
THE RCL 2000 LANGUAGE FOR SPECIFYING
ROLE-BASED AUTHORIZATION CONSTRAINTS

by

Gail-Joon Ahn

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Ful�llment of

the Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

Dr. Ravi Sandhu, Dissertation Director

Dr. Sushil Jajodia

Dr. Daniel Menasc�e

Dr. Prasanta Bose

Dr. Stephen G. Nash, Associate Dean for

Graduate Studies and Research

Dr. Lloyd J. GriÆths, Dean, School of

Information Technology and Engineering

Date: Fall 1999

George Mason University

Fairfax, Virginia

The RCL 2000 Language for Specifying
Role-Based Authorization Constraints

A dissertation submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy at George Mason University.

By

Gail-Joon Ahn

B.S., SoongSil University, Seoul, KOREA, February 1994

M.S., George Mason University, Fairfax, VA, January 1997

Director: Dr. Ravi S. Sandhu, Professor

Information and Software Engineering

Fall 1999

George Mason University

Fairfax, Virginia

ii

Copyright

by

Gail-Joon Ahn

1999

iii

DEDICATION

To my God

\A man's heart deviseth his way: but the LORD directeth his steps." { Proverbs 16:9

To my parents, Dr. Young Ro Ahn and Kyung Ok Paik, my wife Mi Hye Ahn, my sis-

ter Ae Kyung Ahn, my brother Bong Joon Ahn, and my lovely son Benjamin Soohyun

Ahn.

{Without their prayers and love, this work could not have been started.{

iv

ACKNOWLEDGMENTS

I would like to sincerely express my gratitude and appreciation to my dissertation di-

rector, Professor Ravi Sandhu, who has been so graceful all the way and has provided

valuable guidance and encouragement during my doctoral study.

Also, I would like to thank the members of my dissertation committee, Professor

Sushil Jajodia, Professor Daniel Menasce, and Professor Prasanta Bose. I am thankful

for their valuable comments on my dissertation.

I am particularly thankful to my parents, Dr. Young Ro Ahn and Kyung Ok Paik,

to my wife Mi Hye Ahn, to my grandmother Im D. Park, to my uncle Elder Won K.

Paik, and to my aunt Eun D. Kim for their prayers and love.

Also, I would like to thank all of my friends at Mason who made my student life at

Mason an unforgettable one.

I acknowledge the �nancial support from National Security Agency (NSA), Naval Re-

search Laboratory (NRL), National Science Foundation (NSF), and Lockheed Martin

Corporation during my doctoral study.

v

TABLE OF CONTENTS

Page

LIST OF TABLES viii

LIST OF FIGURES ix

ABSTRACT x

Chapter 1. INTRODUCTION 1

1.1 Role-Based Access Control . 3

1.2 Authorization Constraints . 4

1.2.1 Separation of Duty Constraints . 6

1.3 Outline of the Dissertation . 7

Chapter 2. RELATED WORK 10

2.1 Authorization Constraints . 10

2.2 Separation of Duty Constraints . 11

2.3 Summary . 13

Chapter 3. RCL 2000 LANGUAGE 15

3.1 Basic Elements and System Functions . 16

3.1.1 Basic Elements and System Functions: from RBAC96 16

3.1.2 Basic Elements and Non-deterministic Functions: beyond RBAC96 20

3.2 Formal Syntax and Semantics of RCL 2000 23

3.2.1 The Syntax . 23

3.2.2 Formal Semantics . 24

3.2.3 Soundness and Completeness . 30

3.3 Packaging Method . 35

3.4 Summary . 38

vi

Chapter 4. SPECIFICATION OF SOD CONSTRAINTS 39

4.1 SOD Properties (RBAC2) . 40

4.1.1 Role-centric SOD . 40

4.1.2 User-centric SOD . 45

4.1.3 Permission-centric SOD . 45

4.2 SOD Properties (RBAC3) . 46

4.2.1 Additional Components . 47

4.2.2 Role-centric SOD . 48

4.2.3 User-centric SOD . 49

4.2.4 Permission-centric SOD . 49

4.3 Discussion . 50

4.3.1 Static SOD . 50

4.3.2 Dynamic SOD . 53

4.4 Summary . 54

Chapter 5. CASE STUDIES 56

5.1 Lattice-Based Access Control . 57

5.1.1 Lattice-Based Access Control . 57

5.1.2 Constraints Speci�cation in RCL 2000 59

5.2 Chinese Wall Policy . 64

5.2.1 Variation 1 . 66

5.2.2 Variation 2 . 66

5.2.3 Variation 3 . 67

5.3 Discretionary Access Control . 69

5.3.1 Simulations in RBAC . 71

5.4 Summary . 75

Chapter 6. PROHIBITION AND OBLIGATION CONSTRAINTS 76

6.1 Role-based Constraints . 76

6.1.1 Prohibition Constraints . 77

6.1.2 Obligation Constraints . 77

6.2 Constraints Characterization . 78

6.2.1 Simple Prohibition Constraints . 79

6.2.2 Simple Obligation Constraints . 80

6.3 Summary . 81

vii

Chapter 7. CONCLUSION 83

7.1 Contributions . 83

7.2 Future Work . 84

7.2.1 Extension of RCL 2000 . 85

7.2.2 Implementation Issues . 85

7.2.3 Update Problem . 85

BIBLIOGRAPHY 86

viii

LIST OF TABLES

Table Page

1.1 De�nition of SOD . 8

4.1 Static & Dynamic Separation of Duty 54

6.1 Characterizations of Constraints . 82

ix

LIST OF FIGURES

Figure Page

1.1 RBAC96 Model . 5

1.2 Summary of the RBAC96 Model . 6

3.1 Basic Elements and System Functions : from RBAC96 Model 17

3.2 Basic Elements and System Functions : from the RBAC96 Model . . 18

3.3 Example of role hierarchies . 19

3.4 Basic Elements and Non-deterministic Functions: beyond RBAC96
Model . 20

3.5 Syntax of Language . 25

3.6 Reduction . 26

3.7 Construction . 27

3.8 Syntax of restricted FOPL expression 29

5.1 A Partially Ordered Lattice . 58

5.2 Administrative Sets in LBAC simulation 63

5.3 Role Hierarchies for Strict �-property 63

5.4 Company Information in the Chinese Wall 65

5.5 Example of Chinese Wall . 68

5.6 Roles and Permissions in DAC . 72

6.1 Constraints Characterization . 79

ABSTRACT

THE RCL 2000 LANGUAGE FOR SPECIFYING ROLE-BASED
AUTHORIZATION CONSTRAINTS

Gail-Joon Ahn, Ph.D.

George Mason University, 1999

Dissertation Director: Dr. Ravi S. Sandhu

Authorization constraints (also simply called constraints) are an important aspect of

role-based access control (RBAC), since they can be argued to be one of the principal

motivations behind RBAC. Although the importance of constraints in RBAC has

been recognized for a long time, they have not received much attention in research

literature, while role hierarchies have been practiced and discussed at considerable

length. Most prior work has focused on separation of duty (SOD) constraints enumer-

ating many variations. In this dissertation, we describe a framework for specifying

authorization constraints in role-based systems. To specify these constraints, we need

an appropriate language as well as some system functions. We propose a simple and

intuitive language, RCL 2000 (Role-based Constraints Language 2000), to specify

constraints in an intuitive and useful way in role-based systems. The formal seman-

tics for this language is based on its translation to a restricted form of �rst order

predicate logic.

With this language we show how we can express the previous SOD constraints dis-

covering newly identi�ed properties, such as permission-centric constraints. We also

de�ne new forms of SOD, especially with role hierarchies. To illustrate the power of

RCL 2000 we specify constraints which have been identi�ed in simulations of Lattice-

based access control, Chinese Wall, and Discretionary access control policy in RBAC.

Moreover, we separate role-based constraints into two major classes: Prohibition Con-

straints and Obligation Constraints. We characterize a subset of these classes from

our speci�cation of role-based constraints.

Our work also shows that it is futile to try to enumerate all constraints because there

are too many possibilities and variations; instead, we should pursue an intuitively

simple yet rigorous language, such as RCL 2000, for specifying constraints.

Chapter 1

INTRODUCTION

Role-based access control (RBAC) has emerged as a widely accepted alternative to

classical discretionary and mandatory access controls [SCFY96]. Several models of

RBAC have been published and several commercial implementations are available.

RBAC regulates the access of users to information and system resources on the basis

of activities that users need to execute in the system. It requires the identi�cation

of roles in the system. A role can be de�ned as a set of actions and responsibilities

associated with a particular working activity. Then, instead of specifying all the

access each user is allowed to execute, access authorizations on objects are speci�ed

for roles. Since roles in an organization are relatively persistent with respect to user

turnover and task re-assignment, RBAC provides a powerful mechanism for reducing

the complexity, cost, and potential for error of assigning users permissions within

the organization. Because roles within an organization typically have overlapping

permissions, RBAC models include features to establish role hierarchies, where a given

role can include all of the permissions of another role. Another fundamental aspect

of RBAC is authorization constraints (also simply called constraints). Although the

importance of constraints in RBAC has been recognized for a long time, they have not

received much attention in the research literature, while role hierarchies have been

practiced and discussed at considerable length [SA98a, FGS94, SA98b, Jan98, AS98,

AS99b, Ahn99a, Ahn99b].

1

2

In this dissertation we focus on constraints in RBAC. We may consider several issues

such as constraint speci�cation, constraint analysis, and constraint enforcement. In

this dissertation our focus is on constraint speci�cations, i.e, on how constraints can

be expressed. Constraints can be expressed in natural languages, such as English,

or in more formal languages. Natural language speci�cation has the advantage of

ease of comprehension by human beings, but may be prone to ambiguities. Natural

language speci�cations do not lend themselves to the analysis of properties of the set

of constraints. For example, one may want to check if there are conicting constraints

in the set of access constraints for an organization. We opted for a formal language

approach to specify constraints. The advantages of this method include : i) a for-

mal way of reasoning about constraints, ii) a framework for identifying new types

of constraints, iii) a classi�cation scheme for types of constraints (e.g., prohibition

constraints and obligation constraints), and iv) a basis for supporting optimization

and speci�cation techniques on sets of constraints.

Also we may need to study how to enforce constraints which are identi�ed in the

role-based systems. These two research issues, constraints analysis and enforcement,

remain to be done in future work.

This dissertation describes a framework for specifying constraints in role-based sys-

tems. To specify these constraints we introduce the speci�cation language RCL 2000

(for Role-based Constraints Language 2000, pronounced R�ickle 2000). The user of

this language will be mainly the security researcher who needs to think and reason

about role-based authorization constraints. The objective of this language is to spec-

ify role-based constraints and help the security researcher to investigate the useful

constraints including laying out an organizational policy.

3

1.1 Role-Based Access Control

This section gives a brief overview of a well-known family of models for RBAC,

commonly known as RBAC96 [SCFY96]. This model has become a widely-cited

authoritative reference and is the basis of a standard currently under development by

the National Institute of Standards and Technology [SB97, SBC+97, SBM99, Giu95,

FK92]. This model was also used to develop implementations of various RBAC models

and mechanisms using Unix, Oracle, Windows NT, and so on [SA98a, SA98b, AS98,

SB97, GS96, Rut97, Sut97, Gri97]. RCL 2000 is de�ned in context of RBAC96.

Intuitively, a user is a human being or an autonomous agent, a role is a job function

or job title within an organization with some associated semantics regarding the

authority and responsibility conferred on a member of the role, and a permission is

an approval of a particular mode of access (operation) to one or more objects in the

system or some privilege to carry out speci�ed actions. Roles are organized in a partial

order or hierarchy, so that a senior role inherits permissions from junior roles, but not

vice versa. A user can be a member of many roles and a role can have many users.

Similarly, a role can have many permissions and the same permission can be assigned

to many roles. Each session relates one user to possibly many roles. Intuitively, a

user establishes a session (e.g., by signing on to the system) during which the user

activates some subset of roles that he or she is a member of. The permissions available

to the users are the union of permissions from all roles activated in that session. Each

session is associated with a single user. This association remains constant for the

life of a session. A user may have multiple sessions open at the same time, each

in a di�erent window on the workstation screen, for instance. Each session may

have a di�erent combination of active roles. The concept of a session equates to the

traditional notion of a subject in access control. A subject is a unit of access control,

and a user may have multiple subjects (or sessions) with di�erent permissions active

4

at the same time.

Figure 1.1 shows the described RBAC96 model. RBAC96 is comprised of a family

of four conceptual models. RBAC0 is the base model and the minimum requirement

for any system to support RBAC. RBAC1 and RBAC2 both include RBAC0 and

each adds an independent feature to it. RBAC1 has the additional feature of role

hierarchies so roles can inherit the permissions from other roles. RBAC2 has the

additional feature of constraints which impose restrictions on con�guration of the

components of RBAC as shown by the dashed lines. RBAC3 is the consolidated model

which includes RBAC1 and RBAC2. Formal de�nitions for the various component of

RBAC96 are given in �gure 1.2. RBAC96 does not de�ne constraints formally. In

this dissertation we will give a formal de�nition of constraints in terms of the RCL

2000 language used to de�ne them.

1.2 Authorization Constraints

Constraints are an important aspect of access control and are a powerful mechanism

for laying out a higher level organizational policy [Dep85]. Consequently, the speci-

�cation of constraints needs to be considered [Hay98]. Unfortunately, this scope has

not received enough attention in the area of role-based access control. 1 And most

prior works have focused on separation of duty constraints, which is a foundational

principle in computer security as described below.

1In this dissertation, we are focusing on the research works which deal with constraints in the
context of role-based access control. Also, there are several works such as [BF99, HBM98, VCP98,
DHTK93, HW89, FB98, JSS97, JSSB97, CCSC98, CS96, FJ95, MS92, Mic98] which are just related
to constraints in other area.

5

U

USERS

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

AUA

Figure 1.1: RBAC96 Model

6

� U , a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP , disjoint sets of (regular) permissions and administrative permissions
S , a set of sessions

� UA � U � R, user to role assignment relation
AUA � U � AR, user to administrative role assignment relation

� PA � P � R, permission to role assignment relation
APA � AP � AR, permission to administrative role assignment relation

� RH � R � R, partially ordered role hierarchy
ARH � AR � AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set of roles and administrative roles
roles(si) � fr j (9 r 0 � r)[(user(si); r

0) 2 UA [AUA]g (which can change with
time)

session si has the permissions [r2roles(si)fp j (9 r
00 � r)[(p; r 00) 2 PA [APA]g

� There is a collection of constraints stipulating which values of the various com-
ponents enumerated above are allowed or forbidden.

Figure 1.2: Summary of the RBAC96 Model

1.2.1 Separation of Duty Constraints

Separation of duty (SOD) constraints are a major class of role-based authorization

constraints. In this dissertation we focus on SOD constraints to present a framework

for speci�cation of constraints in role-based systems. SOD is a fundamental tech-

nique for preventing fraud and errors, known and practiced long before the existence

of computers. Once certain roles are declared mutually exclusive, there's less concern

about assigning individual users to roles. User assignment can be delegated and de-

centralized without fear of compromising the organization's overall policy objectives.

A common example is that of mutually disjoint organizational roles, such as those of

7

purchasing manager and accounts payable manager. Generally, the same individual is

not permitted to belong to both roles because this creates a possibility for committing

fraud. Several de�nitions of SOD have been given in the literature as enumerated in

table 1.1. We give our own de�nition of SOD below and also extend it to apply in a

role-based environment.

Separation of duty reduces the possibility of fraud or signi�cant errors

which can cause damage to an organization by partitioning of tasks and

associated privileges required to complete a task or set of related tasks.

Role-Based separation of duty enforces SOD in a role-based environ-

ment by controlling membership in and use of roles, as well as permission

assignment.

