
GROUP-CENTRIC SECURE INFORMATION SHARING MODELS

by

Ram Narayan Krishnan
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

Dr. Ravi Sandhu, Dissertation Co-Director

Dr. Daniel A. Menascé, Dissertation Co-Director

Dr. Larry Kerschberg, Committee Member

Dr. Robert P. Simon, Committee Member

Dr. Duminda Wijesekera, Committee Member

Dr. Daniel A. Menascé, Senior Associate Dean

Dr. Lloyd J. Griffiths, Dean, The Volgenau
School of Information Technology and
Engineering

Date: Fall Semester 2009
George Mason University
Fairfax, VA

Group-Centric Secure Information Sharing Models

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ram Narayan Krishnan
Master of Science

New Jersey Institute of Technology, 2003
Bachelor of Science

Pondicherry University, 2002

Co-Director: Dr. Ravi Sandhu, Professor
University of Texas, San Antonio

Co-Director: Dr. Daniel A. Menascé, Professor
Department of Computer Science

George Mason University

Fall Semester 2009
George Mason University

Fairfax, VA

Copyright c© 2009 by Ram Narayan Krishnan
All Rights Reserved

ii

Dedication

To the members of my near and extended family whose never ending love and support
inspired this endeavor.

iii

Acknowledgments

I would like to express my most sincere appreciation and profound gratitude to my advisor
Prof. Ravi Sandhu for his guidance and support from the formative stages of this thesis
to its completion. Learning and working with him has been my most rewarding experience
both professionally and personally. I am further thankful to him for continuing to advice
even after leaving GMU.

I would like to extend my sincere gratitude to my dissertation co-director Prof. Daniel
Menasce and committee members Prof. Larry Kerschberg, Prof. Robert Simon, and Prof.
Duminda Wijesekera for their valuable comments and suggestions. I would also like to
thank them for facilitating smooth completion of this thesis in spite of Prof. Sandhu’s move
to University of Texas at San Antonio. Special thanks to Prof. Menasce for his continued
advice and support by stepping in to act as my dissertation co-director.

I would also like to thank Prof. Jianwei Niu and Prof. William Winsborough of University
of Texas at San Antonio for their immense support and valuable advice that greatly helped
me with many chapters in this thesis.

iv

Table of Contents

Page

List of Tables . viii
List of Figures . ix

Abstract . xi
1 Introduction and Motivation . 1

1.1 Motivation . 4
1.2 Dissertation Scope . 6

1.3 Thesis Organization . 8

1.4 Contributions . 9
2 Background . 12

2.1 PEI Framework . 12
2.2 Linear Temporal Logic . 14

2.3 Model Checking . 15

2.4 Trusted Computing . 16

3 Policy Models For Group-Centric Secure Information Sharing 18

3.1 Formal Specification of g-SIS . 18

3.1.1 g-SIS Language . 18

3.1.2 Core Properties . 21

3.1.3 Consistency and Independence of Core Properties 24

3.1.4 Group Operation Semantics . 26

3.1.5 Formal Analysis . 33

3.1.6 A Family of Fixed Operation g-SIS Models 39

3.1.7 Read-Write g-SIS (single object version) 44

3.1.8 Read-Write g-SIS (object versioning) 46

3.2 Case Study: Inter-Organizational Collaboration 57

3.2.1 Collaboration Scenarios . 58
3.2.2 Formal Specification of Bilateral Inter-Organizational Collaboration 59

3.3 Group-Centric Collaboration Framework . 74

4 Enforcement Models for g-SIS . 81

v

4.1 g-SIS Architecture . 81

4.1.1 System Characterization . 82

4.1.2 System Architecture . 83

4.1.3 Super Vs Micro-Distribution in g-SIS 85

4.1.4 Hybrid Approach Using Split-Key RSA 90

4.2 Stale-safe Security Properties . 92

4.2.1 Stale-safety . 94

4.2.2 Formal Property Specification . 97

4.2.3 Stale-safe Systems . 105

4.3 Formal Verification of Stale-Safety . 106

4.3.1 Notations and Conventions . 106
4.3.2 Modeling g-SIS . 107

4.3.3 Weak Stale-Safe TRM . 113
4.3.4 Strong Stale-Safe TRM . 114

5 TPM Protocols and Implementation Model for g-SIS 116

5.1 TPM Based Protocols . 117
5.1.1 Protocols for SD Model . 117
5.1.2 Protocols for Hybrid Model . 121

5.2 Implementation Model Overview . 125

5.2.1 g-SIS Trusted Execution Environment 126

5.2.2 Access Control For Group Credentials 127

5.2.3 Proof-of-Concept . 128

6 End Note . 138
A Proof of Consistency and Independence Theorems 144

A.1 Consistency Theorem . 144

A.2 Proof of Independence Theorem . 148

B Proof of Entailment Theorems . 156
B.1 Proof of Mixed Operations and Membership Renewal Semantics Entailment

Theorems . 156
B.2 Proof of Most Restrictive Entailment Theorem 158

C Stale-Safety Verification . 162

C.1 Description of Code . 162

C.2 Counter-Examples . 164

C.2.1 Verification against ∆0-system . 164

C.2.2 Verification against ∆1-system . 168

vi

C.2.3 Verification against ∆2-system . 170

Bibliography . 171

vii

List of Tables

Table Page

2.1 Intuitive summary of temporal operators used in this dissertation 14

3.1 Summary of group membership semantics 28

3.2 Summary of group membership renewal semantics 31

3.3 Summary of group operations . 51

3.4 Attribute Definitions . 62
3.5 Administrative model . 65
3.6 Administrative model (continued) . 68

3.7 Operational model . 71

3.8 Operational model (continued) . 73

3.9 Informal Policy model for the 3 usage scenarios based on the framework . . 79

4.1 Comparison of SD, MD and Hybrid approach in g-SIS architecture. 89

5.1 Summary of TRM design . 134

5.2 Summary of CC design . 136

viii

List of Figures

Figure Page

1.1 User Membership States. 6

2.1 The PEI framework. 13
3.1 User Operations Illustration. 27

3.2 Object Operations Illustration. 27

3.3 Formula λ1. 36

3.4 Cases when Add occurs prior to Join. 37

3.5 Formula λ2. 37

3.6 A family of g-SIS models: The cartesian product of User and Object Model

results in a lattice of 16 g-SIS models with fixed operation types. 40

3.7 Reduced lattice with 8 fixed operation g-SIS models. 41

3.8 External Object Lifecycle I. 48

3.9 External Object Lifecycle II. 48

3.10 Internal Object Lifecycle I. 49

3.11 Internal Object Lifecycle II. 50

3.12 Each entry gives the operation name followed by its principal target (specified

in further detail in the subsequent tables). Operations labeled over arcs be-

long to the administrative model and those within the group or organizations

(all identical) belong to the operational model. 60

3.13 Begin Collaboration Phase. 75

3.14 Collaboration Phase. 76
3.15 End Collaboration Phase. 78
4.1 g-SIS Architecture. 84

4.2 Super-distribution in g-SIS. 86

4.3 Micro-distribution in g-SIS. 87

4.4 Hybrid approach in g-SIS. 90

4.5 Staleness Illustration. 96
4.6 Events on a time line illustrating staleness leading to access violation. . . . 96

4.7 Ideal Access Policy (AuthzCC). 99

ix

4.8 Approximate Access Policy (AuthzTRM). 100

4.9 Formula ϕ0. 100

4.10 Formula ϕ1. 101

4.11 Formula ϕ2. 101

4.12 Independent FSMs modeling the g-SIS architecture. The TRM machine,

TRM0, is not stale-safe. 110

4.13 TRM1: This TRM machine satisfies weak stale-safety. 113

4.14 TRM2: This TRM machine satisfies strong stale-safety. 115

5.1 Join (steps 1.1-1.4 in figure 4.1). 118

5.2 Add (steps 2.1-2.2 in figure 4.1). 119

5.3 Object Read (step 3 in figure 4.1). 120

5.4 Refresh (Steps 4.1-4.2 in figure 4.1). 121

5.5 Leave (steps 5.1-5.2 in figure 4.1). 121

5.6 Remove (steps 6.1-6.2 in figure 4.1). 122

5.7 Join (steps 1.1-1.4 in figure 4.1). 123

5.8 Add (steps 2.1-2.2 in figure 4.1). 124

5.9 Object Read (first time). 124

5.10 Object Read (subsequent accesses). 125

5.11 g-SIS implementation model. 126

5.12 g-SIS Credentials Access Control. 127

5.13 Proof-of-Concept: Provisioning protocol overview. 129

5.14 SIGMA protocol for authentication. 129

6.1 BLP in MGF. 140
6.2 Mission Groups within organization A. 142

x

Abstract

GROUP-CENTRIC SECURE INFORMATION SHARING MODELS

Ram Narayan Krishnan, PhD

George Mason University, 2009

Dissertation Co-Director: Dr. Ravi Sandhu

Dissertation Co-Director: Dr. Daniel A. Menascé

In this dissertation, we introduce a novel approach for secure information sharing

characterized as “Group-Centric”. Traditional approaches to information sharing include

