



# Enumerated Authorization Policy ABAC Models: Expressive Power and Enforcement

Dissertation Defense Prosunjit Biswas

Advisor: Prof. Ravi Sandhu Prof. Gregory White Prof. Jianwei Niu Prof. Palden Lama Prof. Ram Krishnan

World-Leading Research with Real-World Impact!







- Background
- Enumerated Authorization-policy Models
- Enumerated vs Logical-formula Authorization-policy models
- Enforcement of Enumerated Authorization-policy models
- Conclusion



World-Leading Research with Real-World Impact!











## Usually, propositional logic is used to set up authorization policies.

Example:

Can-download  $\equiv$  age(u) > 18  $\land$  movie-rating(o) = R

#### <u>Advantages</u>

- easy to set-up
- concise
- very expressive





## Many ways to set up an authorization policy.

e.g. consider a policy, Auth<sub>read</sub> that allows a manager to read TS objects from home or office

i. Auth<sub>read</sub> = role(u) = mng  $\land$  (location(u) = office  $\lor$  location(u) = home)  $\land$  sensitivity(o) = TS

ii. Auth<sub>read</sub> = (role(u) = mng  $\land$  location(u) = office  $\land$  sensitivity(o) = TS)  $\lor$  (role(u) = mng  $\land$  location(u) = home  $\land$  sensitivity(o) = TS)





## Many ways to administer same changes.

e.g. update Auth<sub>read</sub> policy so that manager can no-longer access from home.

i. role(u) = mng  $\land$  (location(u) = office  $\lor$  location(u) = home)  $\land$  sensitivity(o) = TS

ii. (role(u) = mng ∧ location(u) = office ∧ sensitivity(o) = TS) ∨ (role(u) = mng ∧ location(u) = home ∧ sensitivity(o) = TS)







World-Leading Research with Real-World Impact!





# **Problem statement**

There are two major techniques for specifying authorization policies in Attribute Based Access Control (ABAC). The more conventional approach is to define policies using logical formulas involving attribute values. The alternate technique is by enumeration. While considerable work has been done for the former approach, the later lacks fundamental work from the research community.

## Thesis statement

Enumerated Authorization-Policy ABAC (EAP-ABAC) is a viable alternate to Logical-formula Authorization Policy ABAC (LAP-ABAC). EAP-ABAC is as expressive as LAP-ABAC in the finite domain. EAP-ABAC models can be enforced in different application domains.











## Salient Features:

- Very Simple enumerated ABAC model
- Finite domain ABAC model











Figure 1: EAP<sub>1,1</sub> model

#### Salient Characteristics:

- One user and object attribute
- Atomic valued tuples
- Tuples represent micro-policies

#### Examples:

UL={manager,employee} OL={TS,S} Tuple1= (manager,TS) Policy<sub>read</sub> = {tuple1, tuple2...}









2. session-label assignment constraints

Figure 5: Constrained model

## <u>Examples</u>

uLabel assignment constraint: eg. a user cannot be both manager & director.

Session assignment constraint: eg. at most one value can be activated in a session.

oLabel assignment constraint: eg. an object cannot be both private & public

Policy constraints: eg. (employee, TS) can never be used.





# Relationship of $EAP_{1,1}$ with traditional models









Figure 6: Expressive power of EAP<sub>1,1</sub> family





# Policy Machine mini

- Only ASSIGN and ASSOCIATION relation
- Default policy class

# Configuration of $EAP_{1,1}$ in Policy Machine mini





Figure 10: 2-sorted-RBAC in EAP<sub>1.1</sub>

#### 2-sorted-RBAC vs EAP<sub>1,1</sub>:

Use of attributes Separation of object and action from permission







Figure 7: LBAC in EAP  $_{1,1}$ 

LBAC in EAP<sub>1,1</sub>



Figure 8: LBAC properties

#### LBAC assumptions:

- Tranquility
- Object operation: creation only





# EAP-ABAC<sub>m,n</sub> and LAP-ABAC<sub>m,n</sub>





# **EAP<sub>m,n</sub>: Multi-attribute EAP model**





#### Examples:

role={manager,employee}
Clearance = {TS,S}
Resource = {VM, network}
Security-label = {Sensitive, public}

```
tuple1 = ({manager}, {TS}, {VM}, {Sensitive})
Can-read = {tuple1, tuple2,...}
```

#### Salient Characteristics:

- m user and n object attributes
- set valued tuples
- Tuples represent micro-policies



# LAP<sub>m,n</sub>: Multi-attribute LAP model





Figure 12: LAP<sub>m.n</sub> model

#### Examples:

role={mng, emp}
Clearance = {TS,S}
Resource = {VM, network}
Security-label = {Sensitive, public}