Although separation of duty is intuitively easy to understand, so far there is no

systematic and rigorous basis for expressing this principle in computerized informa-

tion systems. There are several papers in the literature which deal with separation

of duty [CW87, San88, Bal90, NP90, PM94, FCK95, SZ97, Kuh97, FBK99, NO99,

GGF98]. These papers have identi�ed numerous forms of SOD, but there has been

little work so far on specifying SOD policies in a comprehensive way. We provide a

brief overview of these early works in chapter 2.

1.3 Outline of the Dissertation

In this dissertation we develop a framework for speci�cation of authorization con-

straints identi�ed in role-based systems. In order to specify constraints in an intu-

itive and useful way in role-based systems, we propose a simple and intuitive language

RCL 2000. The formal semantics for this language is based on its translation to a

restricted form of �rst order predicate logic.

8

Table 1.1: De�nition of SOD

Separation of Duty
\No user of the system, even if authorized, may be permitted to modify data items
in such a way that assets or accounting records of the company are lost or corrupted.
Essentially there are two mechanisms at the heart of fraud and error control: the
well-formed transaction, and separation of duty among employees. The most basic
separation of duty rule is that any person permitted to create or certify a well-formed
transaction may not be permitted to execute it. This rule ensures that at least
two people are required to cause a change in the set of well-formed transactions."
(from [CW87])
\Separation of duty is enforced by the rule that for transient objects di�erent trans-
actions must be executed by distinct users." (from [San88])
\NPDs make it possible to express separation of duties policies that help prevent fraud
by prohibiting certain privileges from being active simultaneously." (from [Bal90])
\Separation of duty attempts to ensure the correspondence between data objects
within a system and the real world objects they represent. This correspondence
cannot normally be certi�ed directly. Rather, the correspondence is endured indirectly
by separating all operations into several subparts and requiring that each subpart be
executed by a di�erent person." (from [NP90])
\The same individual is not permitted to belong to both roles, because this cre-
ates a possibility for committing fraud. This well-known, time-honored principle is
separation of duty." (from [SCFY96])
\It is a security principle used to formulate multi-person control policies, requiring
that two or more di�erent people be responsible for the completion of a task or set
of related tasks. The purpose of this principle is to discourage fraud by spreading
the responsibility and authority for an action or task over multiple people, thereby
raising the risk involved in committing a fraudulent act by requiring the involvement
of more than one individual." (from [SZ97])
\Separation of duty is an important requirement in many commercial systems, and
one of the most desired features of RBAC systems. One means of implementing
separation of duty policies is with mutual exclusion of roles." (from [Kuh97])
\Its purpose is to ensure that failures of omission or commission within an organi-
zation are caused only by collusion among individuals and, therefore, are riskier and
less likely, and that chances of collusion are minimized by assigning individuals of
di�erent skills or divergent interests to separate tasks." (from [GGF98])
\It refers to the partitioning of tasks and associated privileges among di�erent
mutually-exclusive roles associated with a single user to prevent the action of users
from interfering or colluding with one another." (from [FBK99])
\In complex environments where the actions of ill-intentioned users can create �-
nancial or other damage to a company, it is common to identify combinations of
operations which should not be authorized to a single user. Policies which deal with
preventing such fraud are called separation of duties policies." (from [NO99])

9

With this language we show how we can express the previous SOD constraints dis-

covering newly identi�ed properties, such as permission-centric constraints. We also

de�ne new forms of SOD, especially with role hierarchies. To illustrate the power of

RCL 2000 we specify constraints which have been identi�ed in simulations of Lattice-

based access control, Chinese Wall, and Discretionary access control policy in RBAC.

Moreover, we separate role-based constraints into two major classes: Prohibition Con-

straints and Obligation Constraints. We characterize a subset of these classes from

our speci�cation of role-based constraints.

Our work also shows that it is futile to try to enumerate all constraints because there

are too many possibilities and and variations; instead, we should pursue an intuitively

simple yet rigorous language, such as RCL 2000, for specifying constraints.

Chapter 2

RELATED WORK

Authorization constraints (also simply called constraints) are an important aspect of

access control and are a powerful mechanism for laying out higher level organizational

policy. Consequently, the speci�cation of constraints needs to be considered. So far,

this topic has not received much attention in research literature. There are a few

papers such as [CS95, GI96] that deal with constraints in the context of role-based

access control. These papers, however, are preliminary and tentative, and also need

substantial further work. Also most of the prior work has focused on separation of

duty constraints which is a foundational principle in computer security, as described

in section 1.2.1. In this chapter we briey review the related works which deal with

constraints in the context of role-based access control.

2.1 Authorization Constraints

As we mentioned earlier, authorization constraints are an important aspect of access

control. This issue has received surprisingly little attention in research literature.

There is some work such as [CS95, GI96] that deal with constraints in the context

of role-based access control. These papers, however, are preliminary and tentative,

and also need substantial further development. Chen and Sandhu [CS95] presented

the initial description which RCL 2000 builds on. Even though their description

is preliminary, it suggests how constraints can be speci�ed. Giuri and Iglio [GI96]

10

11

de�ned a new model to provide the capability of de�ning constraints on roles. In their

model, a role is de�ned as a named set of constrained protection domains (NSCPD)

that is activatable only if the corresponding constraint is satis�ed. Their description

focused on the activation of roles. But we should also consider that constraints can

be applied to other components in RBAC.

2.2 Separation of Duty Constraints

In this section, we discuss prior work on separation of duty which is a foundational

principle in computer security.

Clark and Wilson [CW87] called attention to separation of duty as one of the major

mechanisms to counter fraud and error while ensuring the correspondence between

data objects within a system and the real world objects they represent. The Clark-

Wilson scheme includes the requirement that the system maintain the separation of

duty requirement expressed in the access control triples. It calls for certi�cation by

the security oÆcer that these tuples provide adequate separation. It is therefore a

static concept that is realized at design time.

Dynamic separation of duty provides greater exibility by allowing a user to carry

out conicting operations, but only on distinct objects. Sandhu introduced notation

for dynamic separation of duty in Transaction Control Expressions [San88]. Roles

were used to specify who can issue which transaction steps. In Sandhu's model each

user executing a step in a transaction had to be di�erent. To enforce this, the history

of the execution of each transaction sequence had to be maintained. The constraints

specifying the roles that could execute each step were associated with an object.

These constraints turned into the history specifying which user executed each step

on that object. A weighted voting syntax allowed the speci�cation of multiple person

authorizations on a particular step on a particular object.

12

Baldwin [Bal90] introduced Named Protection Domains (NPDs) as a named, hierar-

chical grouping of database privileges and users. To help enforce separation of duty,

a user could have only one of these NPDs activated at any time. The security ad-

ministrator determined which NPDs could be activated, but there were no further

restrictions on the graph of NPDs (other than it be acyclic). Thus, one activatable

NPD could contain multiple activatable and non-activatable NPDs. While the acti-

vation restriction meant that a user could be in only one role (NPD) at a time, the

security administrator could set up arbitrarily complex roles.

A number of new issues around separation of duty was raised by Nash and Poland's

paper [NP90] of a portable security device used in the commercial world. Nash and

Poland also proposed the notion of object based separation of duty, which forced

every transaction against an object to be by a di�erent user. They suggested using

Sandhu's Transaction Control Expressions [San88, San90] to maintain the history of

an object's transactions.

Ferraiolo et al. [FCK95, FBK99] de�ned three kinds of separation of duty in their

formal model of RBAC. The �rst two were static separation of duty and dynamic

separation of duty. These variants were presented in previous work. The third kind

was operational separation of duty which introduced the notion of a business function

and the set of operations required for that function; a business function resembles

the notion of task and task unit introduced by Thomas and Sandhu [TS94]. The

formal de�nition of operational separation of duty stated that no role can contain the

permissions to execute all of the operations necessary to a single business function.

This forces all business functions to require at least two roles to be used for their

completion. The informal description of operational separation of duty assumes the

roles involved have disjoint memberships (static separation of duty), so that no single

person has access to all the operations in a business function.

13

Kuhn's paper [Kuh97] focussed on the time when exclusion is introduced, and the

degree to which two roles conict. As far as time is concerned, mutual exclusion can be

de�ned at role authorization time, or at run time. As he observed, these correspond

to static and dynamic separation of duties respectively. Kuhn also distinguished

between complete and partial mutual exclusion of roles.

Simon and Zurko [SZ97] enumerated di�erent kinds of separation of duty such as

static separation of duty (or strong exclusion), dynamic separation of duty (or weak

exclusion), and object-based separation of duty. Simon and Zurko's enumeration of

kinds of conict of interest also includes four more kinds which all have to do with

complex tasks involving several interrelated steps, say in a workow management

system. They tried to enumerate all the variations of SOD that have been called out

in one source or another but their description of SOD was informal.

Gligor et al. [GGF98] enumerated several forms of SOD properties using �rst order

predicate logic which causes diÆculties to understand the properties. They missed

the important SOD properties in RBAC such as session-based SOD and SOD in role

hierarchies. To constrain sessions, we should consider each session of a set of sessions

as well as a set of sessions. Also, SOD should be applied with the role hierarchies.

Nyanchama and Osborn [NO99] discussed a taxonomy of conict of interest types

such as user-user conicts and privilege-privilege conicts. They also discussed such

conicts in great detail with respect to their role graph model.

2.3 Summary

We briey reviewed the related work which is mostly related to role-based constraints

and separation of duty constraints. These early works in constraints and separation

of duty focused on mechanisms that were easy to understand and are often rigid and

14

unrealistic. In this dissertation, we describe a framework for specifying constraints in

RBAC which has not been practiced in the literature. To specify these constraints,

we need an appropriate language as well as some system functions. We propose a

simple and intuitive language to specify constraints in an intuitive and realistic way in

role-based systems. The formal semantics for this language is based on its translation

to �rst order predicate logic.

Chapter 3

RCL 2000 LANGUAGE

In this chapter we de�ne a new formal language called RCL 2000 (for Role-based

Constraint Language, pronounced R�ickle 2000), actually is language for specifying

role-based constraints. To develop this language, we need a model for role-based

systems. A general RBAC model, commonly called RBAC96 [SCFY96, San97] has

become a widely cited reference in this arena. For the most part, RCL 2000 com-

ponents are built upon RBAC96 [Ahn99b, AS99a]. RBAC96 model was required

in section 1.1. Here we use a slightly augmented form of RBAC96 illustrated in �g-

ure 3.1. We decompose permission into operations and object to enable formulation of

certain forms of SOD. Also in �gure 3.1 we drop the administrative roles of RBAC96

since they are not germane to RCL 2000.

Our work also builds upon SOD properties analyzed in [SZ97] and formalized in [GGF98].

Even though these papers lay out signi�cant ground work they has several shortcom-

ings. As we address these shortcomings, we also introduce the motivation for our

work. In particular these previous papers do not have the notion of role hierarchies.

Also, they miss the concept of session-based SOD which deals with SOD property in

a single session. This form of dynamic SOD is required for simulating Lattice-based

access control and Chinese Walls in RBAC [San93, San96]. Conicting users and

privileges are also not dealt with. From these observations, we are led to identify

other signi�cant SOD properties which have not been previously identi�ed in the

15

16

literature.

The rest of this chapter is organized as follows. In section 3.1 we introduce the basic

elements on which RCL 2000 is based and introduce notation and de�nitions that

will be used throughout this dissertation, including non-deterministic functions which

are newly proposed functions in this work. These non-deterministic functions are the

core concepts of this work. They eliminate use of explicit quanti�ers resulting in an

intuitive language. give informal and intuitive de�nition of RCL 2000. Section 3.2

describes the formal syntax and semantics of RCL 2000. For the syntax we use usual

Backus Normal Form. For semantics of RCL 2000 we identify a restricted form of

�rst order predicate logic which is exactly equivalent to RCL 2000. In section 3.3

we introduce the package method between RCL 2000 expression which allows us to

compose and reuse constraints.

3.1 Basic Elements and System Functions

In this section we introduce the basic elements on which RCL 2000 is based and

introduce notation and de�nitions that will be used throughout this dissertation.

Also, we introduce the basic constructs of our speci�cation language RCL 2000. We

will show in subsequent chapters how these constructs can be used to specify various

separation of duty properties.

3.1.1 Basic Elements and System Functions: from RBAC96

The basic elements on which RCL 2000 is based and system functions that will be

used in the rest of this dissertation are de�ned in �gure 3.2. Figure 3.1 shows the

RBAC96 model which is the context for these de�nitions.

RCL 2000 has six entity sets called users (U), roles (R), objects (OBJ), operations (OP),

permissions (P), and sessions (S). These are interpreted as in RBAC96. A user is a

17

U

USERS

USER

ASSIGNMENT

UA

ROLES

R

user roles

SESSIONS

S

.

.

.

PERMISSION

ASSIGNMENT

PA

PERMISS-

IONS

P

OPERA-

TIONS

OP OBJ

OBJECTS

HIERARCHY

ROLE
RH

Figure 3.1: Basic Elements and System Functions : from RBAC96 Model

human being. A role is a named job function within the organization that describes

the authority and responsibility conferred on a member of the role. Objects are

passive entities that contain or receive information. An operation is an executable

image of a program, which upon execution causes information ow between objects.

A permission is an approval of a particular mode of operation to one or more objects

in the system.

A session is a mapping between a user and an activated subset of the set of roles the

user is assigned to. The function user gives us the user associated with a session and

roles gives us the roles activated in a session. Both functions do not change during

the life of a session.1

Hierarchies are a natural means for structuring roles to reect an organization's lines

of authority and responsibility (see Figure 3.3). By convention, senior roles are shown

toward the top of this diagram and junior roles toward the bottom. Mathematically,

1This is a slight simpli�cation from RBAC96 which does allow roles in a session to change. We
adopt this simpli�cation since our objective is the constraints speci�cation instead of constraints
enforcement which may need to maintain all activities in sessions.

18

� U = a set of users, fu1; :::; ung; R= a set of roles, fr1; :::; rmg;

� OP = a set of operations, fop1; :::; opog; OBJ = a set of objects, fobj1; :::; objrg;

� P = OP � OBJ, a set of permissions, fp1; :::; pqg; and

� S = a set of sessions, fs1; :::; srg.

{ user : S ! U, a function mapping each session si to the single user.

{ roles : S ! 2R, a function mapping the set S to a set of roles R.
roles(si) � fr 2 R j (sessions (si); r) 2 UAg

� RH � R � R is a partial order on R called the role hierarchy or role dominance relation,
written as �.

� UA � U � R, a many-to-many user-to-role assignment relation.

� PA � P � R = OP � OBJ � R, a many-to-many permission-to-role assignment relation.

� user : R ! 2U, a function mapping each role ri to a set of users.
user(ri) = fu 2 U j (u; ri) 2 UAg

� roles : U [P [S ! 2R, a function mapping the set U and P to a set of roles R.
roles� : U [P [S ! 2R, extends roles in presence of role hierarchy
roles(ui) =fr 2 R j (ui ; r) 2 UAg roles�(ui) =fr 2 R j (9 r

0

� r)[(ui ; r
0

) 2 UA]g
roles(pi) = fr 2 R j (pi ; r) 2 PAg roles�(pi) = fr 2 R j (9 r

0

� r)[(pi ; r
0

) 2 PA]g
roles(si) = de�ned above roles�(si) = fr 2 R j (9 r

0

� r)[r
0

2 roles(si)]g

� sessions : U ! 2S, a function mapping each user ui to a set of sessions.

� permissions : R ! 2P, a function mapping each role ri to a set of permissions.
permissions� : R ! 2P, extends permissions in presence of role hierarchy
permissions(ri) = fp 2 P j (p; ri) 2 PAg
permissions�(ri) = fp 2 P j (9 r � ri)[(p; ri) 2 PA]g

� operations : R � OBJ ! 2OP, a function mapping each role ri and object obji to a
set of operations.
operations(ri ; obji) = fop 2 OP j (op; obji ; ri) 2 PAg

� object : P ! 2OBJ, a function mapping each permission pi to a set of objects.

