used

for the proof of the second case. 2

With this lemma, we can conclude that for a UCONA system, the set of all states reach-

able from the initial state using the original policies can be reached using the ground poli-

cies, and vice verse. Therefore we can study the safety property of the system with the set

of ground policies.

Attribute Creation Graph

The basic idea of our safety analysis is to allow a finite number of creating steps from any

subject in the initial state. This requires that in a creating ground policy, the child’s attribute

tuple must be different from the parent’s attribute tuple, so that if the creating relation is

acyclic, there only can be finite steps of creating from the original subject.

Definition 15. A ground policy is acreating ground policyif it contains acreateObject

action in its body; otherwise, it is anon-creating ground policy.

Definition 16. In a creating ground policycn(s : τs, o : τo), τs is thecreate-parent attribute

tuple, andτ ′o is thecreate-child attribute tuple.

This definition implicitly requires that in each creating ground policy, the child’s at-

tribute tuple is updated. Without loss of generality, we assume that if there is no update

action for the child in a creating policy, thenτo = τ ′o in all the ground policies generated

from this creating policy; that is, they are both null-valued attribute assignments.

Definition 17. Thegeneration valueof an objecto is defined recursively as follows:

1. if o ∈ O0, its generation value is 0;

138

2. if o is created by a creating ground policyc(s : τs, o : τo), its generation value is one

more than the generation value ofs.

Definition 18. For a UCONA system with finite attribute domains, theattribute creation

graph (ACG)is a directed graph with nodes all the possible attribute tuplesAT P, and

an edge fromτu to τv if there is a creating ground policy in whichτu is the create-parent

attribute tuple andτv is the create-child attribute tuple.

Lemma 5. In a UCONA system, if the ACG is acyclic and in each creating ground policy

the child’s attribute tuple is updated, then the set of all possible generation values is finite,

and the maximal generation value is|AT P|.

Proof. With an acyclic ACG, in each creating ground policy the create-child attribute

tuple is different from the create-parent attribute tuple, otherwise there is a self-loop with

this attribute tuple and the ACG is not acyclic. If the maximal generation value is more than

|AT P|, then there exist creating ground policyc1(s1 : τs1, o1 : τo1) andc2(s2 : τs2, o2 :

τo2), whereτo1 is τs2 or an ancestor ofτs2 andτo2 is τs1 or an ancestor ofτs1 in ACG, which

is in conflict with the acyclic ACG property of the system. Therefore the set of all possible

generation values is finite, and the maximal generation value is|AT P|. 2

Attribute Update Graph

As a subject can create an object, which in turn can create another object, an acyclic ACG

ensures that the “depth” of these creation chains is bounded. At the same time, a subject can

have unbounded number of direct children, which allows the system to have an arbitrary

large number of objects. With some restrictions on the attribute update relation, our system

allows only a finite number of creations with a single subject as parent. Specifically, if the

139

subject’s attribute tuple has to be updated in a creating policy, and there is no policy in the

scheme that can update the subject’s attribute tuple to a previous one, then the number of

the subject’s direct children is finite.

Definition 19. In a ground policycn(s : τs, o : τo),

• if there is anupdateAttributeTuple s : τs → τ ′s action, thenτs is anupdate-parent

attribute tuple, andτ ′s is anupdate-child attribute tuple.

• if there is anupdateAttributeTuple o : τo → τ ′o action, thenτo is anupdate-parent

attribute tuple, andτ ′o is anupdate-child attribute tuple.

Note that in a creating ground policy in whichs is the parent andτs is updated,τs is

both a create-parent attribute tuple and an update-parent attribute tuple.

Definition 20. For a UCONA system with finite attribute domains, theattribute update

graph (AUG) is a directed graph with nodes all possible attribute tuplesAT P, and an

edge fromτu to τv if there is a ground policy in whichτu is an update-parent attribute tuple

andτv is an update-child attribute tuple.

Lemma 6. In a UCONA system, if the AUG has no cycle containing a create-parent at-

tribute tuple, and in each creating ground policy the parent’s attribute tuple is updated,

then the number of children of a subject is finite, and the maximal number of children is

|AT P|.

