

Towards Machine Learning Based Access Control

Ph.D. Dissertation Defense

Mohammad Nur Nobi

Department of Computer Science The University of Texas at San Antonio

Committee:

Ravi Sandhu, Ph.D., Co-Chair Ram Krishnan, Ph.D., Co-Chair Palden Lama, Ph.D. Wei Wang, Ph.D. Xiaoyin Wang, Ph.D.

July 08, 2022

Introduction

- Access Control
 - The decision to permit or deny a user access to a resource
 - User: a human user, a process, an application, etc.
 - Resource: network, data, application, service, etc.
- There are many mainstream classical approaches for access control
 - Access Control Lists (ACLs), Role Based Access Control (RBAC), Attribute Based Access Control (ABAC), Relationship Based Access Control (ReBAC), etc.
- These approaches have their benefits and numerous advancements over time

I-C-S The Institute for Cyber Security Issues in Classical Approaches (ABAC)

Attribute Engineering

- An expert designs attributes based on the metadata
- E.g., 'status' attribute is engineered from 'spending' and 'credit' history

Policy Engineering (Policy Mining)

- To design policy through a manual or automated process
- E.g., <status = 'platinum', type='secured'> <access = 'read, write'>

Generalization

- Focus on capturing given access control state
- E.g., Knowing Alice's access, is it possible to determine Bob's access?

Attribute and Policy Update (administration)

- Revoke existing access or introduce a new access to existing users
- Depends on human, error-prone

- Could it learn from existing access control state of the system?
- Could it learn directly from the metadata?
- Could it make access control decisions that are accurate and generalize better?

- Obviates the need for related procedures
 - Attribute Engineering and Assignments
 - Policy Engineering
- Ease policy updates (Administration)

A deep neural network can **precisely learn** the access control state of a large-scale, complex, and dynamic system, **generalize enough** to make accurate decisions for unseen access control requests and **ease access control administration** by employing processes with **minimal human involvement**.

Summary of Contributions

Section-1

Timeline of ML in Access Control

The Institute for Cyber Security

C·SPECC

Center for Security and Privacy Enhanced Cloud Computing

Taxonomy of ML in Access Control

|•(_)•S

The Institute for Cyber Security

Publicly Available Datasets for Access Control

C·**S**PECC

Center for Security and Privacy Enhanced Cloud Computing

	Name	Publish	Reference	Туре	Description	
		Year				
	IBM-CM	2004	IBM [1]	Access Policies	Natural language access control policy	
	University- Data	2005	Fisler et al. [46]	Access Policy	Central grades repository system for a university	
	Wikipedia	2009	Urdaneta et al. [133]	Access Logs	Access request traces from Wikipedia	
	AmazonUCI	2011	UCI Repository [11]	Access	Access data of Amazon	
No	iTrust	2012	Meneely et	Access	Natural language access	NL Policy
attributes		2012	al. [99]	Policies	control policy	Related
	CyberChair	2012	Stadt et al. [135]	Access Policies	Natural language access control policy	
	Collected- ACP	2012	Xiao et al. [138]	Access Policies	Natural language access control policy collected from multiple sources	
	Amazon- Kaggle	2013	Kaggle [10]	Access Logs	Two years historical access data of Amazon	
					employees (12000 users and 7000 resources)	
	eDocument	2014	Decat et al. [41]	Access Policy	e-document case study	
	Workforce	2014	Decat et al. [42]	Access Policy	Workforce management case study	
	SCADA- Intrusion	2015	Turnipseed et al. [132]	SCADA Data	SCADA dataset for intrusion detection system	
Attributes	Dalpiaz	2018	Dalpiaz et	User Stories	Over 1600 user stories from 21 web applications	
extraction	Incident	2018	Amaral et al. [9]	Event Logs	Event log from an incident management process	

- ML in Access Control is nothing new
 - To optimize the underlying process
 - Evaluating potential to infer policy
- Lack of generalized system
 - Target specific application
- Lack of good datasets
- No discussion about ML model's vulnerabilities

Machine Learning Based Access Control (MLBAC)

Operational Model Of Machine Learning Based Access Control

Authorization Tuple <Alice, projectA, {read, write}>

A dataset for DLBACa is the collection of such authorization tuples (samples)