 $can-read \equiv role(u)=mng \land clearance(u) = TS \land$  $resource(o) = VM \land security-label(o) = sensitive$  Salient Characteristics:

- m user and n object attributes
- logical-formula presents policies









# Equivalence of expressive power (summary)







Figure 13: Equivalence of enumerated and logical-formula authorization-policy models



Example: expressing LAP<sub>m.n</sub> policy in LAP<sub>1.1</sub>



# Authorization policy in $LAP_{m,n}$ :

Role = {mng, emp} Location = {campus, home} Resource = {vm, network}  $can-run \equiv role(u)=mng \land location(u) = campus \land resource(o) = VM$ 

# Equivalent policy in LAP<sub>1.1</sub>:

Role-location = {mng-from-campus, mng-from-home, emp-from-campus, emp-from-home} Resource = {vm, network} can-run = Role-location(u) = mng-from-campus  $\land$  resource(o) = VM





# Authorization policy in $LAP_{1,1}$ :

Age = {1,2,3,...,100} Movie-type = {pg, pg-13, R} *can-download* = *age(u)>=18* ∧ *age(u)<25* ∧ *m*ovie-type(*o*) = R

# Equivalent policy in EAP<sub>1,1</sub>:

Age =  $\{1,2,3,...,100\}$ Movie-type =  $\{pg, pg-13, R\}$ can-download =  $\{(18,R), (19,R), (20,R), (21,R), (22,R), (23,R), (24,R)\}$ 





- Rich & flexible
- Easy to setup
- Concise

Logical-formula authorization-policy

- Difficult to update
- Monolithic
- Heterogeneous













# Protection model for JSON documents





#### Why JSON?





not in XML protection models.





# Existing XML models vs proposed model



Figure 14: XML vs proposed JSON protection model

World-Leading Research with Real-World Impact!





## JSON data forms a rooted tree hierarchical structure (like XML)



Figure 15: JSON data and JSON tree

World-Leading Research with Real-World Impact!











Figure 16: The Attribute-based Operational Model (AtOM)

**UTSA** 







Figure 17: Examples of (a) User-label values, (b) security-label values and (c) annotated JSON tree

# Example of a protection policy:

Policy<sub>read</sub>  $\equiv$  {(manager, sensitive), (employee, enterprise) }



## Prototype implementation -(content-level access control for OpenStack Swift)





Figure 22: Implementation in OpenStack Swift Cloud



## **Implementation - evaluation**



Comparing downloading time for JSON document w/ and w/o AtOM enforcement



Fig 23: Performance evaluation

World-Leading Research with Real-World Impact!





# Future work and Conclusion









# **Optimal representation of authorization policy:**







Administration of

- enumerated authorization-policy
  - enumerated vs logical-formula authorization-policy



## Conclusion



- Enumerated authorization-policy models
- Enumerated vs logical-formula authorization-policy models
- Enforcement







#### Included in the dissertation:

1. **Biswas, Prosunjit**, Ravi Sandhu, and Ram Krishnan. "Label-based access control: an ABAC model with enumerated authorization policy." Proceedings of the 2016 ACM International Workshop on Attribute Based Access Control. ACM, 2016. [No-of-pages: 12, Status: Full Paper]

2. **Biswas, Prosunjit**, Ravi Sandhu, and Ram Krishnan. "A comparison of logical-formula and enumerated authorization policy ABAC models." IFIP Annual Conference on Data and Applications Security and Privacy. Springer International Publishing, 2016. [No-of-pages: 8, Status: Short Paper]

3. **Biswas, Prosunjit**, Ravi Sandhu, and Ram Krishnan. "An Attribute-Based Protection Model for JSON Documents." International Conference on Network and System Security. Springer International Publishing, 2016. [No-of-pages: 15, Status: Full Paper]

4. **Biswas, Prosunjit**, Farhan Patwa, and Ravi Sandhu. "Content level access control for openstack swift storage." Proceedings of the 5th ACM Conference on Data and Application Security and Privacy. ACM, 2015. [No-of-pages: 4, Status: Poster]

#### Beyond dissertation:

5. **Biswas, Prosunjit**, Ravi Sandhu, and Ram Krishnan. "Uni-ARBAC: A Unified Administrative Model for Role-Based Access Control." International Conference on Information Security. Springer International Publishing, 2016. [No-of-pages: 14, Status: Full Paper]

6. **Biswas, Prosunjit**, Ravi Sandhu, and Ram Krishnan. "Attribute Transformation for Attribute-Based Access Control." Proceedings of the 2017 ACM International Workshop on Attribute Based Access Control. ACM, 2017. [No-of-pages: 8, Status: Full Paper]