Proof. Since AUG has no cycle containing a create-parent attribute tuple, then in any

creating ground policycn(s : τs, o : τo), τ ′s is different fromτs, otherwise there is a self-

loop on the create-parent attribute tuple since in a creating ground policy,τs is both a

140

create-parent attribute tuple and an update-parent tuple. If the number of creating ground

policies which can use the same subject as the parent is more than|AT P|, then there are

at least two creating policies in which the update-parent attribute tuple are the same. That

means, there is a policy that updates the subject’s attribute tuple to this create-parent tuple,

which implies a cycle which contains this create-parent attribute tuple. This is in conflict

with the property of AUG in the system. Therefore the set of all possible creating ground

polices that can use this subject as parent is finite, and the maximal number of its children

is |AT P|. 2

Safety Analysis

Consider a system which satisfies the requirements in Lemma 5 and 6. For a subject in

the initial state of the system, the number of direct children of this subject is finite, and

the creation “depth” from this subject is also finite. These two aspects ensure that in the

system there is a bounded number of objects that can be created, and the safety can be

checked with the finite states of the system.

Definition 21. A descendantof an object is defined recursively as either itself or a child of

a descendant of this object.

Theorem 9. The safety problem of a UCONA system with finite attribute domains is decid-

able if:

• the ACG is acyclic, and

• the AUG has no cycle containing a create-parent attribute tuple, and

141

• in each creating ground policyc(s : τs, o : τo), both the parent’s and the child’s

attribute tuples are updated.

Proof. We first prove that the set of all possible objects that can be created in the system

is finite. Consider a subjects ∈ O0. If there are any creating ground policies that can

be applied withs as parent, then, according to Lemma 6, the number of creating polices

with s as parent is finite, and the maximal number of children created withs is |AT P|.

On the other hand, according to Lemma 5, for each object there is only a finite number

of generation values, therefore the number of descendants ofs is finite. Since the set of

objects in the initial state is finite, and each object created in the system is a descendant of

an object in the initial state, then there is only a finite number of objects that can be created

in the system.

The safety analysis needs to check if a particular permission(s, o, r) can be authorized

in any reachable state of the system. For this purpose we use the recursive algorithm shown

in Figure 5.1 to search a state that enables the permission(s, o, r) in all the states of the

system reachable from the initial state. The algorithm starts from the initial state of the

system, and checks all reachable states with the non-creating ground policies. If there is no

state where the permission is enabled, from every state of the reachable states, the algorithm

generates a new object and recursively does the similar check. This step is repeated with

all possible sequences of creations until all reachable states are checked.

First we prove that this algorithm terminates. Since in each call ofSafetyCheck(),

there are finitely many reachable states, and each state has a finite number of objects, then

the number of loops in each call is finite. According to the properties of the systems, the

set of all objects that can be created is finite, hence the number of callingSafetyCheck()

142

Safety Check Algorithm
// input: UCONA system with initial statet0 = (O0, σ0) and a finite set of ground policies
1) SafetyCheck(O0, t0)
2) Construct a finite state automatonFA with objectsO0 and the set of non-creating ground

policies. (refer to the proof in Theorem 7.)
3) foreach t0 Ã t in FA do
4) if r ∈ ρt(s, o), return true
5) foreach t0 Ã t in FA, wheret = (O, σ), do
6) foreachsubjects in t do
7) foreachcreating ground policyc(s : τs, o : τo), whereτs(a) = σ(s.a) do
8) enforcec(s : τs, o : τo);
9) create objecto and update its attribute tuple toτ ′o;
10) updates’s attribute tuple toτ ′s;
11) the system state changes tot′ with new objecto and updated attributes ofs ando;
12) SafetyCheck(O0 ∪ {o}, t′);
13) return false

Figure 5.1: Safety check algorithm

is finite. Therefore the algorithm terminates in a finite number of steps.

Then we show that all the reachable states of the system are visited by this algorithm

if the permission(s, o, r) is not enabled in any state. In each call ofSafetyCheck(), all

possible states without creating new objects are checked in the first loop (line 3-4). For a

particular subject and a particular creating ground policy, the policy can be applied with the

subject at most once because the AUG has no cycle containing any create-parent attribute

tuple. In line 7 every possible creating policy is applied for a subject as parent at least

once. So in the loops of 5-6 all possible sequences of creating policies are applied, and

the reachable states with created objects are also visited until no object can be created.

Therefore the algorithm checks all the possible reachable states in the system.

So if a state is reached where the permission(s, o, r) is enabled according to a policy,

143

the algorithm returnstrue. By checking all possible non-creating policy sequences (line 2-

4) for reachable states and trying all possible sequence of creating policies in each reachable

state, if the algorithm reaches a state in which the permission(s, o, r) is enabled, then there

is a sequence of policies leading the system from the initial state to this state. This proves

that this algorithm can perform the safety analysis. 2

From Lemma 6 and 5, it is known that the maximum number of all possible descendants

of an object is|AT P| × |AT P|. For a UCONA system with initial statet0 = (O0, σ0), the

maximum number of all possible created objects is|O0| × |AT P|2. On the other hand, for

each object, the maximum number of its attribute-value assignments is|AT P|. According

to the safety check algorithm, the maximum number of steps (SafetyCheck) is

(|O0|× |AT P|)∗ ((|O0|+1)×|AT P|)∗ ((|O0|+2)×|AT P|)∗ · · · ∗ ((|O0|+

N)× |AT P|),

whereN = |O0| × |AT P|2. Therefore the complexity of this safety check algorithm

is O(
((|O0| + N) × |AT P|)N

)
. On the other hand, according to Theorem 8, the safety

problem is NP-hard on the number of policies in the scheme, since it subsumes the model

without creation shown in Theorem 7.