I.C.S The Institute for Cyber Security

List of Datasets

C-SPECC Center for Security and Privacy Enhanced Cloud Computing

#	Dataset	Туре	Users	User	Resources	Resour	rceAuthorization
				Metada	ata	Metad	ataTuples
1	amazon-kaggle	Real-world	9560	8	7517	0	32769
2	amazon-uci	Real-world	4224	11	7	0	4224
3	u4k- $r4k$ - $auth11k$	Synthetic	4500	8	4500	8	10964
4	u5k- $r5k$ - $auth12k$	Synthetic	5250	8	5250	8	12690
5	u5k- $r5k$ - $auth19k$	Synthetic	5250	10	5250	10	19535
6	u4k- $r4k$ - $auth21k$	Synthetic	4500	11	4500	11	20979
7	u4k- $r7k$ - $auth20k$	Synthetic	4500	11	7194	11	20033
8	u4k- $r4k$ - $auth22k$	Synthetic	4500	13	4500	13	22583
9	u4k- $r6k$ - $auth28k$	Synthetic	4500	13	6738	13	28751
10	u6k- $r6k$ - $auth32k$	Synthetic	6000	10	6000	10	32557

Preparing Training Data for DLBACa

The data type in our datasets are **nominal-categorical**

Decision Making Process in DLBACα

Evaluation Methodology

Multiple instances of DLBACa

ResNet (DLBAC_{α -R}) DenseNet (DLBAC_{α -D}) Xception (DLBAC_{α -X})

Classical ML Algorithms

SVM

- Random Forest (RF)
- Multilayer Perceptron (MLP)

State-of-the-art policy mining techniques

XuStoller [1] Rhapsody [2] EPDE-ML [3]

[1] Xu et al. 2014. "Mining attribute-based access control policies." IEEE TDSC

[2] Cotrini et al. 2018. Mining ABAC rules from sparse logs. In IEEE Euro S&P.

[3] Liu et al. 2021. Efficient Access Control Permission Decision Engine Based19n Machine Learning. Security & Communication Networks.

80% samples for the training, and 20% testing

A higher F1 score: better generalization A higher TPR: accurate and efficient in granting access

A lower FPR: efficient in denying access

I-C-S The Institute for Cyber Security Comparison with ML Algorithms and State-of-the-art Policy Mining

make accurate access decisions and generalize better

I-C-S The Institute for Cyber Security The Institute for Cyber Security

Efficient in permitting desired accesses and denying unwanted accesses

Understanding DLBAC Decisions C-SPECC

A sample access request

Why does Bob's 'op2' access been denied for projectB resource?

Which metadata are important/ influential for this decision?

- Propose two approaches
 - Integrated Gradients
 - Knowledge Transferring

Center for Security and Privacy Enhanced Cloud Computing

Local Interpretation

Global Interpretation

Application of Integrated Gradientbased Understanding

- Strengthen the effect of "influential metadata"
- Can be utilized in future access modification

Is there any relations among metadata?

- Rule: local interpretation
- DT: global interpretation

- DLBAC is an effective operational model for access control
- Black-box decisions are understandable in human terms
- Issues:
 - How to change/ update access control state?

Machine Learning Based Access Control (MLBAC)

MLBAC Administration

Overview

Administration Process Flow

Weights/Parameters Update

18 random Tasks with different Criteria

Performance Evaluation

RF-MLBAC, Add additional estimators

• ResNet-MLBAC: Fine-tuning

- How accurately it can learn new changes (AATs)
- How well it can preserve existing access states for all other users/resources (OATs)

Unable to accommodate new changes with good accuracy !

- Sequential learning is an effective method
- Deep neural network systems performed better
- Issues:
 - Some dependencies on physical data storage (Replay Data)
 - Designing better "Criteria" is challenging

Section-4 (Part-A)

Machine Learning Based Access Control (MLBAC)

Comprehensive Literature Review : ML in Access Control

Methodology

Evaluation

Successfully crafted adversarial examples

Success Rate =

Samples attempted for the adversarial example creation

• Accessibility constraint minimized the attacks

- Issues
 - Need better defense if no accessibility constraint

Section-4 (Part-B)

Machine Learning Based Access Control (MLBAC)

DLBAC Assisted Permission **Recommendation for Mobile Devices**

to

;e's

to

;e's

OK

Allow

Center for Security and Privacy Enhanced Cloud Computing

The Institute for Cyber Security

... abundant permission requests

Ask-On-Install (AOI)

Ask-On-First-Use (AOFU)

Could DLBAC automate this permission decision?

COP-MODE Dataset

- Developed by Mendes et al. [4], 65K permission requests
- At each permission request:
 - Requesting application: name and play store category
 - **Permission:** name (CONTACTS, STORAGE, etc.) and grant result (allow/deny)
 - Phone state: geolocation, plug, call state, network connection, etc.
 - User context: time, semantic location, in event or not, etc.