“Dissemination-Centric” and “Query-Centric” sharing. “Dissemination-Centric” sharing

focuses on attaching attributes and policies to an object as it is disseminated from produc-

ers to consumers in a system. In “Query-Centric” sharing, information seekers construct

appropriate queries to obtain authorized information from the system. The primary fo-

cus of this mode of sharing has been on preventing inference of unauthorized information

from authorized information obtained by querying a database. In contrast, Group-Centric

sharing envisions bringing the users and objects together in a group to facilitate sharing for

some purpose. The metaphors “secure meeting room” and “subscription service” character-

ize the Group-Centric approach where participants and information come together to share

for some common purpose and authorizations depend upon relative membership period of

users (participants) and objects (information).

In this dissertation, we follow the Policy, Enforcement and Implementation (PEI) frame-

work to develop respective models for Group-Centric Secure Information Sharing (g-SIS).

The PEI framework facilitates security policy and design decisions to be made at three

distinct yet related layers of secure systems design. At the policy layer, we develop the

foundations for a theory of g-SIS by characterizing a set of core properties and specifying

a family of models. We focus on semantics of group operations: Join and Leave for users

and Add and Remove for objects, each of which can have several variations. We use Linear

Temporal Logic (LTL) to characterize the core properties of a group in terms of these

operations. We also characterize additional properties for specific types of these operations.

We specify the authorization behavior for a family of g-SIS models and prove that these

models satisfy the core g-SIS properties.

At the enforcement layer, we specify an architecture for g-SIS based on super-

distribution, micro-distribution and a hybrid object distribution model. As we will see, the

hybrid model addresses the limitations of super-distribution and micro-distribution model.

Further, we characterize and define the problem of “stale-safety” in g-SIS. In a distributed

system such as g-SIS, “stale-safety” is concerned with enforcing safe authorization behavior

given that authorization decisions will inevitably be made based on stale attribute informa-

tion. Attribute staleness arises due to the physical distribution of authorization information,

decision and enforcement points. While it may not be practical to eliminate staleness, we

can limit unsafe access decisions made based on stale authorization information such as

user and object attributes. We propose and formally specify stale-safe security properties

of varying strength. Again, we use LTL to formalize these properties allowing them to be

verified using automated techniques such as model checking. We model the authorization

information, decision and enforcement points of the g-SIS system as finite state machines

and verify using model checking that the model satisfies the stale-safe security properties.

Finally, at the implementation layer, we discuss Trusted Computing Technology based

protocols and models for g-SIS. A fundamental requirement for g-SIS is that protection

needs to extend to clients. Trusted Computing Technology provides a hardware root of

trust through the Trusted Platform Module (TPM). A Trusted Reference Monitor (TRM)

on client platforms faithfully enforces group policies. We provide concrete TPM based

protocols and outline an implementation model to realize the enforcement models discussed

earlier. As a proof-of-concept, we implement a critical protocol, called the provisioning,

protocol that is concerned with secure provisioning of group credentials on user’s platform.

At the end of the protocol, the group credentials will only be accessible to the TRM in the

user’s platform in a trustworthy platform state.

Chapter 1: Introduction and Motivation

Secure Information Sharing (SIS) or sharing information while protecting it is one of the

earliest problems to be recognized in computer security, and yet remains a challenging prob-

lem to solve. The application scenarios of SIS are endless ranging from revenue centric retail

Digital Rights Management (DRM) and sensitivity centric intellectual property to national

security centric secret information. Post 9/11, the need-to-share principle has supplanted

the traditional need-to-know which caused failure to “connect the dots.” In our information

age, businesses collaborate not only with allies, but also with competitors. For the individ-

ual citizen, modern health care requires timely sharing of medical information amongst care

providers while maintaining privacy. The explosive phenomena of social networking enables

individuals to interact without geographic barriers, but with an expectation of security and

privacy.

In all of these cases, we see the need to “share but protect.” In this dissertation, we

introduce the theory of Group-Centric SIS (g-SIS) and develop formal models for g-SIS. In-

tuitively, users and information come together in a group to facilitate sharing. We identify

two metaphors: a secure meeting room and a subscription service. A meeting room brings

people together to “share” information for some common purpose. The purpose can range

from collaboration on a specific goal-oriented task (such as designing a new product or

merger and acquisition) to participation in a shared activity (such as a semester long class)

to a dynamic coalition (such as a mission-oriented group driven towards completion of a

particular task). The subscription metaphor speaks to potentially larger scale sharing with

a publisher disseminating information to subscribers who in turn participate in blogs and

forums. We show that these simple and familiar metaphors enable a rich space of policies

1

that will be systematically investigated. In particular, we show that the temporal interac-

tions of users joining and leaving the group and information being added and removed is

critical to determination of who can see what in the group.

Secure meeting room: In general, a meeting room has the notion of simultaneous pres-

ence of participants engaged in the meeting. Visualize a conversation room (albeit virtual)

where users may join, leave and re-join, but only hear the conversation occurring during

their participation period. Users bring objects (e.g. documents) to this room wherein they

are asynchronously accessible to participants from different stakeholders and third-party

agents. Users’ participation may be intermittent as influenced by their availability, need to

know, etc. Let us consider some example scenarios:

Program committee meeting: Typically committee members are restricted to conversa-

tions occurring in their presence. Alice, a committee member, may be excused from the

room when her paper or proposal is being discussed and may re-join after that discussion has

concluded. The conversation that occurred during her absence is not accessible to her. In a

different setting, such conversations may be recorded in a smart board and made available

to her on return.

Collaborative product development: Consider collaborative product design between ABC

Corp. and XYZ Corp. Say ABC establishes a group by gathering engineers from across the

company. Certain sensitive documents are provided to these ABC engineers, but are not

accessible to XYZ engineers. Documents created after the XYZ engineers join the group are

shared by both ABC and XYZ engineers. Such documents may represent new intellectual

property during the collaboration period. Moreover, both XYZ and ABC engineers retain

access to such new documents even after leaving the group. In a different consulting scenario,

incoming XYZ engineers may access the sensitive ABC documents during their membership

period, but lose access once the collaboration ends.

Employee stock options: Stock option benefits typically change over time. New employ-

ees only get to see benefits as of their joining and not previously existing ones. Similarly,

2

organizations may share some information with existing employees, but withhold it from fu-

ture employees. In these cases, certain objects are shared only with existing group members

and not with future members. Furthermore, when employees leave the company, they may

be allowed to retain certain information (such as their profile, recommendations, etc.), but

denied access to sensitive proprietary information (such as design documents, code, etc.).

Subscription service: This metaphor speaks potentially to large-scale sharing. Here

access to content may depend upon when the subscription began and the terms of subscrip-

tion.

Magazine Subscription: Consider an online news magazine ABS Corp. that offers four

levels of membership. Level 1 ($10/year) subscribers can access news articles that are

published after they started paying the subscription fee. If they cancel their subscription,

they completely lose access. In addition to Level 1 services, Level 2 ($12/year) subscribers

can retain access to news articles that they paid for even after canceling their subscription.

In addition to Level 2 services, Level 3 ($15/year) subscribers can access rich archives filled

with post-news analysis, predictions, annotations and opinions from experts but lose all

access on cancelling their subscription. Level 4 ($17/year) subscribers, in addition to Level

3 benefits, can view all articles that they had access to before leaving, even after they

discontinue the service.

Secure multicast: In secure multicast [1], typically new members joining the group

cannot access content distributed prior to their join time (backward secrecy). Similarly,

members leaving the group can no longer access any new content (forward secrecy). Thus

access is dependant on when the users join and leave the group.