5.3 Expressive Power of Decidable UCONA Models

Certain restricted UCONA models have decidable safety, so the question does arise whether

or not these models can capture practically useful access control policies. In this section

we use these limited forms of decidable UCONA models to express practically useful poli-

cies that have been discussed in the literature. We show that UCONA without creation can

144

simulate an RBAC96 model with URA97 administrative scheme, and that UCONA with re-

stricted creation can express policies for a DRM application with consumable rights. These

examples demonstrate that our decidable models maintain practical expressive power.

5.3.1 RBAC Systems

In an RBAC system, a subject can be viewed as having a role attribute whose value is a

subset of the roles in the system. Similarly, an object can have a role attribute for each right

indicating the subset of roles for which that right is authorized. In classic RBAC [19, 50]

these role attributes are fixed and changeable only by administrative actions, which could

themselves be authorized based on roles. Thus possession of a suitable administrator role

would enable a subject to change the roles of other subjects and objects, essentially ac-

complishing the user-role assignment and permission-role assignment which are the basic

operations of administrative RBAC (ARBAC). In this section we consider the user-role as-

signment (URA97) portion of the ARBAC97 model [49] and express it with a decidable

UCONA system.

An RBAC scheme consists of a set of regular rolesRR and a partial order relation

≥RH⊆ RR×RR for the role hierarchy, a set of administrative rolesAR and a partial order

relation≥ARH⊆ AR×AR for the administrative role hierarchy, a fixed set of generic rights

RT , and a set of rules to change user-role assignments, embodied in thecan assign and

can revoke relations of URA97 [49]. An RBAC system state consists of a set of subjects

SUB, a set of permissionsPER, a set of user-role assignmentsUA ⊆ SUB × RR, a

set of user-administrative role assignmentsUAA ⊆ SUB × AR, and a set of permission-

role assignmentsPA ⊆ PER × RR. The permissions are defined by objects and rights,

145

PER ⊆ OBJ × RT , whereOBJ is a set of objects. Note that here we simply consider

a user in the original RBAC as a subject in UCONA and do not account for role activation

explicitly. The construction can be easily extended to do this.

For each RBAC system, we construct a UCONA system with scheme(ATT, R, P, C),

whereATT = {ua, uaa, acl}, ua and uaa are subject attributes to store the user-role

assignments and user-administrative role assignments in RBAC, respectively, andacl is

an object attribute to record the permission-role assignments.R = RT ∪ {assign r|r ∈

RR} ∪ {revoke r|r ∈ RR}. The set of predicatesP consists of:

• the predicatex ∈ y to indicate thatx is an element of sety;

• the predicatemember to check if a role or any of its senior roles is assigned to a

subject, andmember(r, s.ua) = true if ∃r′ ≥RH r, r′ ∈ s.ua;

• the predicatenotmember to check that a role or all of its senior roles is not assigned

to a subject, andnotmember(r, s.ua) = true if ∀r′ ≥RH r, r′ /∈ s.ua;

• the predicateadmin member checks if an administrative role or any of its senior

roles is assigned to a subject, andadmin member(r, s.uaa) = true if ∃r′ ≥ARH

r, r′ ∈ s.uaa.

With fixed≥RH and≥ARH relations, all these predicates are polynomially computable.

The initial state of the RBAC system(SUB0, OBJ0, PER0, UA0, UAA0, PA0) is mapped

to a UCONA state(O0, σ0), whereO0 = SUB0 ∪ OBJ0 andσ0 as a set of attribute-value

assignments shown below.

• s0.ua = {r|r ∈ RR, and (s, r) ∈ UA0} for so ∈ SUB0;

146

• s0.uaa = {r|r ∈ AR, and (s, r) ∈ UAA0} for so ∈ SUB0;

• o0.acl = {(r, rt)|r ∈ RR, rt ∈ RT, (o0, rt) ∈ PER0, and (r, (o0, rt)) ∈ PA0} for

oo ∈ OBJ0;

The set of policiesC is defined as follows. First, a set of policies is needed to specify

the original permissions of RBAC in a state of the UCONA system. For a roler ∈ RR and

a rightrt ∈ RT , the policy is shown below.

policy r rt(s, o):

member(r, s.ua) ∧ ((r, rt) ∈ o.acl) → permit(s, o, rt)

Note that roles and rights are not parameters in a policy. With the RBAC scheme, the

upper bound on the number of these policies is|RR| × |RT | in the simulating UCONA

scheme.

