

Secure Cloud Assisted Smart Cars and Big Data: Access Control Models and Implementation

Ph.D. Dissertation Defense Maanak Gupta

Institute for Cyber Security,
Department of Computer Science
The University of Texas at San Antonio

Committee:

Ravi Sandhu, Ph.D. (Advisor and Chair)

Murtuza Jadliwala, Ph.D.

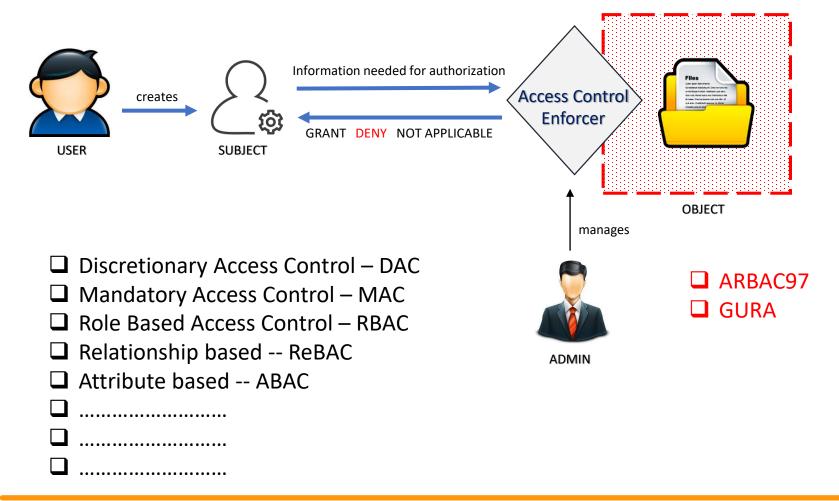
Palden Lama, Ph.D.

Gregory B. White, Ph.D.

Ram Krishnan, Ph.D.

November 27, 2018

Outline


- > Introduction and Motivation
- Group Based Attributes Administration and Analysis
- Access Control for Smart Cars
 - Extended ACO Architecture
 - Authorization Framework
 - Dynamic Groups and ABAC
- Big Data Security in Hadoop
 - Family of Access Control Models
 - ❖ HeAC, OT-RBAC, and HeABAC Model
- Conclusion and Future Work

Access Control

Problem and Thesis Statement

Problem Statement

New and emerging technologies such as smart connected cars and multi-tenant big data platforms require innovative access control models.

> Thesis Statement

The established paradigms of role-based and attribute-based access control can be adapted and extended to provide fine-grained and dynamic authorization for cloud assisted smart cars and Hadoop big data framework.

Summary of Contributions

Secure Cloud Assisted Smart Cars and Big Data: Access Control Models and Implementation

Group Based Attributes Administration and Analysis

Access Control for Smart Cars

Big Data Security in Hadoop

GURA_G Administrative Model

Reachability Analysis Authorization Framework

CV-ABAC_G Model OT-RBAC Model HeABAC Model

Section I

Secure Cloud Assisted Smart Cars and Big Data: Access Control Models and Implementation