Clearly, the “secure meeting room” metaphor suggests a smaller scale information shar-

ing scenario whereas “subscription service” indicates a potentially larger-scale. These exam-

ples illustrate two important principles in the group-centric approach. The first principle is

“share but differentiate”. Sharing is enabled by joining and adding information to a group.

Yet, users access is differentiated by the time at which they join and the time at which the

requested information is added to the group, as well as possibly by other attributes. The

3

second principle is the notion of “multiple groups” with possibly overlapping users. The

relationship between these groups can be of any number of varieties familiar to computer

scientists. One well-known structure is that of a hierarchy, where users at a higher level

dominate those at the lower levels. Another common relationship is that of mutual exclusion

where the same user is prohibited from joining conflicting groups.

1.1 Motivation

Traditional access control models do capture certain important SIS aspects but have not

been satisfactory in practice. For example, Discretionary Access Control or DAC [2–4]

captures the notion of owner control. In other words, as owner of an object, the user has

the ultimate authority to decide who can access the object. While this is an important

SIS aspect, DAC is fundamentally limited in that it controls access only to the original

object but not to copies. If objects could be read, one can read and create a copy of this

object. Objects are only protected up to the point when read access is granted to a user.

From then on, the owner loses confidentiality of the object potentially to other unintended

users1. Further, DAC is also too fine-grained in practice since the secure information sharing

responsibility falls on the owner of the information. The system provides no guidance as to

how information can be effectively shared.

Next, Mandatory Access Control or MAC2 models such as that of Bell-LaPadula

(BLP) [6] capture the important notion of information flow. In BLP, information can only

flow from a subject of lower clearance to that of higher clearance and not vice-versa. The

intended objective is that of confidentiality of objects at higher security clearance from that

of subjects executing at lower clearance. This is common in military where, for example,

only Generals can see certain information and not Soldiers and potentially malicious sub-

jects executing with the General’s clearance cannot share information with those executing
1It should be noted that DAC is effective with respect to write controls, since writing to the original

authoritative object is very different from writing to a copy. However, for reading, an up to date copy is as
good as the original.

2In this dissertation, we use the term MAC synonymous to Lattice-Based Access Control [5].

4

with a Soldier clearance. However, such lattice based information flow has proven to be too

rigid in practice for modern information sharing scenarios. For example, the system does

not allow to set up a group of Generals and Soldiers for a specific mission to which other

Generals and Soldiers may not have access3.

The modern concept of Role-Based Access Control (RBAC) [7] can be viewed as an

evolution of access control to simplify administration in organizations bringing in additional

concepts such as hierarchies and constraints. It has also been shown that RBAC is policy

neutral in the sense that it can be configured to enforce both DAC and MAC policies [8].

However, RBAC is too general and does not directly address information sharing. Attribute

based access control models such as that of UCON [9] also suffer from being too general

and providing no explicit framework or guidance for secure sharing.

We can categorize two primary issues in the models discussed so far in the context

of information sharing: Copy Control and Manageability. The traditional approach to

information sharing in the last two decades, which we characterize as Dissemination-Centric,

focuses on attaching attributes and policies to an object as it is disseminated from producers

to consumers in a system. These policies are sometimes described as being “sticky” [10–12].

As an object is disseminated further down a supply chain the policies may get modified,

such modification itself being controlled by existing policies. This mode of information

sharing goes back to early discussions on originator-control systems [13–16] in the 1980s and

Digital and Enterprise Rights Management systems in the 1990s and 2000s. XrML [17] and

ODRL [18] are recent examples of policy languages developed for this purpose. Another

mode of sharing which can be characterized as Query-Centric has primarily focussed on

the problem of inference or de-aggregation [19]. In Query-Centric sharing, information

seekers construct appropriate queries to obtain authorized information from the system.

The primary focus of this mode of sharing has been on preventing inference of unauthorized

information from authorized information obtained by querying a database.
3Compartments are inadequate in practice because it may not be clear in the beginning if the requirement

warrants establishing a new compartment by going through costly administrative processes (since the group

may not be long-lived).

5

Figure 1.1: User Membership States.

While such systems mainly focussed on copy/usage control, the manageability problem

has remained largely unaddressed. Group-Centric sharing differs in that it advocates bring-

ing the users and objects together to facilitate sharing by focussing on semantics of group

operations. We envision that Dissemination and Group-Centric sharing will co-exist in a

mutually supportive manner. For example, objects could be added with “sticky” policies

in a Group-Centric model. Furthermore, from a practical perspective, a complete Group-

Centric information sharing system would exercise advantages of appropriate models such

as DAC, ORCON and RBAC (for owner control, administration, etc.), Lattice Based Ac-

cess Control such as the Bell-LaPadula model (for restricting information flow), UCON (for

dynamic aspects such as rate limiting access), etc.

1.2 Dissertation Scope

There are various aspects to g-SIS such as operational and administrative aspects in a group

and inter-group relationships. Operational aspects include questions such as what are the

characteristics or security properties of a group, what are the semantics of user operations

such as Join and Leave and object operations such as Add and Remove and models with and

without versioning of objects (where a write operation on an object creates a new version of

that object). Administrative aspects include questions such as who authorizes, Join, Leave,

Add, Remove, etc. Finally, it is important to study useful inter-group relationships such as

hierarchical groups, conditional membership, mutual exclusion, etc.

6

Our primary focus in this dissertation is on the operational aspects of g-SIS including

the semantics of the basic group operations and their temporal interactions. We propose

an abstract set of group operations: Join and Leave for users, Add and Remove for objects.

Users may Join, Leave and re-Join the group. This is illustrated in figure 1.1. Similarly,

objects may be Added, Removed and re-Added to the group. Further each of these oper-

ations could be of various types such as Lossy/Lossless, Restorative/Non-Restorative, etc.

For example, in Lossless Join, a joining user never loses access to objects authorized prior

to joining the group. In Restorative Join, the joining user may regain access to objects

authorized during past membership period. Temporal aspects of access control have been

previously studied, where they are introduced as extensions to prior models such as that of

Role Based Access Control (e.g., [20,21]). Temporal aspects in such models typically focus

on when a user can activate his/her authorizations. For instance, a normal user may be

allowed to activate his/her permissions only between 8AM to 5PM while an administrative

user may activate at anytime. Temporal semantics in g-SIS is fundamentally different in

that, we focus on the authorizations enabled depending on the time group operations such

as join, leave, add and remove occur.

We recognize the importance of authorization for these operations. It is clearly not suf-

ficient for a security policy to only specify the semantics of group operations. A complete

model must also specify the authorization for these operations. In simple cases, a distin-

guished group owner may be responsible for all of these operations. More realistically the

authorization will be decentralized and distributed. The problem of decentralized autho-

rization and its administration has been investigated in the access control literature for over

three decades [22–27]. We believe that authorizations concerning the operational aspects

that bear on group membership is a more immediate and novel problem, and this will be

the focus of this dissertation. Without a basic understanding of group operation semantics,

we believe that it would be premature to consider administrative models. Henceforth, we

leave the development of an administrative g-SIS model for future work.

7

Finally, we also perform a case study of the application of g-SIS in a concrete inter-

organizational collaboration scenario. For this specific scenario, we develop an administra-

tive model and operational model. The administrative model specifies authorizations for

various aspects such as establishing a group, joining a group, etc. The operational model

specifies the authorizations for a user to create a subject and exercise his/her privileges in

the group or the organization.

We conclude by exploring inter-group relationships such as membership domination and

conditional membership and perform a case-study of application of such relationships and

operational semantics to promote sharing between different lattices of the Bell-LaPadula

model.

Within the above-mentioned scope, we explore Policy, Enforcement and Implementa-

tion models (PEI models) for g-SIS based on the PEI framework for secure systems design

introduced in [28]. In the policy layer, we formally develop a family of g-SIS models by

specifying a core set of properties that are required of any g-SIS model. We develop various

enforcement models for g-SIS and specify additional enforcement level security properties

that are concerned with making safe authorization decisions in the context of stale autho-

rization information. Finally, we outline an implementation model for g-SIS using Trusted

Computing Technology and implement a provisioning protocol as a proof-of-concept. We

assume that a Trusted Execution Environment exists on the client for a reference monitor

to faithfully enforce group policies.

1.3 Thesis Organization

We begin by providing necessary background in chapter 2 comprising brief reviews of the PEI

framework, Linear Temporal Logic, Model Checking and Trusted Computing Technology.