In URA97, a relationcan assign specifies which particular administrative role can

assign a subject, which satisfies a prerequisite condition, to a role in a specified role range.

A prerequisite condition is a boolean expression generated by the grammarcr :≡ x|x̄|cr ∧

cr|cr ∨ cr, wherex ∈ RR. For a subjects ∈ SUB in a state,x is true if ∃x′ ≥RH

x, (s, x′) ∈ UA and x̄ is true if ∀x′ ≥RH x, (s, x′) /∈ UA. The set of the prerequisite

conditions in an RBAC is denoted asCR. Thereforecan assign ⊆ AR× CR× 2RR.

Consider the rulecan assign1(ar, cr, [r1, r2]), wherear ∈ AR, cr = x∧ ȳ, x, y ∈ RR.

It can be expressed by a bounded set of policies in UCONA, one for eachri ∈ [r1, r2]:

can assign ri(s1, s2):

admin member(ar, s1.uaa) ∧member(x, s2.ua) ∧ notmember(y, s2.ua) →

147

permit(s1, s2, assign ri)

updateAttribute : s2.ua′ = s2.ua ∪ {ri}

This policy allows a subjects1 to assign the roleri (ri ∈ [r1, r2]) to the subjects2 when

s1 is a member of the administrative rolear, ands2 is a member of the rolex but not ofy.

The number of policies to simulatecan assign1 is bounded, since for fixedRR and≥RH ,

the number of roles in[r1, r2] is bounded.

Similarly, a revocation relation in URA97 can be expressed with policies in UCONA.

A can revoke ⊆ AR × 2RR relation specifies that a subject with membership in an ad-

ministrative role can revoke a subject’s membership in the roler if r is in a particular role

range. This implies thatr is assigned to the subject before the revocation. We can simulate

can revoke1(ar, [r1, r2]) with a set of policies, one for each roleri ∈ [r1, r2]:

can revoke ri(s1, s2):

admin member(ar, s1.uaa) ∧ (ri ∈ s2.ua) → permit(s1, s2, revoke ri)

updateAttribute : s2.ua′ = s2.ua− {ri}

This policy states that in a particular state, a subjects1 can execute the rightrevoke ri

on the subjects2 by removingri (ri ∈ [r1, r2]) from s2’s ua attribute, ifar or one of its

seniors is in thes1’s uaa andri is in the subjects2’s ua. Again, the number of policies to

simulatecan revoke1 is bounded since the number of roles in[r1, r2] is bounded for fixed

RR,≥RH , AR, and≥ARH .

This shows that a UCONA system can be constructed to simulate an RBAC system

with URA97 administrative scheme. In this UCONA system, each attribute’s value domain

is finite sinceRR, AR, andRT are all fixed sets, and there is no creating policy in the

148

system. According to Theorem 7, this UCONA system has decidable safety, which implies

this RBAC system also has decidable safety.

Based on the same processes, we can simulate an RBAC system with PRA97 (permission-

role assignment model in ARBAC97) using UCONA and show that this RBAC model also

has decidable safety. For an RBAC system with RRA97 (role-role assignment model in

ARBAC97), sinceRR and≥RH are not fixed, this approach cannot be used to prove the

decidability of its safety problem.

5.3.2 DRM applications with Consumable Rights

Consumable access is becoming an important aspect in many applications, especially in

DRM. For example, in a pay-per-use application, a user’s credit is reduced after an access

to an object, causing the user to lose the right on the object after a number of accesses. For

another example, if an object can only be accessed by a fixed number of subjects concur-

rently, a subject’s access may revoke the access right of another subject. Most applications

with consumable rights can be modelled by UCON with the mutability property [39,40].

