
SECURE ATTRIBUTE SERVICES ON THE WEB

by

Joon S. Park

A Dissertation

Submitted to the

Faculty of the Graduate School

of

George Mason University

in Partial Ful�llment of

the Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

Dr. Ravi Sandhu, Dissertation Director

Dr. Edgar Sibley

Dr. Prasanta Bose

Dr. Elizabeth White

Dr. Stephen G. Nash, Associate Dean,

Graduate Studies and Research

Dr. Lloyd J. Gri�ths, Dean, School of Information

Technology and Engineering

Date: Summer 1999

George Mason University

Fairfax, Virginia

SECURE ATTRIBUTE SERVICES ON THE WEB

A dissertation submitted in partial ful�llment of the requirements for the degree of
Doctor of Philosophy at George Mason University.

JOON S. PARK

Bachelor of Science, Yonsei University, Seoul, Korea, February 1989

Master of Science, George Mason University, Fairfax, Virginia, U.S.A., May 1997

Director: Dr. Ravi Sandhu, Full Professor

Information and Software Engineering

Summer 1999

George Mason University

Fairfax, Virginia

ii

Copyright

by

Joon S. Park

1999

iii

DEDICATION

TO MY GOD

\The fear of the Lord is the beginning of wisdom, and the knowledge of the Holy One

is understanding" (Proverbs 9:10).

TO MY PARENTS

They prayed, supported, and made many sacri�ces, so that I could obtain an educa-

tion.

TO MY WIFE AND BROTHER

They loved me and encouraged me to do my best.

iv

ACKNOWLEDGMENTS

I sincerely express my gratitude to my dissertation director, Dr. Ravi Sandhu, for

the invaluable guidance and direction he has provided to me during the course of my

study and research at GMU. I was fortunate to have met such an outstanding scholar,

who is also an understanding and supportive advisor.

I would like to thank my committee members, Dr. Edgar Sibley, Dr. Prasanta

Bose, and Dr. Elizabeth White for providing me with their thoughtful comments and

guidance.

Special thanks go to my family for their patient support, sacri�ces, and en-

couragement. I always thank my God for blessing me with such a wonderful family.

I appreciate the assistance and input from the following people: SreeLatha

Ghanta, Gail J. Ahn, Soonam Kahng, and Eonsuk Shin.

Finally, I acknowledge the �nancial support by NSA (National Security Agency),

NRL (Naval Research Laboratory), NIST (National Institute of Standards and Tech-

nology), and NSF (National Science Foundation) for this research.

ABSTRACT

SECURE ATTRIBUTE SERVICES ON THE WEB

Joon S. Park, Ph.D.

George Mason University, 1999

Dissertation Director: Dr. Ravi Sandhu

Increased integration of Web, operating system, and database system technologies

will lead to continued reliance on Web technology for enterprise computing. There-

fore, a successful marriage of the Web and security technologies has the potential for

considerable impact on large-scale systems and their deployment.

The motivation behind this research is to protect attributes from possible at-

tacks on the Web. An attribute is a particular property of an entity, such as a role,

access identity, group, or clearance. If attributes are provided integrity, authentica-

tion, and con�dentiality on the Web, Web servers can then use these secure attributes

for many purposes, for instance, access control, authorization, authentication, or elec-

tronic transactions.

This dissertation identi�es the user-pull and server-pull models for secure at-

tribute services on the Web. It describes the development of novel enhancements,

called secure cookies and smart certi�cates, to existing Web technologies to provide

improved security services on the Web. To demonstrate concrete examples of secure

attribute services and show feasibility of these novel techniques, secure cookies and

smart certi�cates are used (separately) to implement role-based access control on the

Web.

vi

TABLE OF CONTENTS

Page

ABSTRACT v

LIST OF FIGURES ix

LIST OF TABLES xi

CHAPTER 1. INTRODUCTION 1

1.1 Problem Statement . 1

1.2 Approach . 2

1.3 Organization of the Dissertation . 3

CHAPTER 2. RELATED TECHNOLOGIES 4

2.1 Cookies . 4

2.2 Secure Socket Layer (SSL) . 7

2.3 Public-Key Certi�cate (X.509) . 8

2.4 Attribute Certi�cate . 11

2.5 Pretty Good Privacy (PGP) . 11

CHAPTER 3. OPERATIONAL MODELS 13

3.1 User-Pull Model . 13

3.2 Server-Pull Model . 15

CHAPTER 4. COOKING SECURE COOKIES ON THE WEB 17

4.1 Security Concerns in Cookies . 18

4.2 Security Threats to Cookies . 19

4.3 User Authentication for Cookies . 20

4.3.1 Address-Based Authentication . 21

4.3.2 Password-Based Authentication . 22

4.3.3 Kerberos-Based Authentication . 23

vii

4.3.4 Digital-Signature-Based Authentication 25

4.4 Providing Integrity to Cookies . 25

4.4.1 Public-Key-Based Solution . 28

4.4.2 Secret-Key-Based Solution . 28

4.5 Providing Con�dentiality to Cookies . 29

4.6 Secure Cookies and SSL . 30

4.7 Comparison of the Recipes and E�ects of Secure Cookies 31

4.8 Applications of Secure Cookies . 32

4.8.1 User Authentication . 32

4.8.2 Electronic Transactions . 33

4.8.3 Eliminating Single-Point Failure 34

4.8.4 Pay-Per-Access . 34

4.8.5 Attribute-Based Access Control on the Web 36

4.9 Summary . 36

CHAPTER 5. EXTENDINGX.509 FOR SECUREATTRIBUTE SER-
VICES 38

5.1 Designing Smart Certi�cates by Extending X.509 39

5.1.1 Support for Short-Lived Certi�cates 39

5.1.2 Containing Attributes . 39

5.1.3 Support for Postdated and Renewable Certi�cates 41

5.1.4 Encrypting Sensitive Information in Certi�cates 42

5.2 Certi�cate Management . 42

5.3 An Example of a Smart Certi�cate . 43

5.4 Applications of Smart Certi�cates . 45

5.4.1 On-Duty Control . 45

5.4.2 Attribute-Based Access Control . 46

5.4.3 Electronic Transactions . 46

5.4.4 Eliminating Single-Point Failure 46

5.4.5 Replace X.509 . 47

5.5 Summary . 48

viii

CHAPTER 6. IMPLEMENTATION 49

6.1 Role-Based Access Control (RBAC) Overview 50

6.2 RBAC1 on the Web by Secure Cookies 54

6.2.1 Designing Secure Cookies for RBAC on the Web 54

6.2.2 Secure Cookie Creation . 57

6.2.3 Secure Cookie Veri�cation . 59

6.2.4 RBAC in the Web Server . 62

6.2.5 Problems Faced and Solutions . 65

6.2.6 Summary . 66

6.3 RBAC1 on the Web by Smart Certi�cates 66

6.3.1 Obtaining and Presenting Assigned Roles on the Web 67

6.3.2 RBAC in the Web Server . 69

6.3.3 Summary . 72

6.4 Discussion . 73

6.5 Related Work . 74

6.5.1 getAccess . 74

6.5.2 TrustedWeb . 75

6.5.3 hyperDRIVE . 75

6.5.4 I-RBAC . 76

CHAPTER 7. CONCLUSIONS 77

7.1 Secure Cookies vs. Smart Certi�cates . 77

7.2 Contributions . 78

7.3 Future Research . 79

7.3.1 Binding Identity and Attributes 80

7.3.2 Implementation Issues . 80

APPENDIX A. SNAPSHOTS FROM RBAC ON THEWEB BY SE-
CURE COOKIES 81

APPENDIX B. SNAPSHOTS FROM RBAC ON THE WEB BY
SMART CERTIFICATES 92

BIBLIOGRAPHY 103

ix

LIST OF FIGURES

Page

2.1 An Example of Cookies on the Web 5

2.2 An Example of X.509 . 10

3.1 Collaborational Diagram for User-Pull Model 14

3.2 Collaborational Diagram for Server-Pull Model 15

4.1 Authentication Cookies . 21

4.2 Kerberos-based Authentication with Cookies 24

4.3 A Set of Secure Cookies on the Web 26

4.4 How to Use Secure Cookies on the Web 27

4.5 An Example of Secure Cookies for Electronic Transactions 33

4.6 An Example of Secure Cookies for Pay-Per-Access 35

5.1 Attributes Signed by Multiple CAs in a Smart Certi�cate 40

5.2 An Example of a Smart Certi�cate 44

6.1 A Schematic of RBAC on the Web 50

6.2 A Family of RBAC Models . 51

6.3 A Set of Secure Cookies for RBAC on the Web 55

6.4 RBAC on the Web by Secure Cookies 57

6.5 Creating Secure Cookies . 58

6.6 An Example of Secure Cookies Stored in a User's Machine 60

6.7 Verifying Secure Cookies . 61

6.8 An Example of a Role Hierarchy . 63

6.9 RBAC on the Web by Smart Certi�cate 68

6.10 Role Accounts and Permission Assignment 71

A.1 Alice Connects to the Role Server . 82

A.2 The Role Server Issues an IP Cookie for Alice 83

A.3 The Role Server Issues a Pswd Cookie for Alice 84

x

A.4 The Role Server Issues a Life Cookie for Alice 85

A.5 The Role Server Issues a Role Cookie for Alice 86

A.6 The Role Server Issues a Seal Cookie for Alice 87

A.7 Alice Stores Her Secure-Cookie Set 88

A.8 Alice Connects to a Web Server . 89

A.9 An Example of Veri�cation Failure 90

A.10 An Example of Veri�cation Success 91

B.1 Alice Selects the Smart Certi�cate for the Director Role 93

B.2 The Contents of the Smart Certi�cate for the Director Role 94

B.3 Site Introduction . 95

B.4 Alice Is Allowed to Access the Director's Page 96

B.5 Alice Selects the Smart Certi�cate for the PL1 Role 97

B.6 The Contents of the Smart Certi�cate for the PL1 Role 98

B.7 Alice Is Allowed to Access the PL1's Page 99

B.8 Alice Is Not Allowed to Access the Director's Page 100

B.9 Alice Is Not Allowed to Access the PL2's Page 101

B.10 Alice Is Allowed to Access the Employee's Page 102

xi

LIST OF TABLES

Page

4.1 Summary of the Recipes for Secure Cookies 31

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The World Wide Web (WWW) is a critical enabling technology for electronic com-

merce and business on the Internet. Its underlying protocol, HTTP (HyperText

Transfer Protocol [FGM98]), has been widely used to synthesize diverse technologies

and components for great e�ect in Web environments. WWW is commonplace. In-

creased integration of Web, operating system, and database system technologies will

lead to continued reliance on Web technology for enterprise computing. However,

current approaches to access control on Web servers are mostly based on individual

users; therefore, they do not scale to enterprise-wide systems.

An attribute is a particular property of an entity, such as a role, access iden-

tity, group, or clearance. If the attributes of individual users are provided securely

on the Web by security services - such as authentication, integrity, and con�den-

tiality - we can use those attributes for many purposes, including attribute-based

access control, authorization, authentication, and electronic transactions. Therefore,

a successful marriage of the Web and secure attribute services has potential for con-

siderable impact on and deployment of e�ective enterprise-wide security in large-scale

systems.

1

2

1.2 Approach

In this research, we present a comprehensive approach to secure attribute services on

the Web. We identify the user-pull and server-pull models and analyze their advan-

tages and disadvantages. To support these models on the Web, we take relatively

mature technologies and extend them for secure attribute services on the Web. In

order to do so, we make use of third technologies that are being used on the Web:

Cookies and X.509.

First, we investigate how to secure and use the very popular Web technology

of cookies [KM97, KM98a, KM98b, Lau98] for secure attribute services on the Web.

Cookies were invented to maintain continuity and state on the Web. Cookies contain

strings of text characters encoding relevant information about the user, and are sent

to the user's hard disk via the browser while the user is visiting a cookie-using Web

site. The Web server gets those cookies back and retrieves the user's information from

the cookies when the user later returns to the same Web site. The purpose of a cookie

is to acquire information and use it in subsequent communications between the Web

server and the browser without asking for the same information again. However, it

is not safe to store and transmit this sensitive information in cookies because cookies

are insecure. Cookies are stored and transmitted in clear text, which is readable and

can be easily forged. One contribution of this dissertation is to identify and discuss

techniques to make cookies secure to carry and store sensitive data in them.1 We

name these cookies secure cookies. These techniques have varying degrees of security

and convenience for users and system administrators.

Second, we also use X.509v3 [ITU93, ITU97, HFPS98], an ISO standard, since

1Our motivation for using the cookie mechanism is that it is already widely deployed in existing
Web browsers and servers for maintaining state on the Web. There are other techniques to make Web
transactions secure without the use of secure cookies. For example, the secure HTTP protocol (s-
HTTP) and HTML security extensions [RS98, SR98] can be used for this purpose. Other protocols
and extensions could be devised to operate in conjunction with the Secure Sockets Layer (SSL)
protocol [WS96, DA99]. However, these technologies cannot solve the stateless problem of HTTP.
Furthermore, none of these technologies can prevent end-sytem threats (described in Section 4.2) to
cookies.

3

public-key infrastructure (PKI) has been recognized as a crucial enabling technology

for security in large-scale networks. The basic purpose of X.509 certi�cates is simply

the binding of users to keys. Even though X.509 has the ability to be extended, the

application of the extensions of X.509 for secure attributes has not yet been precisely

de�ned. This dissertation shows how to extend and use existing X.509 certi�cates

for secure attribute services on the Web. We name these extended X.509 certi�cates

smart certi�cates. Smart certi�cates have several sophisticated features: they are

able to support short-lived lifetime and multiple CAs, contain attributes, provide

postdated and renewable certi�cates, and provide con�dentiality. Selection of these

new features depends on applications.

This dissertation describes several techniques to make secure cookies and smart

certi�cates so as to enable secure attribute services between existing Web servers and

browsers, and introduces examples of electronic commerce and business applications

for use of these new technologies. To prove the feasibility of these new technologies,

we implement RBAC (Role-Based Access Control [San98]) on the Web as one possible

application of secure attribute services by using two di�erent methods: secure cookies

and smart certi�cates.

1.3 Organization of the Dissertation

In Chapter 2, we describe the technologies most relevant to our work, such as cookies,

SSL (Secure Socket Layer), X.509 (Public-Key Certi�cate), attribute certi�cates, and

PGP (Pretty Good Privacy). In Chapter 3, we identify operational models for secure

attribute services on the Web. Chapter 4 addresses security threats to cookies and

describes how to render secure cookies on the Web using cryptographic technologies.

Chapter 5 describes how to extend X.509 certi�cates with new features to provide

secure attribute services on the Web. To prove the feasibility of these new technolo-

gies, in Chapter 6, we implement RBAC (Role-Based Access Control) on the Web

using secure cookies and smart certi�cates separately. Finally, Chapter 7 gives our

conclusions.

CHAPTER 2

RELATED TECHNOLOGIES

2.1 Cookies

Electronic commerce and business on the Internet is facilitated in large part by the

World Wide Web. The HyperText Transport Protocol (HTTP [FGM98]) carries all

interactions between Web servers and browsers. Since HTTP is stateless, it does

not support continuity for browser-server interaction between successive user visits.

Without a concept of a session in HTTP, users are strangers to a Web site every time

they access a page in a Web server.

Cookies [KM97, KM98a, KM98b, Lau98] were invented to maintain continuity

and state on the Web. They contain strings of text characters encoding relevant

information about the user, and are sent to the user's computer (RAM) via the

browser while the user is visiting a cookie-using Web site. After the browser is closed,

usually, the cookies are stored in the user's hard disk. The Web server gets those

cookies back and retrieves the user's information from the cookies when the user

later returns to the same Web site. The purpose of a cookie is to acquire information

and use it in subsequent communications between the server and the browser without

asking for the same information again. Often a server will set a cookie to hold

a pointer, such as an identi�cation number, as a user-speci�c primary key of the

information database maintained in the server.

At present, there are many browsers that support cookies, including Netscape,

MS Internet Explorer, GNNWorks, NetCruiser, and OmniWeb. There are basically

4

5

SecurePathFlagDomain

acme.com TRUE / FALSE

acme.com TRUE / FALSE

12/31/99

12/31/99

Cookie_Name Cookie_Value

Director

Alice

Cookie n

Cookie 1 Name_Cookie

Role_Cookie

Expire

Figure 2.1: An Example of Cookies on the Web

three modes of cookie management in browsers. The �rst mode is to simply refuse

all cookies without asking. The second mode is to accept all cookies, but o�er users

the ability to delete all of them at once. The last provides more options to users. A

user can decide to accept cookies from designated sites.

Cookies have been used for many purposes on the Web, such as selecting

display mode (e.g., frames or text only), making shopping cart selections, and carrying

names, passwords, account numbers, or some other bits of identifying data on the

user's machine. The possible applications are endless, since cookies are a general

mechanism to save and replay relevant application-dependent data. Contrary to some

discussions in the popular press, cookies cannot interact with other data on the user's

hard drive, nor can they capture anything from it. They can only save and retrieve

information placed therein by Web servers.