At the policy layer (chapter 3), we develop the foundations for a theory of g-SIS and

characterize a specific family of models in this arena. We focus on semantics of group

operations: Join and Leave for users and Add and Remove for objects, each of which can

have several variations called types. We use Linear Temporal Logic (LTL) [29] to first

8

characterize the core properties of a group in terms of these operations. We prove the

consistency and independence of these core properties. We then characterize additional

properties for specific types of group operations. We specify the authorization behavior for

a family of g-SIS models and prove that these models satisfy the core g-SIS properties.

At the enforcement layer (chapter 4), we specify an architecture for g-SIS based on

super-distribution, micro-distribution and a hybrid object distribution model. As we will

see, the hybrid model addresses the limitations of super-distribution and micro-distribution

model. Further, we address the problem of “stale-safety” in the g-SIS architecture. As we

will see, g-SIS, like any other distributed system, suffers from access violation due to stale

authorization information. We propose stale-safe security properties of varying strength

and prove using model checking that the g-SIS enforcement model satisfies appropriate

stale-safe properties.

Finally, at the implementation layer (chapter 5), we discuss Trusted Computing Tech-

nology based protocols and models for g-SIS. A fundamental requirement for g-SIS is that

protection needs to extend to clients. Trusted Computing Technology provides a hardware

root of trust through the Trusted Platform Module (TPM). A Trusted Reference Monitor

(TRM) on client platforms faithfully enforces group policies. We outline an implementa-

tion model and provide concrete TPM based protocols to realize the enforcement model

discussed earlier. As a proof-of-concept, we implement one of the protocols, called the pro-

visioning protocol, that is concerned with secure provisioning of group credentials on user’s

platform. At the end of the protocol, the group credentials will only be accessible to the

TRM in the user’s platform in a trustworthy platform state. We conclude in chapter 6.

1.4 Contributions

The contributions of this thesis can be respectively categorized at the Policy, Enforcement

and Implementation layers of Group-Centric Secure Information Sharing design.

9

Policy Layer Contributions

• Major contributions at the Policy layer are as follows:

⇒ A formal model of a single group g-SIS model is developed. This includes formal

characterization of the following:

∗ Identification of a core set of properties that are required of any g-SIS spec-

ification.

∗ Proof of consistency and independence of core properties.

∗ Identification and formal specification of a set of useful group operation

semantics.

⇒ A family of g-SIS specifications, called the π-system, supporting a variety of

g-SIS operation semantics are specified.

⇒ A formal proof that the π-system satisfies the mandatory core g-SIS properties.

• Other contributions include:

⇒ An object versioning model is proposed and the g-SIS core properties are ex-

tended to support versioning.

⇒ A case-study of inter-organizational collaboration with a complete specification

including an administrative and operational model that supports object version-

ing is presented.

⇒ An initial framework for developing more sophisticated models for Group-Centric

sharing is proposed.

Enforcement Layer Contributions

• Major contributions at the Enforcement layer are as follows:

⇒ A set of enforcement level security properties, called stale-safety, is identified and

formalized for g-SIS. These properties ensure that in the proposed distributed

10

g-SIS architecture if a user is able to perform an action on an object, the autho-

rization for that action is guaranteed to have held in the recent past.

⇒ Specification of a complete g-SIS architecture using Finite State Machines (FSM).

⇒ Formal verification of weak and strong stale-safe properties using model checking

against the FSMs.

• Other contributions include:

⇒ A g-SIS architecture supporting super and micro object distribution is proposed.

⇒ A more practical hybrid approach using split-key RSA is specified.

Implementation Layer Contributions At the implementation layer, no fundamental

novelty is claimed. However, since the g-SIS system would not be complete without an

implementation model, a collection of Trusted Platform Module (TPM) based protocols is

specified that realizes the g-SIS architecture. The feasibility of the proposed approach using

standard platforms with TPM is ascertained by means of a proof-of-concept. Specifically,

a critical component called the provisioning protocol is implemented. In the protocol,

an authoritative server securely provisions the group key on the user’s machine in such a

manner that the group key is accessible to a Trusted Reference Monitor only in a trustworthy

platform state. This protocol involves exercising the TPM capabilities extensively and thus

serves as an excellent means for in-depth understanding of the underlying system.

11

Chapter 2: Background

In this section, we provide a brief overview of necessary background on the PEI framework,

Linear Temporal Logic, Model Checking and Trusted Computing which are extensively used

in this dissertation.

2.1 PEI Framework

The Policy-Mechanism separation principle is a well-known approach for secure systems

design and has been recognized as such for many decades (see for example [30]). This de-

coupling allows for building flexible systems that support a wide range of policies. Policy is

concerned with “what” security policy is to be enforced while mechanism is concerned with

“how” the security policy can be realized. While this abstract distinction was sufficient

in the early times when most systems dealt with a single operating system with limited

resources and applications, it has remained a major challenge to close the gap in two steps

in modern complex distributed systems with varying levels of trust and service dependencies.

The Policy, Enforcement and Implementation (PEI) framework [28], illustrated in figure 2.1,

has been recently proposed to close this gap.

In figure 2.1, the Objective layer specifies the desired security and functional objectives

and is necessarily informal. The purpose of the Policy layer is to formally specify the

security objectives. A notable example of a policy model is the lattice model for mandatory

access control [6]. Security policy is specified using users, subjects, objects, roles, groups,

etc. and security analysis at this layer involves verification that desirable high-level security

properties hold in the system. The simple security and star properties for information flow

in the Bell-LaPadula model [6] are examples of such high-level properties that are concerned,

for example, only with subjects and objects and their actions. Note that in the Policy layer

12

Security and system goals

(objectives/policy)

Policy models

Enforcement models

Implementation models

Concrete System

Specified using subjects, objects, admins,

labels, roles, groups, etc. in an ideal setting.

Security analysis (objectives, properties, etc.).

Approximated policy realized using system

architecture with trusted servers, clients, etc.

Enforcement level security analysis (e.g. stale

information due to network latency and its

implication on authorization).

Technologies such as SOA, Cloud, SaaS,

Trusted Computing, MILS, etc. and protocols

Implementation level security analysis (e.g.

vulnerability analysis, penetration testing, etc.)

Necessarily informal

Software and Hardware

Figure 2.1: The PEI framework.

we assume an ideal setting for policy specification and ignore practical realities such as

stale authorization information at a Policy Decision Point in a distributed system due to,

for example, network delay.

The Enforcement layer is concerned with “how” to realize the policy specified in the

Policy layer by specifying system architecture using, for example, trusted servers, third-

party service providers, clients, etc. At this layer, real-world limitations can no longer be

ignored and the models must explicitly address such issues. For example, it is inevitable

that authorization information will be stale at the Policy Decision Point in a distributed

system if only due to network delay. The Enforcement layer should explicitly address how

to limit staleness and set realistic expectations. We strongly believe that it is unrealistic to

expect ideal policy enforcement in most non-trivial systems and thus appropriately name

the policy specified at the Policy layer as Ideal Policy and the one that is enforced in the

Enforcement layer as the Approximate policy. Like the Policy layer, security analysis can

be performed in the Enforcement layer as well. For instance, in this dissertation, we specify

a few enforcement level security properties for stale-safety and successfully verify that our

enforcement model satisfies those properties.

13

Table 2.1: Intuitive summary of temporal operators used in this dissertation
Future/Past Operator Read as Explanation

© Next (© p) means that the formula p holds in the next state.

2 Henceforth (2 p) means that the formula p will continuously hold in

all future states starting from the current state.

Future U Until (p U q) means that q will occur sometime in the future
and p will hold at least until the first occurrence of q.

W Unless (p W q) is a weaker form of (p U q). It says that p
holds either until the next occurrence of q or if q never
occurs, it holds throughout.

-© Previous (-© p) means that formula p held in the previous state.

Past ¨ Once (¨ p) means that formula p held at least once in the past.

S Since (p S q) means that q happened in the past and p held
continuously from the position following the last occur-
rence of q to the present.

The Implementation layer is concerned with closing the final gap between the Enforce-

ment layer and realizing the concrete system. The implementation layer specifies models

accommodating the technologies that will be used for final implementation. Examples of

such technologies include trusted computing using Trusted Platform Module, cloud com-

puting, service-oriented architecture, etc. The last layer, labeled Concrete System, involves

actual implementation and code generation.