[4] . Mendes, R., Brandão, A., Vilela, J. P., and Beresford, A. R.. Effect of User Expectancy on Mobile App Privacy: A Field Study. In 2022 IEEE PerCom.

Accuracy: 74.02%

Evaluation

- Three DLBAC instances with: ResNet, DenseNet, and Xception
- State-of-the-art (Brandão et al. [5]) Accuracy 88% and F1 Score 0.90

Cluster like-minded users, Liu et al. [6]

Accuracy: ~88.5 % F1 Score: ~0.915

• Clustering like-minded users has an advantage

- Issues
 - Recommendation accuracy needs to be improved

DLBAC Issues	Understanding, Administration, etc.Accuracy is lower in some cases	
MLBAC Verification	Measuring CorrectnessTesting Framework	
Bias and Fairness	Data could comes from untrusted sourcesImbalance data may bias the decision	
Adversarial Issues	Adversarial attack for Classical ML based systemsNeed more strong defense mechanism	
DLBAC in Tandem	Reinforcing access decisionMonitoring and feedback	

• Nobi, Mohammad Nur, Ram Krishnan, Yufei Huang, Mehrnoosh Shakarami, and Ravi Sandhu. "Toward Deep Learning Based Access Control." In ACM CODASPY. 2022.

• Under Review

- (ESORICS 2022) Mohammad Nur Nobi, Ram Krishnan, Yufei Huang, and Ravi Sandhu. "Administration of Machine Learning Based Access Control".
- (itaDATA 2022) **Mohammad Nur Nobi**, Ram Krishnan, and Ravi Sandhu. "Adversarial Attacks in Machine Learning Based Access Control".
- (ACM Computing Survey, arXiv) Mohammad Nur Nobi, Maanak Gupta, Lopamudra Praharaj, Mahmoud Abdelsalam, Ram Krishnan, and Ravi Sandhu. "Machine Learning in Access Control: A Taxonomy and Survey".

Source code and datasets URL:

<u>https://github.com/dlbac/DlbacAlpha</u> <u>https://github.com/mlxac/MLBAC-Admin</u> <u>https://github.com/mlxac/MLBAC-AdversarialAttack</u>

Questions and Comments

Backup

DLBAC works with any deep neural network

Dataset Generation

Generate a synthetic dataset using Xu et al. [1]

1. Xu et al. 2014. "Mining attribute-based access control policies." IEEE TDSC.

I-C-S The Institute for Cyber Security Data Characteristics in Realworld Systems

A dataset representing Amazon^{*} access control system

* https://www.kaggle.com/c/amazon-employee-access-challenge/

Network Architectures

For dataset 1-4: ResNet8 For dataset 5-10: ResNet50

Layers	Output Size	DenseNet-121	
Convolution	112×112		
Pooling	56 × 56		
Dense Block	56 ~ 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$	
Transition Layer	56 × 56		
(1)	28×28		
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}_{\times 12}$	
(2)	20 ~ 20	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	
Transition Layer	28×28		
(2)	14×14		
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 24$	
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	
Transition Layer	14×14		
(3)	7 × 7		
Dense Block	7×7	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 16$	
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{10}$	
Classification	1 × 1		
Layer			

ResNet, DenseNet

Dataset Generation

A dataset with 800 users and 665 resources, 3 hidden metadata, **fixed set of metadata values**.

A real-world dataset from Amazon

I-C-S The Institute for Cyber Security Characteristics of AmazonKaggle and AmazonUCI Datasets

Amazon Kaggle Dataset

Amazon UCI Dataset

Highly imbalanced !

FPR Performance Improvement in DLBACα

I-C-S The Institute for Cyber Security

Decision Tree Generated from KT in DLBACα

I-C-S The Institute for Cyber Security List of Tasks and Criteria for MLBAC Administration