Although there are many ways to use cookies on the Web, the basic process

and the contents of cookies are outlined in the following description. Figure 2.1 shows

an example of cookies. To create a cookie for a Web site, the Web server sends a

Set Cookie HTTP header line as follows in response to a URL request from a browser:

SET-Cookie: Cookie Name=Cookie Value; expire=Date; domain=Domain Name;

path=Path; Secure Flag=boolean; Flag=boolean

� Cookie Name and Cookie Value have the actual information we want to keep in

6

the cookie. Optionally, we can store multiple Cookie Name and Cookie Value

pairs in the same cookie, so they appear as one to the browser.

� Date (Expire) is the valid lifetime of the cookie. If the expiration date is set,

the cookie will no longer be stored when the expiration date has been reached.

By default, the cookie is set to expire when the browser is closed.

� Domain Name is the host or domain where the cookie is valid. When a server

is looking for the cookies for a particular Web site, a comparison of the Do-

main Name is made with the actual Internet domain name of the host. For

instance, this �eld could have \domain=.acme.com" as a domain name.

� Flag speci�es whether or not all machines within a given domain can access the

variable in the cookie. If true, all servers in the speci�ed Domain Name can

use the cookie (and the browser will supply the cookie to all servers in that

domain). If false, Domain Name is interpreted as a host name, which is the

only host to whom the browser will give that cookie.1

� Path sets the valid path at the domain for the cookie which restricts cookie

usage within a site. Only pages in the path speci�ed by this �eld can read the

cookie. By default, the path is set to the path for the page that creates the

cookie. The most general path is \/". The path \/foo" would match \/foodoc"

and \/foo/index.html".

� If a cookie is speci�ed Secure, the cookie will only be transmitted over secure

communications channels, such as an SSL [WS96, DA99] connection.

All of the above �elds are optional except Cookie Name and Cookie Value.

Whenever a browser - which contains several cookies - sends an HTTP request for a

URL to a Web server, the request includes only those cookies relevant to that server

in the following form:

1Host names and IP addresses are susceptible to spoo�ng, so these are not very strong privacy
controls.

7

Cookie: Cookie Name1=Cookie Value1; Cookie Name2=Cookie Value2; ...

According to the current HTTP state management mechanism, only the rel-

evant Cookie Name and Cookie Value �elds are sent to the Web server (selected by

means of Domain Name and Flag �elds) by the browser. The remaining cookie

�elds, such as Date, Domain Name, Flag, Path, and Secure �elds, are not sent to

the Web server. Instead they are used in the browser. For instance, a cookie will

be deleted from the browser after its expiration date. Only those cookies relevant to

that Web server (selected by means of Domain Name and Flag �elds) will be sent by

the browser.

If the Web server �nds any cookies that are applicable for the server, those

cookies are used during this communication between the browser and the server.

However, if the Web server does not �nd any cookies speci�ed for it, either that

server does not use cookies in the communication or the server creates new cookies

for subsequent communication between the browser and the server. Furthermore,

Web servers may update the contents of their cookies for any speci�c circumstance.

The cookie-issuer is not important for cookie validation. In other words, a Web server

can create cookies for other servers in the domain.

2.2 Secure Socket Layer (SSL)

SSL (Secure Socket Layer [WS96, DA99]) was introduced with the Netscape Naviga-

tor browser in 1994, and rapidly became the predominant security protocol on the

Web. Since the protocol operates at the transport layer, any program that uses TCP

(Transmission Control Protocol) is ready to use SSL connections. The SSL protocol

provides a secure means for establishing an encrypted communication between Web

servers and browsers.2 SSL also supports the authentication service between Web

2In many cases, due to export restrictions from the United States, only weak keys (40 bits) are
supported, but SSL technology is intrinsically capable of providing strong protection against network
threats.

8

servers and browsers.

SSL uses X.509 certi�cates. Server certi�cates provide a way for users to

authenticate the identity of a Web server. The Web browser uses the server's public

key to negotiate a secure TCP connection with the Web server. Optionally, the Web

server can authenticate users by verifying the contents of their client certi�cates.

Even though SSL provides secure communications between Web servers and

browsers on the Web, it cannot protect against end-system threats. For instance, if a

user receives attributes from the server over a secure channel, it does not mean that

we can trust the user. In other words, once the user, let's say Alice, receives some

attributes from the server over the secure channel, she is able to change the attributes

or give them to other people, because SSL does not support the integrity service in

the user's end system. Then, Alice (or the person impersonating Alice) can access

the servers - which accept the attributes - using those forged attributes. However,

as we will see later in this dissertation, SSL can be used as part of our solution to

protect information on the Web.

2.3 Public-Key Certi�cate (X.509)

A public-key certi�cate [HFPS98, ITU93, ITU97] is digitally signed by a certi�cate

authority (a person or entity) to con�rm that the identity or other information in

the certi�cate belongs to the holder (subject) of the corresponding private key. If a

message-sender wishes to use public-key technology for encrypting a message for a

recipient, the sender needs a copy of the recipient's public key. In contrast, when a

party wishes to verify a digital signature generated by another party, the verifying

party needs a copy of the public key of the signing party. Both the encrypting

message-sender and the digital signature-veri�er use the public keys of other parties.

Con�dentiality, which keeps the value of a public key secret, is not important to the

service. However, integrity is critical to the service, as it assures public-key users

that the public key used is the correct public key for the other party. For instance,

9

if an attacker is able to substitute his or her public key for the valid one, encrypted

messages can be disclosed to the attacker and a digital signature can be forged by

the attacker.

ITU (International Telecommunication Union) and ISO (International Orga-

nization for Standardization) published the X.509 standard in 1988, which has been

adopted by IETF (International Engineering Task Force). X.509 is the most widely

used data format for public-key certi�cates today and it is based on the use of desig-

nated certi�cate authorities (CAs) that verify that the entity is the holder of a certain

public-key by signing public-key certi�cates. An X.509 certi�cate has been used to

bind a public-key to a particular individual or entity, and it is digitally signed by the

issuer of the certi�cate (certi�cate authority) that has con�rmed the binding between

the public-key and the holder (subject) of the certi�cate. An X.509 certi�cate consists

of the following:

� version of certi�cate format

� certi�cate serial number

� subject's X.500 name (assigned by a naming authority)

� subject's public key and algorithm information

� validity period (beginning and end date)

� issuer's X.500 name (certi�cate authority)

� optional �elds to provide unique identi�ers for subject and issuer (Version 2)

� extensions (Version 3)

� digital signature of the certi�cate authority

The optional �elds are available from Version 2 to make the subject name or

the issuing certi�cate authority name unambiguous in the event the same name has

10

Figure 2.2: An Example of X.509

11

been reassigned to di�erent entities through time. Version 3 provides the extensions

�eld for the incorporation of any number of additional �elds into the certi�cate. These

extensions make X.509v3 a truly open-ended standard with room to support diverse

needs. It is possible for certi�cate issuers of interest to de�ne their own extension

types and use them to satisfy their own particular needs.

2.4 Attribute Certi�cate

The U.S. �nancial industry through the ANSI X9 committee developed attribute

certi�cates [Far98b, Far98a], which have now been incorporated into both the ANSI

X9.57 standard and X.509. An attribute certi�cate binds attribute information to

the certi�cate's subject. Anyone can de�ne and register attribute types and use them

for his or her purposes. The certi�cate is digitally signed and issued by an attribute

authority: furthermore, an attribute certi�cate is managed in the same way as an

X.509 certi�cate. However, an attribute certi�cate does not contain a public key.

Therefore, an attribute certi�cate needs to be used in conjunction with authentication

services, such as another certi�cate (X.509) and SSL to verify the subject of the

attribute. However, as we will see in this dissertation, our smart certi�cates have the

ability to build attribute information into X.509v3 extensions rather, without losing

e�ective maintenance, than putting this information into separate certi�cates.

2.5 Pretty Good Privacy (PGP)

PGP (Pretty Good Privacy [Zim95, Gar95]), a popular software package originally

developed by Phil Zimmermann, is widely used by the Internet community to provide

cryptographic routines for e-mail, �le transfer, and �le storage applications. A pro-

posed Internet standard has been developed [CDFT98], specifying use of PGP. It uses

existing cryptographic algorithms and protocols and runs on multiple platforms. It

provides data encryption and digital signature functions for basic message protection

services.

12

PGP is based on public-key cryptography, and de�nes its own public-key pair

management system and public-key certi�cates. The PGP key management system is

based on the relationship between key owners, rather than on a single infrastructure

such as X.509. Basically, it uses RSA [RSA78] for the convenience of the public-

key cryptosystem, message digests (MD5 [Riv92]) and IDEA [LM91] for the speed of

process, and Di�e-Hellman for key exchange. The updated version supports more

cryptographic algorithms.

Even though the original purpose of PGP is to protect casual e-mail between

Internet users, we decided to use the PGP package for our implementation. The

package is already widely used and satis�es our requirements, in conjunction with

Web servers via CGI scripts [Her96] to protect cookies (described in Section 6.2.

These cookies have the user' role information.

CHAPTER 3

OPERATIONAL MODELS

We identify two di�erent approaches for obtaining a user's attributes on the Web,

especially with respect to user-pull and server-pull models, in which each model has

user-based and host-based modes [PS99b]. Each approach can be made to work, and

we provide an analysis of their relative advantages and disadvantages. Basically, there

are three components in both models: client, Web server, and attribute server. These

components are already being used on the Web. Clients connect to Web servers via

HTTP using browsers. The attribute server is maintained by an attribute authority

and issues attributes for the users in the domain.

In this chapter, we focus on identifying the operational models for secure

attribute services on the Web with tradeo�s between them. Detailed technologies

(such as authentication, attribute transfer and protection, and veri�cation) to support

these models depend on the applications that are used.

3.1 User-Pull Model

In the user-pull model, the user pulls appropriate attributes from the attribute server

and then presents them to the Web servers. Figure 3.1 shows a collaborational dia-

gram in UML (Uni�ed Modeling Language [BJR98, Qua98]) style notation for this

model. We call this a user-pull model, because the user pulls appropriate attributes

from the attribute server, in which attributes are issued for the users in the domain.

13

14

Server
Web

2.3:
Attribute-
Request
Result

2.7:
Validation
Result

2.11:
Transaction
Results

2.6:
Validation
Result

2.9:
Request
Transactions

2.10:
Transaction
Results

2.2:
Attribute
Information

Client
(Browser)

Request

*Authentication Information can be either user-based or host-based.

Attribute
Request

2:

Access
Web Server (with
User-based
Auth-Info.)

2.4:

Transactions

2.8:

Server
Attribute

1: Attribute Issue/Revoke

1.1: Process ResultAttribute
Authority

User

2.1:

Attribute
Request

2.5: Credentials
(Attributes + Auth-Info.*)

Figure 3.1: Collaborational Diagram for User-Pull Model

HTTP (HyperText Transfer Protocol) is used for user-server interaction with stan-

dard Web browsers and Web servers.

In user-pull host-based mode, a user, Alice, needs to download her attributes

from the attribute server and store them in her machine (which has her host-based au-

thentication information, such as a client certi�cate1). Later, when Alice wants to ac-

cess the Web server, which requires proper authentication information and attributes,

her machine presents that information to the Web server. After client authentication

and attribute veri�cation, the Web server uses the attributes for its purposes, such as

access control, authorization, and electronic transactions. However, since this mode

is host-based, it cannot support high user mobility, although it may support more

convenient service than the user-based mode - which requires the user's cooperation

(e.g., typing in passwords).

On the other hand, the user-pull user-based mode supports high user mobility.

1Optionally, we can use other host-based authentication information, such as IP numbers and
Kerberos tickets.

15

Server
Web

Access
Web Server (with
User-based
Auth-Info.)

2:

Client
(Browser)

User

*Authentication Information can be either user-based or host-based.

Request
Transactions

2.4:

2.3:
Authentication
Result

2.7:
Transaction
Results

Attribute
Server

Attribute
Authority

1: Attribute Issue/Revoke

1.1: Process Result

2.1: Credentials

2.5:
Request
Transactions

2.2:
Authentication
Result

2.6:
Transaction
Results

2.3a: Attribute Information

2.2a: Request User Attributes

(Auth-Info.*)

Figure 3.2: Collaborational Diagram for Server-Pull Model

A user, Alice, can download her attributes to her current machine from the attribute

server. Then, Alice presents those attributes to the Web server along with her user-

based authentication information, such as her passwords. After user authentication

and attribute veri�cation, the Web server uses the attributes for its purposes.

In this user-pull model, we must support the binding of attributes and iden-

ti�cation for each user. For instance, if Alice presents Bob's attributes with her

authentication information to the Web server, she must be rejected. We can use

di�erent mechanisms for binding attributes and user identi�cations.

3.2 Server-Pull Model

In the server-pull model, each Web server pulls appropriate attributes from the at-

tribute server as needed and uses them for its purposes. Figure 3.2 shows a collabo-

rational diagram in UML (Uni�ed Modeling Language) style notation for this model.

We call this a server-pull model, since the server pulls appropriate attributes from

the attribute server. HTTP is used for user-server interaction with standard Web

16

browsers and Web servers. If the attribute server provides attributes securely, the

Web server can trust those attributes and uses them for its purposes.

In this model, a user, Alice, does not need access to her attributes. Instead,

she needs only her authentication information. In server-pull host-based mode, she

presents host-based authentication information (e.g., her client certi�cate) to the

Web server. The mechanism for obtaining attributes is transparent to the user, while

limiting user portability. However, in server-pull user-based mode, Alice presents

user-based authentication information, such as her passwords, to the Web server.

This supports high user portability, while it requires the user's cooperation (e.g.,

typing in passwords). After client(user) authentication, the Web server downloads

the corresponding attributes from the attribute server and uses them for its purposes,

such as access control, authorization, and electronic transactions.

CHAPTER 4

COOKING SECURE COOKIES ON THE WEB

Since there is no concept of a \session" in HTTP, Web servers and browsers use cook-

ies [KM97, KM98a, KM98b, Lau98] to capture information for subsequent communi-

cations, thus providing continuity and state across HTTP connections. Technically,

it is not di�cult to equip a cookie to carry any relevant information. For instance,

a merchant Web server could use a cookie that contains the user's name and credit

card number. This is convenient for users, since they do not have to read lengthy

numbers from their cards and key these in for every transaction. However, it is not

safe to store and transmit sensitive information in cookies, as cookies are insecure.

Cookies are stored and transmitted in clear text, which is readable and can be

forged. In this chapter, we identify and discuss several techniques to render it secure

to carry and store sensitive data in cookies. We show how secure cookies support

secure attribute services between existing Web servers and browsers, and identify

examples of electronic commerce and business applications for use of this technology.

Secure cookies are constructed by using familiar cryptographic techniques, such as

message digests, digital signatures, message authentication codes, and encryption.

The novelty lies in the manner in which these techniques are applied to implement

secure cookies and in the Web services to which secure cookies are applied. A notable

aspect is that secure cookies can be issued by one Web server for use by another.

This facilitates secure attribute services on the Web by means of secure cookies. The

secure cookie mechanism is a inherently user-pull model (described in Chapter 3),

17

18

since users need to obtain their attributes from an attribue server and present them

to Web servers by means of secure cookies on the Web.

Our techniques have varying degrees of security and convenience for users and

system administrators. It is our well-founded belief that there is no such thing as

absolute security. Hence, these techniques are not intended to be foolproof but rather

to provide a reasonable degree of security. We will consider vulnerabilities of our

techniques as we go along. An equally well-founded belief is that a one-size-�ts-all

approach is rarely e�ective in systems design. Hence, the need exists for a variety

of techniques for secure cookies providing di�erent tradeo�s between security and

convenience for end users, system administrators, and application developers.

Secure cookies provide three types of security services: authentication ser-

vices, integrity services, and con�dentiality services. Authentication services verify

the owner of the cookies. Integrity services protect against the threat that the contents

of the cookies might be changed by unauthorized modi�cation. Finally, con�dentiality

services protect against the values of the cookies being revealed to an unauthorized

entity. In this chapter, we describe how to transform regular cookies (which have

zero security; see Figure 2.1), into secure cookies that give us the basis for providing

security services.

4.1 Security Concerns in Cookies

Cookies are often used by Web servers to tag visitors, and to identify who they are and

what the status is for each visitor. For instance, if a merchant Web site has a customer

database that contains customers' information, such as names, addresses, payment

histories, merchandising histories, and credit card numbers, the Web site creates and

uses cookies to store pointers to individual customer records in the customer database.

Since cookies are readable and can be easily forged, it is reasonable to store a simple

ID number of a customer in a cookie rather than all of the customer's information.

This ID number is exposed in a cookie without exposing the actual customer data.

19

However, even this ID can be forged or used by someone else.

Cookies are electronic notes for Web servers stored on the browser side. Some

people may be concerned that any random site could read the cookies on a user's

hard disk, or that cookies could be used to steal information from a user's hard disk.

Fortunately, there is no way a cookie can examine the contents of the user's hard

drive, nor can it release the user's private data on the Web, because a cookie is

written in a text �le stored in a user's machine. Therefore, if cookies do not carry

any sensitive information about the user, or the sensitive information is not in plain

text (for instance, if cookies carry encrypted text of sensitive information), we can

achieve con�dentiality of data transmitted in cookies.

We mention that one of the main concerns about cookies in the popular press

has been privacy, because cookies allow Web servers to track a user's browsing be-

havior. These privacy concerns are outside the scope of this work. Our focus is on

the integrity, authenticity, con�dentiality and authorization for non-anonymous Web

transactions.