2.2 Linear Temporal Logic

In this dissertation, we extensively use Linear Temporal Logic (LTL) [29] for specifying

g-SIS policies and properties. A brief overview of LTL operators used in this dissertation

is given in table 2.1. Temporal logic is a specification language for expressing properties

related to a sequence of states in terms of temporal logic operators and logic connectives

(e.g., ∧ and ∨). Temporal logic operators are of two types: Past and Future. The past

operators -© , ¨ and S (read previous, once and since respectively) have the following

semantics. Formula (-© p) means that the p was true in the previous state. Note that -© p is

false in the very first state. Formula (¨ p) means that the p holds at least once in the past

(i.e., in some previous state). Note that if p is true in the current state, (¨ p) is trivially

14

true. Formula (p S q) means that q held sometime in the past and p has held continuously

following the last occurrence of q to the present. Again, if q is true in the current state,

(p S q) is trivially true (even if p is false in the current state). The future operators ©,

2, U and W (read next, henceforth, until and unless respectively) have the following

semantics. Formula (© p) means that p is true in the next state. Formula (2p) means

that p holds in all future states, including the current state. Formula (p U q) means that q

will occur sometime in a future state and formula p will continuously hold in every state at

least until that future state. If q is true in the current state, (p U q) is trivially true in the

current state (even if p is false in the current state). Finally, the unless operator (W) is a

weaker form of the until operator (U). Formula (p U q) predicts the future occurrence of

q and thus will be false if q never occurs. Formula (p W q), on the other hand, says that

p will hold until the next occurrence of q. But if q never occurs in the future, p will hold

indefinitely.

2.3 Model Checking

Model checking [31,32] is an automated verification technique that analyzes a finite model

of a system (i.e., a finite state machine (FSM) that produces computation traces consisting

of infinite sequences of states) and exhaustively explores the state space of the model to

determine whether desired properties hold in the model. In the case that a property is false,

a model checker produces a counterexample consisting of a trace that violates the property,

which can be used to correct the model or modify the property specification.

SMV [33, 34] is a family of model checking tools based on Binary Decision Diagrams

(BDDs). BDDs represent states very compactly. In SMV, models are represented by using

variables that are assigned values in each step of the FSM. Properties to be checked are

specified by temporal logic [35] formulas. SMV provides built-in finite data types, such as

boolean, enumerated type, integer range, arrays, and bit vectors. In SMV, the initial state

is defined by assigning initial values to state variables. State transitions are specified by

15

assigning values to be assumed by each state variable x in the next state, which is denoted

by next(x). Each such value is given by an expression over variables in either the current

or the next state. The assignments are effectively performed simultaneously to obtain

the subsequent state. SMV allows nondeterministic assignment, i.e., the value of variable

is chosen arbitrarily from the set of possible values. Expression operators !, &, |, and ->

represent logical operators “not”, “and”, “or” and “implies”, respectively. Comments follow

the symbol “- -”. SMV supports macros, which are replaced by their definitions, so they do

not increase the system’s state space.

2.4 Trusted Computing

Trusted Computing Technology is an industry standard proposed by the Trusted Computing

Group (TCG) [36]. It is widely accepted that software only mechanisms cannot provide high

assurance. This motivated TCG to provide a root of trust at the hardware level through

a security chip called the Trusted Platform Module (TPM). The technology has evolved

to a great degree now and we only provide a very brief overview here. The TPM mainly

offers three novel features: Trusted Storage for keys, Trusted Capabilities and Platform

Configuration Registers (PCR’s) for storing integrity measurements.

Trusted Storage for keys is provided by encrypting user’s keys with a chain of keys. The

root key called Storage Root Key (SRK), at the top of the chain is stored within the TPM

and is not accessible outside the TPM. The private part of SRK never leaves the TPM.

SRK can be used to encrypt data (keys or arbitrary blob) that can later be decrypted only

with the same TPM. A chain of keys can be created (keys in the leaves encrypted with the

parent and so on and so forth) where the root key is SRK.

A TPM has many hardware Platform Configuration Registers (PCR). A PCR is a

register that is capable of holding 160-bit SHA1 hash values. The idea is that as a machine

boots up, all the software that are loaded is measured in sequence thus resulting in a final

160-bit SHA1 hash value that reflects the specific boot sequence and the state of software

16

loaded in the main memory of the machine. This value is registered in the PCR and may

be reported to a remote entity which can verify the trustworthiness of the machine by

comparing with a well-known PCR value.

Trusted Capabilities are capabilities exposed by the TPM that are guaranteed to be

trustworthy. Users cannot modify the behavior of these capabilities.

Seal is a trusted capability exposed by the TPM. In the simplest case, a seal operation

takes a key or a data blob and appends it to a PCR value and encrypts it using the SRK.

This secret can later be unsealed only if the current PCR value in the TPM is same as

the value mentioned the sealed blob. Thus a seal operation allows an entity to specify the

software environment under which a blob may be accessed by any entity in a platform.

CertifyKey is another trusted capability where a public part of a key-pair and the

PCR value under which the private counterpart may be accessed, is collectively signed

using the TPM. If (Ppriv, Ppub) is an asymmetric key pair, then a certify key operation,

{Ppub||PCR} Sign, means that a) Ppriv is protected using the SRK, b) Ppriv is non-

migratable, i.e., it cannot be used in any other platform other than the TPM that created

it, and c) Ppriv is sealed to a software state of PCR. Thus any external entity can en-

crypt a secret using Ppub with the assurance that the secret can be decrypted only under a

trustworthy platform software state reflected by PCR.

17

Chapter 3: Policy Models For

Group-Centric Secure Information Sharing

In this chapter, we develop the foundations for g-SIS by specifying policy models based on

the PEI framwork [28]. We discuss and formally specify the core g-SIS properties, group

operation semantics and g-SIS specifications.

3.1 Formal Specification of g-SIS

In this section, we present a collection of core properties that must be satisfied by all

g-SIS specifications. After that, we discuss several candidate g-SIS operation semantics

and provide specifications for a specific family of these operation semantics. We begin by

defining the g-SIS language below.

3.1.1 g-SIS Language

We use Linear Temporal Logic (LTL) to characterize g-SIS properties and specifications.

A brief overview of temporal operators used in this dissertation is given in table 2.1. To

formalize the LTL language we use and its semantics, suppose U is a finite set of users, O

is a finite set of objects, G is a finite set of groups and R is a finite set of actions, such as

read and write. We do not introduce subjects in the model which will be needed in more

elaborate models presented in this dissertation1. Let P be a set of predicates over sorts

U , O, G and/or R, and let {A,B} be a partition of P . Predicates in A are called actions

and intuitively encode actions or events that occurred in the transition to the current state.
1Note that a user is a representation of a human in the system and the user may create various sub-

jects (programs/processes) that execute on his/her behalf. For specification of the core properties, the
authorization of subjects need not be distinguished from that of the users who control them.

18

Predicates in B are used to encode aspects of a given state, such as operations that are

authorized or not authorized. We let F be the set of atomic formulas obtained by applying

a predicate p ∈ P to a list of arguments of the appropriate number and sorts. LTL formulas

are constructed from F by applying logical connectives and temporal operators in the usual

way.

For the purpose of this dissertation, a g-SIS language is required to satisfy the following

(the language represented here should be a sub-language of any elaborate g-SIS language

designed in the future). It must include a collection of join-group events, leave-group events,

add-object events, and remove-object events: A = {joini|1 ≤ i ≤ m} ∪ {leavei|1 ≤ i ≤
n} ∪ {addi|1 ≤ i ≤ p} ∪ {removei|1 ≤ i ≤ q}, B = {Authz}, and R = {r, w} , where r and

w refer to the right to exercise “read” and “write” operations respectively. Also, an atomic

formula in a g-SIS language should be formed in the natural way: for all u ∈ U , o ∈ O,

g ∈ G, op ∈ R, joini(u, g), addi(o, g), . . . , Authz(u, o, op) ∈ F .