Consider a DRM application, where a user can order a music CD, along with a license

file which specifies that the CD can only be copied a fixed number of times (say, 10). The

license file can be embedded with the CD or distributed separately, and must be available

and respected by the CD copying software or device. A subject (user) has an attribute

credit with a numerical value of the user’s balance. Each object (CD) has an attribute

copylicense to specify how many copies that a subject can make with this object. The

policies are defined as follows.

order(s, o):

149

(s.credit ≥ o.price) ∧ (o.owner = null) → permit(s, o, order)

updateAttribute : s.credit′ = s.credit− o.price

updateAttribute : o.owner′ = s

updateAttribute : o.copylicense′ = 10

allow copy(s, o):

(o.owner = s) ∧ (o.copylicense > 0) → permit(s, o, allowcopy)

updateAttribute : o.allowcopy′ = true

copy(o1, o2):

(o1.allowcopy = true) → permit(o1, o2, copy)

createObject o2

updateAttribute : o2.sn
′ = o1.copylicense

updateAttribute : o1.copylicense′ = o1.copylicense− 1

updateAttribute : o1.allowcopy′ = false

The first policy specifies that a user can order an object if not ordered before (the value

of attributeowner is null) and the user’s credit is larger than the object’s price. As a result

of the order, the user’s credit is reduced, the object’sowner is updated to the user’s ID, and

the object’scopylicense is set to 10. The second policy states that whenever the object’s

copylicense is positive, the owner of the object is allowed to make a copy of the object.

In the third policy, if an object is allowed to be copied, a new object (CD) can be created,

its sn (serial number) is set to be the original object’scopylicense value, and the original

object’scopylicense is reduced by one. As the newly created object does not have any

150

license information, it cannot be copied.

In a system with a fixed number of users and objects in the initial state, the value domain

of owner is finite since there are no new users can be created. The set of all possible values

for credit of a subject is finite, since the value is set after pre-payment or registration.

Note that the changes of thecredit value because of administrative actions, e.g., credit

card payment, are not captured in the model. The value domains forcopylicense and

allowcopy are obviously finite. Therefore, all the attribute value domains are finite sets.

Furthermore, there is only one creating policy, in which both the child’s and the parent’s

attributes are updated, and there is no cycle with any create-parent attribute tuples since

the value ofcopylicense strictly decreases. According to Theorem 9, the safety of this

UCONA model is decidable.

In this example we focus on the policy definition with UCONA model. How to en-

sure the availability and trusted update of a license file are implementation issues and not

included here.

5.4 Discussion

The UCONA model we have studied till now in this chapter ispreA3. Similar to the ex-

pressive power problem, all the undecidable and decidable results in this chapter are valid

for preA1 andpreA2 models.

For ongoing authorization core models, as an attribute update in a usage process can

revoke another ongoing usage process, and the attribute updates for a revoked usage may

be different from that for an ended usage by the subject, so the system state change after an

access is nondeterministic. We leave the safety analysis of ongoing authorization models

151

for future work.

As an obligation policy can take more than two parameters and check attribute predi-

cates between them, the safety decidable results we have achieved may not be valid. We

leave this for future work.

5.5 Related Work

Previous work in safety analysis has shown that, for some general access control models

such as HRU [23], safety is an undecidable problem. That means, there is no algorithm to

determine that, given a general access control matrix system, whether it is possible to find

a combination of commands to produce a state where a subject has a particular permission.

HRU did provide decidability results for special cases with either mono-operational com-

mands (only one primitive operation allowed in a command) or mono-conditional (only

one presence check in the condition part of a command) monotonic (no “destroy subject”

or “destroy object” or “remove right” operations) commands. These restricted models are

very limited in expressive power. The take-grant model has a linear time algorithm to check

the safety property, but it also has limited expressive power [14,32].

Sandhu [46] introduces the TAM model which generalizes the HRU by introducing

strong-typed subjects and objects. The monotonic form of TAM with acyclic scheme is

decidable, and the decision procedure is NP-hard. Extending TAM, Soshi [56] presents a

dynamic-typed access matrix model (DTAM), which allows the type of an object to change

dynamically within a fixed domain. The decidable model of DTAM allows non-monotonic

operations.

152

Motwani et al. [34] present an accessibility decidable model in a capability-based sys-

tem, which is a generalized take-grant model and a restricted form of HRU. The approach

to the safety problem is based on its relationship to the membership problem in languages

generated by certain classes of string grammars. Jaeger and Tidswell [24] provide a safety

analysis approach which uses a basic set of constraints on a system. More recently, Koch

et al. [29] report on results that use a graph transformation model to specify access con-

trol policies. The state is represented by a typed labelled graph and state transitions by

graph transformations. Under some restrictions on the form of the rules (e.g., rules that

add or delete elements), the model has a decidable accessibility problem, and the rules can

model restrictive forms of DAC and a simplified decentralized RBAC. Very recently, Li and

Tripunitara [31] use a trust management approach to study the safety problem in RBAC and

derive the decidability of safety with a user-role administration scheme (URA97). The first

safety decidable model obtained in this chapter has the capability to simulate an RBAC

system with URA97.

5.6 Summary

In this chapter I investigate the safety property of UCON. First I show that the safety prob-

lem in general UCONA models is shown to be undecidable by simulating a Turing machine.