4.2 Security Threats to Cookies

However, what if a malicious user were to change the contents of the cookies? What

if a malicious user were to use the cookies of other people? What if a malicious

user were to collect cookies from other people and extract some sensitive information,

such as credit card numbers or passwords? Actually, these attacks are easy to carry

out, since cookies are stored in plain text somewhere on the user's hard disk. A

user, say Alice, can change the contents of her cookies, such as ID numbers to a

Web site, and access the Web site with the forged cookies. Alice can copy cookies

from Bob's machine to her machine, and easily can impersonate Bob in the Web

sites that accept Bob's cookies. Furthermore, if Alice can impersonate a site that

accepts Bob's cookies, or if she penetrates one such site, Bob's browser sends Alice

all the cookies from that domain. Then, Alice can use the harvested cookies for

20

all other sites within the domain. Therefore, cookies are not the appropriate place

to store sensitive information, including passwords, credit card numbers, purchase

authorization numbers, and so on.

We distinguish three types of threats to cookies: network threats, end-system

threats, and cookie-harvesting threats. Cookies transmitted in clear text on the

network are susceptible to snooping (for subsequent replay) and to modi�cation by

network threats. Network threats can be foiled by use of the Secure Sockets Layer

(SSL) protocol, which is widely deployed in servers and browsers. However, SSL

can only protect cookies while they are on the network. Once the cookies are sent

to the browser's end system, they reside on the hard disk or memory in clear text.

Such cookies can be trivially altered by users and can be easily copied from one

computer to another, with or without connivance of the user on whose machine the

cookie was originally stored. We call this the end-system threat. The ability to alter

cookies allows users to forge authorization information in cookies and to impersonate

other users. The ability to copy cookies makes such forgery and impersonation all

the easier. Additionally, if an attacker collects cookies by impersonating a site that

accepts cookies from the users (who believe that they are communicating with a

legitimate Web server), later he can use those harvested cookies for all other sites

that accept those cookies. We call this the cookie-harvesting threat. These attacks

are all relatively easy to carry out and certainly do not require great hacker expertise.

Now, we will describe how to protect cookies from these threats in the following

section.

4.3 User Authentication for Cookies

It is already possible to use cookies on the Web between existing Web servers and

browsers. However, a malicious user can simply snatch the cookies of other people

and impersonate the real owner of the cookies in the server that is accepting those

cookies. To solve this problem, we identify four possible authentication methods

for cookies: address-based authentication, password-based authentication, Kerberos-

21

SecurePathFlagDomain Cookie_Name Cookie_Value

acme.com TRUE / FALSEIP_Cookie

acme.com TRUE / FALSEPswd_Cookie hashed_password

12/31/99

12/31/99

129.174.100.88IP_Cookie

Pswd_Cookie

acme.com TRUE / FALSE 12/31/99KT_Cookie Kerberos_Ticket {Alice, K C,S}KS

acme.com TRUE / FALSE 12/31/99Sign_Cookie Sign_Cookie Signature_of_Alice

Expire

Figure 4.1: Authentication Cookies

based authentication, and digital-signature-based authentication. Figure 4.1 shows

the authentication cookies. Note that we need to use one or some of those authenti-

cation cookies from Figure 4.1 with regular cookies in Figure 2.1. The choice of an

authentication cookie depends on the given situation.

4.3.1 Address-Based Authentication

We use the IP Cookie, which grabs the IP address of the user's machine for address-

based authentication to protect malicious users from impersonating the original owner

of the cookies. Since the IP address is one of the environment variables for a user

on the Web1, it is not di�cult for a server to obtain the user's IP address and put it

into the IP Cookie by internal procedures, such as CGI scripts in the server. Now,

whenever Alice tries to access the server that accepts the cookies, the server checks

�rst to see if Alice's current IP address is the same as the one in the IP Cookie Alice

sent to the server. If they are identical, the server believes that Alice is the real owner

of those cookies.

1Every process or program on the Web has an environment of data with which it be-
gins. The environment is described by environment variables such as: REMOTE ADDR, RE-
MOTE HOST, REQUEST METHOD, SERVER NAME, SERVER PORT, SERVER PROTOCOL,
QUERY STRING.

22

It is very convenient for users to use their IP addresses as simple authentication

information, since users do not need to enter their authentication information during

communication between servers and browsers. However, in some cases, using the

user's IP address for authentication is not a good solution. For example, what if

Alice's IP address is dynamically assigned to her machine whenever she connects to

the Internet? In this case, even though Alice is using the same machine as before, the

cookies that Alice received in a previous internet connection are not valid any more

once the IP address is changed. Furthermore, if Alice's domain uses a proxy server to

reach Bob, an attacker can collect Alice's cookies by the cookie-harvesting and can

easily impersonate Alice to Bob through the same proxy server that provides the same

IP numbers to users. In addition, we cannot avoid the IP spoo�ng problem whenever

we use IP addresses for some purposes on the Internet.2 Therefore, to avoid the

above problems in such cases, we need to use one of the other authentication cookies

described below.

4.3.2 Password-Based Authentication

To support users who use dynamic IP addresses or proxy servers, and to avoid the

IP spoo�ng, we can use password-based authentication. In other words, if the server

grabs Alice's password �rst and puts the hash of the passwords into a cookie, call

it Pswd Cookie, servers can authenticate the owner of the cookie. Alice is required

to type her password for veri�cation whenever she tries to access other servers that

accept those cookies.3 If the hash of the password she entered is the same as the

one in her Pswd Cookie, then the server believes Alice is the real owner of those

cookies. Alternatively, servers can use encrypted passwords instead of the hash of the

password in the Pswd Cookie to authenticate the owner of the cookie (the detailed

encryption process is described in the following subsection). As a result, no one but

2Strong solutions to IP spoo�ng require use of IPSEC [KA98].
3The passwords will be transmitted from browser to server and should be protected on the

network by means of SSL.

23

Alice can use those cookies on the Web. However, this mechanism requires users to

enter their passwords for authentication whenever they connect to the site, but using

an IP Cookie is transparent to users. Furthermore, it is vulnerable to dictionary

attacks, since hashed or encrypted passwords are revealed in the Pswd Cookie.

4.3.3 Kerberos-Based Authentication

We can also use Kerberos4 [SNS88, Neu94] with cookies for mutual authentication.

We assume the reader is familiar in general terms with the Kerberos protocol. An

HTTP adaptation of the Kerberos protocol is shown in Figure 4.2. Kerberos is a

secret-key based authentication service in a network. To use Kerberos with cookies

for authentication, the user needs additional browser software to replace the value

of the cookie (TGT Cookie), which contains a ticket-granting ticket (TGT), and

generates authenticators (ftimestampgSA, ftimestampgKC;S) in the TSK Cookie and

the TSS Cookie respectively. Furthermore, we need to modify the Kerberos protocol

slightly to enable the Kerberos ticket cookie, KT Cookie, to work with other secure

cookies, which particularly support the integrity of cookies.

Figure 4.2 shows how Alice logs into Bob through the KDC (Key Distribution

Center) with a KT Cookie. The KDC shares a secret key with each principal in the

domain. During the initial login, Alice asks the KDC for a session key, SA, and a

ticket-granting ticket (TGT), which is encrypted by the KDC's master key, KKDC.

Then, Alice receives fTGT, SAgKC (encrypted with Alice's secret key, KC), stored

in the TGT Cookie from the KDC.

Alice decrypts the encrypted SA and the TGT using her secret key, KC . Then,

Alice replaces the value of the TGT Cookie with the TGT and removes fTGT, SAgKC

from her machine. Practically, it is possible for Alice to create another cookie con-

taining the TGT. However, keeping fTGT, SAgKC in Alice's machine for a long time

4It also is possible for authentication to be based on use of RADIUS [RRSW97] and similar
protocols. Our focus in this research is on techniques that make secure cookies self-su�cient rather
than partly relying on other security protocols, which is always possible.

24

2. TGT_Cookie = {TGT, SA}KC

3. TGT_Cookie = TGT

4. KT_Cookie = TC,S

KC_Cookie = {KC,S, Bob}SA

C,STSS_Cookie = {timestamp}K
C,STSS’_Cookie = {timestamp+1}K

5. KT_Cookie = TC,S

KDC

Client

(Bob)
Server

(Alice)

1. Request TGT

ATSK_Cookie = {timestamp}S
TC,S = {Alice, KC,S}KS (ticket to Bob)

TSK_Cookie : Timestamp for the KDC
KT_Cookie : Kerberos Ticket Cookie
KC_Cookie : Kerberos Client Cookie
TSS_Cookie : Timestamp for the Server

TSK_Cookie

TSS_Cookie

6. TSS’_Cookie

TGT = {SA , Alice}K KDC

, Alice, Bob

Figure 4.2: Kerberos-based Authentication with Cookies

is not a good idea from a security point of view, once Alice does not need it any more.

When Alice later needs to access a remote server (say Bob), she connects to the

KDC with the TGT Cookie, along with the TSK Cookie, which is generated by Alice's

machine to carry an authenticator (ftimestampgSA) and the name of the remote

server, Bob. The KDC veri�es the timestamp and decrypts the TGT to discover

SA. At that point, the KDC creates both the Kerberos client cookie, KC Cookie,

containing fKC;S, BobgSA for Alice, and the Kerberos ticket cookie, KT Cookie,

containing TC;S (encrypted with Bob's secret key) for Bob. As a result, the KDC

sends Alice fKC;S, BobgSA and TC;S separately.

According to the original Kerberos protocol, the KDC is supposed to encrypt

those values all together and send fKC;S, TC;S, BobgSA to Alice in one cookie. How-

ever, this approach gives us a limitation for using the KT Cookie with other secure

cookies. For instance, if we need to use a KT Cookies with regular cookies in Fig-

ure 2.1 for authentication, we may also consider the integrity of the cookies that can

be supported by another secure cookie, Seal Cookie (described in section 4.4). By

the original Kerberos protocol, users must change the contents of the cookie or gen-

erate another one to make a cookie that has the ticket to Bob (TC;S). This obviously

25

conicts with the integrity of the cookies. Therefore, the KDC is required to create

two separate cookies (KC Cookie and KT Cookie) and send them to Alice.

When Alice connects to Bob, the KT Cookie and the TSS Cookie - which

is generated by Alice's machine containing an authenticator (ftimestampgKC;S) -

are sent by Alice to Bob. To provide mutual authentication, Bob responds to the

authenticator. Now, Alice believes that she is connecting to Bob, since Bob was able

to decrypt the ticket in the KT Cookie, which meant he knew KC;S encrypted with

KS.

4.3.4 Digital-Signature-Based Authentication

If servers know users' public keys, the digital signature technologies, such as DSA [Fed91,

Fed94] and RSA [RSA78] can be used to authenticate users with cookies. To use this

method, the user needs additional browser software to generate a cookie that con-

tains a signed timestamp. For instance, when Alice needs to access a remote server

(say, Bob), who knows Alice's public key, Alice's machine generates a timestamp and

creates the Sign Cookie shown in Fig 4.1, which has Alice's digital signature (signed

with her private key) on the timestamp. When Alice connects to Bob, he receives the

Sign Cookie from Alice and veri�es the signature with her public key.5

4.4 Providing Integrity to Cookies

There are also integrity problems with cookies. For instance, if an attacker wants

to impersonate Alice, he can copy the IP Cookie from Alice and edit it with his IP

number, and later impersonate Alice in a Web server that accepts the IP Cookie.

Figure 4.3 shows a set of secure cookies and Figure 4.4 shows how the secure cookies

are used on the Web. The regular cookies (Name Cookie and Role Cookie) and the

authentication cookie (Pswd Cookie) have the user's attributes and authentication

5This technique requires each user to have a public-key certi�cate. With this assumption, one
could conceivably use this certi�cate to do user-to-server authentication at the SSL layer instead.

26

SecurePathFlagDomain

acme.com TRUE / FALSE 12/31/99

Cookie_Name Cookie_Value

Alice*

acme.com TRUE / FALSE 12/31/99Life_Cookie

acme.com TRUE / FALSEDirector * 12/31/99Role_Cookie

acme.com TRUE / FALSEPswd_Cookie hashed_password

acme.com TRUE / FALSEKey_Cookie

acme.com TRUE / FALSE

12/31/99

12/31/99

12/31/99Seal_Cookie

Sealing Cookies

Seal_of_Cookies**

*

Pswd_Cookie

Seal_Cookie

* Sensitive fields can be encrypted in the cookies.

Note: Pswd_Cookie can be replaced with one of the other authentication cookies in Figure 4.1

Name_Cookie

Expire

Name_Cookie

Role_Cookie

Life_Cookie 12/31/99

Key_Cookie encrypted_key

** Seal_of_Cookies can be either MAC or a signed message digest of cookies.

Figure 4.3: A Set of Secure Cookies on the Web

information. The Life Cookie is used to hold the lifetime of the secure-cookie set in its

Cookie Value �eld and enables the Web server to check the integrity of the lifetime of

the secure-cookie set. Even though only the relevant Cookie Name and Cookie Value

�elds will be sent to the Web server (selected by means of Domain Name and Flag

�elds) by the browser, the Web server can check the integrity of the other �elds in

the cookies under a certain policy. For example, if the policy (established between

the cookie-issuing server and the Web servers in the domain) presets the values of

Domain Name, Flag, Path, and Secure �elds with \acme.com," \TRUE," \/," and

\FALSE" respectively, the Web server uses those values to check the integrity of the

cookies. However, it is not a good idea to preset an expiration date for all the cookies

under a policy in the domain, since each secure-cookie set may require a di�erent

27

Check Integrity
Authentication

Check Integrity
Authentication

Cookies
Set Secure

Server Communication

Browser
Response

Server 1

Server n

Client

.

Key

Key

Key
SealPswd

Pswd

Pswd

Seal

Get Cookies

Cookie_Issuer

Get
User Information

Access

Get Cookies

Response

Send Cookies

Seal

Get Cookies

Access to
Resources

Access to
Resources

Pswd_Cookie can be replaced with one of the other authentication cookies in Figure 4.1.

Send Cookies

Life

Life

Life

Figure 4.4: How to Use Secure Cookies on the Web

lifetime. To solve this problem, the Life Cookie is used.6 If it is necessary, we can

include other regular cookies in the secure-cookie set, holding speci�c information

to be protected according to applications. The Key Cookie is optionally used to

facilitate encryption of sensitive data as will be described in Section 4.5. In some

cases, if we do not need the con�dentiality of information in cookies - for example,

when we use cookies without sensitive information - we do not need an encryption

mechanism. Namely, we do not need the Key Cookie. Finally, the Seal Cookie is used

to determine if the contents of the cookies have been altered. The contents of the

Seal Cookie depend on the cryptographic technologies used for the cookie. Basically,

there are two solutions: public-key-based solution and secret-key-based solution. The

6A cookie is deleted from a user's machine automatically after its expiration date. This a�ects
the integrity of the secure-cookie set. Therefore, it is e�cient to set the same expiration date for all
the cookies that are also stored in the Cookie Value �eld of the Life Cookie.

28

key distribution between servers can be achieved by key agreement algorithms, such

as RSA [RSA78] or Di�e-Hellman [DH76, DH97].

4.4.1 Public-Key-Based Solution

In the case of using public-key technology, the cookie-issuing server creates a mes-

sage digest from the rest of the cookies using a message digest algorithm, such as

MD5 [Riv92] or SHA [Fed95], then signs the message digest using its private key and

puts the signature in the Seal Cookie.

When the user connects to a Web server, it gets a relevant set of secure cookies

from the browser. The Web server then veri�es the signature in the Seal Cookie using

the public key of the cookie-issuing server and the values set by the policy (between

the cookie-issuing server and Web servers). If the integrity veri�cation is successful,

then there has been no alteration in the cookies. If the cookies are valid, the Web

server trusts the cookie values and uses them for its purposes.

In the public-key-based solution, only the server, which has the private key

for the Seal Cookie, can update the contents of the secure cookies for any speci�c

circumstance. For instance, when we need to update the contents of the secure

cookies, the user has to go back to the original cookie-issuing server - which has the

private key - to update the cookies, because the updated cookies need to be signed

with the cookie-issuing server's private key.7

4.4.2 Secret-Key-Based Solution

In the case of using the secret-key cryptography, the cookie-issuing server creates

a message authentication code (MAC) from the rest of the cookies by using a key-

dependent one-way hash function, such as HMAC [BCK96], and puts it in the Seal Cookie.

When the user connects to a Web server - which accepts the cookies - the server ob-

7If the private key is shared among these servers, it is possible to update the secure cookies at
multiple sites.

29

tains all the relevant cookies for itself from the browser. Assuming that the Web

server has a secret key shared with the cookie-issuing server, the server creates a mes-

sage authentication code (MAC) from the cookies and the values set by the policy,

and compares it with the one in the user's Seal Cookie. If the two MACs are identical,

the Web server believes that there has been no alteration in the cookies.

If we use the secret-key-based solution for secure cookies, any server that

has the shared secret key can update the contents of the cookies for any speci�c

circumstance. For instance, a Web server - which has the shared secret key with the

cookie-issuing server - can extend the expiration date of the cookies. Therefore, the

user does not have to go back to the original cookie-issuing server (which created the

cookies) to update the cookies.