Formally, a state is a function from variable-free atomic formulas F into the set

{True, False}. We use Σ to denote the set of all states. A trace σ is an infinite sequence

of states, that is, it is an ω-sequence in Σω. In the following, we often wish to write sub-

formulas that state, for example, some type of join event occurs. It is therefore convenient

to introduce the following notation:

Join(u, g) = (join1(u, g) ∨ join2(u, g) ∨ ... ∨ joinm(u, g))

Leave(u, g) = (leave1(u, g) ∨ leave2(u, g) ∨ ... ∨ leaven(u, g))

Add(o, g) = (add1(o, g) ∨ add2(o, g) ∨ ... ∨ addp(o, g))

Remove(o, g) = (remove1(o, g) ∨ ... ∨ removeq(o, g))

Note that Join (u, g) holds in a state just in case the transition to the state is a Join

event. The properties we consider treat the authorization a user has to access an object

independent of actions involving other users and objects. Thus, it is often convenient to

19

omit the parameters in all of the predicates. For instance, when we write Authz → (Join ∧
(¬(Leave ∨ Remove) S Add)) we mean ∀u ∈ U.∀o ∈ O.∀op ∈ R.∀g ∈ G.Authz(u, o, op) →
(Join(u, g) ∧ (¬(Leave(u, g) ∨ Remove(o, g)) S Add(o, g))). Note that Join, Leave, Add,

Remove and Authz, all refer to the same set of u, o and g. In addition to using this

notation in formulas, we continue to use these words to informally refer to intuitive notions

of corresponding operations.

Well-Formed Traces We now introduce a few formulas that define well-formed g-SIS

traces. A trace in g-SIS is a sequence of group events such as Join, Leave, Add and Remove.

The well-formedness constraints specify how and in what order such events may occur.

A. An object cannot be Added and Removed and a user cannot Join and Leave in the same

state. Note that here and below we introduce names of the form τj for each of the formulas

for later reference. The equality introduces shorthands for the respective formulas.

τ0 = 2(¬(Add ∧ Remove) ∧ ¬(Join ∧ Leave))

B. For a given user/object, two types of the same operation cannot occur in the same state.

τ1 =∀i, j. 2((i 6= j) → ¬(joini ∧ joinj)) ∧ ∀k, l. 2((k 6= l) → ¬(leavek ∧ leavel)) ∧

∀m,n. 2((m 6= n) → ¬(addm ∧ addn)) ∧ ∀p, q. 2((p 6= q) → ¬(removep ∧ removeq))

C. If a user u joins a group, u cannot join again unless u first leaves the group. A similar

rule applies for Add and Remove.

τ2 =2(Join →© (¬Join W Leave)) ∧2(Leave →© (¬Leave W Join))∧

2(Add →© (¬Add W Remove)) ∧2(Remove →© (¬Remove W Add))

20

D. A Leave event cannot occur before Join. Similarly an object cannot be removed from

the group before adding.

τ3 = 2(Leave → ¨Join) ∧2(Remove → ¨Add)

The language we defined above allows us to develop g-SIS specifications which formally

define the precise conditions under which authorization can hold. A g-SIS specification is

syntactically correct if it is stated in terms of joins, leaves, adds and removes and satisfies

the well-formedness constraints. We formally define the requirements for the syntactic

correctness of a g-SIS specification.

Definition 3.1 (Syntactic Correctness). A g-SIS specification is syntactically correct if it

is of the form:

γ = ∀u ∈ U.∀o ∈ O.∀op ∈ R.∀g ∈ G.2(Authz(u, o, op) ↔ ψ(u, o, g)) ∧
∧

0≤i≤3

τi

in which ψ is an LTL formula constructed by using temporal operators and predicates in

A, and the conjunction τi specifies the well-formedness requirements of a g-SIS trace.

A g-SIS specification is semantically correct if it satisfies the core properties specified

below.

3.1.2 Core Properties

We specify the Core properties, all of which must be satisfied by any g-SIS specification.2

Subsequently, we specify a few useful additional optional properties. We specify the core

properties with the assumption that Join, Leave, Add and Remove are the only events that

influence authorization in g-SIS. In the future, these properties can be extended to models

involving additional aspects (e.g. attributes of users and objects).
2Note that each of these formulas defines a safety property [37] in the sense that any trace that does not

satisfy the property can be recognized as such by examining a finite prefix of the trace.

21

In the following, we specify the properties for a read-only g-SIS model. In the subsequent

sections, we extend these properties to accommodate write operations in g-SIS. Thus Authz

in the following formulas refers to a user’s authorization to perform a read operation on the

object in question.

1. Persistence Properties: These properties consider the conditions under which autho-

rization may change.

Authorization Persistence: When a user u is authorized to access an object o, it

remains so at least until a group event involving u or o occurs.3

ϕ0 = 2(Authz → (Authz W (Join ∨ Leave ∨Add ∨ Remove)))

Revocation Persistence: When a user u is not authorized to access an object o, it

remains so at least until a group event involving u or o occurs.

ϕ1 = 2(¬Authz → (¬Authz W (Join ∨ Leave ∨Add ∨ Remove)))

A generalized statement of these properties may be “Authorization does not change

unless an authorization changing event occurs.” With this generalization, we believe

persistence property is required of all access control systems. The following prop-

erties are more specifically targeted at g-SIS. They seek to recognize the additional

authorizations enabled and disabled by group membership and non-membership re-

spectively.

2. Authorization Provenance: Intuitively, a user will not be authorized to read an ob-

ject until a point at which both the user and object are simultaneously group members.

ϕ2 =(¬Authz W (Authz ∧ (¬Leave S Join) ∧ (¬Remove S Add)))

3As we will see later, authorization may no longer hold even when certain variations of authorization
enabling events such as Join and Add occur.

22

Two important observations can be made from formula ϕ2. First, if Authz holds in

a given state then there was an overlapping period of membership between the user

and object at least once in the past. Next, authorization to read an object cannot

begin for the first time during a user’s non-membership period (that is, only joining

a group can enable authorization).

3. Bounded Authorization: These properties require that authorizations not increase

during non-membership periods of users and objects (note that authorizations may

decrease). Authorizations that hold during the non-membership period of users and

object should have held at the time of Leave and Remove respectively.

Bounded User Authorization: The set of all objects that a user can access during

non-membership period is bounded at Leave time. This set cannot grow until the

user re-joins.

ϕ3 = 2((Leave ∧ ¬Authz) → (¬Authz W Join))

The above property states that additional authorizations cannot be granted to a user

during non-membership period. Any object that is accessible after Leave should have

been authorized at the time of Leave.

Bounded Object Authorization: The set of all users who can access a removed object

is bounded at Remove time, which cannot grow until re-Add.

ϕ4 = 2((Remove ∧ ¬Authz) → (¬Authz W Add))

4. Availability: Availability specifies the conditions under which authorization must suc-

ceed.

ϕ5 = 2(Join → ((Add → (Authz W (Leave ∨ Remove))) W Leave))

23

This property states that after a user joins a group, any object that is added subse-

quently should be authorized. Obviously, the user should be a current member when

the object in question is added.

We believe that properties ϕ0 to ϕ4 are truly core and foundational and will apply

to sophisticated g-SIS models beyond those that will be studied and formalized in this

dissertation. We expect that property ϕ5 may need to be relaxed in situations where

selective access within a group is required. For instance, a user may be required to belong

to a particular role in addition to being a group member in order to access the object4.

Hence adding an object may not always guarantee immediate access to existing group

users. Finally, whether or not additional core properties are desirable remains an open

question. Since these core properties are required of any g-SIS model, a g-SIS specification

is semantically correct only if it satisfies all of these core properties. We define this below:

Definition 3.2 (Semantic Correctness). A g-SIS specification γ is semantically correct if:

γ ²
∧

0≤i≤5

ϕi

Thus, in summary, a g-SIS specification must obey the well-formedness requirements

(syntactic correctness, definition 3.1) and the core properties (semantic correctness, defini-

tion 3.2).

3.1.3 Consistency and Independence of Core Properties

In this section, we answer two important questions about the g-SIS core properties. First,

are the core properties consistent and thus are satisfiable by some g-SIS specification? In

other words, is there at least one well-formed trace in which all the core properties hold?

Next, are the core properties independent? That is, is it possible to prove or refute one of

the properties from the rest? If not, the core properties are independent. In other words,
4Such a property may be characterized by specifying that two users with the same attributes joining a

group at the same time will have the same authorizations both before and after joining the group.

24

the core properties specify the requirements of orthogonal aspects of g-SIS. We state these

two theorems and formally prove that the core properties are both consistent and mutually

independent. We use model checking to prove these theorems.

Theorem 3.1 (Consistency). The g-SIS core properties are satisfiable. More precisely,

there is a well formed trace that satisfies them all. Formally stated,

there exists a σ ∈ Σω such that σ |=
∧

i∈[0..3]

τi ∧
∧

j∈[0..5]

ϕj

Recall from section 3.1.1 that in the g-SIS language, Σ refers to the set of all possible

traces of group events such as Join, Leave, Add and Remove. The Consistency theorem

states that there exists such a trace that is well-formed in which the all the core properties

hold.