Group Based Attributes Administration and Analysis

Access Control for Smart Cars

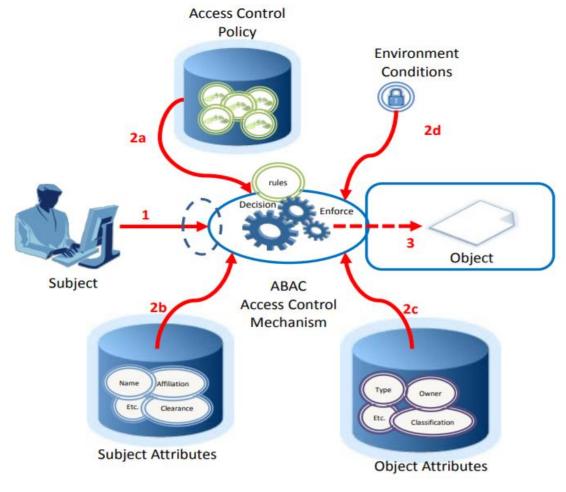
Big Data Security in Hadoop

GURA_G Administrative Model

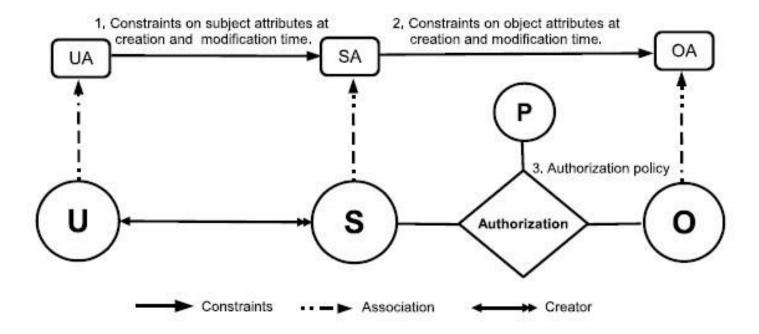
Reachability Analysis

Authorization Framework CV-ABAC_G Model OT-RBAC Model HeABAC Model

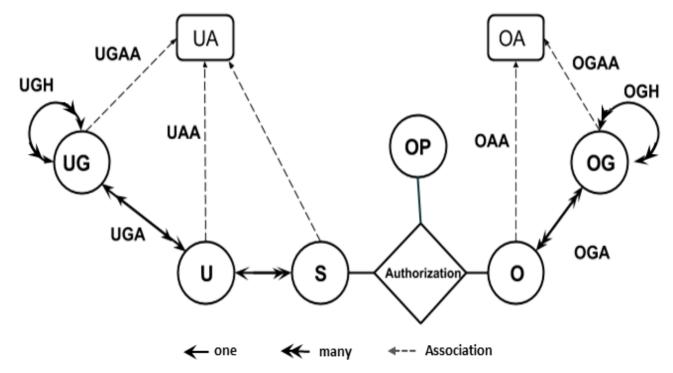
Group Based Attributes Administration and Analysis


- Maanak Gupta and Ravi Sandhu, "The GURA_G Administrative Model for User and Group Attribute Assignment." In Proceedings of the 10th International Conference on Network and System Security (NSS), Taipei, Taiwan, September 28-30, 2016, pages 318-332.
- 2. Maanak Gupta and Ravi Sandhu, "Reachability Analysis for Role-Based Administration of Group and User Attributes."
 To be submitted to IEEE Trans. on Dependable and Secure Computing.

NIST ABAC Scenario

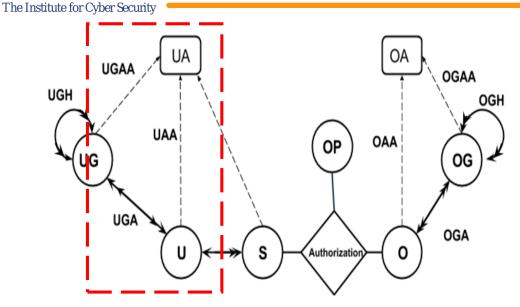


ABAC_a Model


Can be configured to do simple forms of DAC, MAC, RBAC (Jin, Krishnan, Sandhu 2012)

Hierarchical Group - ABAC

- ➤ Hierarchical Group and Attribute Based Access Control (HGABAC)
 - Introduces User and Object Groups
 - Simplifies administration of attributes


Servos and Osborn, 2015

GURA_G Administrative Model

UAA: User Attribute Assignment

UGAA: User Group Attribute Assignment

UGA: User to User-Group Assignment

Administrative Relations

User Attribute Assignment (UAA) & User-Group Attribute Assignment (UGAA):
 For each att_u in UA,

$$\operatorname{canAdd}_{\operatorname{att}_{\operatorname{u}}} \subseteq \operatorname{AR} \times \operatorname{EXPR}(\operatorname{UA}) \times 2^{\operatorname{Range}(\operatorname{att}_{\operatorname{u}})}$$

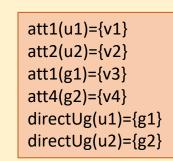
$$canDelete_{att_u} \subseteq AR \times EXPR(UA) \times 2^{Range(att_u)}$$

- User to User-Group Assignment (UGA):