4.5 Providing Con�dentiality to Cookies

Additionally, let us consider how to prohibit other people, or perhaps even the cookie

owner, from reading sensitive information in the cookies. To do so, sensitive infor-

mation, such as names, roles, and credit card numbers, can be encrypted by the Web

server and stored in cookies. We use the Key Cookie, shown in Figure 4.3, to store

an encrypted session key, which was used to encrypt sensitive information of other

cookies. The session key can be encrypted either by the server's public key or by

the server's secret key. We may encrypt the contents of the cookies with the server's

secret key or public key directly (we do not need the Key Cookie in this case). How-

ever, for more secure services, we recommend using a session key for con�dentiality

services with cookies. In the case of using the public-key cryptography for encryption,

we recommend using separate public-key pairs for encryption and digital signature,

since servers may share the private key for information decryption while keeping the

private key for digital signature secret.

When a Web server receives secure cookies, including the Key Cookie, the

server decrypts the Cookie Value of the Key Cookie by using its master key - private

30

key or secret key - to get the session key. The secret key is shared with other Web

servers and the session key was used to encrypt sensitive information in other cookies.

At this point, the server decrypts and reads the encrypted information in the cookies

using the session key. If the contents of the cookies were encrypted by the server's

secret key or public key directly, the server decrypts the encrypted information in the

cookies using the corresponding key.

4.6 Secure Cookies and SSL

A cookie can be transmitted over SSL [WS96] if the secure ag is on in the cookie.

Even though SSL provides secure communications between Web servers and browsers

on the Web, it cannot protect the end-system threats. For instance, if a user receives

cookies from the server over a secure channel, it does not mean that the cookies are

securely stored in the user's machine. In other words, once Alice receives some cookies

from the server over the secure channel, she is able to change the contents of the

cookies or give them to other people. Then, Alice or the person, who is impersonating

Alice, can access the server (which accepts the cookies) using those forged cookies.

However, SSL can be used as part of our solution to protect information on the Web.

For example, users can securely transmit their passwords to Web servers over SSL.

It is also our contention that SSL can be used as part of our solution to

make systems more secure and e�cient on the Web. Suppose we have hundreds of

Web servers in an organization, requiring integrity, authentication, and con�dentiality

services in cookies. It is not a good idea to allow individual Web servers to share a

secret key with others in the domain, since this increases the likelihood of exposing

the secret key. To support more secure service, several veri�cation servers can be

used that have the secret key shared with other veri�cation servers to verify, decrypt,

or update cookies issued by cookie-issuing servers in the domain. As a result, the

remaining servers do not have the shared secret key. When a Web server receives a

set of secure cookies from a user, the server asks one of those veri�cation servers if

the cookies are valid, forwarding those cookies. Then, the veri�cation server veri�es

31

Auth Auth + Auth +
E�ect SSL IP Pswd� Sign Seal Seal Key+Seal

Network Threats O X X X X O O
End System Threats X X X X X O O
Cookie-Harvesting Threats O X O O X DA DA
Information Hiding No No No No No No Yes
Additional Client Software NR NR NR R NR DA DA
IP Spoo�ng O X NO NO DA DA

O = can solve the problem; X = cannot solve the problem; R = required;
NR = not required; DA = depends on the authentication cookie

� Passwords are protected by SSL on the network.

Table 4.1: Summary of the Recipes for Secure Cookies

the cookies and sends the result to the Web server in plain text over the secure

channel achieved by SSL. Furthermore, if it is necessary, the veri�cation server can

decrypt the encrypted values in the cookies, or update information in the cookies.

Finally, the Web server trusts the decrypted and veri�ed information received from

the veri�cation server over an SSL and uses them for its purposes.

4.7 Comparison of the Recipes and E�ects of Secure Cookies

A summary of the recipes for secure cookies on the Web is shown in Table 4.1. Regular

cookies are susceptible to network threats, end-system threats, and cookie-harvesting

threats. Actually, there is no security in regular cookies. Since SSL provides server-

to-client authentication (optionally mutual authentication is possible by requiring

client-to-server authentication) and data encryption on the Web, SSL can protect

cookies from network threats, IP spoo�ng, and cookie-harvesting threats. However,

it cannot protect cookies from the end-system threats. One of the authentication

cookies - IP Cookie, Pswd Cookie, KT Cookie, or Sign Cookie and Seal Cookie can

be used to provide authentication and integrity services to cookies, respectively. If

authentication is dependent on IP addresses, IP spoo�ng remains a threat. Further-

32

more, the IP Cookie cannot protect cookies from cookie-harvesting threats if users

use a proxy server. On the other hand, if servers use the Pswd Cookie, carrying

the hash of the user's passwords; the KT Cookie, carrying the Kerberos ticket; or

the Sign Cookie, carrying the user's digital signature, authentication has neither IP

spoo�ng exposure nor cookie-harvesting threats. However, using Pswd Cookie re-

quires users to enter their authentication information for each server in the domain

and requires SSL to protect the passwords on the network and to achieve server-client

authentication to prevent server spoo�ng. Use of the IP Cookie is transparent to

users, and using the KT Cookie supports mutual authentication between clients and

servers. However, using either the KT Cookie or the Sign Cookie requires additional

browser software to deal with ticket-granting tickets and authenticators. Additionally,

if cookies have some sensitive information that is need to be encrypted by a session

key, the Key Cookie can be used with other secure cookies to store the encrypted

session key.

4.8 Applications of Secure Cookies

In this section, we introduce several applications of secure cookies. The followings

are representative samples, and many other applications can be imagined.

4.8.1 User Authentication

Web servers can simply use secure cookies to authenticate their visitors. One or mul-

tiple authentication cookies (IP Cookie, Pswd Cookie, KT Cookie, or Sign Cookie),

depicted in Figure 4.1, can be used to support user authentication service in the Web

server in conjunction with Seal Cookie, which supports the integrity service for the

cookies. Detailed procedures for creating and using those cookies and comparisons

are described in Section 4.3.

33

SecurePathFlagDomain

acme.com TRUE / FALSE 12/31/99

Cookie_Name Cookie_Value

Alice*

acme.com TRUE / FALSE 12/31/99
exp_date::Jan.2000

number::123456789*&
*

Card_Cookie

ID::123&off::10%*
acme.com TRUE / FALSE 12/31/99

acme.com TRUE / FALSE 12/31/99Life_Cookie 12/31/99

acme.com TRUE / FALSEPswd_Cookie hashed_password

acme.com TRUE / FALSEKey_Cookie encrypted_key

acme.com TRUE / FALSE

12/31/99

12/31/99

12/31/99Seal_Cookie

Sealing Cookies

Seal_of_Cookies**

* Sensitive fields can be encrypted in the cookies.
** Seal_of_Cookies can be either MAC or a signed message digest of cookies.

*

Pswd_Cookie

Key_Cookie

Seal_Cookie

Note: Pswd_Cookie can be replaced with one of the other authentication cookies in Figure 4.1.

Name_Cookie Name_Cookie

Card_Cookie

Coupon_Cookie

Life_Cookie

Expire

valid_until::05/07/99*
Coupon_Cookie

Figure 4.5: An Example of Secure Cookies for Electronic Transactions

4.8.2 Electronic Transactions

In Figure 4.5, the Card Cookie and Coupon Cookie have multiple pairs of Cookie Name

and Cookie Value in their Cookie Value �elds. Intuitively, a merchant site should set

the Card Cookie to expire before the actual expiration date of the credit card. For

more convenient services, the merchant can issue special tokens for customers, such as

electronic coupons, which contain the coupon's ID number and discount information.

For instance, if Alice received an electronic coupon along with other secure cookies,

she can use it by the coupon's valid date in the merchant site. In this case, the mer-

chant site needs to keep a record for the coupon by the ID to prevent replay usages

34

of the same coupon.

4.8.3 Eliminating Single-Point Failure

Because of the regular cookies' insecurity, a merchant site usually sets a cookie to hold

a pointer, such as an ID number, which is a key �eld of the customer-information

database in the site. However, this implies that a customer-information database

must be maintained in a server. One of the disadvantages of this method is that

if the server holding customers' information is penetrated by an attacker, all the

customers' information, such as credit card numbers, preferences, addresses and other

sensitive information in the server, is open to the attacker. Furthermore, if a domain

has multiple servers with multiple customer-information databases, maintenance and

synchronization of this information is burdensome. There are also signi�cant privacy

concerns about data stored by servers, since such data can easily be misused. Users

may feel more comfortable with servers that pledge not to maintain such data.

Secure cookies can solve these problems, especially in the electronic commerce

�eld. If a merchant site creates and uses the set of secure cookies shown in Fig-

ure 4.5, the site does not need to have a customer-information database unless the

site needs to track customers' access histories. This is because each customer's sen-

sitive information is distributed and stored securely in the customer's hard disk via

secure cookies. The secure cookies provide a more secure environment by eliminat-

ing customer-information databases that can cause a single point failure. Further-

more, the merchant can reduce the cost for the maintenance of customer-information

databases.

4.8.4 Pay-Per-Access

Today, many pay-per-access sites provide various information services, such as perfor-

mances, games, movies, and other special events, in the Web environment. Therefore,

it is obvious that we need secure mechanisms to sell, buy, and use tickets to such sites

on the Web.

35

SecurePathFlagDomain

acme.com TRUE / FALSE 12/31/99

Cookie_Name Cookie_Value

Alice*

Ticket_Cookie ID::456&Hours::10*
acme.com TRUE / FALSE 12/31/99

valid_date::05/07/99

Name_Cookie

Life_Cookie acme.com TRUE / FALSELife_Cookie 12/31/99

Key_Cookie acme.com TRUE / FALSEKey_Cookie encrypted_key 12/31/99*

Sealing Cookies

acme.com TRUE / FALSE 12/31/99Seal_Cookie Seal_of_Cookies**

* Sensitive fields can be encrypted in the cookies.
** Seal_of_Cookies can be either MAC or a signed message digest of cookies.

Seal_Cookie

acme.com TRUE / FALSEPswd_Cookie hashed_password 12/31/99

12/31/99

Ticket_Cookie

Name_Cookie

Expire

Note: Pswd_Cookie can be replaced with one of the other authentication cookies in Figure 4.1

Pswd_Cookie

Figure 4.6: An Example of Secure Cookies for Pay-Per-Access

Secure cookies can be used to solve this problem. Suppose Alice wants to buy

access to a pay-per-access site. After Alice pays for access, the server has to give her

a token that allows her to access the site until the ticket expires. If Alice receives

a cookie, let's call it Ticket Cookie (which contains her access limit and valid date)

along with other secure cookies, she can access the site as long as the Ticket Cookie

is valid. No one but Alice can use her secure cookies. Figure 4.6 shows an example

of a set of secure cookies for Pay-Per-Access sites on the Web.

The access limit in the Ticket Cookie is controlled either by time or by the

number of connections. For instance, if a merchant site issues a 10-hour (or 10-use)

ticket to Alice, the site allows Alice to use its resources up to 10 hours (or 10 uses)

until the valid date of the Ticket Cookie.

A merchant site could control a customer's access limit by simply updating

36

the content of the Ticket Cookie with the customer's residual access limit (hours

or number of uses). However, this is not a good idea, since a smart and malicious

customer can access the site beyond his or her access limit. For instance, if Alice

uses a copy of a whole set of her initial secure cookies, including the Ticket Cookie,

then she can have unlimited access to the site until the cookie set is valid because the

merchant site has no idea about customers' replays.

To prevent this kind of replay attacks, a merchant site needs to keep infor-

mation about tickets - such as accumulated usage of each ticket - at least until the

Ticket Cookie becomes invalid. This does not mean that the merchant site needs

to keep all the customer information. In other words, only the ticket ID and its

accumulated usage are required to be tracked by the merchant site. In this case,

merchant sites do not need to update the contents of the cookies by replay attacks.

For instance, if Alice's accumulated access usage becomes more than the access limit

denoted in her Ticket Cookie, then the merchant site rejects Alice's request.

4.8.5 Attribute-Based Access Control on the Web

If a user's attribute information is stored in cookies securely as shown in Figure 4.3,

Web servers can use those secure cookies for attribute-based access control on the

Web. Since all the attribute information is protected from possible security threats

on the Web as well as in end-systems, Web servers can verify and trust the attribute

information in the secure cookies and use it for their purposes.

4.9 Summary

In this Chaper, we have described how to make and use secure cookies. The secure

cookie mechanisms we have described use familiar cryptographic building blocks and

leverage existing technology. We have also identi�ed a variety of diverse applications

for secure cookies. Using secure cookies on the Web can solve the security problems of

regular cookies as well as the stateless problem of HTTP on the Web. Secure cookies

37

can be used between existing Web servers and browsers. Furthermore, using secure

cookies is transparent to users and can eliminate customer-information databases

that cause a single point failure. A proof-of-concept implementation is described in

Chapter 6.

CHAPTER 5

EXTENDING X.509 FOR SECURE ATTRIBUTE

SERVICES

Public-key infrastructure (PKI) has been recognized as a crucial enabling technology

for security in large-scale networks. To support PKI, X.509 [HFPS98, ITU93, ITU97]

certi�cates have been widely used. The basic purpose of X.509 certi�cates is simply

the binding of users to keys. An X.509 certi�cate contains extension �elds, which can

be de�ned by anyone. Therefore, it is possible for certi�cate authorities to de�ne and

use their own extension types to satisfy their own particular needs. Each extension

type needs to be registered by having an object identi�er assigned to it. Even though

X.509 has the ability to be extended, the application of the extensions of X.509 for

secure attributes has not yet been precisely de�ned.

In this chapter, we describe how to extend and use existing X.509 certi�-

cates for secure attribute services on the Web [PS99b]. Our discussion of the ex-

tended X.509 certi�cates, which we have named smart certi�cates, also focuses on

maintaining their compatibility with standard protocols, such as SSL, and e�ective

maintenance. Furthermore, we discuss possible applications of smart certi�cates for

electronic commerce and business.

38

39

5.1 Designing Smart Certi�cates by Extending X.509

We have extended X.509 certi�cates with several sophisticated features without los-

ing e�ective maintenance; they support short-lived lifetime and multiple CAs, contain

attributes, provide postdated and renewable certi�cates, and provide con�dentiality.

Selection of these new features depends on the applications that are used. Smart cer-

ti�cates can support both user-pull and server-pull models (described in Chapter 3).

5.1.1 Support for Short-Lived Certi�cates

Typical validity periods for X.509 certi�cates are several months or even years. To

support user mobility, users should be able to download both the certi�cate and the

private key to the software in di�erent environments. This service may leave copies of

private keys behind; therefore, the longer-lived certi�cates have a higher probability of

being attacked. If, however, the validity periods for certi�cates are measured in hours,

the user portability can be provided securely, since the copies of the corresponding

private key expire shortly. Additionally, we do not need a revocation scheme (CRL)

for the certi�cates, which is responsible for the complexity and cost of the public

key infrastructure. The detailed description of short-lived certi�cates is available

in [HS98].

5.1.2 Containing Attributes

It is strongly recommended that public-key pairs used for any purpose be updated

periodically. This is an e�ective way to restrict cryptographic attacks, such as a key

compromise. Furthermore, the lifetime of a public-key in a certi�cate may be di�erent

from that of other information in it. Namely, it is not a good solution to issue

a currently existing certi�cate, such as X.509, that contains attribute information

as well as public-key information. Even though using a bundled (public key and

attributes) X.509 certi�cate increases performance (because simple mechanism and

protocol are required to use both identity and attribute information on the Web),

it does not support e�ective certi�cate management. Adding, deleting, or changing

40

Basic CA’s
Digital Signature

Signed by
Basic CA

att_1_CA’s
Digital Signature

att_1_CA’s
Digital Signature

attribute_1_info.*

attribute_n_info.*

Basic Certificate

Smart Certificate

* attribute info.: attributes, attribute issuer, validity period of attributes, etc.

version
serial number
issuer
subject
validity period
public-key info.
optionall fields (v2)

Signed by
Att_n_CA

Signed by
Att_1_CA

Extensions

Figure 5.1: Attributes Signed by Multiple CAs in a Smart Certi�cate

attributes involves replacing and sometimes revoking X.509 certi�cates. This creates

very large CRLs (Certi�cate Revocation Lists); therefore, it overburdens certi�cate

management infrastructures. Furthermore, an organizational policy usually requires

di�erent authorities for maintaining attributes and public-keys. Since the current

X.509 certi�cate cannot satisfy all the above requirements, we were motivated to

design the smart certi�cates, described in the following subsections, to solve those

problems. Note that a smart certi�cate is compatible with an X.509, since it keeps

the same data format as an X.509.

If we use the extension �elds in an X.509 certi�cate e�ectively, as depicted in

Figure 5.1, we can separate the authority for attribute-issuing from the one for public-

key-issuing. In other words, after a public-key authority (basic CA) issues an X.509

basic certi�cate for a user, Alice, an attribute authority (for instance, Att 1 CA) adds

attributes for Alice to an extension �eld of the basic certi�cate (which contains public-

41

key information). Consequently, the attribute authority (Att 1 CA) signs on the basic

certi�cate and the attributes he added, and puts the signature to another extension

�eld in the basic certi�cate. This can happen multiple times on a basic certi�cate

by di�erent attribute authorities. Later, the identity veri�cation should precede the

attribute veri�cation. For instance, another party, say Bob, veri�es Alice's identity

�rst by the basic CA's signature in the smart certi�cate. If the authentication is

successful, Bob veri�es Alice's attributes by the corresponding attribute authority's

signature in the extension �eld. If the attributes are valid, then Bob uses those

attributes for his purposes. The contents of the attribute information in a smart

certi�cate depend on applications.