We utilize the model checker NuSMV [34] to prove this theorem. Model checking is an

automated formal analysis approach that takes a finite model of a system and its properties

written in temporal logic formulas as input and determines whether the properties hold

in the system. In the case that a property fails to hold, a model checker produces a

counterexample consisting of a trace that shows how the failure can arise and can be used

to correct the model or the property specification.

A NuSMV model describes how variables can be modified in each step of a system

execution. The model is specified using NuSMV. We discuss the code for the model and

results in appendix A.1. Here, the NuSMV model is expressed in terms of events Join, Leave,

Add and Remove (declared as boolean variables) that are allowed to occur concurrently in

a non-deterministic manner. The theorem is expressed as an implication having the well-

formed traces (the τ ’s) in the antecedent and the conjunction of core properties as the

consequent. NuSMV takes the model and the LTL formula and determines whether the

formula holds. The output from NuSMV in appendix A.1 shows that the LTL formula

holds against the model, thus proving the Consistency Theorem.

25

Theorem 3.2 (Independence). The g-SIS core properties are mutually independent. That

is the following two formulas are satisfiable:

∀i ∈ [0..5]. ¬((
∧

k∈[0..3]

τk ∧
∧

i6=j,j∈[0..5]

ϕj) → ϕi) (3.1)

∀i ∈ [0..5]. ¬((
∧

k∈[0..3]

τk ∧
∧

i6=j,j∈[0..5]

ϕj) → ¬ϕi) (3.2)

The above theorem states that it is neither possible to prove nor refute any one of the

core properties if the remaining core properties are known to be true. That is, each core

property states an orthogonal aspect of g-SIS. Again, the proof is discussed in appendix A.2.

Note that equation (3.2) follows immediately from Theorem 3.1.

3.1.4 Group Operation Semantics

In this section and the following, we discuss a few additional properties that are based on

specific variations of group operations. Unlike the core properties, all g-SIS specifications

are not required to satisfy these properties. Instead, these properties define certain group

operation semantics that are useful for many applications. So only some g-SIS specifications

at the designers discretion will be required to conform to these properties.

Membership Semantics

Membership Properties characterize the semantics of authorizations enabled when a user

joins or an object is added and those which are disabled when a user leaves or an object

is removed from the group. Later, we consider properties when a user or an object is

re-admitted to the group, characterized as Membership Renewal Properties.

Strict Join (SJ) Vs Liberal Join (LJ): In SJ, the joining user may only access some or

all of the objects added after Join time. LJ additionally allows the user to access some or

all of the objects that were added prior to join time. Suppose that in figure 3.1 the second

Join (u1, g) is an SJ. Then u1 can access o4 and o5 but cannot access o2 and o3. If the Join

26

Figure 3.1: User Operations Illustration.

Figure 3.2: Object Operations Illustration.

was an LJ instead of SJ, u1 can also access o2 and o3. This can be formalized by requiring

that joini, a type of Join, would be admitted as SJ only if it satisfies α0 stated in table 3.1.

In a g-SIS specification with LJ, there exists at least one well-formed trace for which Authz

does not satisfy α0.

Strict Leave (SL) Vs Liberal Leave (LL): In SL, the leaving user loses access to all

objects. In LL, the leaving user may retain access to some or all of the objects authorized

prior to Leave time. In figure 3.1, on SL, u1 loses access to all group objects (o1 and o2)

authorized during the membership period. An LL will allow u1 to retain access to o2 (and

possibly o1, depending on the type of Remove of o1). A type of Leave, leavei, would be

admitted as SL only if it satisfies α1 stated in table 3.1. In a g-SIS specification with LL,

there exists at least one well-formed trace that does not satisfy α1.

Strict Add (SA) Vs Liberal Add (LA): In SA, the added object may only be accessed by

only some or all of the users who joined before Add time. In LA, the added object may also

27

Table 3.1: Summary of group membership semantics
Operation Explanation Property

Strict Join (SJ) Only objects added after join
time can be accessed

α0 = 2(Authz → ¨(Add ∧ (¬Leave S joini)))

Liberal Join (LJ) Can access objects added before
and after join time

There exists a well-formed trace that does not
satisfy α0

Strict Leave (SL) Lose access to all objects on
leave

α1 = 2(Authz → (¬leavei S Join))

Liberal Leave
(LL)

Retain access to objects autho-
rized before leave time

There exists a well-formed trace that does not
satisfy α1

Strict Add (SA) Only users who joined prior to
add time can access

α2 = 2(addi → (¬¨Join → (¬Authz W Add)))

Liberal Add (LA) Users who joined before or after
add time may access

There exists a well-formed trace that does not
satisfy α2

Strict Remove
(SR)

All users lose access on remove α3 = 2(removei → (¬Authz W Add))

Liberal Remove
(LR)

Users who had access at remove
time retain access

There exists a well-formed trace that does not
satisfy α3

be accessed by some or all of the users that join (e.g., LJ) later. If Add (o2, g) in figure 3.2

is an SA, only u1 can access the object. Users u2 and u3, joining later, cannot access this

object. But on LA current user u1 and future users u2 and u3 may access o2. A type of

Add, addi, would be admitted as SA only if it satisfies α2 stated in table 3.1. In a g-SIS

specification with LA, there exists at least one well-formed trace that does not satisfy α2.

Strict Remove (SR) Vs Liberal Remove (LR): In SR, the removed object cannot be

accessed by any user. In LR, some or all of the users who had access at Remove time may

retain access (of course, users joining later are not allowed to access the removed object—

this respects the Authorization Provenance core property). In figure 3.2, if Remove (o1, g)

is an SR, every group user (including u1) loses access to o1. If Remove (o1, g) is an LR,

u1 can continue to access o1. However u2 and u3 will not have access to o1. A type of

Remove, removei, would be admitted as SR only if it satisfies α3 stated in table 3.1. In a

g-SIS specification with LR, there exists a well-formed trace that does not satisfy α3.

28

Membership Renewal Semantics

Membership Renewal Properties characterize what, if any, authorizations from previous

membership period(s) are enabled or disabled when users re-join and subsequently leave

the group. In the meeting room metaphor, Alice may leave the room and re-enter later.

These properties are concerned with her authorizations from her previous sessions in the

room and its continuity when she leaves the room again. As the name implies, these

properties are applicable only to returning users and are discussed below.

Unlike Membership Properties, these properties apply only to users and not to objects

since a user may have authorizations from past membership periods at re-Join time. Since

the Renewal Properties are concerned about the status of such authorizations, a decision

needs to be made for the user at re-Join time. Objects, being a passive entity, do not have

past authorizations and hence renewal decisions need not be made at re-Add time5.

Lossless Vs Lossy Join: In Lossless Join, a re-joining user does not lose authorization(s)

held immediately prior to re-joining. A Join operation that causes a user to lose some or

all prior authorizations is called Lossy. Suppose in figure 3.1 u1 retains access to o2 at the

time of Leave (due to LL for example). When u1 re-joins subsequently, in a Lossless Join

(regardless of whether it is a SJ or LJ), access to o2 will not be revoked. If access to o2

is revoked by re-joining the group, the Join is Lossy. Formula β0 (table 3.2) characterizes

Lossless Join. In a g-SIS specification with Lossy Join, there exists at least one well-formed

trace that does not satisfy the above property.

A Lossy Join is useful in scenarios when authorizations from past membership and those

from the new membership are in conflict of interest. For example, if a student registers for

a course, drops after the mid-term and re-registers the following semester, he/she may be

required to relinquish access to exercise solutions and other materials from past enrollment.

The student would be given a Lossy Join in this scenario.

Non-Restorative Vs Restorative Join: In a Non-Restorative Join, authorizations from

past membership periods may not be explicitly restored at the time of re-join. On the
5Note that for certain applications, it may be useful to consider equivalent semantics of object operations.

29

other hand, a Restorative Join explicitly restores authorizations from past membership

periods. Suppose in figure 3.1 when u1 leaves, SL is applied and SJ is applied on re-join. A

Restorative SJ in this scenario will allow u1 to re-gain access to o2 (and possibly o1) from

past membership period. Note that the notion of Restorative LJ is subtle but important.