Figure 3.2: Basic Elements and System Functions : from the RBAC96 Model

19

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Figure 3.3: Example of role hierarchies

these hierarchies are partial orders. A partial order is a reexive, transitive, and

antisymmetric relation, so that if y � x then role x inherits the permissions of role

y , but not vice versa. In �gure 3.3, the junior-most role is that of employee. The

engineering department role is senior to employee and thereby inherits all permissions

from employee. The engineering department role can have permissions besides those it

inherited. Permission inheritance is transitive, for example, the engineer1 role inherits

permissions from both the engineering department and employee roles. Engineer1 and

engineer2 both inherit permissions from the engineering department role, but each

will have di�erent permissions directly assigned to it.

The user assignment relation UA is a many-to-many relation between users and roles.

Similarly the permission-assignment relation PA is a many-to-many relation between

permissions and roles. Users are authorized to use the permissions of roles to which

they are assigned. This is the essence of RBAC.

The remaining functions de�ned in �gure 3.2 are built from the sets, relations and

functions discussed above. In particular, note that the roles function can have

di�erent types of arguments so we are overloading this symbol. Also the de�nition

20

� CR= a collection of conicting role sets, fcr1; :::; crsg, where cri = fri ; :::; rtg � R

� CP = all conicting permission sets, fcp1; :::; cpug, where cpi = fpi ; :::; pvg � P

� CU = all conicting user sets, fcu1; :::; cuwg, where cui = fui ; :::; uxg � U

� oneelement(X) = xi , where xi 2 X

� allother(X) = X - fOE(X)g

Figure 3.4: Basic Elements and Non-deterministic Functions: beyond RBAC96 Model

of roles� is carefully formulated to reect the role inheritance with respect to users

and sessions going downward and with respect to permissions going upward. In other

words a permission in a junior role is available to senior roles, and activation of a senior

role makes available permissions of junior roles. This is a well-accepted concept in the

RBAC literature and is a feature of RBAC96. Using a single symbol roles� simpli�es

our notation so long as we keep this duality of inheritance in mind.

In RCL 2000, for simplicity, we assume that the role hierarchy, user-assignment, and

permission-assignment relations do not change. We consider one snapshot in a system

at a time and SOD properties are applied only to that snapshot.2

3.1.2 Basic Elements and Non-deterministic Functions: beyond RBAC96

Additional elements and system functions used in RCL 2000 are de�ned in �gure 3.4.

For mutually disjoint organizational roles such as those of purchasing manager and

accounts payable manager, the same individual is generally not permitted to belong

to both roles. We de�ned these mutually disjoint roles as conicting roles. We assume

2In order to handle such changes we can consider several alternatives. For example, we can
simply apply such changes to all the current sessions which are active under certain constraints and
deactivate the sessions which violate the constraints. Or, we just apply such changes to new sessions
which are activated after the changes. We can apply either alternative based on the organization's
policy.

21

that there is a collection CR of sets of roles which have been de�ned to conict.

The concept of conicting permissions de�nes conict in terms of permissions rather

than roles. Thus, the permission to issue purchase orders and the permission to issue

payments are conicting, irrespective of the roles to which they are assigned. We

denote sets of conicting permissions as CP. As we will see, de�ning conict in terms

of permissions o�ers greater assurance than de�ning it in terms of roles. Conict

de�ned in terms of roles allows conicting permissions to be assigned to the same

role by error (or malice). Conict de�ned in terms of permissions eliminates this

possibility.

In the real world, conicting users should be also considered. For example, for the

process of preparing and approving purchase orders, it might be company policy that

members of the same family cannot prepare the purchase order and also be a user who

approves that order. This kind of SOD property is not discussed in [GGF98, SZ97].

The concept is considered in [NO99], but in a general way without identi�cation of

speci�c properties in this class. We denote sets of conicting users as CU.

These sets, such as CR, CP, and CU, are based on SOD properties. In order to specify

other constraints, we also may need the additional sets which can be derived from the

basic sets described in �gure 3.2. We call this type of set administrative set (AS). Our

language RCL 2000 also allows us to use this administrative set. From this moment,

we just assume that if the new set other than basic set is introduced and the elements

of such set should also be elements of one of basic sets, the new set is AS. We do not

explicitly mention as such whenever the new set is introduced.

RCL 2000 has two non-deterministic functions, oneelement and allother (�rst in-

troduced by Chen and Sandhu [CS95]). These are introduced to replace explicit

quanti�ers. The elimination of explicit quanti�ers from our language keeps it simple

and intuitive. The oneelement(X) function allows us to get one element xi from set

22

X. We usually write oneelement as OE. Multiple occurrences of OE(X) in a single RCL

2000 statement all select the same element xi from X. With allother(X) we can get

a set by taking out one element. We usually write allother as AO.

These two non-deterministic functions are related by context, because for any set S ,

fOE(S)g [AO(S) = S , and at the same time, neither is a deterministic function. In

order to illustrate how to use these two functions to specify SOD properties, we take

the requirement of static separation of duty property which is the simplest variation

of SOD. For the moment assume there is no role hierarchy.

Requirement: No user can be assigned to two conicting roles. In other

words, conicting roles cannot have common users. We can express this

requirement as below.

Expression: j roles(OE(U)) \ OE(CR) j � 1

OE(CR) means a conicting role set and the function roles(OE(U)) returns all roles

which are assigned to a single user OE(U). AO(OE(CR)) means conicting roles, ex-

cluding one role which is from OE(OE(CR)). Therefore this statement ensures that

a single user cannot have more than one conicting role from the speci�c role set

OE(CR). We can interpret the above expression as saying that if a user has been

assigned to one conicting role, that user cannot be assigned to any other con-

icting role. We can also specify this property in many di�erent ways using RCL

2000, such as OE(OE(CR)) 2 roles(OE(U)) =) AO(OE(CR)) \ roles(OE(U)) = � or

user(OE(OE(CR))) \ user(AO(OE(CR))) = �

RCL 2000 system functions do not include a time or state variable in their structure.

So we assume that each function considers the current time or state. For example, if

we use sessions function in the expression, this function maps a user ui to a set of

current sessions which are established by user ui .

23

As a general notational device we have the following convention.

� For any set valued function f de�ned on set X,

We understand f (X) = f (x1) [f (x2) [::: [f (xn), where X=fx1; x2; x3; :::; xng.

For example, we want to get all users who are assigned to a set of roles

R = femployee; engineer1; engineer2g. We can express it using the function user

such as user(R). And user(R) is equivalent to user(employee) [user(engineer1) [

user(engineer2).

In this section we have described the basic components of speci�cation language RCL

2000. This language is built on RBAC96 components and has two non-deterministic

functions OE and AO. Most of the basic elements are described in set theory [End77,

Kec95, Vau95, Gol96]. The following section discusses the syntax which RCL 2000

should follow to specify role-based authorization constraints.

3.2 Formal Syntax and Semantics of RCL 2000

We now provide the formal syntax and semantic of RCL 2000. For the syntax we

use usual Backus Normal Form (BNF). For semantics of RCL 2000 we identify a

restricted form of �rst order predicate logic which is exactly equivalent to RCL 2000.

3.2.1 The Syntax

The syntax of RCL 2000 is de�ned by the syntax diagram and grammar given in

�gure 3.5. The rules take the form of ow diagrams. The possible paths represent

the possible sequence of symbols. Starting at the beginning of a diagram, a path

is followed either by transferring to another diagram if a rectangle is reached or by

reading a basic symbol contained in a circle. Backus Normal Form (BNF) is also

used to describe the grammar of RCL 2000 as shown in the bottom of �gure 3.5. The

24

symbols of this form are: ::= meaning \is de�ned as" and j meaning \or." Figure 3.5

shows that RCL 2000 statements consist of the expression followed by implication

(=)) and another expression, or expression itself. Also RCL 2000 statements can

be recursively used with logical AND operator (^). Each expression consists of the

token followed by a comparison operator and token, size, set, or set with cardinality.

Also token itself can be expression. Each token can be just a term or a term with

cardinality. Each term consists of functions and sets including set operators. Those

sets and system functions described in section 3.1 are allowed in this syntax. Also,

we denote oneelement and allother as OE and AO respectively. We assume that the

type of arguments of functions should follow the function descriptions presented in

section 3.

3.2.2 Formal Semantics

Next, we discuss the formal semantics for RCL 2000. Any property written in RCL

2000, called RCL 2000 expression, can be translated to an equivalent expression which

is written in a restricted form of �rst order predicate logic which we call RFOPL. The

syntax of RFOPL is described at the end of this section. The translation algorithm

we developed, namely Reduction, converts a RCL 2000 expression to an equivalent

RFOPL expression. This algorithm is outlined in �gure 3.6. Reduction algorithm

eliminates AO function(s) from RCL 2000 expression in the �rst step. Then we trans-

late OE terms iteratively into an element introducing universal quanti�ers from left

to right. If we have nested OE functions in RCL 2000 expression, translation will be

started from innermost OE terms. The analysis of the running time depends on the

number of OE terms. Therefore, this algorithm can translate RCL 2000 expression to

RFOPL expression in time O(n), supposing that the number of OE term is n.

For example, the following expression can be converted to RFOPL expression accord-

25

token

expression

statement

token

token

size

set

|

expression

statement

expression

>

< > =< >= ==

| set

function (set

op

)

term

term|

term

(OE

(AO

|

op ::=2j \ j [

size ::= � j 1 j ::: j N

set ::= U j R j OP j OBJ j P j S j AS

function ::= user j roles j roles� j sessions j permissions j permissions� j

operations j object j OE j AO

Figure 3.5: Syntax of Language

26

Reduction Algorithm
Input: RCL 2000 expression ; Output: RFOPL expression

Let Simple-OE term be either OE(set), or OE(function(element)). Where
set is an element of fU, R, OP, OBJ, P, S, CR, CU, CP, T, HU, HS, cr, cu, cpg. function
is an element of fuser, roles, roles�, sessions, permissions, permissions�,
operations, objectg

1. AO elimination
replace all occurrences of AO(expr) with (expr - fOE(expr)g);

2. OE elimination
While There exists Simple-OE term in RCL 2000 expression

choose Simple-OE term;
call reduction procedure;

End

Procedure reduction

case (i) Simple-OE term is OE(set)
create new variable x ;
put 8 x 2 set to right of existing quanti�er(s);
replace all occurrences of OE(set) by x ;

case (ii) Simple-OE term is OE(function(element))
create new variable x ;
put 8 x 2 function(element) to right of existing quanti�er(s);
replace all occurrences of OE(function(element)) by x ;

End

Figure 3.6: Reduction

27

Construction Algorithm
Input: RFOPL expression ; Output: RCL 2000 expression

1. Construction RCL 2000 expression from RFOPL expression
While There exists a quanti�er in RFOPL expression

choose the rightmost quanti�er 8 x 2 X;
pick values x and X from the chosen quanti�er;
replace all occurrences of x by OE(X);

End

3. Replacement of AO
if there is (expr - fOE(expr)g) in RFOPL expression
replace it with AO(expr);

Figure 3.7: Construction

ing to the sequences below.

Example 1

OE(OE(CR)) 2 roles(OE(U)) =) AO(OE(CR)) \ roles(OE(U)) = �

1. OE(OE(CR)) 2 roles(OE(U)) =) (OE(CR)� fOE(OE(CR))g) \ roles(OE(U)) = �

2. 8 cr 2 CR: OE(cr) 2 roles(OE(U)) =) (cr � fOE(cr)g) \ roles(OE(U)) = �

3. 8 cr 2 CR, 8 r 2 cr : r 2 roles(OE(U)) =) (cr � frg) \ roles(OE(U)) = �

4. 8 cr 2 CR, 8 r 2 cr , 8 u 2 U: r 2 roles(u) =) (cr � frg) \ roles(u) = �

Example 2

OE(OE(CR)) 2 roles(OE(sessions(OE(U))))=) AO(OE(CR))\roles(OE(sessions(OE(U))))=�

1. OE(OE(CR)) 2 roles(OE(sessions(OE(U)))) =) (OE(CR)� fOE(OE(CR))g)

\ roles(OE(sessions(OE(U))))=�

28

2. 8 cr 2 CR: OE(cr) 2 roles(OE(sessions(OE(U)))) =) (cr � fOE(cr)g)

\ roles(OE(sessions(OE(U))))=�

3. 8 cr 2 CR, 8 r 2 cr : r 2 roles(OE(sessions(OE(U)))) =) (cr � frg) \

roles(OE(sessions(OE(U)))) = �

4. 8 cr 2 CR, 8 r 2 cr , 8 u 2 U: r 2 roles(OE(sessions(u)) =) (cr � frg) \

roles(OE(sessions(u)) = �

5. 8 cr 2 CR, 8 r 2 cr , 8 u 2 U, 8 s 2 sessions(u), r 2 roles(s) =) (cr � frg)\

roles(s) = �

Example 3

j roles(OE(U)) \ OE(CR) j � 1

1. 8 u 2 U, j roles(u) \ OE(CR) j � 1

2. 8 u 2 U, 8 cr 2 CR, j roles(u) \ cr j � 1

The resulting RFOPL expression will have the following general structure.

1. The RFOPL expression has a (possibly empty) sequence of universal quanti�ers

as a left pre�x, and these are the only quanti�ers it can have. We call this

sequence the quanti�er part.

2. The quanti�er part will be followed by a predicate separated by a colon (:), i.e.,

universal quanti�er part : predicate

3. The predicate has no free variables or constant symbols. All variables are de-

clared in the quanti�er part, e.g., 8 r 2 R, 8 u 2 U : r 2 roles(u).

29

op
term

))function element

,

set element) - { })

element

Figure 3.8: Syntax of restricted FOPL expression

4. The order of quanti�ers is determined by the sequence of OE elimination. In

some cases this order is important so as to reect the nesting of OE terms in the

RCL 2000 expression. For example, in 8 cr 2 CR, 8 r 2 cr ,8 u 2 U : predicate;

the set cr , which is used in the second quanti�er, must be declared in a previous

quanti�er as an element, such as cr in the �rst quanti�er.

5. Predicate follows most of rules in the syntax of RCL 2000 except term syntax in

�gure 3.5. Figure 3.8 shows the syntax which predicate should follow to express

term.

The above discussion de�nes the syntax of RFOPL. A complete formal de�nition can

be given from these observation and is omitted for simplicity.

Through reduction algorithm R we may have several RFOPL expressions that are

equivalent to a RCL 2000 expression. We introduce the following lemma, where

R(expr) denotes the RFOPL expression translated by Reduction algorithm.

Lemma 1 If R(�) gives us �1 and �2, �1 6= �2 then �1 � �2.

Proof: Given the RCL 2000 expression �, we reduce the OE term from it, replacing

it with a variable. This variable in �1 and �2 might be di�erent because While-

End loop in reduction algorithm has non-deterministic choice for reduction of OE

30

term. Clearly variable names do not matter for equivalence. And the arrangement

of quanti�ers might also be di�erent but it does not a�ect the structure of RFOPL

expression �1 and �2 because the reduction of OE term is always from the innermost

one �rst. The order of quanti�ers is important for nested OE term otherwise order

does not matter. Therefore, we can get �1 which is logically equivalent to �2. A

formal induction based on these arguments can be developed. 2

3.2.3 Soundness and Completeness

Next, we discuss the algorithm Construction that constructs a RCL 2000 expres-

sion from a RFOPL expression which has the syntax given above. The algorithm is

described in �gure 3.7. Firstly, this algorithm repeatedly chooses the rightmost quan-

ti�er in RFOPL expression and constructs the corresponding OE term by eliminating

the variable of that quanti�er. After all quanti�ers are eliminated the algorithm con-

structs AO terms according to the formal de�nition of AO function. The running time of

the algorithm obviously depends on the number of quanti�ers in RFOPL expression.

For example, the following RFOPL expression can be converted to RCL 2000 expres-

sion according to the sequences described below.

RFOPL expression:

8 cr 2 CR, 8 r 2 cr , 8 u 2 U, 8 s 2 sessions(u) : r 2 roles(s) =)

(cr � frg) \ roles(s) = �

RCL 2000 expression :

1. 8 cr 2 CR, 8 r 2 cr , 8 u 2 U: r 2 roles(OE(sessions(u)) =) (cr � frg)

\ roles(OE(sessions(u))=�

2. 8 cr 2 CR, 8 r 2 cr : r 2 roles(OE(sessions(OE(U)))) =) (cr � frg)

31

\ roles(OE(sessions(OE(U))))=�

3. 8 cr 2 CR: OE(cr) 2 roles(OE(sessions(OE(U)))) =) (cr � fOE(cr)g)

\ roles(OE(sessions(OE(U))))=�

4. OE(OE(CR)) 2 roles(OE(sessions(OE(U)))) =) (OE(CR)� fOE(OE(CR))g)

\ roles(OE(sessions(OE(U))))=�

5. OE(OE(CR)) 2 roles(OE(sessions(OE(U)))) =) AO(OE(CR))

\ roles(OE(sessions(OE(U))))=�

Unlike the reduction algorithm we can observe the following lemma, where C(expr)

denotes the RCL 2000 expression constructed by Construction algorithm.

Lemma 2 C(�) always gives us the same RCL 2000 expression �.

Proof: Construction algorithm always choose the rightmost quanti�ers to construct

RCL 2000 expression from RFOPL expression. This procedure is deterministic.

Therefore, given RFOPL expression �, we will always get the same RCL 2000 ex-

pression �. 2

We introduced two algorithms, namely Reduction and Construction, that can reduce

and construct RCL 2000 expression. In order to show the soundness and complete-

ness, we introduce lemmas and theorems regarding translation between RCL 2000

and RFOPL expressions. The relationship between RCL 2000-RFOPL translations

above is expressed by Soundness and Completeness theorems. We also de�ne the

expression which can be generated during reduction and construction as an interme-

diate expression called IE. This expression will have the mixture form of RCL 2000

and RFOPL expression, that is it will contain quanti�ers as well as OE terms.

32

3.2.3.1 Soundness Theorem

In order to show the soundness of RCL 2000, we introduce the following lemma.

Lemma 3 If the intermediate expression is derived from RCL 2000 expression �

by reduction algorithm in k iterations then construction algorithm applied to will

terminate in exactly k iterations.

Proof: It is obvious that has k quanti�ers because the reduction algorithm gener-

ates exactly one quanti�er for each iteration. Now the construction algorithm elimi-

nates exactly one quanti�er per iteration, and will therefore terminate in k iterations.

2

Based on the lemma above, we introduce the following theorem. We de�ne all the

occurrences of same OE term in the expression as a distinct OE term.

Theorem 1 Given RCL 2000 expression �, � can be translated into RFOPL expres-

sion �. Also � can be reconstructed from �.

C(R(�)) = �

Proof: We will prove the stronger result that Cn(Rn(�)) = � by induction on the

number of iterations in reduction R (or, C). We de�ne Cn as n iterations of reduction

algorithm, and Rn as n iterations of reduction algorithm.

Basis: If the number of iteration n is 0, the theorem follows trivially.

Inductive Hypothesis: We assume that if n=k , this theorem is true.

Inductive Step: Consider the intermediate expression translated by reduction

algorithm in k + 1 iterations. Let
0

be the expression and intermediate expression

translated by reduction algorithm in the k th iteration. di�ers from
0

in having an

additional rightmost quanti�er and one less distinct OE term. Applying the construc-

tion algorithm to , eliminates this rightmost quanti�er and brings back the same

33

OE term in all its occurrences. Thus the construction algorithm applied to gives

us
0

. From this intermediate expression
0

, we can construct � due to the inductive

hypothesis. This completes the inductive proof. 2

3.2.3.2 Completeness Theorem

In order to show the completeness of RCL 2000, we also introduce the following

lemmas.

Lemma 4 If the intermediate expression is derived from RFOPL expression �

by construction algorithm in k iterations then reduction algorithm applied to will

terminate in exactly k iterations.

Proof: It is obvious that has k distinct OE terms because the construction algorithm

generates exactly one distinct OE term for each iteration. Now the reduction algorithm

eliminates exactly one distinct OE term per iteration, and will therefore terminate in

k iterations. 2

Let us say two intermediate expressions 1 and 2 are equivalent if R(1) � R(2).

Lemma 5 Lemma 1 extends to the intermediate expression. if Rk(�) = 1 and

Rk (�) = 2, where R
k is de�ned as k iterations of reduction algorithm, then 1 and

2 are equivalent.

Proof: Follows from Lemma 1 2

Lemma 6 There exists an execution of R such that R(C(�)) = �

Proof: We prove the stronger result that there is an execution of R such that

Rn(C n(�)) = � by induction on the number of iterations in construction C (or,

34

R). We de�ne Cn as n iterations of reduction algorithm, and Rn as n iterations of

reduction algorithm.

Basis: If the number of iteration n is 0, the theorem follows trivially.

Inductive Hypothesis: We assume that if n=k , this theorem is true.

Inductive Step: Consider the intermediate expression constructed by construction

algorithm in k+1 iterations. Let
0

be intermediate expression after the k th iteration.

 di�ers from
0

in having one less distinct OE term and one more distinct OE term.

Applying one iteration of the reduction algorithm to , eliminates this particular OE

term and introduce the same variable in the new rightmost quanti�er. This gives us

0

. By inductive hypothesis from
0

there is an execution of Rk that will give us �.

2

Now, we introduce the theorem which shows the completeness of RCL 2000, relative

to RFOPL.

Theorem 2 Given RFOPL expression �, � can be translated into RCL 2000 expres-

sion �. Also �
0

which is logically equivalent to � can be reconstructed from �.

R(C(�)) = �
0

Proof: Lemma 2 states that C(�) gives us a unique result. Let us call it �. Lemma

6 states there is an execution of R that will go back exactly to � from �. Lemma

1 states that all executions of for � will give an equivalent RFOPL expression. The

theorem follows. 2

Theorem 1 establishes soundness of RCL 2000 and theorem 2 establishes its com-

pleteness relative to RFOPL.

35

3.3 Packaging Method

Using RCL 2000 we can specify constraints in role-based systems. We may need to

combine the identi�ed constraints together while we can identify the wide variety of

constraints. This kind of composition between constraints is helpful to implement a

stronger property.

For example, we have two constraints such as Constraint1 and Constraint2. Con-

straint1 requires that conicting roles cannot have common users. And Constraint2

requires the following requirement: conicting permission cannot be assigned to com-

mon roles. From Constraint2 constraint we can have a stronger property called Con-

straint3 which requires that conicting permission cannot be assigned to common roles

and conicting roles cannot have common users. This composition of Constraint1 and

Constraint2 allows us to �nd another useful and stronger property.

In this section we introduce the packaging method for constraints composition. We

consider four criteria to provide constraints packaging. Those criteria are as follows:

1. We need to specify the name of property

2. We need to embed other property

3. We need to declare sets which are used in property

4. We need to declare sets which are used in embedded property

From this observation, the packaging construction follows the format as shown below.

Property [property name] is

Set:

Do:

Include: none or property name
End [property name]

36

Each property has three parts : Set which is the set name used in property, Do which

is the constraint statement, and Include which is the name of the property to be

composed. Our usage of packaging method is limited within similar properties.

Let's take the example described above. The requirement of Constraint1 is conicting

roles cannot have common users. In order to express this constraint, we need con-

icting role sets and constraint expression as below. CR set is required in constraint

statement and this property does not include any other property in it.

Property Constraint1 is

Set: CR = fcr1; :::; crng, where cri = fri ; :::; rkg � R

Do: j roles(OE(U)) \ OE(CR) j � 1
Include: none

End Constraint1

And Constraint2 requires conicting roles cannot have common users. In order to

express this constraint, we need conicting permission sets and constraint expression

as below. CP set is required in constraint statement.

Property Constraint2 is

Set: CP = fcp1; :::; cpng, where cpi = fpi ; :::; pkg � P

Do: j permissions(OE(R)) \ OE(CP) j � 1
Include: none

End Constraint2

As we mentioned earlier, Constraint3 needs Constraint1 and Constraint2 property.

Constraint3 requires the following requirement: conicting permission cannot be as-

signed to common roles and conicting roles cannot have common users. Therefore,

Constraint3 property means j roles(OE(U))\ OE(CR) j � 1 ^ j permissions(OE(R))\

OE(CP) j � 1. We can express this using the packaging method. Constraint3 can

derived from Constraint2, adding Constriant1. The following statement is the same

expression as Constraint2 except for Include: part.

37

Property Constraint3 is

Set: CP = fcp1; :::; cpng, where cpi = fpi ; :::; pkg � P

Do: j permissions(OE(R)) \ OE(CP) j � 1
Include: Constraint1

End Constraint3

Constraint3 property requires two sets CP and CR. We came up with one reason

such as that Constraint3 property includes Constraint1 property but Constraint3

might need a di�erent set(s) from sets which are used in Constraint1 property. For

example, Constraint3 property requires CP and CR sets. This CR set is inherited from

Constraint1 property. For organization policy, Constraint3 property might need to

modify this CR set. In order to support this, we introduce instantiation method. This

method allows us to modify the embedded set such as CR set in Constraint3 property.

The following shows the structure of instantiation method.

Instantiation [Property Name] is

Set : set name = [property name.set name [[j\j-]] f...g
End [Property Name]

From this structure, Constraint3 can modify CR set with one of three major ways, as

below.

� Set : CR = Constraint1.CR

This statement means that Constraint3 just uses Constraint1's CR set within

Constraint1 property.

� Set : CR = fr�; r�g

This statement implies that Constraint3 requires di�erent CR set from Con-

straint1 property.

38

� Set : CR = SSOD.CR [fr�; r�g

This instantiation statement adds two more roles in Constraint1's CR set which

is used in Constraint3 property. The following shows an example to express this

instantiation.

Instantiation Constraint3 is

Set : CR = Constraint1.CR [fr�; r�g
End SSOD

Using this packaging method, constraint speci�ers can embed one constraint in other

constraints providing exibility of sets to be selected.

3.4 Summary

We have described the speci�cation language RCL 2000. This language is built on

RBAC96 components and has two non-deterministic functions OE and AO. Most of

the basic elements are described in set theory.

In this chapter we have given a formal syntax and semantics for RCL 2000 and have

demonstrated its soundness and completeness. Any property written in RCL 2000

could be translated to an expression which is written in a restricted form of �rst or-

der predicate logic, which we call RFOPL. During the analysis of this translation, we

proved two theorems which support the soundness and completeness of the speci�ca-

tion language RCL 2000 and RFOPL respectively. In the �nal section we described

the packaging method between RCL 2000 expression which allows us to compose and

reuse constraints.

Chapter 4

SPECIFICATION OF SOD CONSTRAINTS

Separation of duty (SOD) reduces the possibility of fraud or signi�cant errors which

can cause damage to an organization by partitioning of tasks and associated privileges

required to complete a task or set of related tasks. Role-based separation of duty

enforces SOD requirements in role-based environment by controlling membership in

and use of roles as well as permission assignment.

As we mentioned earlier, we assume that the role hierarchy, user-assignment, and

permission-assignment relation do not change in RCL 2000 for simplicity. We consider

one snapshot in a system at a time and SOD properties are applied only to that

snapshot.

In this chapter, we show how RCL 2000 can be used to specify various role-based sep-

aration of duty properties. Our work builds upon SOD properties analyzed in [SZ97]

and formalized in [GGF98]. However, these papers do not have the notion of role

hierarchies. They miss the concept of session-based SOD which deals with SOD

property in a single session. This form of dynamic SOD is useful for simulating

Lattice-based access control and Chinese Walls in RBAC [San93, San96]. Conicting

users and privileges are also not dealt with. From these observations, we are led to

identify other signi�cant SOD properties which have not been previously identi�ed

in the literature. Many of the SOD properties discussed in this chapter are recog-

nized in [GGF98]. Properties not recognized in [GGF98] are explicitly identi�ed as

39

40

such. Our speci�cation language can be used to express SOD properties in di�erent

ways. We usually show only one speci�cation in each case. We also show a few SOD

properties with conicting users and privileges.

4.1 SOD Properties (RBAC2)

In this section we �rst look at the properties recognized in [GGF98] and specify these

properties in RCL 2000. In order to show that RCL 2000 can specify [GGF98]'s

properties, we begin specifying properties without the notion of role hierarchies so

we are in RBAC1 of RBAC96 family. We discuss SOD properties with the notion of

conicting roles and we call these properties role-centric SOD. We also discuss SOD

properties with the notion of conicting users and conicting permission and we call

these properties user-centric and permission-centric SOD, respectively.

4.1.1 Role-centric SOD

In this section we specify a variety of SOD properties based on the notion of conicting

roles.

Static SOD

1. Simple Static SOD

Static SOD is the simplest variation of SOD. This simple static SOD property

requires that no user should be assigned to two conicting roles. In other words,

conicting roles cannot have common users. This requirement is expressed as

follows:

j roles(OE(U)) \ OE(CR) j � 1

Alternatively, this property can be stated as

UR(OE(OE(CR))) \ UR(AO(OE(CR))) = �

41

We can specify this property in many di�erent ways using our language. For

simplicity, we use the simple expressions in this dissertation.

OE(CR) means a conicting role set cri which is an element of a collection of

conicting role sets CR. roles(OE(U)) returns all roles which are assigned to

a single user OE(U). We can interpret this expression as follows: if a user has

been assigned to one conicting role, that user cannot be assigned to any other

conicting role.

2. Strict Static SOD

Strict static SOD requires that conicting roles are not authorized to perform

operations on the same object in addition to property 1. This property is a

stronger version of property 1 by adding the requirement that the target object

sets of two conicting roles be disjoint. This requirement is expressed as follows:

(1) ^

operations(OE(OE(CR)); OE(OBJ)) \ operations(AO(OE(CR)); OE(OBJ)) = �

operations(OE(OE(CR)); OE(OBJ)) returns all operations which one conicting

role OE(OE(CR)) can perform on an object OE(OBJ). operations(AO(OE(CR)); OE(OBJ))

means all operations which other conicting roles AO(OE(CR)) can perform on an

object OE(OBJ). That is, this statement says that at most one conicting role

can perform operations on an object.

3. 1-step Strict Static SOD

1-step strict static SOD make strict SOD property stronger by adding the re-

quirement that each conicting role execute only one operation on an object. In

42

other words, this property requires that conicting roles are authorized to per-

form, at most, one operation in addition to property 1 and 2. This requirement

is expressed as follows:

(1) ^ (2) ^j operations(OE(OE(CR)); OE(OBJ)) j � 1

In this statement, j operations(OE(OE(CR)); OE(OBJ)) jmeans the number of op-

erations which one conicting role OE(OE(CR)) can perform on an object OE(OBJ).

This number should be less than 1 to satisfy the requirement of this property.

Dynamic SOD

Clark and Wilson [CW87], and then others [GGF98], de�ned several dynamic sepa-

ration of duty properties. With RCL 2000 we can specify these properties given as

below.

4. Simple Dynamic SOD

The simple dynamic SOD requires that there are no users with two conicting

roles enabled. In other words, conicting roles may have common users but users

cannot activate roles which are conicting with each other. This requirement is

expressed as follows:

j roles(sessions(OE(U))) \ OE(CR) j � 1

OE(CR) means a conicting role set cri which is an element of a collection of

conicting role sets CR. roles(sessions(OE(U))) returns all roles which are

activated in sessions invoked by a single user OE(U). We can interpret this

expression as follows : if a user activates one conicting role, that user cannot

activate any other conicting role.

43

5. Session-based Dynamic SOD (not in [GGF98])

Session-based dynamic SOD requires that there are no users with two conicting

roles enabled in a session. This newly identi�ed property ensures that no single

session has two conictings roles activated. This requirement is expressed as

follows:

j roles(OE(sessions(OE(U)))) \ OE(CR) j � 1

roles(OE(sessions(OE(U)))) returns all roles which are activated in a single

session invoked by a single user OE(U). As we will use in chapter 5, this property

is required to simulate Lattice-based access control and Chinese Walls in RBAC.