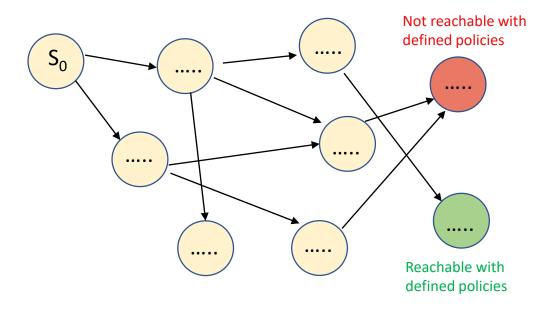
$$canAssign \subseteq AR \times EXPR(UA \cup UG) \times 2^{UG}$$

can
Remove
$$\subseteq$$
 AR \times EXPR(UA \cup UG) \times 2^{UG}

GURA_G Policies

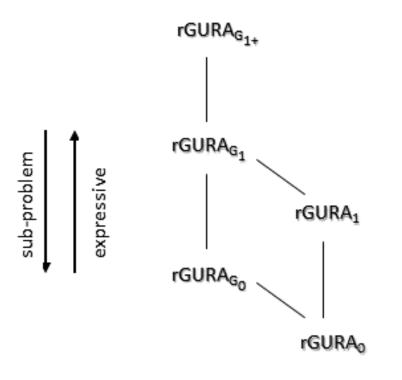

- ☐ Administrators request to
 - add or delete attributes of users
 - add or delete attributes of user groups
 - assign or remove users from user groups
- Administrative Polices
- UAA -- Administrative users with [administrative roles] can [modify] value [value] to [attribute name] attribute of a user if [condition].
- UGAA -- Administrative users with [administrative roles] can [modify] value [value] to [attribute name] attribute of a user groups if [condition].
- UGA -- Administrative users with [administrative roles] can [modify] membership in user-group [group name] of a user if [condition].

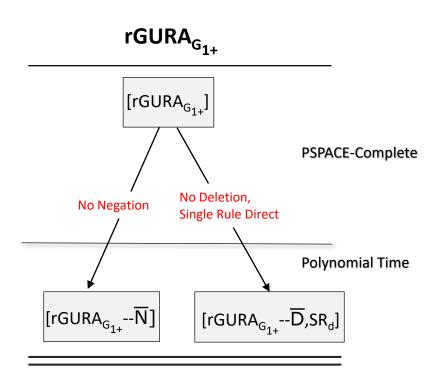
Reachability Analysis Problem



GURA_G Administrative Policies

STATE


If there exists a state where user u1 have effective values for att1 contain x and for att2 is equal to y?



Reachability Query and Analysis Results

- \square rGURA_G is different from GURA_G only in condition specification language in rules.
- ☐ Only conjunction and negation is allowed.

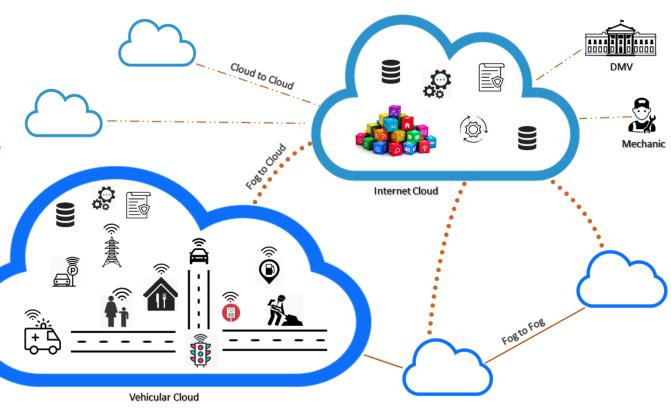
Section II

Secure Cloud Assisted Smart Cars and Big Data: Access Control Models and Implementation

Big Data **Group Based Attributes** Access Control Administration and Security in for Smart Cars Analysis Hadoop GURA_G Reachability Authorization CV-ABAC_G OT-RBAC HeABAC Administrative **Analysis** Framework Model Model Model Model

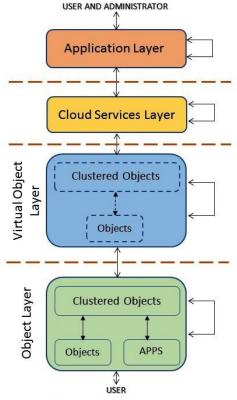
Access Control for Smart Cars

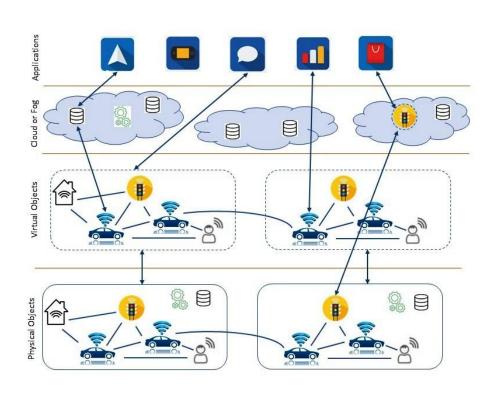
- **1. Maanak Gupta** and Ravi Sandhu, "Authorization Framework for Secure Cloud Assisted Connected Cars and Vehicular Internet of Things." In Proceedings of the 23rd ACM Symposium on Access Control Models and Technologies (SACMAT), Indianapolis, Indiana, June 13-15, 2018, pages 193-204.
- 2. Maanak Gupta, James Benson, Farhan Patwa, and Ravi Sandhu, "Dynamic Groups and Attribute Based Access Control for Next Generation Smart Cars." (To Appear) In Proceedings of the 9th ACM Conference on Data and Application Security and Privacy (CODASPY), Dallas, Texas, Mar 25-27, 2019.



Security and Privacy Requirements

- On-Board Application and Sensors
- Over the Air updates
- ☐ V2X fake messages
- ☐ In-vehicle ECU communication
- Personal Data
- ☐ Third Party devices
- ☐ User Privacy Preferences
- ☐ Spoofing, Ransomware, Injection...
- ☐ Loss of Information in Cloud

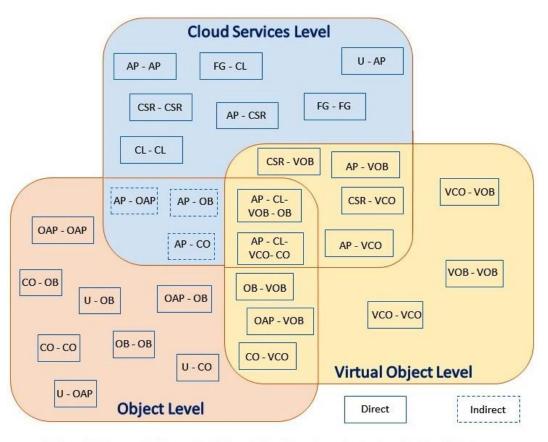




Extended Access Control Oriented C-SPECC Architecture

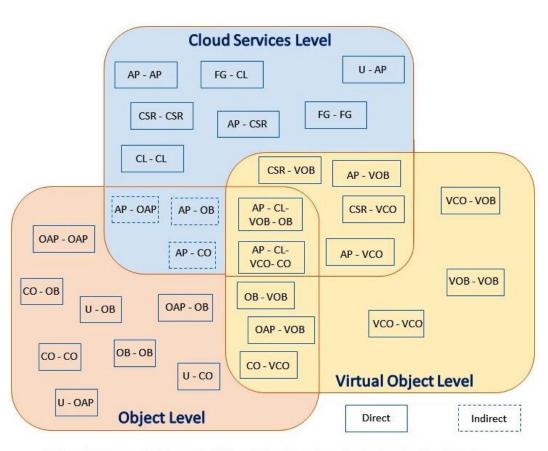
Center for Security and Privacy Enhanced Cloud Computing

a) Extended ACO Architecture for Connected Car and IoV


b) Connected Car and Vehicular IoT Components in Extended ACO Layers

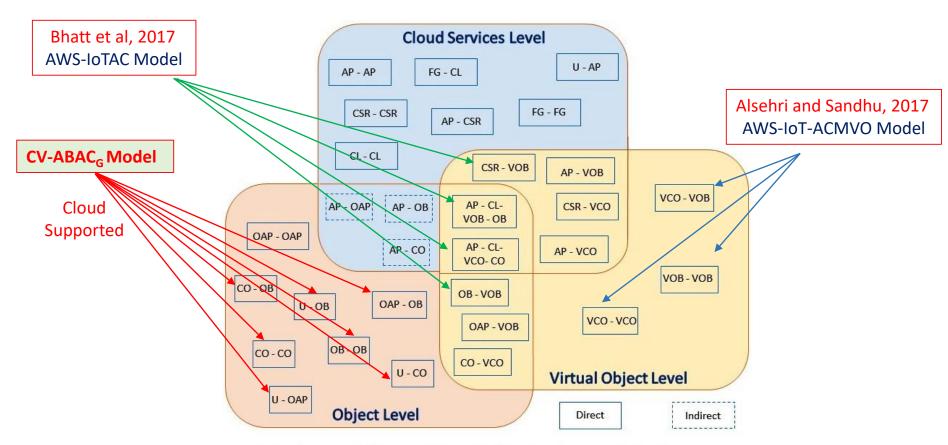
Authorization Framework

U: User CO: Clustered Objects OB: Objects OAP: Object Layer Applications CL: Cloud FG: Fog CSR: Cloud Services VCO: Virtual Clustered Objects VOB: Virtual Objects AP: User Applications

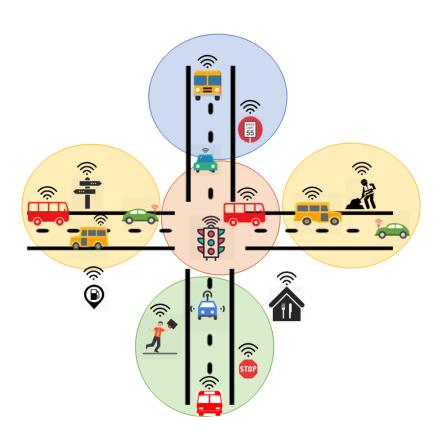


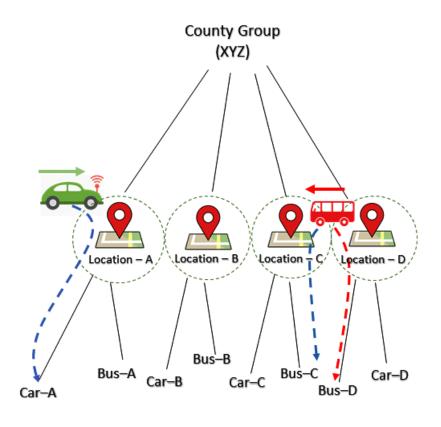
Access Control Strategies

- ☐ Static vs Dynamic
- ☐ What kind of relationship they have?
 - Owner, Manufacturer, Friend...
- Multi-Layered
- ☐ Groups Based
- ☐ Trusted Interaction
 - How I trust you?
 - Previous interaction..?
- ☐ ABAC, ReBAC Models
- ☐ Who will administer?
- ☐ Data in Cloud, cross cloud sharing. How?

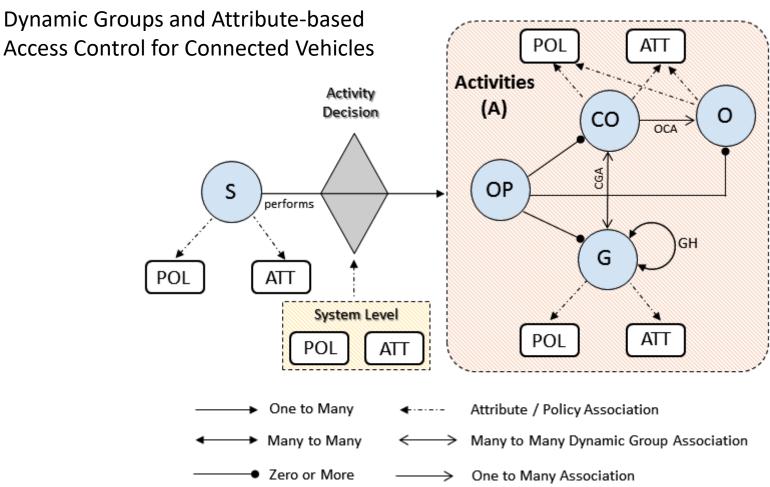

U: User CO: Clustered Objects OB: Objects OAP: Object Layer Applications CL: Cloud FG: Fog CSR: Cloud Services VCO: Virtual Clustered Objects VOB: Virtual Objects AP: User Applications

Authorization Framework


U: User CO: Clustered Objects OB: Objects OAP: Object Layer Applications CL: Cloud FG: Fog CSR: Cloud Services VCO: Virtual Clustered Objects VOB: Virtual Objects AP: User Applications



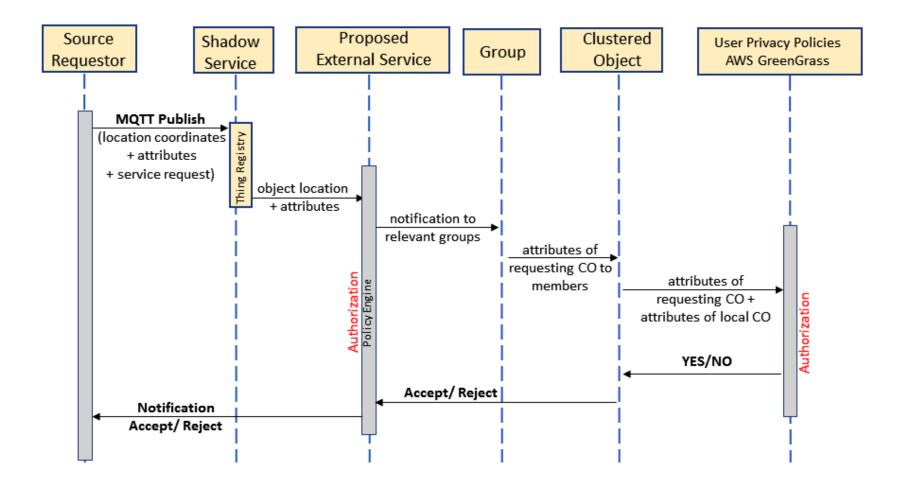
Dynamic Location Groups



CV-ABAC_G Model

Implementation in AWS

ABAC Policy


```
"Deer_Threat": { ----- Policy Operation
  "Source": {
                        Source Attributes
      "Location": { ~ ~
        "Location-A": {"Group": ["Location-A"]},
        "Location-B": {"Group": ["Location-B"]}
                                                     Object Attributes
"car pool notification": { ← Policy Operation
  "Source": {
    "Location-A": { - - Source Attributes
      "destination": {
        "Location-A": {"Notification": ["Car-A"]},
        "Location-B": {"Notification": ["Car-A", "Car-B", "Car-C"]},
        "Location-C": {"Notification": ["Car-C", "Car-D"]},
        "Location-D": {"Notification": ["Car-A", "Car-C", "Car-D"]}
```


Sequence Diagram

Performance Metrics

Number of Requests	Policy Enforcer Execution Time (in ms)
10	0.0501
20	0.1011
30	0.1264
40	0.1630
50	0.1999

	Cars Notified		
nth Request	With ABAC Policy	Without Policy	
41st	2	5	
42nd	3	5	
43rd	5	5	
44th	3	5	
45th	2	5	
46th	3	5	

Section III

Secure Cloud Assisted Smart Cars and Big Data: Access Control Models and Implementation

Group Based Attributes Administration and Analysis

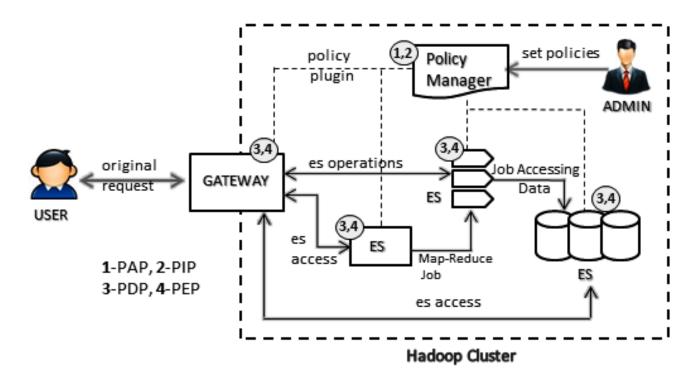
Access Control for Smart Cars

Big Data Security in Hadoop

GURA_G Administrative Model

Reachability Analysis Authorization Framework CV-ABAC_G Model OT-RBAC Model HeABAC Model

Big Data Security in Hadoop

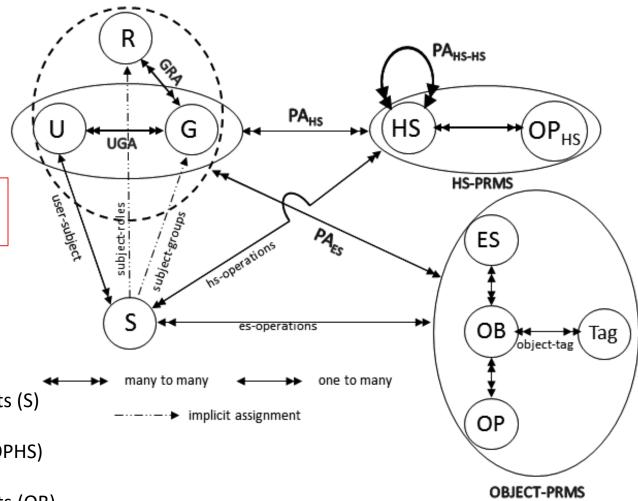

- 1. Maanak Gupta, Farhan Patwa and Ravi Sandhu, "An Attribute-Based Access Control Model for Secure Big Data Processing in Hadoop Ecosystem." In Proceedings of the 3rd ACM Workshop on Attribute-Based Access Control (ABAC), March 19-21, 2018, Tempe, Arizona, pages 13-24.
- 2. Maanak Gupta, Farhan Patwa and Ravi Sandhu, "Object-Tagged RBAC Model for the Hadoop Ecosystem." In Proceedings of the 31st Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSec), Philadelphia, Pennsylvania, July 19-21, 2017, pages 63-81.
- **3. Maanak Gupta**, Farhan Patwa, James Benson and Ravi Sandhu, "Multi-Layer Authorization Framework for a Representative Hadoop Ecosystem Deployment." In Proceedings of the 22nd ACM Symposium on Access Control Models and Technologies (SACMAT), Indianapolis, Indiana, June 21-23, 2017, pages 183-190.

Hadoop Ecosystem Authorization Architecture

Policy Manager: Apache Ranger, Apache Sentry

Gateway: Apache Knox

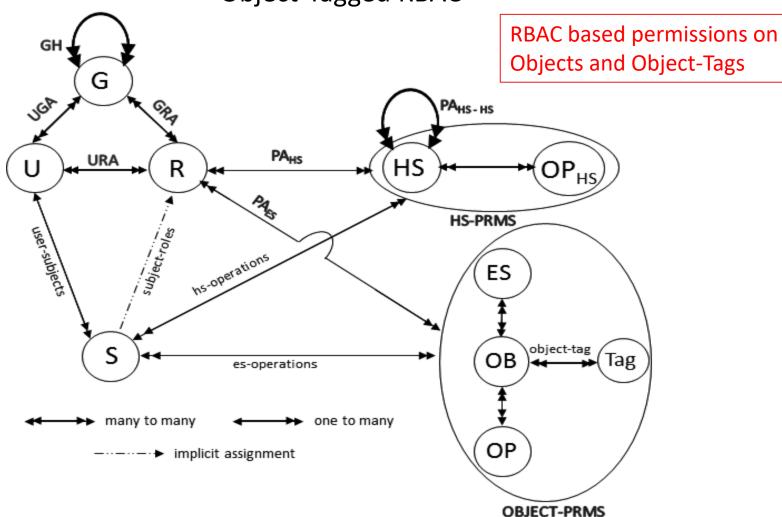
Ecosystem Service (ES): Apache Hive, HDFS, Apache Storm, Apache Kafka, YARN


HeAC Model: Consolidated View

Hadoop Ecosystem Access Control Model

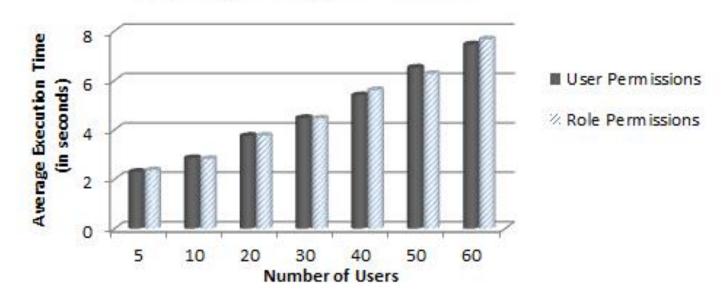
ACLs based permissions on Objects and Object-Tags

Users (U), Groups (G), Subjects (S)
Hadoop Services (HS)
Hadoop Service Operations (OPHS)
Objects (OB), Operations (OP)
Ecosystem Service (ES), Objects (OB)
Operations (OP), Tag



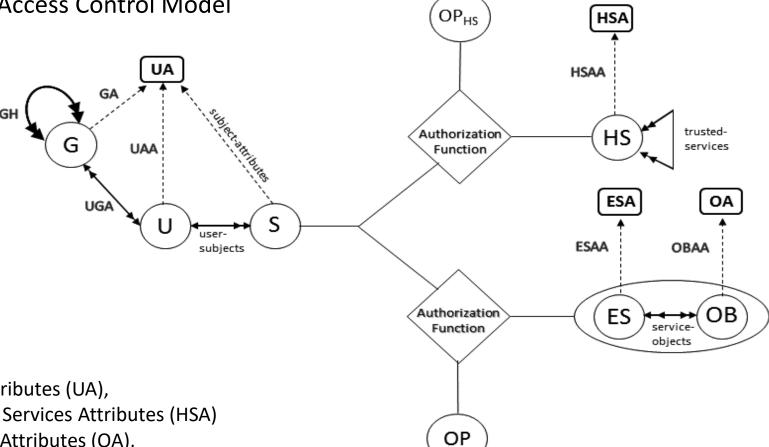
OT-RBAC Model

Object-Tagged RBAC



Performance Evaluation of OT-RBAC

Comparing access request execution time



HeABAC Model

Hadoop Ecosystem Attribute-Based **Access Control Model**

User Attributes (UA), Hadoop Services Attributes (HSA) Objects Attributes (OA), Ecosystem Service Attributes (ESA)

HeABAC Example Policies

- 1. Authorization_{access}(s:S, es:ES) \equiv diagnostic \in effective_{department}(s) \land technician \in effective_{role}(s) \land serviceType(es) = HIVE \land createdBy(es) = admin1.
- 2. Authorization_{select}(s:S, es:ES, ob:OB) \equiv Authorization_{access}(s:S, es:ES) \equiv True \land diagnostic \in effective_{department}(s) \land effective_{role}(s) \in readerType(ob) \land tableType(ob) \equiv sensor-data \land car(ob) \equiv FVR1234.
- 3. Authorization_{access}(s:S, hs:HS) \equiv diagnostic \in effective_{department}(s) \land technician \in effective_{role}(s) \land serviceType(hs) = DataNode \land createdBy(hs) = admin2

Summary of Contributions

Secure Cloud Assisted Smart Cars and Big Data: Access Control Models and Implementation

Group Based Attributes Administration and Analysis

Access Control for Smart Cars

Big Data Security in Hadoop

GURA_G Administrative Model

Reachability Analysis

Authorization Framework CV-ABAC_G Model OT-RBAC Model HeABAC Model

Conclusion and Future Work

	Foundational aspects of groups based ABAC
	☐ Administrative Model
	□ Reachability Analysis
	Access Control Solutions for Smart Cars
	❖ Authorization Framework
	❖ Dynamic Groups and ABAC
	Access Control Solutions for Big Data in Hadoop
	❖ Family of Models – HeAC, OT-RBAC and HeABAC
_	
	Some Future Work Directions
	Trust Based Cloud and Smart Cars Solutions

- Location preserving approaches
- Data Ingestion Security and privacy concerns
- Cloudlet supported Intelligent Transportation

Dissertation Publications

Journal Paper

• Maanak Gupta and Ravi Sandhu, "Reachability Analysis for Role-Based Administration of Group and User Attributes." To be submitted to IEEE Trans. on Dependable and Secure Computing.

Conference Papers

- Maanak Gupta, James Benson, Farhan Patwa, and Ravi Sandhu, "Dynamic Groups and Attribute Based Access Control for Next Generation Smart Cars." (To Appear) In Proceedings of the 9th ACM Conference on Data and Application Security and Privacy (CODASPY), Dallas, Mar 25-27, 2019.
- Maanak Gupta and Ravi Sandhu, "Authorization Framework for Secure Cloud Assisted Connected Cars and Vehicular Internet of Things." In Proceedings of the 23rd ACM Symposium on Access Control Models and Technologies (SACMAT), Indianapolis, Indiana, June 13-15, 2018, pages 193-204.
- Maanak Gupta, Farhan Patwa and Ravi Sandhu, "An Attribute-Based Access Control Model for Secure Big Data Processing in Hadoop Ecosystem." In Proceedings of the 3rd ACM Workshop on Attribute-Based Access Control (ABAC), March 19-21, 2018, Tempe, Arizona, pages 13-24.
- Maanak Gupta, Farhan Patwa and Ravi Sandhu, "Object-Tagged RBAC Model for the Hadoop Ecosystem." In Proceedings of the 31st Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSec), Philadelphia, Pennsylvania, July 19-21, 2017, pages 63-81.
- Maanak Gupta, Farhan Patwa, James Benson and Ravi Sandhu, "Multi-Layer Authorization Framework for a Representative Hadoop Ecosystem Deployment." In Proceedings of the 22nd ACM Symposium on Access Control Models and Technologies (SACMAT), Indianapolis, Indiana, June 21-23, 2017, pages 183-190.
- Maanak Gupta and Ravi Sandhu, "The GURAG Administrative Model for User and Group Attribute Assignment." In Proceedings of the 10th International Conference on Network and System Security (NSS), Taipei, Taiwan, September 28-30, 2016, pages 318-332.