This also shows that the safety problem of UCONB is undecidable in general. Then I prove

that a UCONA model with finite attribute domains and without creating policies is decid-

able, and the safety problem is NP-hard. Further, by relaxing the creation restriction I prove

that the safety problem is decidable for a UCONA model with acyclic attribute creation

153

graph and no cycles that include create-parent tuple in attribute update graph. The decid-

able models are shown to be useful by simulating RBAC96 model with URA97 scheme,

and a DRM application with consumable rights.

Chapter 6: Conclusions and Future Work

6.1 Conclusions

Based on the conceptual model presented in previous work, a temporal logic model of

UCON is proposed in this dissertation. In this model, authorizations are specified as pred-

icates on subject and object attributes, obligations are specified as subject actions, and

conditions are specified as predicates on system attributes. A UCON policy is a set of

instantiated logical rules, where the set of scheme rules has the properties of soundness

and completeness. The specification flexibility of this logic model is shown by expressing

policies for various applications.

With a policy-based model formalizing the overall effect of a usage process, the expres-

sive power of UCON has been formally studied. First I show thatpreA is more expressive

than TAM, and at least as expressive as ATAM. Then, by defining a simulation relation, I

show thatpreA andpreB have the same expressive power.

On the safety aspect, I show that a generalpreA model is safety undecidable, which

implies the same result for a generalpreB model. Furthermore, a restrictedpreA model

with finite attribute domains and acyclic creation relation based on attribute values has a

decidable safety property, and the complexity of the safety problem is NP-hard. This re-

stricted model maintains good expressive power, as shown by simulating a practical RBAC

model with user-role assignment scheme, and a DRM application with consumable rights.

154

155

6.2 Future Work

This dissertation lays the groundwork for considerable future work on UCON. First of all,

an administrative model of UCON should be developed, including attribute management

and administrative policies. As UCON is an attribute-based model, synchronized attribute

acquisition and management are required in a system and should be included in an admin-

istrative model. Also mentioned in Chapter 2, post-obligations are in the scope of an ad-

ministrative model. For example, if a subject does not satisfy an obligation after an access,

a security administrator needs to take compensatory actions according to administrative

policies.

Secondly, practically useful and efficiently decidable cases of UCON based on current

results should be investigated in the future. As shown in Chapter 5, the safety problem of

the restricted UCONA is NP-hard. In practice a tractable safety property is desired. We

conjecture that not only object creation, but also attribute update in UCON affect the safety

problem. Restrictions on update actions can be a direction to find better safety results.

An important property related to ongoing decision checks in UCON is concurrency. As

a subject can have multiple ongoing accesses, or an object can be accessed by multiple

subjects simultaneously, a subject or an object attribute can be a shared variable of theses

concurrent accesses. This implies that an ongoing update in one access can affect the

status of another access, such as revocation. Concurrency affects safety analysis in two

aspects. On one side, as specified in Chapter 3, an update after arevokeaccess action

(e.g., due to updates in a concurrent access) may be different from an update after an

endaccess action, e.g., by updating different attributes, or updating the same attribute but

with different values. This introduces nondeterminism for safety analysis. On the other

156

side, the sequence of update actions in concurrent accesses affects state transitions in a

system. Specifically, concurrent accesses can lead a system to a different state from that

with serialized accesses. This introduces another kind of nondeterminism. While capturing

the essential aspect of state transitions and permission leakages caused by the mutability

of UCON, in this work we use a simplified approach for the safety analysis with ongoing

authorizations and obligations. The safety problem in concurrent environments is a topic

for future work.

This dissertation focuses on the policy and model layers of UCON in the OM-AM

framework. As mentioned in Section 2.1, a UCON model can be supported by differ-

ent architectures and implemented by several mechanisms. Emerging trusted computing

hardware such as Trusted Computing Group (TCG) [3] and LaGrande Technology (LT)

[1], and trusted operating systems such as Microsoft Next-Generation Secure Computing

Base (NGSCB) [2], provide new mechanisms to implement UCON policies and motivate

new architectures in real systems [52]. For example, the traditional server-side reference

monitor can be complemented with client-side control and audit with client-side reference

monitor [42,52]. Emerging applications of UCON with these new architectures and mech-

anisms will be studied in the future.

157

Bibliography

158

Bibliography

[1] LaGrande technology for safer computing. http://www.intel.com/technology/security.

[2] Next-generation secure computing base. http://www.microsoft.com/resources/ngscb.

[3] TCG Specification Architecture Overview. https://www.trustedcomputinggroup.org.

[4] P. Ammann, R. Lipton, and R. Sandhu. The expressive power of multi-parent cre-
ation in monotonic access control models. InProceedings of the Computer Security
Foundation Workshop, 1992.

[5] P. Ammann and R. Sandhu. Safety analysis for the extended schematic protection
model. InProceedings of the IEEE Symposium on Research in Security and Privacy,
1991.

[6] P. Ammann and R. Sandhu. Implementing transaction control expressions by check-
ing for absence of access rights. InProceedings of the Annual Computer Security
Applications Conference, 1992.

[7] D. E. Bell and L. J. Lapadula. Secure computer systems: Mathematical foundations
and model.Mitre Corp. Report No.M74-244, Bedford, Mass., 1975.

[8] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. A temporal access control mecha-
nism for database systems.IEEE Transactions on Knowledge and Data Engineering,
8(1), February 1996.

[9] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model support-
ing periodicity constraints and temporal reasoning.ACM Transaction on Database
Systems, 23(3), September 1999.

[10] E. Bertino, C. Bettini, and P. Samarati. A temporal authorization model. InProceed-
ings of ACM Conference on Computer and Communication Security, 1994.

[11] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for reasoning
about access control models. InProceedings of the Sixth ACM Symposium on Access
Control Models and Technologies, 2001.

159

[12] C. Bettini, S. Jajodia, X. Sean Wang, and D. Wijesekera. Obligation monitoring in
policy management. InProceedings of the 3rd Internationl Workshop on Policies for
Distributed Systems and Networks, 2002.

[13] C. Bettini, S. Jajodia, X. Sean Wang, and D. Wijesekera. Provisions and obligations
in policy management and security applications. InProceedings of the 28th VLDB
Conference, 2002.

[14] M. Bishop. Theft of information in the take-grant protection model. InProceedings
of IEEE Computer Security Foundation Workshop, 1988.

[15] D. Brewer and M. Nash. The chinese wall security policy. InProceedings of the IEEE
Symposium On Research in Security and Privacy, 1988.

[16] J. Chomicki and J. Lobo. Monitors for history-based policies. InProceedings of the
2nd Internationl Workshop on Policies for Distributed Systems and Networks, 2001.

[17] N. Damianou, N. Dulay, E. Lupu, , and M. Sloman. The ponder policy specification
language. InProceedings of the Workshop on Policies for Distributed System s and
Networks, 2001.

[18] D. E. Denning. A lattice model of secure information flow.Communications of the
ACM, 19(5), May 1976.

[19] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Richard Kuhn, and R. Chandramouli. Pro-
posed NIST standard for role-based access control.ACM Transactions on Information
and System Security, 4(3), 2001.

[20] A. Gal and V. Atluri. An authorization model for temporal data. InProceedings of
the ACM Conference on Computer and Communication Security, 2000.

[21] S. Ganta. Expressve Power of Access Contrtol Models Based on Propagation of
Rights. PhD thesis, George Mason University, 1996.

[22] M. Hansen and R. Sharp. Using interval logics for temporal analysis of security
protocols. InProceedings of the ACM Workshop on Formal Methods in Security
Engineering, 2003.

[23] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems.
Communication of ACM, 19(8), 1976.

[24] T. Jaeger and J. E. Tidswell. Practical safey in flexible access control models.ACM
Transactions on Information and Systems Security, 4(2), May 2001.

[25] S. Jajodia, P. Samarati, , and V. S. Subrahmanian. A logical language for expressing
authorizations. InProceedings of the IEEE Symposium On Research in Security and
Privacy, 1997.

160

[26] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for
multiple access control policies.ACM Transactions on Database Systems, 26(2), June
2001.

[27] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-based ac-
cess control model.IEEE Transactions on Knowledge and Data Engineering, 17(1),
2005.

[28] J. Joshi, E. Bertino, B. Shafiq, and A. Ghafoor. Constraints: Dependencies and sep-
aration of duty constraints in gtrbac. InProceedings of the 8th ACM Symposium on
Access Control Models and Technologies. ACM, 2003.

[29] M. Koch, L. V. Mancini, and F. Paris-Presicce. Decidability of safety in graph-based
models for access control. InProceedings of the 7th European Symposium on Re-
search in Computer Security, LNCS 2502, 2002.

[30] L. Lamport. The temporal logic of actions.ACM Transactions on Programming
Languages and Systems, 16(3), May 1994.

[31] N. Li and M. V. Tripunitara. Security analysis in role-based access control. InPro-
ceedings of the Ninth ACM Symposium on Access Control Models and Techniques,
2004.

[32] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject security.
Journal of ACM, 24(3), 1977.

[33] Z. M. and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems Speci-
fication. Springer-Verlag, 1991.