Object-based SOD

Nash and Poland [NP90] introduced object-based SOD as a more exible and realistic

alternative to the static SOD. Gligor et al [GGF98] try to remove ambiguities in the

Nash and Poland paper by formalizing their intuitive de�nitions. The following two

properties are static variants of object-based SOD.

6. Object-based Static SOD

This property requires that no collection of conicting roles with a common user

is authorized to perform more than one operation on each object. This variant

of static SOD is based on a set of roles with common users. This requirement

is expressed as follows:

j operations(OE(OE(CR)) \ roles(OE(U)); OE(OBJ)) j � 1

operations(OE(OE(CR))\roles(OE(U)); OE(OBJ)) means that all operations can

be performed by users on a single object with a conicting role.

44

7. Per-Role Object-based Static SOD

This property requires that no conicting roles are authorized to perform more

than one operation on an object. Unlike the above property, this property

is based on a single roles instead of a set of roles with common users. This

requirement is expressed as follows:

j operations(OE(OE(CR)); OE(OBJ)) j � 1

Operational SOD

Another variation of SOD is the operational SOD.

8. Operational Static SOD

Operational static SOD requires that any collection of conicting roles with a

common user cannot perform all operations. This requirement is expressed as

follows:

j operations(OE(OE(CR)) \ roles(OE(U)); OBJ) j < j OP j

operations(OE(OE(CR)) \ roles(OE(U)); OBJ) means that all operations can be

performed by users on a single object with a conicting role.

9. Per-Role Operational Static SOD

This property requires that no role can perform all operations. This variant of

operational SOD is obtained by applying operational SOD to single roles. This

requirement is expressed as follows:

j operations(OE(OE(CR)); OBJ) j < j OP j

45

4.1.2 User-centric SOD

In this section we specify SOD properties with the notion of conicting users. These

properties have not been formally discussed in the literature.

10. Static SOD (not in [GGF98])

Static SOD requires that conicting users cannot have a common role. This

requirement is expressed as follows:

roles(OE(OE(CU))) \ roles(AO(OE(CU))) = �

roles(OE(OE(CU))) means all roles which are assigned to a conicting user while

roles(AO(OE(CU))) means all roles which are assigned to other conicting users

in the same conicting user set cui .

11. Dynamic SOD (not in [GGF98])

Dynamic SOD requires that there are no roles enabled with two conicting users

in sessions. This requirement is expressed as follows:

roles(sessions(OE(OE(CU)))) \ roles(sessions(AO(OE(CU)))) = �

roles(sessions(OE(OE(CU)))) means that all roles which a conicting user ac-

tivates in sessions. roles(sessions(AO(OE(CU)))) means all roles which are

activated by other conicting users in the same conicting users set cui .

4.1.3 Permission-centric SOD

In this section we specify SOD properties with the notion of conicting privileges

(permissions). These properties also have not been discussed in the literature.

46

12. Static SOD (not in [GGF98])

This static SOD requires that no role may contain two privileges which have

been de�ned to conicts. In other words, conicting privilege cannot be assigned

to a common role. This requirement is expressed as follows:

roles(OE(OE(CP))) \ roles(AO(OE(CP))) = �

roles(OE(OE(CP))) means all roles which have a conicting privilege, and roles(AO(OE(CP)))

stands for all roles which have other conicting privileges in the same conicting

privileges set cpi .

13. Dynamic SOD (not in [GGF98])

Dynamic SOD requires that no roles with conicting privileges cannot activate

in sessions. This requirement is expressed as follows:

j permissions(roles(sessions(OE(U)))) \ OE(OE(CP)) j � 1

This statement ensures that a role cannot perform more than one conicting

privilege from conicting privileges.

4.2 SOD Properties (RBAC3)

Several recent papers [San98, GB98, Mof98] discuss role hierarchies in terms of sepa-

ration of duty. In this section we specify properties discussed in 4.1 with the notion of

role hierarchies. This section is organized as follows: Section 4.2.1 revisits the notion

of role hierarchies and functions described in chapter 3.

We can specify all properties identi�ed in section 4.1 with those functions. In sec-

tion 4.2.2 we show a few examples since we replace roles by roles� in the most of

the case, in order to apply the notion of role hierarchies.

47

4.2.1 Additional Components

Hierarchies are a natural means for structuring roles to reect an organization's lines

of authority and responsibility. Mathematically, these hierarchies are partial orders.

A partial order is a reexive, transitive, and antisymmetric relation. The formal

de�nition of role hierarchies follows.

� RH � R � R is a partial order on R called the role hierarchy or role dominance

relation, written as �.

In addition to this component above, we also need the additional function. RCL

2000 components roles and permissions was de�ned in section 4.1 and are as

below.1

� roles�(ui) =fr 2 R j (9 r � r
0

)[(ui ; r
0

) 2 UA]g ; get all roles assigned to this

user in UA and roles junior to these.

� roles�(pi) = fr 2 R j (9 r
0

� r)[(pi ; r
0

) 2 PA]g ; get all roles assigned to this

permission in PA and roles junior to these.

� roles�(si) = fr 2 R j (9 r � r
0

)[r
0

2 roles(si)]g ; get all roles holding this

sessions and roles junior to these.

� permissions�(ri) = fp 2 P j (9 r � ri)[(p; ri) 2 PA]g ; get all permissions

assigned to this role and roles junior to this role.

With theses components, we can specify SOD properties with the notion of role

hierarchies. The main changes to our speci�cation from 4.1 is the usage of these

new components. For simplicity, we just explain the requirements and describe our

expression. These properties have not been discussed in the literature.

1In RBAC3, a function roles will get a set of roles which is explicitly assigned to a user.

48

4.2.2 Role-centric SOD

In this section we specify SOD properties with the notion of conicting roles.

Static SOD

1. Simple Static SOD

Requirement: conicting roles cannot have common users This requirement is

expressed as follows:

j roles�(OE(U)) \ OE(CR) j � 1

Dynamic SOD

2. Session-based Dynamic SOD

Requirement: there are no users with two conicting roles enabled in a session.

This requirement is expressed as follows:

j roles�(OE(sessions(OE(U)))) \ OE(CR) j � 1

Object-based SOD

3. Object-based Static SOD Requirement: no collection of conicting roles with

a common user can perform more than one operation on each object. This

requirement is expressed as follows:

j operations(OE(OE(CR)) \ roles�(OE(U))); OE(OBJ)) j � 1

Operational SOD

49

4. Operational Static SOD

Requirement: any collection of conicting roles with a common user cannot

perform all operations. This requirement is expressed as follows:

j operations(OE(OE(CR)) \ roles�(OE(U)); OBJ) j < j OP j

4.2.3 User-centric SOD

In this section we specify SOD properties with the notion of conicting users.

5. Static SOD

Requirement: conicting users cannot have a common role. This requirement

is expressed as follows:

roles�(OE(OE(CU))) \ roles�(AO(OE(CU))) = �

4.2.4 Permission-centric SOD

In this section we specify SOD properties with the notion of conicting privileges

(permissions).

6. Static SOD

Requirement: no role can contain two privileges which have been de�ned to

conicts. This requirement is expressed as follows:

roles�OE(OE(CP)) \ roles�(AO(OE(CP))) = �

In section 4.1 and 4.2 we have shown how we can specify SOD constraints in a role-

based environment using RCL 2000. In section 4.3 we discuss SOD properties in a

more practical and systematic manner.

50

4.3 Discussion

SOD is a well-known principle for preventing fraud by identifying conicting roles|

such as Purchasing Manager and Accounts Payable Manager|and ensuring that the

same individual can belong to, at most, one conicting role. Static SOD applies

to the user-assignment relation and dynamic SOD applies to the activated roles in

session(s). In section 4.1 and 4.2 we started specifying constraints based on SOD

properties analyzed in [SZ97] and formalized in [GGF98]. Also we identi�ed new

properties such as session-based properties and properties with the notion of role

hierarchies, conicting users, and conicting privileges.

In this section we discuss the properties which are practical formulations with tradeo�

between assurance and exibility in the context of role-based access control. Also we

discuss how RCL 2000 can be used to specify the various separations of duty properties

in a practical way.

4.3.1 Static SOD

Static SOD (SSOD) is the simplest variation of SOD. In table 4.1 we show our ex-

pression of several forms of SSOD. These include new forms of SSOD which have not

previously been identi�ed in the literature. This demonstrates how RCL 2000 helps

us in understanding SOD and discovering new basic forms of it.

Property 1, j roles�(OE(U)) \ OE(CR) j � 1, is the most straightforward property.

The SSOD requirement is that no user should be assigned to two roles which are

conicting with each other. In other words, it means that conicting roles cannot

have common users. RCL 2000 can clearly express this property. This property is the

classic formulation of SSOD, which is identi�ed by several papers including [GGF98,

Kuh97, SCFY96]. It is a role-centric property.

Property 2, j permissions(roles�(OE(U))) \ OE(CP) j � 1, follows the same intuition

51

as property 1, but is permission-centric. Property 2 says that a user can have, at most,

one conicting permission acquired through roles assigned to the user. Property 2 is

a stronger formulation than property 1, which prevents mistakes in role-permission

assignment. This kind of property has not been previously mentioned in the literature.

RCL 2000 helps us discover such omissions in previous work. In retrospect, property

2 is an \obvious property" but there is no mention of this property in over a decade

of SOD literature. Even though property 2 allows more exibility in role-permission

assignment, since the conicting roles are not prede�ned, it can also generate roles

which cannot be used at all. For example, two conicting permissions can be assigned

to a role. Property 2 simply requires that no user can be assigned to such a role or

any role senior to it, which makes that role quite useless. Thus, property 2 prevents

certain kinds of mistakes in role-permissions but tolerates others.

Property 3, j permissions�(OE(R))\OE(CP) j � 1, eliminates the possibility of useless

roles with an extra condition, j permissions�(OE(R)) \ OE(CP) j � 1. This condition

ensures that each role can have, at most, one conicting permission without consid-

eration of user-role assignment.

With this new condition, we can extend property 1 in the presence of conicting

permissions as property 4. In property 4 we have another additional condition, which

is that conicting permissions can only be assigned to conicting roles. In other

words, non-conicting roles cannot have conicting permissions. The net e�ect is

that a user can have one conicting permission via roles assigned to the user.

Property 4, j permissions�(OE(R))\ OE(CP) j � 1 ^ permissions(OE(R)) \ OE(CP) 6=

�=)OE(R) \ OE(CR) 6= �, can be viewed as a reformulation of property 3 in a role-

centric manner. Property 3 does not stipulate a concept of conicting roles. How-

ever, we can interpret conicting roles to be those that happen to have conicting

permissions assigned to them. Thus for every cpi we can de�ne cri = fr 2 R j

52

cpi \ permissions(r) 6= �g. With this interpretation, properties 2 and 4 are es-

sentially identical. The viewpoint of property 3 is that conicting permissions get

assigned to distinct roles which, thereby, become conicting, and therefore cannot

assigned to the same user. Which roles are deemed conicting is not determined a

priori but is a side-e�ect of permission-role assignment. The viewpoint of property 4

is that conicting roles are designated in advance and conicting permissions must be

restricted to conicting roles. These properties have di�erent consequences on how

roles get designed and managed but essentially achieve the same objective with re-

spect to separation of conicting permissions. Both properties achieve this goal with

much higher assurance than property 1. Property 2 achieves this goal with similar

high assurance but allows for the possibility of useless roles. Thus, even in the simple

situation of static SOD, we have a number of alternatives o�ering di�ering degrees of

assurance and exibility.

Property 5, j user(OE(CR))\OE(CU) j � 1, is a very di�erent property and is also new

to the literature. With a notion of conicting users, we identify new forms of SSOD.

Property 5 says that two conicting users cannot be assigned to roles in the same

conicting role set. This property is useful because it is much easier to commit fraud

if two conicting users can have di�erent conicting roles in the same conicting role

set. This property prevents this kind of situation in role-based systems. A collection

of conicting users is less trustworthy than a collection of non-conicting users, and

therefore should not be mixed up in the same conict role set. This property has not

been previously identi�ed in the literature.

We also identify a composite property which includes conicting users, roles and

permissions. Property 6 combines property 4 and 5 so that conicting users cannot

have conicting roles from the same conict set, while assuring that conicting roles

have, at most, one conicting permission from each conicting permission set. This

53

property supports SSOD in user-role and role-permission assignment with respect to

conicting users, roles, and permissions.

4.3.2 Dynamic SOD

In RBAC systems, a dynamic SOD (DSOD) property with respect to the roles acti-

vated by the users requires that no user can activate two conicting roles. In other

words, conicting roles may have common users but users cannot simultaneously ac-

tivate roles which are conicting with each other. From this requirement we can

express user-based Dynamic SOD as property 1.

Property 1, j roles�(sessions(OE(U)))\ OE(CR) j � 1, ensures that each user cannot

simultaneously activate conicting roles in sessions. roles�(sessions(OE(U))) returns

all roles activated by a user in sessions. We can also identify a Session-based Dynamic

SOD property which can apply to the single session as property 3.

Property 3, j roles�(OE(sessions(OE(U)))) \ OE(CR) j � 1, applies property 1 to the

single session. roles�(OE(sessions(OE(U)))) means all roles activated by a user in a

single session. Therefore, this property ensures that each user cannot simultaneously

activate conicting roles in a session.

We can also consider these properties with conicting users, such as property 2 and

4. Property 2, j roles�(sessions(OE(OE(CU))))\ OE(CR) j � 1, requires that conict-

ing users cannot simultaneously activate roles which are conicting with each other.

roles�(sessions(OE(OE(CU)))) means all roles activated by a conicting user in ses-

sions. We can also identify another Session-based Dynamic SOD property which can

apply conicting users to the single session as property 4.

Property 4, j roles�(OE(sessions(OE(OE(CU))))) \ OE(CR) j � 1, ensures that each

conicting user cannot simultaneously activate conicting roles in a session.

54

SSOD Properties Expressions

1. SSOD-CR j roles�(OE(U)) \ OE(CR) j � 1
2. SSOD-CP j permissions(roles�(OE(U))) \ OE(CP) j � 1
3. Variation of 2 (2) ^ j permissions�(OE(R)) \ OE(CP) j � 1
4. Variation of 1 (1) ^ j permissions�(OE(R)) \ OE(CP) j � 1

^ permissions(OE(R)) \ OE(CP) 6= �=)OE(R) \ OE(CR) 6= �

5. SSOD-CU (1) ^ j user(OE(CR)) \ OE(CU) j � 1
6. Yet another variation (4) ^ (5)

DSOD Properties Expressions

1. User-based DSOD j roles�(sessions(OE(U))) \ OE(CR) j � 1
2. Variation of 1 j roles�(sessions(OE(OE(CU)))) \ OE(CR) j � 1
3. Session-based DSOD j roles�(OE(sessions(OE(U)))) \ OE(CR) j � 1
4. Variation of 3 j roles�(OE(sessions(OE(OE(CU))))) \ OE(CR) j � 1

Table 4.1: Static & Dynamic Separation of Duty

In section 4.3.1 and 4.3.2, we have discussed how RCL 2000 can be used to specify the

various separations of duty properties in a practical way. These static and dynamic

properties are summarized in table 4.1.

4.4 Summary

In this chapter we showed how RCL 2000 can be used to specify the various separa-

tion of duty properties. Our speci�cation is primarily based on properties in [GGF98].

We speci�ed those properties with several di�erent perspectives, such as conicting

users, conicting roles, and conicting permissions, while identifying several prop-

erties which are not identi�ed in the literature. Our speci�cation also included the

extension to role hierarchies with roles� and permissions�.

We have shown that RCL 2000 allows us to investigate nuances of static SOD and

dynamic SOD in a way that has not been possible so far. This has led to formulation of

static SOD properties that have not identi�ed in a decade of literature on SOD. During

55

this discussion we found the practical formulation with tradeo� between assurance

and exibility. Our work showed that there are many alternate formulations of even

the simplest SOD properties, with varying degree of exibility and assurance.

Chapter 5

CASE STUDIES

In this chapter we specify constraints identi�ed in simulation of Lattice-based access

control, Chinese Wall policy, and Discretionary access control in RBAC using RCL

2000. Role-based access control is a promising alternative to traditional discretionary

access control (DAC) and mandatory access control (MAC). Sandhu has earlier shown

how to simulate several variations of MAC in RBAC [San96]. Sandhu and Munawer

have recently shown how to simulate a variety of DAC policies in RBAC [SM98].

These results were of theoretical interests because it relates RBAC to the most domi-

nant form of access control. In this chapter we show how to express these simulations

with RCL 2000, particularly based on Sandhu's LBAC-RBAC simulation [San96] and

DAC simulation [SM98]. Sandhu has also shown that the Chinese Wall policy is just

another Lattice-based information policy which is also known as mandatory access

control [San92]. In this chapter we also discuss the simulation of the Chinese Wall

policy in RBAC.

The rest of this chapter is organized as follows. Section 5.1 overviews the LBAC-

RBAC simulation of [San96]. We also specify some of these simulations with RCL

2000. In section 5.2 we discuss the simulation of the Chinese Wall policy in doing more

direct construction than [San92]. Section 5.3 we overview the DAC-RBAC simulation

of [SM98] and specify some of these constructions with RCL 2000.

56

57

5.1 Lattice-Based Access Control

As we noticed in [San96], several constraints are required to simulate Lattice-based

access control in RBAC. In this section we briey overview the Lattice-based access

control (LBAC) and show how we can specify LBAC constraints using RCL 2000.

5.1.1 Lattice-Based Access Control

Lattice-based access control is concerned with enforcing one directional information

ow in a lattice of security labels [HW89, Den76, San96]. LBAC is also known as

mandatory access control (MAC) or multilevel security.1 Depending upon the nature

of the lattice, the one-directional information ow enforced by LBAC can be applied

for con�dentiality, integrity, con�dentiality and integrity together, or for aggregation

policies, such as Chinese Walls [San93].

The mandatory access control policy is expressed in terms of security labels attached

to subjects and objects. A label on an object is called a security classi�cation, while

a label on a user is called a security clearance. It is important to understand that a

Secret user may run the same program, such as a text editor, as a Secret subject, or as

an Unclassi�ed subject. Even though both subjects run the same program on behalf of

the same user, they obtain di�erent privileges due to their security labels. It is usually

assumed that the security labels on subjects and objects, once assigned, cannot be

changed (except by the security oÆcer). This last assumption, that security labels

do not change, is known as tranquility. The security labels form a lattice structure as

de�ned below.

De�nition 1 (Security Lattice) There is a �nite lattice of security labels SC with

1LBAC is typically applied in addition to classical discretionary access controls (DAC) [SS94]
but for our purposes we will focus only on the MAC component. DAC can be accommodated in
RBAC as an independent access control policy, just as it is done in LBAC.

58

H

L

HR

LR HW

LW

(a)A partially ordered Lattice (b) Roles in RBAC Simulation

Figure 5.1: A Partially Ordered Lattice

a partially ordered dominance relation � and a least upper bound operator. 2

A simple example of a security lattice is shown in �gure 5.1(a) with H> L. Information

is only permitted to ow upward in the lattice. In this example, H and L, respectively,

denote high and low. This is a typical con�dentiality lattice where information can

ow from low to high but not vice versa.

The speci�c mandatory access rules usually speci�ed for a lattice, where � signi�es

the security label of the indicated subject or object, are as follows:

De�nition 2 (Simple Security) Subject s can read object o only if �(s) � �(o).2

De�nition 3 (Liberal �-property) Subject s can write object o only if �(s) �

�(o). 2

De�nition 4 (Strict �-property) Subject s can write object o only if �(s) =

�(o). 2

59

We now show how LBAC constraints can be simulated in RBAC using RCL 2000. In

order to simulate LBAC constraints we adopt LBAC-RBAC construction in [San96]

and we formulate it with RCL 2000.

5.1.2 Constraints Speci�cation in RCL 2000

We begin by considering the example lattice of Figure 5.1(a) with the liberal �-

property. Subjects with labels higher up in the lattice have more power with respect

to read operations but have less power with respect to write operations. Thus, this

lattice has a dual character. In role hierarchies subjects (sessions) with roles higher

in the hierarchy always have more power than those with roles lower in the hierarchy.

To accommodate the dual character of a lattice for LBAC we will use two dual hier-

archies in RBAC, one for read and one for write. These two role hierarchies for the

lattice of Figure 5.1(a) are shown in Figure 5.1(b). Each lattice label x is modeled

as two roles xR and xW for read and write at label x, respectively. The relationship

among the two read roles and the two write roles is respectively shown on the left

and right hand sides of Figure 5.1(b). The duality between the left and right lattices

is obvious from the diagrams.

To complete the construction we need to enforce appropriate constraints to reect

the labels on subjects in LBAC. Each user in LBAC has a unique security clearance.

This is enforced by requiring that each user in RBAC be assigned to exactly one role

xR and the role LW. An LBAC user can login at any label dominated by the user's

clearance. This requirement is captured in RBAC by requiring that each session has

exactly two matching roles yR and yW. The condition that x � y, that is that the

user's clearance dominates the label of any login session established by the user, is

not explicitly required because it is directly imposed by the RBAC model anyway.

LBAC is enforced in terms of read and write operations. In RBAC this means our

60

permissions are reads and writes on individual objects written as (o,r) and (o,w),

respectively. An LBAC object has a single sensitivity label associated with it. This

is expressed in RBAC by requiring that each pair of permissions (o,r) and (o,w) be

assigned to exactly one matching pair of xR and xW roles, respectively. By assigning

permissions (o,r) and (o,w) to roles xR and xW respectively, we are implicitly setting

the sensitivity label of object o to x.

The above construction is formalized below [San96].

Example 1 (Liberal �-Property)

� R = fHR, LR, HW, LWg

� RH as shown in Figure 5.1(b)

� P = f(o,r), (o,w) j o is an object in the systemg

� Constraint on UA: Each user is assigned to exactly two roles xR and LW

� Constraint on sessions: Each session has exactly two roles yR and yW

� Constraints on PA:

{ (o,r) is assigned to xR i� (o,w) is assigned to xW

{ (o,r) is assigned to exactly one role xR 2

With RCL 2000 we need additional administrative sets to specify these constraints

because these constraints require that each user should have exactly two roles xR and

LW and each session should have exactly two roles yR and yW. From this observation,

we introduce the following new administrative sets: active role sets (AR), assignment

role sets (ASR), write roles (WR), and read roles (RR). Active roles mean that those

61

roles should be active at the same session and assignment roles are roles which a

user should have during user-role assignment. RCL 2000 includes administrative sets

shown in Figure 5.2, including all elements of RCL 2000. With these sets, we can

specify the formalization mentioned above as below.

RCL 2000 Speci�cation: (Liberal �-Property)

� R = fHR, HW, LR, LW g

� OBJ = fobj1; obj2; :::; objng

� OP = fread ;writeg

� P = frp;wpg

rp =f(read ; obj1); (read ; obj2); :::; (read ; objn)g and

wp =f(write; obj1); (write; obj2); :::; (write; objn)g

� RR = fHR, LRg

� WR = fHW, LWg

� AR=f ar1, ar2g

ar1 = fHR, HWg

ar2 = fLR, LWg

� ASR=f asr1, asr2g

asr1 = fHR, LWg

asr2 = fLR, LWg

Given these sets, such as R, OBJ, OP, P, RR, WR, AR, and ASR, we specify the above

constraints described as below.

62

� Constraint on UA:

roles(OE(U)) = OE(ASR)

� Constraint on sessions:

roles(OE(sessions(OE(U)))) = OE(AR)

� Constraints on PA:

objects(OE(wp)) = objects(OE(rp)) =)

roles(OE(wp)) [roles(OE(rp)) = OE(AR) ^

roles(OE(rp)) \ WR = � ^

j roles(OE(rp)) \ RR j= 1

2

From example 1, we can have two sets, ar1 and ar2 because both HR and HW

roles should be activated, and both LR and LW roles should also be in a session.

Also asr1 and asr2 are required because each user should have HR and LW (or, LR

and LW) in user-role assignment. Therefore, we can express UA constraint and ses-

sion constraint using ASR and AR sets, respectively. In expression of UA constraints,

roles(OE(U)) = OE(OE(ASR)) ensures that a user should have roles exactly equal to

one of the ASR sets. In expression of session constraints, roles(OE(sessions(OE(U))))

denotes all roles which a user activates in a single session. The constraint ensures

that the roles activated by a user in a session consist of exactly one of the AR sets.

Constraint speci�cation of PA ensures that each permission should be assigned to a

single object and roles which have read-write permissions on a single object can be

invoked in a session. Unlike SOD constraints, we have just shown that we need ad-

ditional administrative sets of RCL 2000 to specify LBAC constraints and that these

constraints need to be forced to activate the prede�ned roles at the same time.

63

� AR = a collection of active role sets, far1; :::; arng, where ari = fri ; :::; rkg � R

� ASR = a collection of assignment role sets, fasr1; :::; asrng, where asri =
fri ; :::; rkg � R

� RR = a collection of read roles, where RR = fri ; :::; rkg � R

� WR = a collection of write roles, where WR = fri ; :::; rkg � R

Figure 5.2: Administrative Sets in LBAC simulation

HR

LR

HW LW

Figure 5.3: Role Hierarchies for Strict �-property

Variations in LBAC can be accommodated by modifying this basic construction in

di�erent ways. In particular, the strict �-property retains the hierarchy on read roles

but treats write roles as incomparable to each other, as shown in �gure 5.3.

Example 2 (Strict �-Property) Identical to example 1 except RH is as shown in

�gure 5.3.

We have shown how we can specify constraints identi�ed during simulation of LBAC

in RBAC. In the next section, we consider RCL 2000 speci�cation of the Chinese

Wall policy.

64

5.2 Chinese Wall Policy

The Chinese Wall policy is intuitively simple and easy to describe. In this section

we describe this policy by adapting the description of Brewer and Nash [BN89] and

Sandhu [San92]. Chinese Wall policy can be reduced to LBAC so the previous con-

struction can be used. In this section we consturct Chinese Wall-RBAC simulation

in more direct manner.

It is important to keep in mind that we are deliberately ignoring all discretionary

access control issues. In practice, the Chinese Wall policy as described here would be

the mandatory component of a larger policy which includes additional discretionary

controls (and possibly additional mandatory controls). We begin by distinguishing

public information from company information. There are no mandatory controls on

reading public information. Reading company information, on the other hand, is

subjected to mandatory controls, which we will discuss in a moment. The policy

for writing public or company information is indirectly determined by its impact on

providing indirect read access contrary to the mandatory read controls. We will con-

sider mandatory controls on writing information following our discussion of the read

controls. The motivation for recognizing public information is that a computer sys-

tem used for �nancial analysis will inevitably have large public databases of �nancial

information for use by consultants. Moreover, public information allows for desirable

features, such as public bulletin boards and electronic mail, which users expect to

be available in any modern computer system. Public information can be read by all

users, principals, and subjects in the system (restricted only by discretionary controls

which, as we have said, we are ignoring). Company information is categorized into

mutually disjoint conict of interest classes as shown in �gure 5.4.

Each company belongs to exactly one conict of interest (COI) class. The Chinese

Wall policy requires that a consultant should not be able to read information for

65

Company Infomation

Conflict of

Interest Class i Interest Class j

Conflict of

Company i.1 Company i.m Company j.1 Company j.n

.....

.....

Figure 5.4: Company Information in the Chinese Wall

more than one company in any given COI class. To be concrete, let us say that

COI class i consists of banks and COI class j consists of oil companies. The Chinese

Wall stipulation is that the same consultant should not have read access to two or

more banks or two or more oil companies. The Chinese Wall policy has a mix of

free choice and mandated restrictions. So long as a consultant has not yet been

exposed to any company information about banks, that consultant has the potential

to read information about any bank. The moment this consultant reads, say, bank A

information, thereafter, that consultant is to be denied read access to all other banks.

The free choice of selecting the �rst company to read in a COI class can be exercised

once and is then forever gone. So long as we have focused on read access the Chinese

Wall policy has been easy to state and understand. When we turn to write access

the situation becomes more complicated and subtle.

We begin by taking several variations to specify Chinese Wall policy. Figure 5.5 shows

a simple example of a Chinese Wall which is used in the rest of this section.

66

5.2.1 Variation 1

We assume that each company can have one role which can do everything in a com-

pany. We can express this variant of Chinese wall policy as follow:

Constraints:

User should activate only one role in a dataset.

This constraint means that each company has one role which can do the whole business

function. That is, this role can read and write on objects in a company. In order

to specify this constraint, we just declare proper role for each session and we have

to enforce that only one role should be activated in sessions which are invoked by a

single user (or consultant).

Speci�cation:

� R = f Oil-X, Oil-Y, Bank-A, Bank-B g

roles(sessions(OE(U))) = OE(R)

We have four roles since we have four companies, as shown in �gure 5.5. We just use

the company name as a role name for simplicity. This speci�cation ensures that each

user should activate only one role in a dataset. For example, we activate Oil-X role

in a session, and then he/she cannot activate any other roles in role set R.

5.2.2 Variation 2

In this variation, we consider two roles such as, read and write, for each company.

Then user can activate read role but he cannot activate the write role if the write role

is not in the same company.

Constriants:

If user wants to activate the write role, only the matched read role should be activated.

67

This constraint requires that there is a pair of roles in a company and that those

roles should be activated simultaneously. As we de�ned in section 5.1, we use the

prede�ned roles to specify this constraint.

Speci�cation:

� SR = f sr1, sr2, sr3, sr4 g

{ sr1 = f Bank-A-read, Bank-A-write g

{ sr2 = f Bank-B-read, Bank-B-write g

{ sr3 = f Oil-X-read, Oil-X-write g

{ sr4 = f Oil-Y-read, Oil-Y-write g

roles(sessions(OE(U))) = OE(SR)

We have four prede�ned roles sets since we have four companies, as shown in �gure 5.5.

We use only the company name with read and write notion as role name for simplicity.

This speci�cation ensures that only two matched roles in a company can be activated

in sessions which a user invoked. For example, a user activates Oil-X-read, and then

he can activate only the matched write role Oil-X-write when he wants to activate

a write role.

5.2.3 Variation 3

In this variation, we consider two roles, such as read and write, for each company.

A user can activate a read role but he cannot activate a write role if the write role

is not in the same company. In addition, a user can read other objects in di�erent

company sets but he cannot write at all.

Constraints:

68

Bank Oil

A B X Y

Figure 5.5: Example of Chinese Wall

� read

User can read object(s) in di�erent datasets but cannot write at all.

� write

Same as variation 2.

This constraint requires two groups of role sets, such as read and write role sets. As

we de�ned in section 5.1, we use the prede�ned roles to specify this constraint.

Speci�cation:

In addition to variation 2,

� GR = f read, write g

{ read = f Oil-Read, Bank-Read g

Oil-R = f Oil-X-Read, Oil-Y-Read g

Bank-R = f Bank-A-Read, Bank-B-Read g

{ write = f Oil-Write, Bank-Write g

Oil-W = f Oil-X-Write, Oil-Y-Write g

69

Bank-W = f Bank-A-Write, Bank-B-Write g

We have two groups of roles sets and four prede�ned roles sets since we have two

constraints{read and write constraints{and four companies, as shown in �gure 5.5.

We just use the company name with read and write notion as the role name for

simplicity. With this set, our speci�cation is as follows:

read constraint:

roles(sessions(OE(U))) = OE(OE(read)) [OE(AO(read)) ^

roles(sessions(OE(U))) \ OE(OE(write)) = �

write constraint:

roles(sessions(OE(U))) = OE(GR)

This speci�cation ensures that each user can read object(s) in di�erent dataset but he

cannot write all. In a write constraint, only a matched write role should be activated

in sessions which a user invoked.

We have shown how we can specify constraints identi�ed during simulation of Chinese

Wall policy in RBAC. In the next section, we consider the RCL 2000 speci�cation

of constraints which can be recognized in the simulation of the discretionary access

control in RBAC.

5.3 Discretionary Access Control

In this section we discuss DAC policies and speci�cations of the constraints using

RCL 2000. The main idea of DAC is that the owner of an object has discretionary

authority over who else can access that object [SS94, SS97]. There are many variations

of DAC policy, particularly concerning how the owner's discretionary power can be

70

delegated to other users and how access is revoked. This has been raised since the

earliest formulations of DAC [Lam91, GD72].

Our approach in this section is to express constraints in RCL 2000 which are identi�ed

in DAC simulation. The DAC simulation which we used in this section has been given

by [SM98]. Their work is an intuitive, but well-founded, justi�cation for the claim

that DAC can be simulated in RBAC.

The DAC policies we consider in this section all share the following characteristics

which are introduced in [SM98]:

� The creator of an object becomes its owner.

� There is only one owner of an object. In some cases, ownership remains �xed

with the original creator, whereas in other cases, it can be transferred to another

user.

� Destruction of an object can only be done by its owner.

With this in mind, we adopt the following two variations of DAC with respect to the

granting of access.

1. Strict DAC

Strict DAC requires that the owner is the only one who has discretionary au-

thority to grant access to an object and that ownership cannot be transferred.

For example, suppose Alice has created an object (Alice is owner of the object)

and grants read access to Bob. Strict DAC requires that Bob cannot propagate

access to the object to another user.

2. Liberal DAC

Liberal DAC allows the owner to delegate discretionary authority for granting

71

access to an object to other users. Sandhu and Munawer introduced three

variations of liberal DAC such as one level grant, two level grant, and multilevel

grant [SM98]. We take one variation, one level grant, of these variations given

below.

� One Level Grant:

The owner can delegate grant authority to other users but they cannot

further delegate this power. So Alice being the owner of object O can

grant access to Bob who can grant access to Charles. But Bob cannot

grant Charles the power to further grant access to Dorothy.

In RBAC96 the behavior described above would be enforced by the constraints mech-

anism. In next section, we demonstrate how to simulate these variations of DAC in

RBAC trying to specify these constraints with RCL 2000.

5.3.1 Simulations in RBAC

To specify the above variation in RBAC it suÆces to consider DAC with one op-

eration, which we choose to be the read operation. Similar constructions for other

operations such as write, execute and append, are easily possible.

Before considering speci�c DAC variations, we �rst adopt the well-de�ned approach

of [SM98] as shown in �gure 5.6. Their approach introduced three administrative

roles and one regular role. Figure 5.6 indicates that the role OWN can add users to the

role PARENTGRANT which in turn can add users to the role PARENT and so on. This

diagram also shows the seniority relation between the three administrative roles.2

Basic elements which can be used to this simulation are as follows:

2We slightly modify the name of roles which their approach introduced.

72

OWN

READ

delete_ParentGrant
destroy_Object

add_Parent

add_ParentGrant

delete_Parent

add_Read
delete_Read

can_read_Object

Permissions

PARENTGRANT

PARENT

Figure 5.6: Roles and Permissions in DAC

� R = f OWN, PARENT, PARENTGRANT, READ g

Three administrative roles :

� OWN = f Own O1, ... , Own On g

� PARENTGRANT = fParentGrant O1, ... ,ParentGrant Ong

� PARENT = fParent O1, ... , Parent On g

One regular role :

� READ = fRead O1, ... , Read On g

We separate the permissions which OWN role can perform as administrative permissions

and regular permissions (because we do not need to assign users to role PARENTGRANT

in strict DAC).

73

Administrative (OWNAPM) and regular (OWNRPM) permissions which OWN role can per-

form:

� OWNAPM = fadd ParentGrant , delete ParentGrant g

� OWNRPM = fdestroy O1, ... , destroy On g

Permissions which PARENTGRANT role can perform:

� PGPM = fadd Parent , delete Parent g

Permissions which PARENT role can perform:

� PPM = fadd Read , delete Read g

Permissions which READ role can perform:

� RPM = fcan read O1, ... , can read Ong

1. Strict DAC

In strict DAC only the owner can grant/revoke read access to/from other users.

The creator is the owner of the object. By virtue of membership in PARENT

role and PARENTGRANT role, the owner can change assignments of the role

READ. Membership of the three administrative roles cannot change, so only

the owner will have this power. This policy could be simulated using just two

roles OWN and READ, and giving the add Read and delete Read permissions

directly to role OWN at the creation of object.

In order to specify this constraint, we make the list of concerns which we may

take.

74

(a) Owner needs to add a user to READ role.

(b) When a user creates an object, he has OWN role.

(c) And he has three permissions such as OWN role's regular permission

OWNRPM and PARENT role's permissions PPM.

(d) And READ role has obviously RPM permission.

We can specify the above as below.

Speci�cation:

� j OE(PARENTGRANT) [AO(PARENTGRANT) j= 0 ^

j OE(PARENT) [AO(PARENT) j= 0

� permissions(OE(OWN)) = OE(PPM) [OE(OWNRPM) ^

object(permissions(OE(OWN))) = object(OE(PPM)) ^

object(permissions(OE(OWN))) = object(OE(OWNRPM)) ^

� permissions(OE(READ)) = OE(RPM) ^

object(permissions(OE(READ))) = object(OE(RPM))

2. Liberal DAC with one-level grant

The owner can delegate grant authority to other users but they cannot further

delegate this power. So Alice being the owner of object O can grant access

to Bob who can grant access to Charles. But Bob cannot grant Charles the

power to further grant access to Dorothy. The one-level grant DAC policy can

be simulated by using three roles OWN, PARENT, and READ.

In order to specify this constraint, we make the list of concerns which we may

take.

(a) Owner needs to assign a user to PARENT role.

75

(b) When a user creates an object, he can have OWN role for that object.

(c) And he has three permissions such as such as OWN role's regular permis-

sion OWNRPM and two permissions from PGPM.

We can specify the above as below.

Speci�cation:

� j OE(PARENTGRANT) [AO(PARENTGRANT) j= 0

� permissions(OE(OWN)) = OE(PGPM) [OE(OWNRPM) ^

object(permissions(OE(OWN))) = object(OE(PGPM)) ^

object(permissions(OE(OWN))) = object(OE(OWNRPM)) ^

� permissions(OE(READ)) = OE(RPM) ^

object(permissions(OE(READ))) = object(OE(RPM))

We just showed that we can specify the constriants in RCL 2000 which are identi�ed

in DAC-RBAC simulation of [SM98], particularly in strict DAC policy and one level

grant DAC policy.

5.4 Summary

In this chapter, we have shown that RCL 2000 can specify the constraints identi�ed in

the simulations of Lattice-based access control, Chinese Wall policy, and Discretionary

access control. In order to specify these constraints, we de�ned the prede�ned roles

to support the requirement of each constraint. These constraints have the notion of

obligation when each constraint is addressed. In chapter 6 we look at this scope with

generalization and characterization.

Chapter 6

PROHIBITION AND OBLIGATION

CONSTRAINTS

Based on the constraints speci�cations in the previous chapters, we analyze the con-

straints. In order to do that, we de�ne and identify the major classes of constraints in

RBAC such as Prohibition Constraints and Obligation Constraints. We characterize

these classes of constraints based on the RCL 2000 expression. This distinction is

a pragmatic approach rather than theoretical completeness. Our reasoning will help

system security oÆcers to think and design a system practically.

The rest of this chapter is organized as follows. Section 6.1 de�nes two major classes of

constraints in RBAC such as Prohibition Constraints and Obligation Constraints. In

section 6.2 we characterize these classes of constraints. This characterization is based

on RCL 2000 speci�cations which have been discussed in this dissertation, such as

SOD constraints, LBAC simulation and the Chinese Wall policy construction. From

these speci�cations, we characterize each class of constraints with an intuitive and a

sharp distinction rather than with exhaustive analysis.

6.1 Role-based Constraints

As we mentioned the above, we identify two major classes of constraints in RBAC.

In order to de�ne these classes we introduce two rules.

Rule 1. cannot do (X , Ci)

76

77

This cannot do rule implies that RBAC component X is not allowed to do (be) some-

thing under Ci . If a certain constraint, such as Ck , does not allow RBAC component

to do something, this constraint Ck satis�es the following: cannot do (X , Ci) = True

Rule 2. must do (Y , Cj)

This rule implies that the RBAC component Y should do (be) something under Cj .

If a certain constraint, such as Ck , forces the RBAC component to do something, this

constraint Ck satis�es the following: must do (X , Cj) = True

Intuitively, these rules can be used to de�ne the major class constraints in RBAC.

6.1.1 Prohibition Constraints

In an organization, we need to prevent a user from doing (or being) something that

he is not allowed to do (or be), based on organizational policy. We call this class

of requirements Prohibition Constraints. Prohibition Constraints are constraints that

forbid the RBAC component from doing (or being) something which it is not allowed

to do (or be). Therefore, this class of constraints satis�es cannot do (X , Ci) = True.

Most of the separation of duty constraints speci�ed in chapter 4 are included in this

class of constraints.

6.1.2 Obligation Constraints

We also need to force a user to do (or be) something that he is allowed to do (or be)

based on organizational policy. We derive another class of constraints from this moti-

vation called Obligation Constraints. Obligation Constraints are constraints that force

the RBAC component to do (or be) something. Therefore, this class of constraints

satis�es must do (Y , Cj) = True. This category includes most of the constraints

identi�ed in the simulations of Lattice-based access control and Chinese Wall policy

in role-based access control. As described in chapter 5, we need to enforce appropri-

78

ate constraints to reect the labels on subjects in LBAC in order to complete LBAC

construction in RBAC. Each user in LBAC has a unique security clearance. This is

enforced by requiring that each user in RBAC is assigned to exactly one role xR and

the role LW. An LBAC user can login at any label dominated by the user's clearance.

This requirement is captured in RBAC by requiring that each session has exactly

two matching roles yR and yW. In our speci�cation we use the active role set and

assignment role set for these purposes. In the simulation of Chinese Wall policy, we

assumed that each company has one role which can do everything in a company. This

variation requires that the user should activate only one role in a dataset. In order

to specify this constraint, we declared a proper role for each session and we needed

to enforce that only one role should be activated in sessions which are invoked by a

single user.

In this section we briey looked at the identi�ed classes of constraints in RBAC.

These de�nitions are intuitive and more formal characterization of these constraints

is discussed in the subsequent section, based on our speci�cations from case studies

described in the previous chapters.

6.2 Constraints Characterization

In this section, we characterize the classes of constraints in RBAC. This characteri-

zation is based on RCL 2000 speci�cations which have been discussed in this disser-

tation, such as SOD constraints, LBAC simulation and the Chinese Wall policy con-

struction. From these speci�cations, we try to characterize each class of constraints

with an intuitive and a sharp distinction rather than with exhaustive analysis.

Figure 6.1 indicates that there are two major classes of constraints, such as Prohibi-

tion Constraints and Obligation Constraints. Even though we believe that RCL 2000

helps us discover useful constraints, this dissertation cannot list all of the existing con-

79

������
������
������
������
������

������
������
������
������
������������

������
������
������
������

������
������
������
������
������

PROHIBITION OBLIGATION

CONSTRAINTS

Figure 6.1: Constraints Characterization

straints. We assert that our speci�cations in this dissertation cover a subset of each

class of constraints. We simply call our characterizations Simple Prohibition Con-

straints class and Simple Obligation Constraint class. In �gure 6.1, a small set in the

inner circle represents a group of constraints which we identi�ed in this dissertation.

6.2.1 Simple Prohibition Constraints

The identi�ed constraints which are classi�ed as prohibition constraints are gener-

ally expressed in several similar forms. We generalize these forms to characterize

prohibition constraints.

Simple prohibition constraints include:

� Type 1:

j expr j� 1

An example of this type of constraints is the simple static SOD (see Chapter

4.1.1, property 1). The speci�cation of the simple static SOD is as follows:

j roles(OE(U)) \ OE(CR) j� 1

80

� Type 2:

expr = � or j expr j= 0

An example of this type of constraints is the static SOD with conicting users

(see Chapter 4.1.2, property 16). The expression of the static SOD with con-

icting users is as follows: roles(OE(OE(CU))) \ roles(AO(OE(CU))) = �

� Type 3:

j expr j<j expr j

An example of this type of constraints is per-role operational static SOD (see

Chapter 4.1.1, property 9). The speci�cation of this constraint is as follows:

j operations(OE(OE(CR)); OBJ) j<j OP j

Most of these forms are identi�ed in the SOD constraints and some can also be found

in other case studies.

6.2.2 Simple Obligation Constraints

Obligation constraints which are identi�ed in this dissertation have several unique

forms. We generalize these forms to characterize prohibition constraints.

Simple obligation constraints include:

� Type 1:

expr 6= � or j expr j> 0

An example of this type of constraints is the variations of SOD constraints

(see Chapter 4.3.1, property 4). The speci�cation of this type is as follows:

permissions(OE(R)) \ OE(CP) 6= �

� Type 2:

set X = set Y

81

One example of this type of constraints occurs in the constraint in LBAC simu-

lation (see Chapter 5.1.2, Constraint on UA). The expression of the constraint

in LBAC is as follows: roles(OE(U)) = OE(PR)

� Type 3:

obligation constraints =) obligation constraints

An example of this type of constraints can be found in LBAC simulation (see

Chapter 5.1.2, Constraint on PA). The speci�cation of this constraint is as

follows:

objects(OE(wp)) = objects(OE(rp)) =) roles(OE(wp)) [roles(OE(rp)) =

OE(SR)

� Type 4:

j expr j= 1

An example of this type of constraint is the constraints in LBAC simulation

(see Chapter 5.1.2, Constraint on PA). The speci�cation of this constraint is as

follows: j roles(OE(wp)) \ WR j= 1

This form can be re-expressed with the forms which are identi�ed in simple

prohibition constraints and simple obligation constraints as below.

j expr j= 1 � j expr j� 1 ^ j expr j> 0

As we mentioned earlier, most of the constraints which are identi�ed in the simulation

of LBAC and Chinese Wall policy in RBAC have these types of forms.

6.3 Summary

In this section we identi�ed the major classes of constraints in RBAC such as Pro-

hibition Constraints and Obligation Constraints. We also characterized these classes

82

Prohibition Constraints Obligation Constraints

j expr j� 1 j expr j> 0

j expr j= 0 set X = set Y

j expr j<j expr j obligation =) obligation

j expr j= 1

Table 6.1: Characterizations of Constraints

of constraints based on the speci�cations described in our case studies (as shown in

table 6.1. Our distinction is a pragmatic, but it is not theoretically complete. We

believe that this distinction will help system security oÆcers to think and to design

a system more practically.

Chapter 7

CONCLUSION

This chapter lists the contributions of this dissertation and discusses into future di-

rections. The contributions of this dissertation are presented in section 7.1 and sec-

tion 7.2 gives the future research directions.

7.1 Contributions

Role hierarchies and constraints are two fundamental aspects of role-based access

control. Although the importance of constraints in RBAC has been recognized for

a long time, they have not received much attention in research literature while role

hierarchies have been practiced and discussed at considerable length.

In this dissertation we developed the speci�cation language RCL 2000. We have

shown that our language can be applied to express constraints such as separation of

duty constraints and constraints arising in the RBAC simulations of Lattice-based

access control, Chinese Wall policy, and Discretionary access control. We have shown

that RCL 2000 allows us to investigate nuances of static SOD and dynamic SOD in

a way that has not been possible so far. This has led to formulation of static SOD

properties that have not identi�ed in a decade of literature on SOD. Our work showed

that there are many alternate formulations of even the simplest SOD properties, with

varying degree of exibility and assurance.

Based on these speci�cations, we analyze the constraints de�ning and identifying the

83

84

major classes of constraints in RBAC such as Prohibition Constraints and Obligation

Constraints. We characterized these classes of constraints based on the RCL 2000

expression. This distinction is a pragmatic approach rather than theoretical com-

pleteness. Such classi�cation of constraints is the �rst attempt in role-based security.

This kind of characterization will help system security oÆcers to think and design a

system more practically.

Although the ease of expressing constraints in proposed language is an important

aspect of the language, the primary contribution of the proposed language is its

function in supporting a constraint speci�cation facility for role-based systems rather

than the enumeration of constraints.

We assert that our work shows that it is futile to try to enumerate all role-based

constraints properties, because there are too many possibilities. Instead, we should

pursue a rigorous language such as RCL 2000, for this purpose. That is, this work

gives us direction in how we should deal with constraints in role-based systems. Also,

we are convinced that our language has expressive power and extensibility.

We believe that the constraint language described above is a useful vehicle for ex-

pressing the sorts of constraints envisioned in role-based systems. Our language can

be given a rigorous formal de�nition and is more expressive than the current rather

ad hoc collection of constraint clich�es de�ned for Role-based system. We believe that

we can express most constraints currently expressible within RBAC and many more

within a context which is more rigorous.

7.2 Future Work

Based on the research work in this dissertation, we propose the following future

research directions and issues.

85

7.2.1 Extension of RCL 2000

In this dissertation we proved that RCL 2000 can specify useful constraints which

have not been identi�ed in the literature. Our work is still the �rst step in role-based

constraints. In the future, we would like to extend RCL 2000, investigating the utility

of our language by applying it to the formalization of some realistic security policies.

We may also need to think how we can enforce the constraints speci�ed by RCL 2000.

7.2.2 Implementation Issues

We would like to build a tool that can check the syntax and the semantics of the speci-

�cation, and we would like to make the speci�cation language RCL 2000more eÆcient

by implementing a tool that provides visualization support for constraint speci�ca-

tions. In this visualization, the system displays all components that can be used in

constraint speci�cations. Also it shows which components are used and are available

for constraint speci�cations. Using this visualization tool, security researchers can

easily know the current status of components in role-based systems.

7.2.3 Update Problem

The basic component such as role hierarchy, user-assignment, and permission-assignment

relations may be changed. In order to handle such changes we can consider several al-

ternatives. For example, we can simply apply such changes to all the current sessions

which are active under certain constraints and deactivate the sessions which violate

the constraints. Or, we just apply such changes to new sessions which are activated

after the changes. We can apply either alternative based on the organization's policy.

We intend to investigate this type of issues including changes of constraints that are

rarely modi�ed.

BIBLIOGRAPHY

86

87

BIBLIOGRAPHY

[Ahn99a] Gail-Joon Ahn. Hierarchical administration in network information ser-

vices. In 17th IAoM Annual International Conference on Computer Sci-

ence, pages 424{429. ACTA Press, August 6-8 1999.

[Ahn99b] Gail-Joon Ahn. The RSL99 language for specifying constraints in role-

based access control. In Technical Report. GMU, Laboratory for Informa-

tion Security Technology, 1999.

[AS98] Gail-J. Ahn and Ravi Sandhu. Security architecture of DCOM and its

integration with RBAC. In Proceedings of 1998 International Computer

Symposium, pages 71{78, N.C.K.U., Tainan, Taiwan, R.O.C., December

1998.

[AS99a] Gail-Joon Ahn and Ravi Sandhu. The RSL99 language for role-based

separation of duty constraints. In Proceedings of 4th ACM Workshop on

Role-Based Access Control, pages 43{54. ACM, 1999.

[AS99b] Gail-Joon Ahn and Ravi Sandhu. Towards role-based administration in

network information services. Journal of Network and Computer Appli-

cations, 22(3):199{213, 1999.

[Bal90] Robert W. Baldwin. Naming and grouping privileges to simplify security

management in large database. In Proceedings of IEEE Symposium on

Research in Security and Privacy, pages 61{70, Oakland, CA, April 1990.

[BF99] Elisa Bertino and Elena Ferrari. The speci�cation and enforcement of

authorization constraints in workow management systems. ACM Trans-

actions on Information and Systems Security, 2(1):65{104, February 1999.

[BN89] D.F.C. Brewer and M.J. Nash. The Chinese Wall security policy. In

Proceedings of IEEE Symposium on Security and Privacy, pages 215{228,

Oakland, CA, May 1989.

88

[CCSC98] Frederic Cuppens, Laurence Cholvy, Clarire Saurel, and Jerome Carrere.

Merging security plocies: analysis of a practical example. In Proceedings

of IEEE Computer Security Foundations Workshop, pages 123{136. IEEE,

1998.

[CS95] Fang Chen and Ravi Sandhu. Constraints for role based access control. In

Proceedings of 1st ACM Workshop on Role-Based Access Control, pages

39{46, Gaithersburg, MD, November 1995.

[CS96] Frederic Cuppens and Clarire Saurel. Specifying a security policy: A case

study. In Proceedings of IEEE Computer Security Foundations Workshop,

pages 123{134. IEEE, 1996.

[CW87] D. D. Clark and D. R. Wilson. A comparison of commercial and mili-

tary computer security policies. In Proceedings of IEEE Symposium on

Security and Privacy, pages 184{194, April 1987.

[Den76] D.E. Denning. A lattice model of secure information ow. Communica-

tions of the ACM, 19(5):236{243, 1976.

[Dep85] Department of Defense National Computer Security Center. Department

of Defense Trusted Computer Systems Evaluation Criteria, December

1985. DoD 5200.28-STD.

[DHTK93] S.A. Demurjian, M.-Y. Hu, S. Ting, and D. Kleinman. Towards an au-

thorization mechanism for user-based security in an object-oriented design

model. In Proceedings of Twelfth Annual International Phoenix Confer-

ence on Computers and Communications, pages 195{202. IEEE, 1993.

[End77] H. B. Enderton. Elements of Set Theory. Academic Press, 1977.

[FB98] Tinothy Fraser and Lee Badger. Ensuring continuity during dynamic

security policy recon�guration in dte. In Proceedings of IEEE Symposium

on Research in Security and Privacy, pages 15{26. IEEE, 1998.

[FBK99] David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A role based

access control model and reference implementation within a corporate in-

tranet. ACM Transactions on Information and Systems Security, 2(1):34{

64, February 1999.

[FCK95] David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access

control (RBAC): Features and motivations. In Proceedings of 11th Annual

Computer Security Application Conference, pages 241{48, New Orleans,

LA, December 11-15 1995.

89

[FGS94] Eduardo B. Fernandez, Ehud Gudes, and Haiyan Song. The role graph

model and conict of interest. IEEE Transactions on Knowledge and

Data Engineering, 6(2):275{292, April 1994.

[FJ95] Simon N. Foley and Jeremy Jacob. Specifying security for cscw systems.

In Proceedings of IEEE Computer Security Foundations Workshop, pages

136{145. IEEE, 1995.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access control. In Pro-

ceedings of NIST-NCSC National Computer Security Conference, pages

554{563, 1992.

[GB98] Cheh Goh and Adrian Baldwin. Towards a more complete model of role.

In Proceedings of 3rd ACM Workshop on Role-Based Access Control, Fair-

fax, VA, October 1998.

[GD72] G.S. Graham and P.J. Denning. Protection { principles and practice. In

AFIPS Spring Joint Computer Conference, pages 40:417{429, 1972.

[GGF98] Virgil D. Gligor, Serban I. Gavrila, and David Ferraiolo. On the formal

de�nition of separation-of-duty policies and their composition. In Pro-

ceedings of IEEE Symposium on Research in Security and Privacy, pages

172{183, Oakland, CA, May 1998.

[GI96] Luigi Giuri and Pietro Iglio. A formal model for role-based access control

with constraints. In Proceedings of IEEE Computer Security Foundations

Workshop, pages 136{145, Kenmare, Ireland, June 1996.

[Giu95] Luigi Giuri. A new model for role-based access control. In Proceedings of

Annual Computer Security Application Conference, pages 249{255. IEEE,

1995.

[Gol96] Derek Goldrei. Classic Set Theory. Chapman & Hall, 1996.

[Gri97] Richard Grimes. Professional DCOM Programming. Wrox Press Ltd.,

1997.

[GS96] Simon Gar�nkel and Eugene Spa�ord. Practical Unix and Internet Secu-

rity (2nd edition). O'Reilly & Associates, Inc., 1996.

[Hay98] Ian J. Hayes. Expressive power of speci�cation language. Formal Aspects

of Computing, 10:187{192, April 1998.

90

[HBM98] R.J. Hayton, J.M. Bacon, and K. Moody. Access control in an open

distributed environment. In Proceedings of IEEE Symposium on Research

in Security and Privacy, pages 3{14. IEEE, 1998.

[HW89] Maurice P. Herlihy and Jeannette M. Wing. Specifying security con-

straints with relaxation lattices. In Proceedings of IEEE Computer Secu-

rity Foundations Workshop, pages 47{53, 1989.

[Jan98] W.A. Jansen. Inheritance properties of role hierarchies. In Proceedings

of NIST-NCSC National Computer Security Conference, pages 476{485,

1998.

[JSS97] Sushil Jajodia, Pierangela Samarati, and V.S. Subrahmanian. A logical

language for expressing authorizations. In Proceedings of IEEE Sympo-

sium on Research in Security and Privacy, pages 31{42, 1997.

[JSSB97] Sushil Jajodia, Pierangela Samarati, V.S. Subrahmanian, and Elisa

Bertino. A uni�ed framework for enforcing multiple access control poli-

cies. In Proceedings of the ACM SIGMOD international conference on

management of data, pages 474{485, 1997.

[Kec95] Alexander S. Kechris. Classical Descriptive Set Theory. Springer-Verlag,

1995.

[Kuh97] D. Richard Kuhn. Mutual exclusion of roles as a means of implementing

separation of duty in role-based access control systems. In Proceedings of

2nd ACM Workshop on Role-Based Access Control, Fairfax, VA, October

1997.

[Lam91] B.W. Lampson. Protection. In 4th Princeton Symposium on Information

Science and Systems, pages 427{443, 1991.

[Mic98] Brian Michalowski. A constraint-based speci�cation for box layout in

CSS2. In Technical Report UW-CSE-98-06-03, University of Washington,

1998.

[Mof98] Jonathan D. Mo�ett. Control principles and role hierarchies. In Proceed-

ings of 3rd ACM Workshop on Role-Based Access Control, Fairfax, VA,

October 1998.

[MS92] J.A. McDermid and Qi Shi. Secure composition of system. In Proceed-

ings of Annual Computer Security Application Conference, pages 112{122.

IEEE, 1992.

91

[NO99] Matunda Nyanchama and Sylvia Osborn. The role graph model and con-

ict of interest. ACM Transactions on Information and Systems Security,

2(1):3{33, February 1999.

[NP90] M.N. Nash and K.R. Poland. Some conundrums concerning separation of

duty. In Proceedings of IEEE Symposium on Security and Privacy, pages

201{207, Oakland, CA, May 1990.

[PM94] Rita Pascale and Joseph McEnerney. Using THETA to implement access

controls for separation of duties. In Proceedings of 17th NIST-NCSC

National Computer Security Conference, pages 47{55, 1994.

[Rut97] Charles B. Rutstein. Windows NT Security. McGraw-Hill, 1997.

[SA98a] Ravi Sandhu and Gail-J. Ahn. Decentralized group hierarchies in UNIX:

An experiment and lessons learned. In Proceedings of 21st NIST-NCSC

National Information Security Conference, pages 486{502, Crystal City,

VA, October 1998.

[SA98b] Ravi Sandhu and Gail-J. Ahn. Group hierarchies with decentralized user

assignment in Windows NT. In Proceedings of IASTED Conference on

Software Engineering, pages 352{355, Las Vegas, NV, October 1998.

[San88] Ravi Sandhu. Transaction control expressions for separation of duties. In

Proceedings of 4th Aerospace Computer Security Conference, pages 282{

286, Orlando, FL, December 1988.

[San90] Ravi Sandhu. Separation of duties in computerized information systems.

In Proceedings of the IFIP WG11.3 Workshop on Database Security, pages

18{21, Halifax, U.K., September 1990.

[San92] Ravi Sandhu. Lattice-based enforcement of chinese walls. Computers &

Security, 11(8):753{763, December 1992.

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer,

26(11):9{19, November 1993.

[San96] Ravi S. Sandhu. Role hierarchies and constraints for lattice-based ac-

cess controls. In Elisa Bertino, editor, Proc. Fourth European Symposium

on Research in Computer Security. Springer-Verlag, Rome, Italy, 1996.

Published as Lecture Notes in Computer Science, Computer Security{

ESORICS96.

92

[San97] Ravi Sandhu. Rationale for the RBAC96 family of access control models.

In Proceedings of the 1st ACM Workshop on Role-Based Access Control.

ACM, 1997.

[San98] Ravi Sandhu. Role activation hierarchies. In Proceedings of 3rd ACM

Workshop on Role-Based Access Control, Fairfax, VA, October 1998.

[SB97] Ravi Sandhu and Venkata Bhamidipati. The URA97 model for role-based

administration of user-role assignment. In T. Y. Lin and Xiaolei Qian,

editors, Database Security XI: Status and Prospects. North-Holland, 1997.

[SBC+97] Ravi Sandhu, Venkata Bhamidipati, Edward Coyne, Srinivas Ganta, and

Charles Youman. The ARBAC97 model for role-based administration of

roles: preliminary description and outline. In Proceedings of 2nd ACM

Workshop on Role-Based Access Control, pages 41{50, Fairfax, VA., Oc-

tober 1997.

[SBM99] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The AR-

BAC97 model for role-based administration of roles. ACM Transactions

on Information and Systems Security, 2(1):105{135, February 1999.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based access control models. IEEE Computer, 29(2):38{

47, February 1996.

[SM98] Ravi Sandhu and Qamar Munawer. How to do discretionary access control

using roles. In Proceedings of 3rd ACM Workshop on Role-Based Access

Control, pages 47{54, 1998.

[SS94] Ravi S. Sandhu and Pierangela Samarati. Access control: Principles and

practice. IEEE Communications, 32(9):40{48, 1994.

[SS97] Ravi Sandhu and Pierangela Samarati. Authentication, access control

and intrusion detection. In Elisa Bertino, editor, The Computer Science

and Engineering Handbook, pages 1929{1948. CRC press, 1997.

[Sut97] Stephen A. Sutton. Windows NT Security Guide. Addison Wesley De-

velopers Press, 1997.

[SZ97] R. T. Simon and M. E. Zurko. Separation of duty in role-based environ-

ments. In Proceedings of IEEE Computer Security Foundations Work-

shop, pages 183{194, Rockport, MA, December 1997.

93

[TS94] Roshan Thomas and Ravi S. Sandhu. Conceptual foundations for a model

of task-based authorizations. In Proceedings of IEEE Computer Security

Foundations Workshop, pages 66{79, Franconia, NH, June 1994.

[Vau95] Robert L. Vaught. Set Theory: An Introduction. Birkhauser, 1995.

[VCP98] Vijay Varadharajan, Chris Crall, and Joe Pato. Authorization in

enterprise-wide distributed system: A practical design and application.

In Proceedings of 14th Annual Computer Security Application Conference,

pages 178{189. IEEE, 1998.

VITA

Gail-Joon Ahn was born on January 18, 1969, in Korea, and is Korean citizen. He

received a B.S. in Computer Science from SoongSil University in Seoul, Korea, in

Februrary of 1994. SoongSil was the �rst university in Korea to have a Computer

Science Department. Ahn received a M.S. in Computer Science from the George

Mason University in Fairfax, Virginia, in January of 1996.

He joined the Laboratory for Information Security Technology in 1996, and has been

actively involved in research in information security. In 1999, he received a doctoral

fellowship to continue his Ph.D. studies from the School of Information Technology

and Engineering at George Mason University. His research interests include access

control, security, distributed objects, and secure information systems.

This dissertation was typeset with LATEX
z by the author.

zLATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth's TEX Program.

94