The public-key and the attributes can be maintained independently. For in-

stance, even though Alice's attributes issued by her school-attribute authority are

expired (revoked) in the certi�cate, the rest of the attributes, such as attributes is-

sued by her company-attribute authority, and public-key information in her basic

certi�cate, are still valid. Each attribute authority has independent control over the

attributes he issued. For example, the school-attribute authority for Alice can change,

revoke, or re-issue the school attributes in Alice's certi�cate. Intuitively, if her basic

certi�cate is expired (revoked), then all the attributes become meaningless.

Furthermore, if we use the short-lived certi�cate mechanism, we do not need

to worry about revoking the bundled certi�cates. As a result, a smart certi�cate

supports high performance by bundling public-key information and attributes in a

certi�cate without losing e�ective certi�cate management.

5.1.3 Support for Postdated and Renewable Certi�cates

Postdated1 certi�cates are used to run a job to be performed at some time in the

future. Suppose a security o�cer wants to issue a certi�cate for a user starting a

1Both postdated and renewable concepts are adopted from postdated and renewable tickets of
Kerberos [SNS88, Neu94].

42

week from now and valid for 10 hours of use. He may issue a certi�cate with an

expiration period of one week plus 10 hours from the present time. This is not an

appropriate solution, since the certi�cate would be valid from the time it was issued

until it expires. However, if we allow a certi�cate to become valid at some point in

the future, we can satisfy the requirement.

Furthermore, if Alice needs a long-lived certi�cate, say, lasting for one year,

it is more secure and e�cient to issue a certi�cate that will be valid for that full 12

months, only if Alice keeps renewing it for a much shorter period, say, every day. To

support this, we need to set the time (in the extension �eld), which speci�es that

the certi�cate cannot be renewed. Since the certi�cate is renewed every day, we do

not need CRLs. If there is some reason to revoke Alice's certi�cate, the CA does not

renew the certi�cates.

5.1.4 Encrypting Sensitive Information in Certi�cates

The smart certi�cates will support the encryption of some, or all, attributes, such

as passwords, roles, or credit card numbers. Such an encrypted attribute in the

certi�cate can be decrypted by an appropriate server using the corresponding key

(the server's shared secret key or its private key).

5.2 Certi�cate Management

In this section, we want to compare smart certi�cates with existing certi�cates, such as

X.509 and attribute certi�cates, in terms of the certi�cate lifetime and authentication

of the owner of the attributes.

Usually, an X.509 certi�cate has a long lifetime, which requires an additional

revocation mechanism (e.g., CRLs). Therefore, it has a relatively higher probability

of being attacked, since the corresponding private key can be left in a system without

the owner's knowledge, especially if the private key is stored in multiple machines.

On the contrary, when we use a smart certi�cate, the short lifetime eliminates the

43

additional revocation mechanism (e.g., CRL for X.509), and makes the system more

secure, since the remaining private keys expire shortly and automatically.

Currently, existing attribute certi�cates refer to another type of basic certi�-

cates, such as X.509, for authentication service. This mechanism brings complexities

for the protocol itself and for certi�cate administration. For instance, an attribute

certi�cate and the corresponding X.509 are issued in di�erent entities and managed

separately. Even the revocation mechanism is separate. The idea was brought to

support separate authorities for attributes and authentication services.

However, if we use a smart certi�cate, both the attributes and public-key in-

formation can be bundled in a single certi�cate. This provides simplicity for both the

protocol itself and for certi�cate administration. When we need separate authorities

for attributes and authentication services, each authority signs separately on the same

basic certi�cate and corresponding extension �eld, which contains attribute informa-

tion. This can happen multiple times on a basic certi�cate by di�erent attribute

authorities. Each attribute authority has independent control over the attributes he

issued. Even though a smart certi�cate can support independent management for

the public key information and attributes, if there is one authority who controls both

sets of information, the system management becomes simpler.

5.3 An Example of a Smart Certi�cate

Figure 5.2 shows an example of a smart certicate that a single issuer (certi�cate

authority (CA)) issued for a subject, Alice. This smart certi�cate provides con�-

dentiality service with an encrypted role information as an attribute in its extension

�eld.2 Only a server with the corresponding key can decrypt the encrypted informa-

tion, and uses the role information for its purposes (in this example, for role-based

access control). The smart certi�cate is postdated, since it becomes valid at some

2Since the smart certi�cate has both the subject's (Alice) identity and attribute (role), it inher-
ently supports the user-pull model described in Chapter 3. Alice can obtain and present both her
identity and attribute to the Web server using a single smart certi�cate.

44

Figure 5.2: An Example of a Smart Certi�cate

45

point in the future. Furthermore, it has a short-lived lifetime, which does not require

the revocation scheme (CRL) for the certi�cate. In this example, the certi�cate was

issued by only one CA, but it is also possible to be issued by multiple CAs, as we

described in the previous subsection 5.1.2.

5.4 Applications of Smart Certi�cates

In this section, we introduce some applications of smart certi�cates. Many other

applications can be similarly con�gured. Selection of the new features of smart cer-

ti�cates depends on applications and a given situation. Using the bundled (attributes

and identi�cations) certi�cates is a good solution for the user-pull model, since the

model requires the binding of this information. In contrast, it is not a good idea to

use the bundled certi�cates for the server-pull model, since users do not need access

to their attributes.

5.4.1 On-Duty Control

Suppose an employee, Alice, needs to receive a certi�cate at 9:00 a.m. every morning

and use it until 5:00 p.m. Monday through Friday. This certi�cate contains her

sensitive attributes, such as clearance or access control information; current X.509

cannot satisfy the requirements. It does not support the con�dentiality service (by

encryption) for some sensitive information in the certi�cate. If the validity period for

the certi�cate is longer than that of Alice's on-duty hours, the privilege based on the

certi�cate still remains even after her on-duty hours.

If we use the smart certi�cate, the above requirements can be securely satis�ed.

First of all, the sensitive information in the certi�cate is encrypted, providing the

con�dentiality service. By using the short-lived certi�cate feature, we can set the

validity of the certi�cate only from 9:00 a.m. to 5:00 p.m. every day. Furthermore,

the postdated-certi�cate feature allows the employee to receive a set of certi�cates

on a certain day - for instance, �ve certi�cates for individual days (Monday through

46

Friday). Alice can then use the corresponding certi�cate each day during her on-duty

hours. In this case, Alice does not need to receive the certi�cate every morning,

and does not have the privilege based on the certi�cates after her on-duty hours.

Alternatively, if we make the certi�cate valid for a set period of duration, for instance,

from 9:00 a.m. to 5:00 p.m., but not between 5:00 p.m. and 9:00 a.m., the employee

needs only one certi�cate for a week. However, this approach has a higher probability

of compromise and may require using CRLs.

5.4.2 Attribute-Based Access Control

When a user, let's say Alice, using a Web browser contacts a Web server that has been

con�gured to request smart certi�cates (which contain users' attributes), the browser

is required to present Alice's smart certi�cate and prove that she is the rightful owner.

After client authentication, the Web server makes access control decisions based on

attributes (e.g., roles, clearance, and group membership) contained within the smart

certi�cate itself.

5.4.3 Electronic Transactions

If a merchant site uses smart certi�cates (which contain customers' encrypted credit

card numbers), customers do not need to key their credit card numbers in for every

transaction. For more convenient service, the merchant can issue a smart certi�cate

containing special tokens for customers, such as electronic coupons (which have the

coupon's ID number and discount information). For instance, if Alice received an

electronic coupon contained within her smart certi�cate, she can use it before the

coupon's expiration date at the merchant site. In this case, the merchant site needs

to keep a record of the coupon to protect replay usages of the same coupon.

5.4.4 Eliminating Single-Point Failure

Usually, a merchant site has a customer-information database maintained on a server.

One of the disadvantages of this method is that if the server keeping customers'

47

information is penetrated by an attacker, all the customers' information, such as credit

card numbers, preferences, addresses, and other sensitive information in the server,

is open to the attacker. Furthermore, if a domain has multiple servers with multiple

customer-information databases, maintenance and synchronization of this information

is burdensome. There are also signi�cant privacy concerns about data stored by

servers, since such data can easily be misused. Users may feel more comfortable with

servers that pledge not to maintain such data.

Smart certi�cates can solve these problems especially in the electronic com-

merce �eld. If a merchant site issues and uses smart certi�cates, the site does not need

to have a customer-information database unless the site needs to track customers' ac-

cess histories, since each customer's sensitive information is distributed and stored

securely in the customer's smart certi�cates. Using smart certi�cates provides a more

secure environment by eliminating customer-information databases, which can cause

a single-point failure. Furthermore, the merchant can reduce the cost for the main-

tenance of customer-information databases.

5.4.5 Replace X.509

Besides using the extension �elds in an X.509 certi�cate, a smart certi�cate provides

new features; containing attributes, eliminating CRLs by short-lived certi�cates, pro-

viding multiple CAs, supporting postdated and renewable services, and encrypting

sensitive information in the certi�cates. However, it is still compatible with X.509,

since a smart certi�cate keeps the same data format as the X.509. For instance, as

the original X.509 supports the Secure Socket Layer (SSL) protocol for secure com-

munications between clients and servers, the smart certi�cates can also be used as

server certi�cates and client certi�cates for SSL without modifying the protocol.

48

5.5 Summary

In this chapter, to support secure attrubute services on the Web, we have extended an

existing digital certi�cate, X.509, with several new features. The extended certi�cates,

smart certi�cates, provide a short-lived lifetime, attributes, multiple CAs, postdated

and renewable services, and con�dentiality services in the certi�cates. According to

the requirements of applications, some of these new features can be selectively used in

conjunction with currently existing technologies without changing standard protocols

on the Web.

CHAPTER 6

IMPLEMENTATION

Current approaches to access control on Web servers are mostly based on user iden-

tities. A successful marriage of Web and RBAC (Role-Based Access Control [San98]

technology can support e�ective enterprise-wide security in large-scale systems.

Figure 6.1 shows a schematic of RBAC on the Web. The role server has user-

role assignment information for the domain. After a successful user authentication,

the user receives his or her assigned roles in the domain from the role server. Later,

when the user requests access to a Web server with the assigned roles in the domain,

the Web server allows the user to execute transactions based on the user's roles instead

of identity. The Web servers may have role hierarchies or constraints based on their

policies. Administration of the role server can be performed in a decentralized manner

by administrators on the Web [SP98].

However, the important question arises: how can the Web servers trust the role

information presented by users? For instance, a malicious user may gain unauthorized

access to the Web servers by using forged role information. Therefore, we must protect

the role information from being forged by any possible attacks on the Web as well as

in the end-systems.

There can be many possible ways to support the above requirement. In this

chapter, we describe how to protect the role information from possible threats using

secure cookies and smart certi�cates, and how to use the role information for RBAC1

49

50

user

roles permissions

Role Server

Request

Responseauthentication

user-role
assignment

Web Servers

role-permission assign.
role hierarchy

constraints

Login

Get Roles

Figure 6.1: A Schematic of RBAC on the Web

(Role-Based Access Control with a role hierarchy) on the Web as one possible appli-

cation of our new technologies.

6.1 Role-Based Access Control (RBAC) Overview

Role-based access control (RBAC) has rapidly emerged in the 1990s as a promising

technology for managing and enforcing security in large-scale enterprise-wide systems.

The basic notion of RBAC is that permissions are associated with roles, and users

are assigned to appropriate roles. This greatly simpli�es security management. A

signi�cant body of research on RBAC models and experimental implementations has

developed [FK92, FCK95, Gui95, GI96, MD94, HDT95, NO95, SCFY96, vSvdM94,

YCS97, San98]).

We were motivated by the need to manage and enforce the strong access con-

trol technology of RBAC in a large-scale Web environment, since RBAC is a successful

51

 RBAC 0

 RBAC 3

 RBAC 1
 RBAC 2

CONSTRAINTS

PERMISS-

IONS

PU

USERS

PERMISSION

ASSIGNMENT

PA

USER

ASSIGNMENT

UA

.

.

.

SESSIONS

S

user roles

ROLES

R

 RBAC 1

 RBAC 2

 RBAC 3

ROLE

HIERARCHY

RH

(b) RBAC models

(a) Relationship among RBAC models

Figure 6.2: A Family of RBAC Models

52

technology that will be a central component of emerging enterprise security infras-

tractures. Therefore, we have decided to implement the RBAC on the Web as one

possible application of secure attribute services. Precisely, we have chosen RBAC1

(Role-Based Access Control Model with Role Hierarchy) among the RBAC families,

because, we believe, role hierarchies are very useful to support the organization's

policy.

Role-Based Access Control (RBAC) is a promising alternative to traditional

discretionary and mandatory access controls, which ensures that only authorized users

are given access to certain data or resources. It also supports three well-known secu-

rity policies: data abstraction, least-privilege assignment, and separation of duties.

A role is a semantic construct forming the basis of access control policy. With

RBAC, system administrators can create roles, grant permissions to those roles, and

then assign users to the roles on the basis of their speci�c job responsibilities and

policy. Therefore, role-permission relationships can be prede�ned, making it simple

to assign users to the prede�ned roles. Without RBAC, it is di�cult to determine

what permissions have been authorized for what users.

Access control policy is embodied in RBAC components, such as user-role,

role-permission, and role-role relationships. These RBAC components decide if a

particular user is allowed access to a speci�c piece of system data.

Users are assigned to sessions during which they may activate a subset to

which they belong. Each session can be assigned to many roles, but it maps only one

user. The concept of a session corresponds to the traditional notion of subject in the

access control literature.

Role hierarchy in RBAC is a natural way of organizing roles to reect the

organization's lines of authority and responsibility. In other words, junior roles appear

at the bottom of the hierarchic role diagrams and senior roles appear at the top. The

hierarchic diagrams are partial orders, which means they have reexive, transitive,

and an antisymmetric relation. An inheritance is reexive because a role inherits

53

its own permissions to junior roles, transitive because of a natural requirement in

this context, and antisymmetry rules out that inherit from one another and would

therefore be redundant.

Constraints are an e�ective mechanism to establish higher-level organizational

policy. They can apply to any relations and functions in an RBAC model. When

applied, constraints are predicates that return a value of acceptable or not acceptable.

A general family of RBAC models was de�ned by Sandhu et al. [SCFY96]. Figure 6.2

shows the most general model in this family.

RBAC0 is the base model that speci�es the minimum requirement for any sys-

tem that fully supports RBAC. RBAC1 and RBAC2 both include RBAC0, but they

also have independent features. RBAC1 adds the concept of role hierarchies, which

imply situations in which roles can inherit permissions from other roles. RBAC2 adds

constraints that impose restrictions on components of RBAC. RBAC1 is incompara-

ble with RBAC2, and vice versa. RBAC3 is the consolidated model that includes

RBAC1 and RBAC2 and, by transitivity, RBAC0. The relationship between the four

models of RBAC and the consolidated RBAC3 model is shown in Figure 6.2.

The bottom half of the �gure shows administrative roles and administrative

permissions, while the top half of the �gure illustrates user roles and user admin-

istrative permissions in the system that determine control access to data and re-

sources. There are �ve sets of entities in the RBAC96 model: users(U), roles(R),

permissions(P), administrative roles(AR), and administrative permissions(AP). Reg-

ular permissions can only be assigned to regular roles while administrative permissions

can only be assigned to administrative roles.

A user(U) is a human being or an autonomous agent; a role(R) is a job title

or a job function in the organization with associated semantics concerning responsi-

bility and authority; and a permission(P) is a description of the type of authorized

interactions a subject can have with one or more objects. Administrative permissions

control operations, which change the RBAC components, such as modifying the user

and permission assignment and creating new roles and users in the system.

54

Details for motivation and discussion about the RBAC96 family of models,

such as RBAC0, RBAC1, RBAC2, RBAC3, ARBAC0, ARBAC1, ARBAC2, and

ARBAC3 are described in [SCFY96, San97].

6.2 RBAC1 on the Web by Secure Cookies

Cookies are used widely on the Internet today and they are becoming a standard as an

integral part of Web technology. The cookie mechanism is inherently user-pull, that

is, browsers receive cookies from Web servers, so there is no server-pull architecture

alternative by secure cookies. Cookies can be easily forged and manipulated in their

native form. We propose to use secure cookies, described in Chapter 4, to protect

against tampering and misuse of the attributes in the cookies.

We believe it is possible to use secure cookies as an alternative for RBAC on

the Web [PSG99]. The implementation is based on the user-pull model. We use

IP Cookies for the host-based mode, while using Pswd Cookies for the user-based

mode (described in Chapter 4. The selected snapshots from our implementation are

attached in Appendix A.

6.2.1 Designing Secure Cookies for RBAC on the Web

Secure cookies provide three types of security services: authentication, integrity, and

con�dentiality services. Selection of the kinds and contents of secure cookies depends

on applications and a given situation. However, at least one authentication cookie

and the Seal Cookie - which provides the integrity service to the cookies - must be

used with other cookies to frame basic security services, regardless of applications.