C · S PECC
Center for Security and Privacy Enhanced Cloud Computing

Task Id	Task	Criteria	Size of
			AATs
t-1	$\langle uid = 259, rid = 112, op3, permit \rangle$	$(umeta0 \in \{9\}, umeta6 \in \{6\}, rmeta0 \in \{9\}, rmeta3 \in \{46\})$	43
t-2	$\langle uid = 4624, rid = 4634, op4, deny \rangle$	$(umeta2 \in \{58, 49\}, umeta3 \in \{39\}, rmeta3 \in \{39\})$	94
t-3 ((uid = 1992, rid = 1858, op1, permit)	$(umeta2 \in \{11\}, rmeta2 \in \{11\}, rmeta3 \in \{48, 91\})$	92
t-4 ($\langle uid = 5049, rid = 5177, op4, permit \rangle$	$(umeta1 \in \{6\}, umeta4 \in \{47, 71\}, rmeta1 \in \{6\})$	215
t-5	(uid = 2034, rid = 2041, op2, deny)	$(umeta4 \in \{10\}, rmeta1 \in \{6, 10\}, rmeta4 \in \{10\})$	75
t-6 ((uid = 1348, rid = 1083, op2, permit)	$(umeta3 \in \{46, 50, 53\}, umeta5 \in \{13\}, rmeta3 \in \{46, 50, 53\}, rmeta5 \in \{13\})$	187
t-7 ((uid = 1345, rid = 1092, op4, permit)	$(umeta0 \in \{24, 64\}, umeta6 \in \{7\}, rmeta0 \in \{24, 64\}, rmeta6 \in \{7\})$	139
t-8	$\langle uid = 442, rid = 580, op3, permit \rangle$	$(umeta3 \in \{49\}, umeta5 \in \{47, 111\}, rmeta5 \in \{47, 111\}, rmeta7 \in \{49\})$	134
t-9 ((uid = 2599, rid = 2593, op1, permit)	$(umeta0 \in \{11\}, umeta1 \in \{17\}, rmeta0 \in \{11\}, rmeta1 \in \{17\})$	66
t-10 ((uid = 4112, rid = 1241, op2, permit)	$(umeta1 \in \{18\}, rmeta1 \in \{18\}, rmeta3 \in \{45, 47, 113\})$	75
t-11	(uid = 2135, rid = 4875, op3, deny)	$(umeta2 \in \{13\}, umeta4 \in \{71, 96\}, rmeta2 \in \{13\}, rmeta4 \in \{71, 96\})$	118
t-12	$\langle uid = 660, rid = 560, op1, permit \rangle$	$(umeta3 \in \{88\}, umeta5 \in \{48, 111\}, rmeta5 \in \{48, 111\}, rmeta7 \in \{88\})$	107
t-13	$\langle uid = 2019, rid = 2056, op2, deny \rangle$	$(umeta4 \in \{12\}, rmeta1 \in \{78, 82\}, rmeta4 \in \{12\})$	121
t-14 ((uid = 1228, rid = 1088, op1, permit)	$(umeta2 \in \{11, 63\}, umeta5 \in \{20\}, rmeta5 \in \{20\})$	97
t-15 ((uid = 2825, rid = 3044, op2, permit)	$(umeta6 \in \{8\}, rmeta1 \notin \{6, 10\}, rmeta2 \in \{61, 62\}, rmeta6 \in \{8\})$	107
t-16	$\langle uid = 965, rid = 861, op4, permit \rangle$	$(umeta3 \in \{45\}, umeta7 \in \{20\}, rmeta3 \in \{45\}, rmeta6 \in \{20\})$	63
t-17 ((uid = 3745, rid = 3843, op3, permit)	$(umeta0 \in \{31\}, umeta6 \in \{2, 5, 9, 18\}, umeta7 \in \{4, 13\}, rmeta0 \in \{31\})$	83
t-18 ((uid = 2488, rid = 2495, op3, permit)	$(umeta1 \in \{58\}, rmeta1 \in \{58\}, rmeta2 \in \{58, 61\})$	116

Methodology

Continuous and Categorical data

- Objective function optimization
 - LowProFool algorithm
 - categorical and continuous data
 - Custom loss and objective function
 - Perturbation control towards gradient
- Determining Accessibility Constraint
 - Correlation for metadata vs. decision
 - Value between 0 and 1
- ResNet as candidate ML method
- Two DLBAC datasets
 - System-1 and System-2

- Categorical data : apply One-Hot Encoding
- Removed SENSORS permission's request, only 1 such sample
- Conflicts exists (~800 requests): adopt grant-override approach
- Introduce a new category name UNKNOWN for missing values
- Not all the features are related or usable (device ID, bootTime, answerType, etc.)

#	Name	Data Type	HasMissingValues
1	callState	Categorical	no
2	screenIsInteractive	boolean	no
3	networkStatus	Categorical	no
4	plugState	Categorical	no
5	selectedSemanticLoc	Categorical	no
6	category	Categorical	no
7	isTopAppRequestingApp	boolean	yes
8	isForeground	boolean	yes
9	isInEvent	boolean	yes
10	hour	Categorical	no
11	isWeekend	boolean	no
12	permission	Categorical	no

Input:

Reqs. Apps info, device's info, Permission

Output:

