Reconstructing Alert Trees for Cyber Triage

Eric Ficke

PhD Dissertation Defense The University of Texas at San Antonio April 13, 2022

> Committee Co-Chairs Prof. Ravi Sandhu Prof. Shouhuai Xu

Committee Members Prof. Xiaoyin Wang Prof. Greg White Prof. Mimi Xie

Publications

- Published
 - S. He, E. Ficke, M. Pritom, H. Chen, Q. Tang, Q. Chen, M. Pendleton, L. Njilla, and S. Xu. <u>Blockchain-based</u> <u>Automated and Robust Cyber Security Management</u>, Journal of Parallel Distributed Computing, 163: 62-82 (2022)
 - 2. E. Ficke and S. Xu. APIN: <u>Automatic Attack Path Identification in Computer Networks</u>, IEEE International Conference on Intelligence and Security Informatics (ISI), 2020. [Dissertation Chapter 2]
 - **3.** E. Ficke, K. Schweitzer, R. Bateman, and S. Xu. <u>Analyzing Root Causes of Intrusion Detection False-</u> <u>Negatives: Methodology and Case Study</u>. IEEE Military Communications Conference (MILCOM), 2019.
 - 4. J. Mireles, **E. Ficke**, J. Cho, P. Hurley, and S. Xu. <u>*Metrics Towards Measuring Cyber Agility*</u>. IEEE Transactions on Information Forensics and Security (IEEE T-IFS), 14(12): 3217-3232 (2019).
 - **5.** E. Ficke, K. Schweitzer, R. Bateman, and S. Xu. <u>Characterizing the Effectiveness of Network-Based</u> <u>Intrusion Detection Systems</u>. IEEE Military Communications Conference (MILCOM), 2018.
- Manuscripts to be submitted for review
 - E. Ficke, R. Bateman, and S. Xu. <u>AutoCRAT: Automatic Cumulative Reconstruction of Alert Trees</u>. [Dissertation Chapter 3]
 - 2. R. Garcia-LeBron, E. Ficke, W. Wu, S. Xu. Characterizing Cyber Attack Reconnaissance Trajectories.
 - 3. E. Ficke, R. Bateman, and S. Xu. <u>Alert Tree Reduction and Visualization</u>. [Dissertation Chapter 4]

Dissertation Outline

- Introduction
- APIN: Alert Path Identification in Computer Networks
- AutoCRAT: Automatic Cumulative Reconstruction of Alert Trees
- Alert Tree Reduction and Visualization
- Conclusion

Introduction

Chapter 1

Background – Alert Trees

- Cyber Triage (Network-level)
 - Alert prioritization
 - Alert correlation
 - Attack lifecycle
- Attack Prediction
 - Attack graphs / trees / paths
 - Vulnerability graphs

Motivation

- Alert volume
 - Unrealistically low in ad hoc datasets
 - Overwhelms human analysis in real data
- Alert graph / tree / path formalization
 - Varies by usage
 - Depends on **spatial and temporal dependencies**

Chapter Themes

- 2. Alert Path Identification (APIN)
 - Alert path reconstruction
 - Threat score (TS) ranking
- 3. Cumulative Reconstruction (AutoCRAT)
 - Alert tree reconstruction
 - Alternative path reconstruction method
 - Asymptotic and real analysis
- 4. Reduction and Visualization
 - Mitigates emergent problem of tree size

Dissertation Outline

- Introduction
- APIN: Alert Path Identification in Computer Networks
- AutoCRAT: Automatic Cumulative Reconstruction of Alert Trees
- Alert Tree Reduction and Visualization
- Conclusion

APIN: <u>Alert Path</u> <u>Identification in</u> Computer <u>Networks</u>

Chapter 2

Motivation: Cyber Triage

- Time sensitive
- Resource intensive
- Error prone
- Large search space

Contributions

- Attack Tracking
 - Alert paths show footprints between victim computers
 - Spatiotemporal path reconstruction method
- Heuristics
 - Threat score shows attacker effort
 - (Actual compromise may vary)

APIN Framework

Metric: Independent Threat Score

- Input:
 - A_{in} alert types (inbound)
 - A_{out} alert types (outbound)
- Terms:
 - $D_{in} = |A_{in}|$
 - $D_{out} = |A_{out}|$ • $S_{in} = \sqrt[|A_{in}|]{\prod_{a \in A_{in}} |a|}$

$$|\mathsf{TS} = \sqrt[3]{D_{in} \cdot D_{out} \cdot S_{in}}$$

"D" represents alert diversity "S" represents alert scale (by type)

Methods (Alert Path Identification)

Approach: breadth-first search in reverse-chronological order

Preliminary Analysis

• Scans (high volume, low threat)

Metric: Weighted Independent Threat Score

• Input:

- A_{in} alert types (inbound)
- A_{out} alert types (outbound)
- Terms:
 - $D_{in} = |A_{in}|$
 - $D_{out} = |A_{out}|$
 - $S_{in} = \sqrt{\frac{|A_{in}|}{\sqrt{\prod_{a \in A_{in}} |a|}}}$
 - W = $w_1 + w_2 + w_3$

$$|\mathsf{TS} = \sqrt[w]{D_{in}^{w_1} \cdot D_{out}^{w_2} \cdot S_{in}^{w_3}}$$

"D" represents alert diversity "S" represents alert scale (by type)

Preliminary Results: DARPA '99

• Notable paths, using queries from top 5 nodes

Hidden IPs are repeated from higher-ranked paths

Results: CSE-CIC-IDS2018

Notable Alerts	Length (#Edges)	Composite Threat Score ∇	[Path Origin, Path Target]
EternalBlue (WannaCry) NAT Traversal	4	34.31	103.47.124.154 54.172.47.69
EternalBlue (WannaCry) NAT Traversal	3	33.60	172.31.67.54 52.87.201.4
Blacklisted IP group SQL Scan	3	26.42	71.6.165.200 172.31.64.78
EternalBlue (WannaCry) SMB Share Access	3	21.30	77.222.106.20 172.31.66.112
Suspicious DNS Query	1	21.11	172.31.64.78 172.31.0.2

Results: CSE-CIC-IDS2018

Results: CSE-CIC-IDS2018

Dissertation Outline

- Introduction
- APIN: Alert Path Identification in Computer Networks
- AutoCRAT: Automatic Cumulative Reconstruction of Alert Trees
- Alert Tree Reduction and Visualization
- Conclusion

AutoCRAT: <u>Automatic Cumulative</u> <u>Reconstruction of Alert Trees</u>

Chapter 3

Motivation: Alert Tree Optimization

- Improve reconstruction
- Identify optimization tradeoffs
- Formalize alert trees

AutoCRAT Architecture

Methods (Path Maintenance)

Approach: maintain every path at all times, merging as they join

Paths grow sequentially Paths remain independent until linked Trees form spontaneously

Methods (Tree Reconstruction)

Approach: maintain every path at all times, merging as they join

Paths grow sequentially Paths remain independent until linked Trees form spontaneously

Asymptotic Comparison

*APIN ranks nodes, while AutoCRAT ranks endpoints and paths.

Results Comparison

*APIN ranks nodes, while AutoCRAT ranks endpoints and paths. †These ranks are inferred from their ends (for paths) or root (for trees)

Dissertation Outline

- Introduction
- APIN: Alert Path Identification in Computer Networks
- AutoCRAT: Automatic Cumulative Reconstruction of Alert Trees
- Alert Tree Reduction and Visualization
- Conclusion

Alert Tree Reduction and Visualization

Chapter 4

Motivation

Facilitate cyber triage by selectively pruning alert trees

- Reduce visual strain
 - "Which nodes can be removed to facilitate tree interpretation?"
- Preserve salient information
 - "What nodes must be kept based on relevant metrics?"

Motivating Example

- This tree (from real data) has **3090 nodes**.
- Graphviz is forced to render it at 6% of its original resolution.*

Motivating Example

• After reduction, 3090 nodes becomes 40 nodes (98.7% reduction)

So how do we do it???

Alert Tree Reduction Architecture

Terminology

Duplicate labels may exist in a tree but not in a path

Terminology

Terminology (Graph Theory vs Data Structures)

Terminology (Graph Theory vs Data Structures)

Terminology (Graph Theory vs Data Structures)

In Graph Theory:

- T₁ is a subtree of T₂
- F is a subtree of T_1 (or T_2)

In Data Structures:

• Fis a subtree of B(in either tree)

We need a new term for the relationship T₁:T₂ that eliminates ambiguity

45

45

Hypotree and Hypertree

- Designate: T_1 is a hypotree of $T_2 (T_1 \triangleleft T_2)$
- Designate: T_2 is a hypertree of $T_1 (T_2 \triangleright T_1)$
- Every tree is both a hypotree and a hypertree of itself
- We also designate proper hypotree (<) and proper hypertree (▷)

Hypotree and Hypertree

Definition: A tree T_{hypo} is a hypotree of a tree T_{hyper} if: $\forall n \in T_{hypo}, \exists n' \in T_{hyper}$: $\forall i \in \{0, 1, ..., | n.ancestors | \}, n.ancestors_i = n'.ancestors_i$

*Hypertree is derived from hypotree. Refer to the paper for exact detail

Node labels represent IP addresses Duplicate labels may exist in a tree but not in a path within that tree Here, node colors show labels (rather than threat score) for ease of understanding

Similar Branches: A set of branches for which all subtrees excluding the branch root exist in both branches

Merging Sibling Branches & Leaves [MSL(MSB(A))]

Truncating Hypotrees & Merging Sibling Leaves [MSL(TH(A))]

Method Restrictions

- MSL makes some trees similar (because "M2" = "M2")
 - MSB(MSL(T)) is unsafe (but MSL(MSB(T)) is safe)
 - TH(MSL(T)) is unsafe (but MSL(TH(T)) is safe)
- MSB and TH may target the same branches
 - $MSB(TH(T)) \neq TH(MSB(T))$
- The 5 valid reduction schedules:
 - 1. MSB(T)
 - 2. MSL(MSB(T))
 - 3. MSL(T)
 - 4. MSL(TH(T))
 - 5. TH(T)

MSL: Merge Sibling Leaves MSB: Merge Sibling Branches TH: Truncate Hypotrees

Method Comparisons (Toy Example)

Method Comparisons (Toy Example)

Visualization

- Black (low threat) -> red (high threat)
 - Min-max normalized
- Merged nodes
 - Color shows highest threat of those merged

Results (Visual): Forward Tree 204.237.142.47

• Full Tree

Metrics

- Visual Strain Reduction (VSR)
- Node Retention (NR)
- Threat Score Retention (TSR)
- Reduction Index (RI)
 - $RI = 3/(VSR^{-1} + NR^{-1} + TSR^{-1})$

Results (Numerical)

Reduction	Tree Set	VSR	NR	TSR	RI	
MSB	Top 5	0.243	0.539	0.278	0.313	MSB: Merge Sibling
	Random 5	0.352	0.553	0.254	0.349	Branches MSL: Merge
	Bottom 5	0.433	0.493	0.36	0.42	Sibling
MSL	Top 5	0.363	0.577	0.611	0.489	TH: Truncate
	Random 5	0.282	0.824	0.799	0.499	Hypotrees VSR: Visual Strain
	Bottom 5	0.791	0.744	0.73	0.754	Reduction NR: Node
TH	Top 5	0.009	1	0.999	0.026	Retention
	Random 5	0	1	1	0	Retention
	Bottom 5	0.037	1	0.983	0.103	Index

Dissertation Outline

- Introduction
- APIN: Alert Path Identification in Computer Networks
- AutoCRAT: Automatic Cumulative Reconstruction of Alert Trees
- Alert Tree Reduction and Visualization
- Conclusion

Conclusion

Chapter 5

Discussion

• APIN

- Relies on network segmentation
- Dominates maintenance time
- AutoCRAT
 - Relies on ordering assumption
 - Dominates retrieval time
- Reduction improves visualization

eric.ficke@utsa.edu

Images courtesy of pixabay.com and publicdomainvectors.org