Figure 6.3 shows a set of secure cookies that we will create and use for RBAC

on the Web. The Name Cookie contains the user's name (e.g., Alice), and the

Role Cookie holds the user's role information (e.g., Director). The Life Cookie is

used to hold the lifetime of the secure-cookie set in its Cookie Value �eld and en-

ables the Web server to check the integrity of the lifetime of the secure-cookie set.

55

SecurePathFlagDomain

TRUE / FALSE 12/31/99

Cookie_Name Cookie_Value

Nameacme.com

acme.com TRUE / FALSE 12/31/99Role

Name_Cookie

Role_Cookie

Alice

Director

acme.com TRUE / FALSEPswd_Cookie 12/31/99Pswd_Cookie Encrypted_Passwords*

acme.com TRUE / FALSELife_Cookie 12/31/99Life_Cookie 12/31/99

acme.com TRUE / FALSE 12/31/99IP_Cookie IP_Cookie 129.174.142.88

acme.com TRUE / FALSE 12/31/99Seal_Cookie Digital_SignatureSeal_Cookie

* Hash of the passwords is an alternative to the content of the Pswd_Cookie.

Cookie_Issuer Signs on the Cookies

Expire

Figure 6.3: A Set of Secure Cookies for RBAC on the Web

To protect these cookies from possible attacks, we will use IP Cookie, Pswd Cookie,

and Seal Cookie. Authentication cookies (i.e., IP Cookie and Pswd Cookie) verify

the owner of the cookies by comparing the authentication information in the cookies

to those coming from the users. The IP Cookie holds the IP number of the user's

machine, and the Pswd Cookie holds the user's encrypted passwords. This con�den-

tiality service protects the values of the cookies from being revealed to unauthorized

entity. In our implementation, we used the IP Cookie and Pswd Cookie together

to show the feasibility, but only one of those authentication cookies can be used to

provide the authentication service. The choice of an authentication cookie depends

on the situation.1 Finally, the Seal Cookie - which has the digital signature of the

cookie-issuing server on the secure cookie set - supports integrity service, protect-

1It is also possible for authentication to be based on use of RADIUS [RRSW97], Kerberos [SNS88,
Neu94], and similar protocols. Our focus in this work is on techniques that make secure cookies
self-su�cient rather than partly relying on other security protocols, which is always possible.

56

ing cookies against the threat that the contents of the cookies might be changed by

unauthorized modi�cation.

Figure 6.4 shows how the secure cookies (including a Role Cookie) for RBAC

are created and used on the Web. If a user, let's say Alice, wants to execute

transactions in the Web servers in an RBAC-compliant domain, she �rst connects

to the role server in the beginning of the session. After the role server authenti-

cates Alice, it �nds Alice's explicitly assigned roles in the URA (User-Role Assign-

ment [SP98, SB97]) database and creates a set of secure cookies: Name Cookie,

Life Cookie, Role Cookies, IP Cookie, Pswd Cookie, and Seal Cookie. Then, those

secure cookies are sent to and stored in Alice's hard drive securely so that Alice does

not need to go back to the role server to get her assigned roles until the cookies expire.

Namely, she can use the roles in her Role Cookie securely in the RBAC-compliant

domain as long as the cookies are valid.

When Alice requests access to a Web server - which has PRA (Permission-Role

Assignment [SBC+97]) information - by typing the server URL in her browser, the

browser sends the corresponding set of secure cookies to the Web server: Name Cookie,

Life Cookie, Role Cookies, IP Cookie, Pswd Cookie, and Seal Cookie. The Web

server authenticates the owner of the cookies by using the IP Cookie and Pswd Cookie,

comparing the value in the cookies with the values coming from the user. The user's

passwords are encrypted in the Pswd Cookie using the Web server's public key. The

Web server decrypts the value of the Pswd Cookie by using the corresponding key to

read the user's passwords. Finally, the Web server checks the integrity of the cookies

by verifying role server's digital signature in the Seal Cookie using the role server's

public key. If all the cookies are valid and veri�ed successfully, the Web server trusts

the role information in the Role Cookie and uses it for RBAC with a role hierarchy

and permission-role assignment information in the Web server.

There are basically two cryptographic technologies applicable for secure cook-

ies: public-key-based and secret-key-based solutions. In our implementation, we use

the public-key-based solution for security services provided by a PGP package via

57

Cookie_Issuer
(Role Server)

User-Role Assignment

Authentication
Access

Cookies
Set Secure

.

cookies

IP

Role

Seal

Authentication

Web Server n

Check Integrity

Retrieve Roles

RBAC

Get Cookies

.

cookies

IP

Role

.

cookies

IP

Role

Seal

Get Cookies

Authentication

Web Server 1

Check Integrity

Retrieve Roles

RBAC

Pswd

Pswd

Pswd

(Browser)
Client

Get Cookies

Send Cookies & Requests

Response

Send Cookies & Requests

Response

Verifying Secure Cookies & RBAC

Assigning Roles & Creating Secure Cookies

Seal Name

Name Life

Name Life

Life

Figure 6.4: RBAC on the Web by Secure Cookies

CGI scripts [Her96]. In the following subsections, we will describe secure cookie cre-

ation, veri�cation, and use of the role information in the Role Cookie for RBAC with

role hierarchies.

6.2.2 Secure Cookie Creation

When a user, Alice, connects to the role server (which supports HTTP) of the do-

main with her Web browser, she is prompted by the HTML form to type in her

user ID and passwords for the domain. We used the POST2 method to send the

2The GET request is very similar to the POST except that the values of the form variable are
sent as part of the URL. However, the POST method sends the data after all their request headers

58

Authentication

User-Role Assignment

Database

Database

encrypt.cgi

sign.cgi

set-cookie.cgi
2. User ID, Passwords, IP

3. User ID, Passwords

PGP

8. Encryption Request

13. Signature Result
5. User ID

4. Authentication Results

9. Encryption Result

10. Encrypted Passwords

7. Passwords16. Secure Cookies

15. Secure Cookies

IP
Passwords,

1.User ID,

Browser
(Client)

12. Signature Request

11. Cookies

6. Role Information

14. Role Server’s Signature

Web
Server

Figure 6.5: Creating Secure Cookies

information to the role server and the ACTION �eld to specify our Cookie-Set CGI

program (set-cookie.cgi), to which the form data is passed. Figure 6.5 is a collab-

orational diagram in UML (Uni�ed Modeling Language [BJR98]) style notation for

secure cookie creation. This diagram shows how we create a set of secure cookies for

our implementation (refer to the left side of Figure 6.4).

The Web server receives the request headers, which include the address to

the \set-cookie.cgi" program on the server. The server translates the headers into

environment variables and executes the program. The \set-cookie.cgi" program �rst

retrieves the IP number of the client machine from the environment variable, RE-

MOTE ADDR, and the user ID and passwords using the read and split functions

of Perl [Her96]. The program authenticates the user by comparing the user ID and

passwords with the ones in the authentication database.3 It then assigns the user to

roles by matching the user ID and the corresponding roles from the URA (User-Role

Assignment) database.

Subsequently, a subroutine for encryption is called to another CGI program

(encrypt.cgi), which uses PGP to encrypt the passwords by the cookie-verifying Web

have been sent to the server.
3If the user already has an authentication cookie in a set of secure cookies, Web servers can use

the authentication cookie for user authentication instead of authentication databases.

59

server's public key. These encrypted passwords will be stored in the Pswd Cookie by

the \set-cookie.cgi" program. Then, the \set-cookie.cgi" program creates IP Cookie,

Pswd Cookie, Name Cookie, Life Cookie, and Role Cookie, giving each cookie the

corresponding value: IP number of the client machine, encrypted passwords, user's

name, lifetime of the cookie set, and assigned roles.

To support the integrity service of the cookies, the \set-cookie.cgi" program

creates a message digest of the cookies by MD5, and calls another CGI program

(sign.cgi), which uses PGP to sign on the message digest with the role server's private

key. The \set-cookie.cgi" then creates the Seal Cookie, which includes the digital

signature of the role server on the message digest of the cookies.

Finally, the Web server sends the HTTP response header, along with the

cookies, back to the user's browser, and the cookies are stored in the browser until

they expire. These secure cookies will be veri�ed and used in the Web servers as

described in the following subsections. Figure 6.6 is an actual snapshot of a set

of secure cookies from our implementation that are stored in the user's machine

after the cookies are generated by the cookie-issuing Web server. The contents of

the cookies exactly reect the ones presented in Figure 6.3. Each cookie has its

corresponding domain, ag, path, security ag, expiration date, name, and value.

The user's name, role, lifetime of the cookie set, IP number, encrypted passwords,

and the digital signature of the cookie-issuing Web server on the cookies are stored

in the corresponding cookies.

6.2.3 Secure Cookie Veri�cation

Figure 6.7 is a collaborational diagram in UML style notation for secure cookie ver-

i�cation. This diagram shows how we verify (corresponding to the right side of

Figure 6.4) the set of secure cookies that we generated in the previous subsection

for our implementation. When Alice connects to a Web server (which accepts the

secure cookies) in an RBAC-compliant domain, the connection is redirected to the

\index.cgi" program. The related secure cookies are sent to the Web server and she

60

Figure 6.6: An Example of Secure Cookies Stored in a User's Machine

is prompted by the HTML form to type in her user ID and passwords. The \in-

dex.cgi" program �rst uses the HTTP COOKIE environment variable to retrieve the

secure cookies (Name Cookie, Life Cookie, Role Cookies, IP Cookie, Pswd Cookie,

and Seal Cookie) for the Web server. It then checks the validity of all the cookies.

The two IP addresses, one from the IP cookie and the other from the environment

variable, REMOTE ADDR, are compared. If they are identical, then the host-based

authentication is passed, and a hidden �eld \status" with the value of \IP-passed"

is created to indicate that this stage was passed4. However, if the IP numbers are

di�erent, the user is rejected by the server.

4We used a hidden �eld to check the completion of the previous stage, which is passed on to the
next program. This hidden �eld protects the pages from being accessed directly, skipping required
veri�cation steps, by a malicious user. For example, without this hidden �eld, a malicious user can
access the pages directly with forged cookies.

61

password
-ver.cgi

signature
-ver.cgi

PGP

index.cgi rbac.cgi

2. User ID, Passwords, IP

Cookies

3. IP-passed, Passwords

Cookies

4. Decryption
Request

5. Decryption
Result

6. password-passed,

Cookies

7. Signature-verify
Request

8. Signature-verify
Result

Browser
(Client)

Web
Server

Role Information
9. verify-passed,

10. available roles

11. Available Roles

Passwords,
User ID,

1. Cookies,

IP

Figure 6.7: Verifying Secure Cookies

When the user submits her user ID and passwords to the server, the Web

server translates the request headers into environment variables, and another CGI

program, \password-ver.cgi," is executed. We used the POST method to send the

information to the Web server and the ACTION �eld to specify the CGI program

(password-ver.cgi) to which the form data are passed. The �rst thing the \password-

ver.cgi" does is to check the hidden �eld \status" to see if the previous stage was

successfully completed. If this is \IP-passed," the program decrypts the value of

the Pswd Cookie (encrypted user password) using the PGP with the Web server's

private key, since it was encrypted with the Web server's public key by the role

server. The program (password-ver.cgi) then compares the two passwords: one from

the user and the other decrypted from the Pswd Cookie. If they are identical, then

the user-based authentication is passed, and a hidden �eld \status" with the value

of \password-passed" is created to indicate that this stage was passed. However, if

the two passwords are di�erent, the user has to start again by either retyping the

passwords or receiving new cookies from the role server.

After the password veri�cation is completed, another CGI program, \signature-

ver.cgi," is activated to check the integrity of the cookies. Like the other programs,

it �rst checks the value of \status" passed on from the previous program, and it pro-

ceeds only if it shows the user has been through the password veri�cation stage. If the

62

value is \password-passed," then the program creates a message digest from the set

of secure cookies by MD5 and veri�es the signature in the Seal Cookie with the role

server's public key using PGP. If the integrity is veri�ed, it means that the cookies

have not been altered, and a hidden �eld \status" with the value of \verify-passed"

is created to indicate that this stage was passed and forwarded to the �nal program,

\rbac.cgi." This program uses the role information in the Role Cookie for role-based

access control in the server as described in the following subsection. However, if the

signature veri�cation is failed, the user has to start again by receiving new cookies

from the role server.

6.2.4 RBAC in the Web Server

After verifying all the secure cookies, the Web server allows the user, Alice, to ex-

ecute transactions based on her roles, contained in the Role Cookie, instead of her

identity. In other words, the Web server does not care about the user's identity for

authorization purposes. This resolves the scalability problem of the identity-based

access control, which is being used mostly in existing Web servers. Furthermore, the

Web server can also use a role hierarchy, which supports a natural means for struc-

turing roles to reect an organization's lines of authority and responsibility. Each

Web server may have a role hierarchy de�erent from that in other servers. In our

implementation, we used a role hierarchy in the Web server, depicted in Figure 6.8.

The location of RBAC-compliant Web servers is geographically free from that of the

role server, since cookies can be issued by one Web server for use by others, regardless

of their physical location.

If the \rbac.cgi" program in Figure 6.7 receives the value, \verify-passed," from

the previous veri�cation step, it means that the cookies have successfully passed all

the veri�cation stages, such as IP, passwords, and signature veri�cation. Therefore,

the Web server can trust the role information in the Role Cookie, and uses it for

role-based access control in the server.

63

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project Lead 1 (PL1)

Engineer 1 (E1)

Project Lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Figure 6.8: An Example of a Role Hierarchy

Suppose Alice has the role DIR5 in her Role Cookie and she wants to access

resources for PE1 - which require the PE1 role or roles senior to the PE1 role in

the role hierarchy - in a Web server. First, she has to prove that the cookies she

is presenting are genuine. To prove this, she has to go through all the veri�cation

steps: IP, passwords, and signature veri�cation. She cannot jump ahead or skip any

veri�cation stage, as each program requires a hidden �eld, \status," from the previous

stage. After the Web server has successfully completed all the veri�cation steps, the

\rbac.cgi" program retrieves the role information, DIR, from Alice's Role Cookie, and

shows all the available roles6 based on the role hierarchy depicted in Figure 6.8. Since

she wants access to the pages that require PE1's privilege, she chooses the PE1 role

5Multiple roles can be stored in a Role Cookie.
6In this example, all the roles from E to DIR are available to Alice, since she has the senior most

role in the role hierarchy.

64

to activate it among her available roles. Then she has the permissions assigned to

the PE1 role and the roles junior to PE1, such as E1, ED and E. Now, when Alice

requests access to a particular page in the server, the page checks if her activated

role, PE1, has permission to access the page.

The user can use any roles among her available roles by activating them. For

instance, if Alice would activate PL1, then she would be allowed to access the pages,

which require the PE1 role, since PL1 is senior to PE1 in the role hierarchy. However,

if she were to activate E1, then she would not be allowed to access the pages, since E1

is junior to PE1. This supports least privileges, since only those permissions required

for the tasks are turned on by activating the required role.

How then can the Web server protect the pages from being accessed by unau-

thorized users? Suppose a malicious user, Bob, has the role PE1 but wishes to access

pages that require the PL1 role. He could change the value of his Role Cookie so that

it has PL1, or roles senior to PL1. He would go through the password veri�cation

stages, since he would be able to log in as Bob using his own passwords. However,

when his Seal Cookie is being veri�ed, there would be a problem, as the signature

veri�cation would fail. Therefore, he would not be allowed to move beyond this stage.

On the other hand, he could try accessing the pages directly by typing the URLs.

This would not be allowed, since each page checks to see if he has activated the re-

quired role, PL1, or roles senior to PL1. In other words, Bob is not allowed to access

the pages, which require roles senior to his, because he cannot activate the senior

roles, which are out of his available role range.

As a result, the Web server allows only users, who have gone through all the

veri�cation steps with the secure cookies (Name Cookie, Life Cookie, Role Cookies,

IP Cookie, Pswd Cookie, Seal Cookie), to access the pages. This access also is possi-

ble only if the users have the required roles and activate them among their available

roles based on the role hierarchy.

65

6.2.5 Problems Faced and Solutions

In this section, we will describe some problems that we encountered during the im-

plementation and the solutions that we found.

As we mentioned earlier, we used PGP to provide security services to the secure

cookies. All the programs (PGP, CGI scripts, Web servers) are running under certain

accounts in a UNIX environment. PGP is executed by the Web server via the proper

CGI programs. However, PGP stores the private key in a key-ring �le \secring.pgp,"

which is created when the key-pair is being generated by the cookie-issuer (or cookie-

veri�er), who owns the key-ring �le. The permissions to this key-ring �le have to be

restricted to the owner of the key only for secure services. Therefore, PGP should

be run as the owner of the corresponding key-ring �les to access the keys. However,

the CGI programs run as a default user account, usually nobody, with a minimum

privilege in the Web server, hence the programs cannot execute PGP successfully as

they do not have access to the corresponding key-ring �les. Therefore, we had to �nd

a way to make the CGI programs execute PGP with the permissions to access the

corresponding key-ring �les.

We decided to use setuid7 to solve this problem. Because the owner of the

PGP executive �le is the same as the one for the corresponding key-ring �les, we set

the setuid bit on the PGP executive �le. The CGI programs, such as encrypt.cgi,

sign.cgi, password-ver.cgi, signature-ver.cgi, etc, are running as nobody. However, if

they execute the PGP executive �le, which has a setuid bit, then they are runnung

the program with the owner's privilege so that they are able to access the key-ring

�les to �nish the requested service.