[34] R. Motwani, R. Panigrahy V. Saraswat, and S. Venkatasubramanian. On the decidabil-
ity of accessibility problem (extended abstract). InProceedings of the 32th Annual
ACM Symposium on Theory of Computing, 2000.

[35] OASIS.Assertions and Protocols for the OASIS Security Assertion Markup Language
(SAML).

[36] OASIS XACML TC. Core Specification: eXtensible Access Control Markup Lan-
guage (XACML), 2005.

[37] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to
enforce mandatory and discretionary access control policies.ACM Transactions on
Information and Systems Security, 3(2), 2000.

[38] J. Park.Usage Control: A Unified Framework for Next Generation Access Control.
PhD thesis, George Mason University, 2003.

161

[39] J. Park and R. Sandhu. The UCONABC usage control model.ACM Transactions on
Information and Systems Security, 7(1), February 2004.

[40] J. Park, X. Zhang, and R. Sandhu. Arrtibute mutability in usage control. InProceed-
ings of the Proceedings of 18th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, 2004.

[41] J. S. Park and R. Sandhu. RBAC on the web by smart certificates. InProceedings of
ACM Workshop on Role-Based Access Control, 1999.

[42] J. S. Park and R. Sandhu. Binding identities and attributes using digitally signed cer-
tificates. InProceedings Annual Computer Security Applications Conference, 2000.

[43] J. S. Park, R. Sandhu, and G. Ahn. Role-based access control on the web.ACM
Transactions on Information and Systems Security, 4(1), 2001.

[44] R. Sandhu. Expressive power of the schematic protection model. InProceedings of
the Computer Security Foundation Workshop, 1988.

[45] R. Sandhu. The schematic protection model: Its definition and analysis for acyclic
attenuating schemes.Journal of ACM, 35(2), 1988.

[46] R. Sandhu. The typed access matrix model. InProceedings of the IEEE Symposium
on Research in Security and Privacy, 1992.

[47] R. Sandhu. Lattice-based access control models.IEEE Computer, 26(11), November
1993.

[48] R. Sandhu. Engineering authority and trust in cyberspace: The OM-AM and RBAC
way. InProceedings of Fifth ACM Workshop on Role-based Access Control, 2000.

[49] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based
administration of roles.ACM Transactions on Information and Systems Security, 2,
1999.

[50] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role based access control models.
IEEE Computer, 29(2), 1996.

[51] R. Sandhu and J. Park. Usage control: A vision for next generation access control. In
Proceedings of the Second International Workshop on Mathematical Methods, Mod-
els and Architectures for Computer Networks Security, 2003.

[52] R. Sandhu and X. Zhang. Peer-to-peer access control architecture using trusted com-
puting technology. InProceedings of the 10th ACM Symposium on Access Control
Models and Technologies, 2005.

162

[53] F. Siewe, A. Cau, and H. Zedan. Compositional framework for access control policies
enforcement. InProceedings of the ACM Workshop on Formal Methods in Security
Engineering, 2003.

[54] R. T. Simon and M. E. Zurko. Separation of duty in role-based environments. In
IEEE Computer Security Foundations Workshop, 1997.

[55] M. Sipser.Introduction to the Theory of Computation. PWS Publishing, 1997.

[56] M. Soshi. Safety analysis of the dynamic-typed access matrix model. InProceedings
of the 6th European Symposium on Research in Computer Security, LNCS 1895, 2000.

[57] M. V. Tripunitara and N. Li. Comparing the expressive power of access control mod-
els. InProceedings of the ACM Conference on Computer and Communications Secu-
rity, 2004.

[58] X. Wang, G. Lao, T. DeMartini, H. Reddy, M. Nguyen, and E. Valenzuela. Xrml –
extensible rights markup language. InProceedings of the 2002 ACM workshop on
XML security, 2002.

[59] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and policy spec-
ification of usage control.ACM Transactions on Information and Systems Security,
8(4), 2005.

[60] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logical specification for usage
control. InProceedings of 9th ACM Symp. on Access Control Models and Tech., 2004.

163

Curriculum Vitae

Xinwen Zhang was born on January 1st, 1974, in Hunan, P. R. China and is a citizen of
P. R. China. He received the Bachelor and Master of Engineering in Power Engineering
from Huazhong University of Science and Technology, Wuhan, China in 1995 and 1998,
respectively. During 1998-2000, he was a research student in Nanyang Technological Uni-
versity, Singapore, and a software development engineer of CE-Infosys Pte Ltd, Singapore.
Currently he is a Ph.D. candidate in the Laboratory for Information Security Technology
and the Department of Information and Software Engineering at George Mason University,
Fairfax, Virginia, USA.