Furthermore, whenever a user (the Web server in our implementation) needs

to use PGP services, PGP requires a pass phrase to unlock its key holders. Since

the Web server cannot type in the pass phrase in a UNIX shell as regular users do,

7The setuid �le access mode in UNIX provides a way to grant users temporary access to which
they are not otherwise allowed. After the process is completed, users do not have the access any
more.

66

we had to �nd another way to solve this problem. Therefore, we used PGPPASS, an

environment variable, to hold the pass phrase that PGP requires. This PGPPASS

environment variable provides the pass phrase to the PGP whenever the Web server

needs to access the PGP key rings.

Finally, we had to ensure that the users go through each stage of veri�cation

before viewing the �nal pages. To ensure this we used a hidden �eld \status" to

check the completion of the previous veri�cation step. Passing the variable from one

program to the next, and verifying whether this variable has the right value before

going on, ensures that no stage is skipped. The values for \status" vary in each

veri�cation step. For example the password-verifying program requires the value of

\IP-passed," while the signature-verifying program requires \password-passed" from

the previous stage.

6.2.6 Summary

In this section, we have described how we implemented RBAC with a role hierarchy

on the Web using secure cookies. To protect the role information in the cookies, we

provided security services, such as authentication, con�dentiality, and integrity, to

the cookies using PGP and CGI scripts in the Web servers. The cookie-issuing Web

server creates a set of secure cookies including the user's role information, and other

Web servers use the role information for RBAC with role hierarchies after cookie

veri�cation. This access control mechanism solves the scalibility problem of existing

Web servers. The implementation is transparent to users and applicable to existing

Web servers and browsers.

6.3 RBAC1 on the Web by Smart Certi�cates

In Chapter 5, we described how to render smart certi�cates by extending X.509

to support secure attributes services on the Web. In this section, we describe an

implementation of Role-Based Access Control (RBAC) with role hierarchy on the

67

Web as one possible application of smart certi�cates [PS99a]. Even though smart

certi�cates can support several new features, selection of the features depends on the

types of applications that are being used. To support RBAC on the Web by this new

technology, we issued a smart certi�cate - which holds the subject's role information -

and con�gured a Web server to use the role information in the certi�cate for its access

control mechanism. Since the subjects' role information is provided integrity, the Web

server can trust the role information after certi�cate veri�cation by SSL, and uses it

for role-based access control. To keep the compatibility with existing technologies,

such as SSL, without using an additional channel for attribute transfer on the Web,

we used a bundled (subject's identity and attributes) smart certi�cate in the user-

pull model (described in Chapter 3). In this implementation, we used a Netscape

Certi�cate server and a Microsoft IIS 4.0 in Windows NT platform to support RBAC

on the Web. However, this approach is also possible using other certi�cate servers or

Web servers in di�erent platforms. The selected snapshots from our implementation

are attached in Appendix B.

6.3.1 Obtaining and Presenting Assigned Roles on the Web

Figure 6.9 shows how a bundled smart certi�cate is issued and used for RBAC on

the Web. If a user, Alice, wants to execute transactions in the Web servers in an

RBAC-compliant domain, she �rst connects to the role server in the beginning of

the session. After the role server authenticates Alice, it �nds her explicitly assigned

roles in the URA (User-Role Assignment [SP98, SB97]) database and creates a smart

certi�cate (which holds her explicitly assigned roles). Then, the smart certi�cate is

sent to and stored in Alice's machine - which has Alice's private key corresponding

to the smart certi�cate - so that Alice does not need to go back to the role server to

obtain her assigned roles until the certi�cate expires. Consequently, she can use the

roles in her smart certi�cate in the RBAC-compliant domain as far as the certi�cate

is valid. In this implementation, we used the OU (Organization Unit) �eld in X.509

certi�cates to store each subject's role information.

68

(Role Server)

User-Role Assignment

Authentication
Access

Authentication

Web Server n

Verify Attributes

Retrieve Roles

RBAC

Get Smart Cert.

Get Smart Cert.

Authentication

Web Server 1

Verify Attributes

Retrieve Roles

RBAC(Browser)
Client Response

Response

Certificate_Issuer

Assigning Roles & Creating Smart Certificate

Verifying Smart Certificate & RBAC

Set
Smart Certificate Identity Info.

Role Info.

.

Identity Info.

Role Info.

Present Smart Certificate & Requests

Identity Info.

Role Info.

Present Smart Certificate & Requests

Get Smart Certificate

Figure 6.9: RBAC on the Web by Smart Certi�cate

69

When Alice requests access to a Web server - which requires clients' certi�cates

and has PRA (Permission-Role Assignment [SBC+97]) information - by typing the

server's URL in her browser, the browser and Web server authenticate each other over

SSL. After the browser receives and veri�es the server's X.509 certi�cate, it presents

the client's smart certi�cate - which has Alice's role information - to the Web server.

The Web server authenticates Alice by verifying the smart certi�cate. If the smart

certi�cate is valid and veri�ed successfully, the Web server trusts the role information

in the certi�cate and uses it for RBAC with a role hierarchy and permission-role

assignment information in the Web server, as described below.

6.3.2 RBAC in the Web Server

Internet Information Server (IIS) depends on Windows NT File System (NTFS) per-

missions for securing individual �les and directories from unauthorized access. NTFS

permissions can be precisely de�ned with regard to the users who can access the con-

tents of the server and which permissions are allowed to the users, while Web server

permissions are applied to all users accessing the Web server.8 NTFS permissions

apply only to a speci�c user or group of users with a valid Windows NT account.

In a Windows NT environment, we can control user access to the contents in

a Web server by properly con�guring the Windows NT �le system and the security

features of the Web server. When the user attempts to access the Web server, the

server executes several access control processes to verify the user and determine the

allowed level of access based on its policy.

To support RBAC with the role hierarchy depicted in Figure 6.8, we con�g-

ured an IIS 4.0 with two creative ideas: role accounts and PAA (Permission-Account

Assignment) in the Web server. These ideas are described in the following subsections.

8For instance, Web server permissions can control whether users visiting the Web site are allowed
to view a particular page, run scripts, or upload information to the site.

70

6.3.2.1 Mapping Roles to Role Accounts

Since the Web server uses roles - denoted in the client smart-certi�cates - for its

access control mechanism, regular user accounts are not necessary in the server.9

Instead, we created the role accounts (e.g., Director, Project Lead1, Project Lead2,

Project Engineer1, Quality Engineer1, and so on) in the Windows NT server, where

the Web server (IIS 4.0) is installed. Each role account corresponds to a role in

the role hierarchy in Figure 6.8. Then, by con�guring the Web server's certi�cate

mapping feature, we mapped each role in the role hierarchy to the corresponding role

account in the Windows NT server. For example, we mapped the role DIR to the

role account Director in the server. If a smart certi�cate has multiple roles in it, then

it is mapped to multiple role accounts in the server. After a user (subject), Alice,

authenticates to a Web server over SSL by sending her client smart-certi�cate - which

has the role \DIR" - to the server, she is mapped to the role account \Director" in

the Windows NT server. As a result, even though Alice does not have an account in

the server, she acquires the Director's permission in the server, since she is assigned

to the role \Director" - which is denoted in her smart certi�cate. The permission of

each role account depends on the policy of the Web server.

6.3.2.2 Providing Role Hierarchy

How then can the Web server support the role hierarchy? Figure 6.10 shows how we

used a built-in access control mechanism in the Windows NT server to support the role

hierarchy depicted in Figure 6.8. Reecting the roles in the hierarchy, we created the

role accounts, such as Director, Project Lead1, Project Lead2, Project Engineer1,

Quality Engineer1, and others. We also created directories in the Windows NT

�le system, where each directory has �les to be accessed by a speci�c role in the

role hierarchy. Subsequently, we con�gured the Windows NT �le system to assign

each role account to speci�c access rights to the directories based on the role hierar-

chy. For instance, the role account Project Lead1 is assigned to access rights to the

9However, the Web server may need administrator accounts for its maintenance.

71

Project_Lead1

Project_Lead2

Project_Engineer1

Quality_Engineer1

Project_Engineer2

Quality_Engineer2

Director

Engineering_Department

Employee

Engineer1

Engineer2

[Role Accounts] [Permissions]

Director’s Directory

Project_Lead1’s Directory

Project_Lead2’s Directory

Project_Engineer1’s Directory

Quality_Engineer1’s Directory

Project_Engineer2’s Directory

Quality_Engineer2’s Directory

Engineer1’s Directory

Engineer2’s Directory

Engineer’s Directory

Employee’s Directory

Figure 6.10: Role Accounts and Permission Assignment

72

Project Lead1's directory - which has resources for the role Project Lead1 - and the

directories that require the roles junior to the Project Lead1 role in the role hierarchy.

In other words, if Alice is mapped to the role account Project Lead1, she obtains per-

missions assigned to the role account Project Lead1, thereby acquiring access rights to

the directories for Project Lead1, Project Engineer1, Quality Engineer1, Engineer1,

Engineering Department, and Employee.

As a result, after verifying the smart certi�cate, the Web server allows the user,

Alice, to execute transactions based on her roles - contained in the OU �eld of the

certi�cate - instead of her identity. In other words, the Web server does not care about

the user's identity. This resolves the scalibility problem of the identity-based access

control, which is being used primarily in existing Web servers. Furthermore, since

the Web server also uses a role hierarchy, it supports a natural means for structuring

roles to reect an organization's lines of authority and responsibility. Each Web

server may have a role hierarchy de�erent from that in other servers. The location of

RBAC-compliant Web servers is geographically free from that of the role server, since

smart certi�cates (which include the subjects' role information) can be issued by one

certi�cate server for use by other Web servers, regardless of their physical location.

6.3.3 Summary

In this section, we have described how we implemented RBAC with role hierarchies on

the Web using smart certi�cates. The certi�cate authority issues a smart certi�cate,

including a subject's identity and role information, and Web servers use the role

information for RBAC with role hierarchies after identity and attribute veri�cation.

This access control mechanism solves the scalibility problem of existing Web servers.

The implementation is transparent to users and applicable to existing Web servers

and browsers. In our implementation, we used the OU (Organization Unit) �eld in

X.509 certi�cates to simply add subjects' roles, and both identity and roles are signed

by a single certi�cate authority. However, if a smart certi�cate has di�erent attributes

(which need to be signed by di�erent CAs), or obtains detailed attribute information,

73

such as validity for each attribute or attribute issuer, we need to use the extension

�elds of X.509 as described in Chapter 5.

6.4 Discussion

For secure attribute services on the Web, we may consider using other existing tech-

nologies, such as SHTTP (Secure HTTP [RS98, SR98]), and SSL (Secure Socket

Layer [WS96, DA99]). However, none of these can prevent end-system threats to

the attribute information. For example, once Alice receives some attributes from a

Web server over a secure channel, she can change the contents of the cookies or give

them to other people. Then Alice, or the person impersonating Alice, can access the

Web server (which accepts the attributes) over another secured channel using the

forged information. On the other hand, secure cookies and smart certi�cates protect

attributes from network and end-system threats.

In our secure-cookie implementation, individual �les with CGI scripts check to

see if the user has the required role to access the �les. This is a per-�le access control

mechanism. The per-�le access control mechanism does not require the modi�cation

of the Web server; it works independently from the access control mechanism of Web

servers. However, each HTML page needs to be written with a small CGI script to

determine whether the user has the required role to access the �le. Therefore, this

mechanism is not limited to the location of the �les. Even if a �le moves to another

directory or even other servers, the �le still requires the corresponding role to access

the �le. Alternatively, we also used a separate CGI program (fetch.pl) to fetch the

corresponding HTML �les based on the user's roles. The Web page URL is not shown

to the user, since the CGI program (fetch.pl) reads from the page and outputs it to

the user. In this case, individual HTML pages do not need CGI scripts to check the

user's roles. However, the access control mechanism is not free from the location of

the �les.

In contrast, we used the per-directory access control mechanism in our smart-

74

certi�cate implementation. We used a built-in ACL (Access Control List) in a Win-

dows NT server to limit access to all the �les in a directory to users, who have the

corresponding role. To support RBAC, we need to con�gure the Web server to rec-

ognize the role information for its access control, while we do not need to change the

HTML �les in the server. However, if a �le moves to other directories or servers, then

the �le is free from the access control, which a�ected on it in the previous directory.

This also can be implemented in conjunction with the access control mechanism of

other existing Web servers.

6.5 Related Work

6.5.1 getAccess

enCommerce has released getAccess [enC98] to implement a hierarchical role-based

model for the organization online. Each role de�nes a speci�c access privilege to one

or more resources. The roles can be grouped into macro roles, and macro roles can

also have other macro roles. There are four main software modules in this product:

registry server, access server, administration application, and integration tools. The

access server is located in a company's Intranet or Extranet, while the registry server

is always located in the Intranet. A user always connects to the access server �rst

via browsers. The access server then connects the registry server to obtain the user's

identi�cation and roles through a secure connection. Subsequently, the registry server

authenticates the user and returns the user's encrypted role information through

cookies. These cookies are temporarily stored in RAM on the user's machine while

the browser is open. When the user connects to a Web server in the Intranet, the

browser sends the cookies to the Web server. The Web server decrypts and uses the

encrypted role information in the cookies for role-based access control in the server.

The getAccess mechanism uses encrypted cookies. However, there is a huge

di�erence between its approach and our secure cookies (described in Chapter 4). The

encrypted cookies are not stored in the user's machine after the session. In other

words, if a session is ended by closing the browser, the encrypted cookies disappear.

75

This means that whenever a user, Alice, needs to connect to a Web server with her

roles, she must connect to the registry server �rst through the access server. On the

contrary, secure cookies - which obtain the user's role information - can be stored

in the user's machine after the session, even when the power of the user's machine

is o�. This is possible because the secure cookies can be provided integrity and

authentication services as well as encryption. Therefore, once Alice obtains her secure

cookies, she can use her roles until the cookies expire, without having to connect the

cookie issuer.

6.5.2 TrustedWeb

Siemens Nixdorf released TrustedWeb [Nix98], which supports role-based access con-

trol for Web contents and applications, as well as security services, such as mutual

authentication, integrity, and con�dentiality for Intranets. The system, combining

elements from both Sieman's SESAME [PP95] and Kerberos [Neu94], provides a sin-

gle list of users on its central domain security server and assigns roles to the users.

Therefore, access to the individual Web servers in the Intranet is controlled based

on the role rather than the identity of the user. However, to use TrustedWeb, the

client's browser needs speci�c software installed in the client's machine to communi-

cate with the TrustedWeb servers in the Intranet while our techniques do not require

any speci�c software in the client side.

6.5.3 hyperDRIVE

The hyperDRIVE [Bar97], which was developed by the Internal Revenue Service,

is programmed in Java to provide a consistent, integrated, auditable, manageable

RBAC implementation, employed by multiple servers, clients, and applications. The

implementation includes a Java-capable and SSL-enabled Web browser, an LDAP10

server, an Object Request Broker, and the hyperDRIVE client Java applet. hyper-

10Lightweight Directory Access Protocol [YHK95] de�nes a relatively simple protocol for updating
and searching directories running over TCP/IP.

76

DRIVEmakes it possible for servers, applications, and active objects with capabilities

and facilities to consult the LDAP-hosted RBAC data. Through this consultation,

the client's requests are accepted or rejected to support secure communication be-

tween clients and servers based on RBAC. The access includes location, methods,

and modes of access to and of network computing resources. The authorization in-

volves the mapping of one or more operations or privileges to a de�ned role.

However, it is di�cult for hyperDRIVE to set constraints and role hierarchy,

and administer many roles in a huge system, because its approach focuses on the

user's transaction.

6.5.4 I-RBAC

The I-RBAC [TC97] implements RBAC with agents: coordination agents, task agents,

and database agents. The agents are active network objects that implement the dif-

ferent security procedures by checking the user's authorizations for using resources

within an Intranet. The main advantage of this approach is the existence of local

and global network objects in the system. A local object has an identity known only

with the corresponding local server, while a global network object has a unique iden-

tity known throughout the Internet. Therefore, when a network object with a given

role wants to access Intranet resources, the system checks its role in the global-role

database. If the object's global role exists in the global-role database, then the system

derives its global permissions and uses the permission domain tables in the local-role

databases, which contain the access information of the local server's network objects

within an Intranet, to verify the global role's derived local authorizations.

However, there is a consistency problem between roles. For instance, if we

have hundreds of roles and thousands of permissions in the system, it is very di�cult

to keep consistent by reecting new security requirements between global network

objects and local network objects.

CHAPTER 7

CONCLUSIONS

7.1 Secure Cookies vs. Smart Certi�cates

In this section, we compare secure cookies with smart certi�cates in user-pull and

server-pull models.

Secure cookies inherently support only the user-pull model, since cookies are

stored in users' machines; they cannot operate in the server-pull model. In contrast,

smart certi�cates support both user-pull and server-pull models. A bundled (identity

and attributes) smart certi�cate is useful for the user-pull model.

Both secure cookies and smart certi�cates are compatible with existing tech-

nologies; HTTP can support the secure cookie mechanism as it does for regular cook-

ies, and SSL can support smart certi�cates as it does for X.509 certi�cates. However,

for the server-pull model utilized by smart certi�cates, an additional channel is re-

quired for attribute transfer between the attribute server and Web servers.

To use secure cookies or smart certi�cates in the user-pull model, each user

needs to obtain his or her attributes from the attribute server. Furthermore, it is

non-trivial to update or revoke users' attributes and make it e�ective instantly in the

user-pull model. For instance, if the user already pulled her attributes, the updated

version in the attribute server would not become e�ective instantly. Namely, an

additional synchronization process is required.

The secure cookie mechanism is transparent to users. Once a user, Alice, ob-

77

78

tains her attributes in secure cookies, she can use them to access other Web servers

in the domain, speci�ed in the cookies, as long as the attributes are valid. When

the user connects to a Web server, the relevant secure cookies are selected and pre-

sented to the server by the browser, and expired cookies are deleted from the user's

machine automatically. By this feature, secure cookies support users' convenience for

maintaining and using their attributes frequently in diverse Web sites (for instance,

pay-per-access).

To use smart certi�cates, user cooperation is required. Whenever the user

connects to a Web server, which requires a smart certi�cate from the client, the user

needs to select a proper certi�cate among her available certi�cates, and present it

to the server. Once Web servers install a CA (Certi�cate Authority) certi�cate as

an acceptable certi�cate under a certain policy, a client certi�cate can be used in

many Web servers (even in di�erent domains). For instance, Alice's smart certi�cate

- which has her credit card information - can be used in many Web sites in di�erent

domains for electronic commerce on the Web.

Using smart certi�cates in the server-pull model does not require user coop-

eration to obtain the attributes. Instead, it requires each Web server to obtain each

user's attributes. In this case, the users' attributes can be updated or revoked, and

become e�ective instantly, because all the attributes are stored in the attribute server

and pulled by the Web servers on demand. By this feature, use of smart certi�cates

in the server-pull model is a good solution for the applications, especially, where

dynamic attribute update is critical, such as stop-payment in electronic transactions.

7.2 Contributions

In this dissertation, we have identi�ed the user-pull and server-pull models for se-

cure attribute services on the Web. In the user-pull model, a user pulls appropriate

attributes from the attribute server and then presents them to the Web servers. In

the server-pull model, each Web server pulls appropriate attributes from the attribute

79

server as needed. Each model can be made to work, and we have provided an analysis

of their relative advantages and disadvantages.

We also have developed secure cookies and smart certi�cates to support these

models on the Web. Secure cookies are constructed by cryptographic technologies

to support authentication, integrity, and con�dentiality services. Authentication ser-

vices verify the owner of the cookies. Integrity services protect against threats that

the contents of the cookies might be changed by unauthorized modi�cation. Finally,

con�dentiality services protect against the values of the cookies being revealed to an

unauthorized entity. Smart certi�cates have new features, but they are still compati-

ble with X.509 certi�cates. They are able to support short-lived lifetime and multiple

CAs without losing e�ective maintenance, contain attributes, provide postdated and

renewable certi�cates, and provide con�dentiality. Selection of these new techniques

for both secure cookies and smart certi�cates depends on applications.

Finally, to provide concrete examples of secure attribute services on the Web

by our new technologies, we have used secure cookies and smart certi�cates separately

to implement role-based access control with a role hierarchy on the Web. To provide

varied experiences, secure cookies were implemented in a UNIX environment, while

smart certi�cates were implemented in a Windows NT environment. Even though we

have implemented only RBAC on theWeb by our new technologies in this dissertation,

we believe it is su�cient to show the feasibility that these technologies can be used

for other applications on the Web.

7.3 Future Research

Based on the research work in this dissertation, we propose the following research

areas, discussed below.

80

7.3.1 Binding Identity and Attributes

Attributes must belong to the owner of the attributes. For instance, Alice should

not be allowed to use Bob's attributes, and vice versa, in distributed systems. How

then can we bind attributes to the appropriate identity? In our implementation, we

used a single digital signature on both identity and attribute information to support

integrity service. We also introduced the individual digital signatures as a binder

between identity and attributes in a smart certi�cate. However, we believe there are

many possible ways to bind both kinds of information. For example, we can use a

subject's name, identi�er, public key, encrypted passwords, hash of the passwords,

and serial number. We would need to analyze each binder and compare their relative

advantages and disadvantages.

7.3.2 Implementation Issues

In this dissertation, we have introduced many possible applications of our new tech-

nologies (secure cookies and smart certi�cates), and implemented role-based access

control with a role hierarchy on the Web as one possible application. In the future,

we plan to implement more applications using our new techniques .

APPENDIX A

SNAPSHOTS FROM RBAC ON THE WEB BY

SECURE COOKIES

In this appendix, we attach the snapshots of selected images from our implementation

of RBAC on the Web by secure cookies. The implementation is based on the role

hierarchy depicted in Figure 6.8. In this example, Alice �rst connects to the cookie-

issuing role server to receive her assigned roles. The role server issues a set of secure

cookies, including Alice's role information. Finally, the secure cookies are sent to and

stored in Alice's hard drive securely, so that she can use them in other Web servers.

Detailed procedures are described in Section 6.2.

81

82

Figure A.1: Alice Connects to the Role Server

83

Figure A.2: The Role Server Issues an IP Cookie for Alice

84

Figure A.3: The Role Server Issues a Pswd Cookie for Alice

85

Figure A.4: The Role Server Issues a Life Cookie for Alice

86

Figure A.5: The Role Server Issues a Role Cookie for Alice

87

Figure A.6: The Role Server Issues a Seal Cookie for Alice

88

Figure A.7: Alice Stores Her Secure-Cookie Set

89

Figure A.8: Alice Connects to a Web Server

90

Figure A.9: An Example of Veri�cation Failure

91

Figure A.10: An Example of Veri�cation Success

APPENDIX B

SNAPSHOTS FROM RBAC ON THE WEB BY

SMART CERTIFICATES

In this appendix, we attach the snapshots of selected images from our implementation

of RBAC on the Web by smart certi�cates. The implementation is based on the role

hierarchy depicted in Figure 6.8. In this example, Alice has four smart certi�cates in

her browser, with each smart certi�cate containing di�erent roles. Alice selects one

of them according to her transactions in the beginning of the session, which requires

a speci�c role. Detailed procedures are described in Section 6.3.

92

93

Figure B.1: Alice Selects the Smart Certi�cate for the Director Role

94

Figure B.2: The Contents of the Smart Certi�cate for the Director Role

95

Figure B.3: Site Introduction

96

Figure B.4: Alice Is Allowed to Access the Director's Page

97

Figure B.5: Alice Selects the Smart Certi�cate for the PL1 Role

98

Figure B.6: The Contents of the Smart Certi�cate for the PL1 Role

99

Figure B.7: Alice Is Allowed to Access the PL1's Page

100

Figure B.8: Alice Is Not Allowed to Access the Director's Page

101

Figure B.9: Alice Is Not Allowed to Access the PL2's Page

102

Figure B.10: Alice Is Allowed to Access the Employee's Page

BIBLIOGRAPHY

103

104

BIBLIOGRAPHY

[Bar97] Larry S. Bartz. hyperDRIVE: Leveraging LDAP to implement rbac on

the web. In Proceedings of 2nd ACM Workshop on Role-Based Access

Control, pages 69{74. ACM, Fairfax, VA, November 6-7 1997.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hashing

functions for message authentication. In Advances in Cryptography -

CRYPTO'90 Proceedings, volume 1109, Springer-Verlag, 1996. Lecture

Notes in Computer Science.

[BJR98] Grady Booch, Ivar Jacobson, and James Rumbaugh. The uni�ed modeling

language user guide. Addison-Wesley, 1998.

[CDFT98] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP massage

Format, November 1998. RFC 2440.

[DA99] T. Dierks and C. Allen. The TLS (Transport Layer Security) Protocol,

January 1999. RFC 246.

[DH76] W. Di�e and M.E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22(6):644{654, 1976.

[DH97] Whit�eld Di�e and Martin Hellman. ANSI X9.42: Establishment of

Symmetric Algorithm Keys Using Di�e-Hellman, 1997. American Na-

tional Standards Institute.

[enC98] enCommerce. getAccess, 1998. http://www.encommerce.com/products.

[Far98a] Stephen Farrell. An Internet AttributeCerti�cate pro�le for Authoriza-

tion, August 1998. draft-ietf-tls-ac509prof-00.txt.

[Far98b] Stephen Farrell. TLS extensions for AttributeCerti�cate based authoriza-

tion, February 1998. draft-ietf-tls-attr-cert-00.txt.

105

[FCK95] David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access

control (RBAC): Features and motivations. In Proceedings of 11th Annual

Computer Security Application Conference, pages 241{48, New Orleans,

LA, December 11-15 1995.

[Fed91] Federal Register. Proposed Federal Information Processing Standard for

Digital Signature Standard (DSS), August 1991. n.169.

[Fed94] Federal Information Processing Standards Publication. Digital Signature

Standard (DSS), 1994. FIPS PUB 186.

[Fed95] Federal Information Processing Standard (FIPS). Secure Hash Standard,

1995. FIPS 180-1.

[FGM98] R. Fielding, J. Gettys, and J. C. Mogul. HyperText Transfer Protocol

(HTTP/1.1), November 1998. draft-ietf-http-v11-spec-rev-o6.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access controls. In Pro-

ceedings of 15th NIST-NCSC National Computer Security Conference,

pages 554{563, Baltimore, MD, October 13-16 1992.

[Gar95] Simson Gar�nkel. Pretty Good Privacy. O'Reilly & Associates, 1995.

[GI96] Luigi Guiri and Pietro Iglio. A formal model for role-based access control

with constraints. In Proceedings of IEEE Computer Security Foundations

Workshop 9, pages 136{145, Kenmare, Ireland, June 1996.

[Gui95] Luigi Guiri. A new model for role-based access control. In Proceedings of

11th Annual Computer Security Application Conference, pages 249{255,

New Orleans, LA, December 11-15 1995.

[HDT95] M.-Y. Hu, S.A. Demurjian, and T.C. Ting. User-role based security in the

ADAM object-oriented design and analyses environment. In J. Biskup,

M. Morgernstern, and C. Landwehr, editors, Database Security VIII: Sta-

tus and Prospects. North-Holland, 1995.

[Her96] Eric Herrmann. CGI Programming with Perl 5. Sams Net, 1996.

[HFPS98] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 public key

infrastructure certi�cate and CRL pro�le, September 1998. draft-ietf-

pkix-ipki-part1-11.txt.

106

[HS98] Yung-Kao Hsu and Stephen P. Seymour. An internet security framework

based on short-lived certi�cates. IEEE Internet Computing, pages 73{79,

March/April 1998.

[ITU93] ITU-T Recommendation X.509. Information technology - Open sys-

tems Interconnection - The Directory: Authentication Framework, 1993.

ISO/IEC 9594-8:1993.

[ITU97] ITU-T Recommendation X.509. Information technology - Open systems

Interconnection - The Directory: Authentication Framework, 1997.

[KA98] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol,

November 1998. RFC 2401.

[KM97] David M. Kristol and Lou Montulli. HTTP state management mecha-

nism, February 1997. RFC 2109.

[KM98a] David M. Kristol and Lou Montulli. HTTP state management mecha-

nism, February 1998. draft-ietf-http-state-man-mec-8.txt.

[KM98b] David M. Kristol and Lou Montulli. HTTP state management mecha-

nism, July 1998. draft-ietf-http-state-man-mec-10.txt.

[Lau98] Simon Laurent. Cookies. McGraw-Hill, 1998.

[LM91] X. Lai and J. Massey. A proposal for a new block encryption standard.

In Advances in Cryptography - CRYPTO'90 Proceedings, pages 389{404,

Springer-Verlag, 1991.

[MD94] Imtiaz Mohammed and David M. Dilts. Design for dynamic user-role-

based security. Computers & Security, 13(8):661{671, 1994.

[Neu94] B. Cli�ord Neuman. Using Kerberos for authentication on computer net-

works. IEEE Communications, 32(9), 1994.

[Nix98] Siemens Nixdorf. TrustedWeb, 1998. http://www.sse.ie/TrustedWeb.

[NO95] Matunda Nyanchama and Sylvia Osborn. Access rights administra-

tion in role-based security systems. In J. Biskup, M. Morgernstern,

and C. Landwehr, editors, Database Security VIII: Status and Prospects.

North-Holland, 1995.

[PP95] Tom Parker and Denis Pinkas. SESAME V4 - OVERVIEW. SESAME

Technology, December 1995. Version 4.

107

[PS99a] Joon S. Park and Ravi Sandhu. RBAC on the web by smart certi�-

cates. In Proceedings of 4th ACM Workshop on Role-Based Access Con-

trol. ACM, Fairfax, VA, October 28-29 1999.

[PS99b] Joon S. Park and Ravi Sandhu. Smart certi�cates: Extending x.509 for

secure attribute services on the Web. In Proceedings of 22nd National In-

formation Systems Security Conference, Crystal City, VA, October 1999.

[PSG99] Joon S. Park, Ravi Sandhu, and SreeLatha Ghanta. RBAC on the Web by

secure cookies. In Proceedings of the IFIP WG11.3 Workshop on Database

Security. Chapman & Hall, July, 1999.

[Qua98] Terry Quatrani. Visual Modeling with Rational Rose and UML. Addison-

Wesley, 1998.

[Riv92] R.L. Rivest. The MD5 message digest algorithm, April 1992. RFC 1321.

[RRSW97] C. Rigney, A. Rubens, W. A. Simpson, and S. Willens. Remote Authen-

tication Dial In User Service RADIUS, April 1997. RFC 2138.

[RS98] E. Rescorla and A. Schi�man. Security Extensions For HTML, June 1998.

draft-ietf-wts-shtml-05.txt.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

21(2):120{126, 1978.

[San97] Ravi Sandhu. Rationale for the RBAC96 family of access control models.

In Proceedings of the 1st ACM Workshop on Role-Based Access Control.

ACM, 1997.

[San98] Ravi Sandhu. Role-based access control. Advances in Computers, 46,

1998.

[SB97] Ravi Sandhu and Venkata Bhamidipati. The URA97 model for role-based

administration of user-role assignment. In T. Y. Lin and Xiaolei Qian,

editors, Database Security XI: Status and Prospects. North-Holland, 1997.

[SBC+97] Ravi Sandhu, Venkata Bhamidipati, Edward Coyne, Srinivas Ganta, and

Charles Youman. The ARBAC97 model for role-based administration of

roles: Preliminary description and outline. In Proceedings of 2nd ACM

Workshop on Role-Based Access Control, pages 41{50. ACM, Fairfax, VA,

November 6-7 1997.

108

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based access control models. IEEE Computer, 29(2):38{

47, February 1996.

[SNS88] J.F. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication

service for open network systems. In Proc. Winter USENIX Conference,

1988.

[SP98] Ravi Sandhu and Joon S. Park. Decentralized user-role assignment for

Web-based intranets. In Proceedings of 3rd ACM Workshop on Role-

Based Access Control, pages 1{12. ACM, Fairfax, VA, October 22-23 1998.

[SR98] A. Schi�man and E. Rescorla. The Secure HyperText Transfer Protocol,

June 1998. draft-ietf-wts-shttp-06.txt.

[TC97] Zahir Tari and Shun-Wu Chan. A role-based access control for intranet

security. IEEE Internet Computing, pages 24{34, September/October

1997.

[vSvdM94] S. H. von Solms and Isak van der Merwe. The management of computer

security pro�les using a role-oriented approach. Computers & Security,

13(8):673{680, 1994.

[WS96] D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proceed-

ings of the Second UNIX Workshop on Electronic Commerce, November

1996.

[YCS97] Charles Youman, Ed Coyne, and Ravi Sandhu, editors. Proceedings of the

1st ACM Workshop on Role-Based Access Control, Nov 31-Dec. 1, 1995.

ACM, 1997.

[YHK95] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol,

March 1995. RFC 1777.

[Zim95] Phillip R. Zimmermann. The O�cial PGP User's Guide. MIT Press,

1995.

CURRICULUM VITAE

Joon S. Park was born in Korea, in 1966. In 1989, he received a Bachelor of Science

in Engineering from Yonsei University in Seoul, and in 1997, he obtained a Master

of Science in Systems Engineering from George Mason University (GMU), in Fairfax,

Virginia. He received a Ph.D in information technology, specializing in information

security, from GMU in 1999. He worked for Goldstar (now LG) R&D Center as a

research engineer, in Seoul, Korea, from 1989 to 1994. While completing his master's

and doctoral study at GMU, he served in several research capacities for the university,

beginning with work as a research assistant for GMU's Center for Software Systems

Engineering (CSSE) in 1996. At CSSE, he provided technical research support to

varied Navy and FBI projects, and he was later awarded the university's prestigious

Technology Learning Competition prize. In 1996, he joined GMU's Laboratory for

Information Security Technology (LIST). While pursuing his Ph.D. in Information

Technology at GMU, he obtained a Certi�cate in Information Security in 1998. His

doctoral work, primary addressing issues related to security services on the Web,

has been generously sponsored by the National Institute of Standards and Technol-

ogy (NIST), the National Science Foundation (NSF), the National Security Agency

(NSA), and the Naval Research Laboratory (NRL).

This dissertation was typeset with LATEX
z by the author.

zLATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth's TEX Program.

109