Suppose o1 was removed with LR and an SL is applied at the time of Leave. In this case, u1

will continue to access o1 until the time of Leave. If LJ is applied on re-join, a Restorative

LJ will allow u1 to re-gain access to o1, but a Non-Restorative LJ will not.

Formalizing Non-Restorative Join is complicated because we want our characterization

to be independent of the exact semantics of the Join operation in question. Intuitively, we

want to require that the Non-restorative Join does not add any authorizations that it would

not have added if the user had a different history. However LTL does not enable one to

compare different traces. The solution we take is to consider two different users within a

single trace. Because the two users can have different histories with the same trace, this

strategy enables us to formalize the property. We first state two formulas ρ1 and ρ2 which

will then be used to specify the property β1 as shown in table 3.2.

In formula ρ1, users u1 and u2 both join the group at the same time by means of the

same type of Join. Further, it looks at a case where u1 is authorized to access an object in

the current state and u2 is not. ρ2 says that this should also be the case in the previous

state (and vice-versa). The Non-Restorative Join property is characterized by formula β1.

It states that if two users Join the group at the same time with the same type of Join, then

any difference in access at Join time is the result of some operation prior to the current Join

operation. Let us use formula ρ2 to understand the intuition. Because both u1 and u2 Join

at the same time with same type, any access that is necessarily enabled by this Join for u1,

would also be enabled for u2. Any additional access that u1 may have that u2 does not

have could arise only because u1 had access to that object before joining the group. This

captures the fact that access is not restored from past but is a consequence of the type of

Leave operation applied to the user when he/she left the group.

30

Table 3.2: Summary of group membership renewal semantics

Operation Explanation Property

Lossless Join Authorizations prior to join
time is not lost

β0 = 2((Join∧¬Remove∧ -© Authz) → Authz)

Lossy Join Authorizations from prior to
join may be lost

There exists a well-formed trace that does not
satisfy β0

Non-Restorative
Join

Authorizations from past mem-
bership periods not explicitly
restored

ρ1 =(joini(u1, g) ∧ joini(u2, g)∧
Authz(u1, o, g, r) ∧ ¬Authz(u2, o, g, r))

ρ2 = -© (Authz(u1, o, g, r) ∧ ¬Authz(u2, o, g, r))

β1 = ∀i2(ρ1 → ρ2)

Restorative Join Authorizations from past mem-
bership may be restored

There exists a well-formed trace that does not
satisfy β1

Gainless Leave Authorizations that never held
during most recent membership
period cannot be obtained

β2 = 2((Leave ∧ (¬Join U (Authz ∧ ¬Join))) →
-© ((¬Authz ∧ ¬Join) S (Authz ∧ (¬Join S Join))))

Gainful Leave New authorizations may be
granted at Leave time

There exists a well-formed trace that does not
satisfy β2

Non-Restorative
Leave

Authorizations that the user
had prior to joining the group
are not explicitly restored

β3 = 2(Leave ∧Authz → -© Authz)

Restorative
Leave

Authorizations from prior to
join time may be restored

There exists a well-formed trace that does not
satisfy β3

In Restorative Join, there exists at least one well-formed trace that does not satisfy the

Non-Restorative Join property. If a user joins a group using Restorative Join, some or all

of the accesses to objects authorized during past membership period may be restored. Note

that this is in addition to the authorizations that current Join may enable. The formula

2(Join∧ ((¬Leave∧¬Remove) S (Leave∧ -© Authz)) → Authz), for example, characterizes

a type of Restorative Join where all past authorizations are restored.

A Restorative Join is applicable in scenarios where an incentive is provided for a user to

re-join the group. On the other hand, in subscription service scenarios, a Restorative and

Non-Restorative Join may be priced differently, which may decide what prior authorizations

to their past subscription materials will be restored.

Gainless Vs Gainful Leave: After re-joining the group, a subsequent Leave operation

could either be Gainless or Gainful. In Gainless Leave, authorizations that never held during

31

current membership period cannot be obtained by leaving the group. On the other hand, a

Gainful Leave allows new authorizations to be granted at the time of Leave. Suppose that

in figure 3.1 a Lossless SJ is applied when u1 re-joins the group. Because the re-join is of

type Lossless SJ, only o4 and possibly o5 can be accessed. If u1 leaves the group in the

future with LL, a Gainless LL will not grant any new authorizations other than that to o4

and o5. A Gainful LL, for example, may additionally grant access to o2. Note that this

is still consistent with the Authorization Provenance property because o2 and u1 had an

overlapping period of membership. A Gainful Leave is useful in scenarios where an incentive

is provided for a user to leave the group. This is commonplace in voluntary retirement and

severance packages.

β2 in table 3.2 characterizes Gainless Leave. This formula states that if the user is

authorized to access an object during non-membership period then it should have been

authorized during the most recent membership period. In a g-SIS specification with Gainful

Leave, there exists at least one well-formed trace that does not satisfy the Gainless Leave

property.

Non-Restorative Vs Restorative Leave: In Non-Restorative Leave, authorizations that

the user had prior to joining the group are not explicitly restored at Leave time. In Restora-

tive Leave, some or all of such authorizations are restored at Leave time. Suppose in fig-

ure 3.1 u1 left the group with LL and re-joins with Lossy SJ. In this case, u1 possibly

loses access to both o1 and o2 at re-join time. Later on, if u1 leaves with Gainful LL, a

Restorative Leave will allow u1 to re-gain access to o1 and o2 at the time of leave, but a

Non-Restorative leave will not.

In the meeting room metaphor, suppose Alice is re-invited as a consultant on demand

and is required to relinquish her past authorizations due to a conflict of interest with new

authorizations that will be enabled by current membership. After Alice performs her duties

and leaves the group, it is natural that she will regain access to objects for which she lost

authorization when joining the group. Formula β3 in table 3.2 characterizes Non-Restorative

Leave.

32

In Restorative Leave, there exists at least one well-formed trace that does not satisfy

the Non-Restorative Leave Property. For example, the formula 2((Leave ∧ ¬Remove ∧
-© ((¬Leave ∧ ¬Remove) S (Join ∧ -© Authz))) → Authz) characterizes a specific type of

Restorative Leave where access to all objects authorized prior to Join is restored.

3.1.5 Formal Analysis

In this section, we discuss the construction of the specification of a family of g-SIS models,

called the π-system. The π-system is a g-SIS specification that formally defines the con-

ditions under which authorization can hold. We successfully verify using a model checker

called NuSMV [34] that the π-system we develop is semantically correct—that is, it satisfies

the core g-SIS properties.

We also show that the π-system satisfies a subset of Membership and Membership Re-

newal properties. To this end, the π-system allows any variation of Membership operations

(Strict/Liberal). Thus, different users and objects may be given different types of respective

operations in the π-system. For example, SJ for u1, LJ for u2, SL for u1 and subsequently

LJ for u1 and similarly for objects. However, for Membership Renewal operations, we

confine our scope to Join operations that are of type Lossless and Non-Restorative and

Leave operations of type Gainless and Non-Restorative. These specific types of renewal

operations are the most basic since they do not require us to treat past membership autho-

rizations explicitly. Further, other renewal semantics are likely application dependant. For

example, what exact authorizations will be disabled at Join time in Lossy Join depends on

the application in question (similarly for Restorative Join, Gainful Leave and Restorative

Leave).

33

Remark 3.1. The π-system only allows group operations of type indicated below:

∀i.Type(joini) ∈ {SJ, LJ}×{Lossless}×{Non-Restorative}

∀i.Type(leavei) ∈ {SL, LL}×{Gainless}×{Non-Restorative}

∀i.Type(addi) ∈ {SA, LA}

∀i.Type(removei) ∈ {SR,LR}

Henceforth, for convenience, we assume that SJ and LJ refer to operations of

type Lossless and Non-Restorative join. Similarly, SL and LL refer to Gainless and

Non-Restorative leave operations.

Furthermore, note that as per the definition of Strict Join (table 3.1), the user may

access some or all objects that are added after Join time. However, in the π-system, we

will use the following specific interpretation of Strict and Liberal operations which effectively

replaces “some or all” with “all”:

• On SJ, the joining user may access all the objects added after Join time. Objects

added before Join time may not be accessed. On LJ, the joining user may access all

the current objects added before and after Join time.

• On SL, the users lose access to all objects. On LL, access to all the group objects

authorized at the time of Leave may be retained.

• On SA, all the users who joined prior to Add time may access. Users joining later

may not access. On LA, all the users who joined prior to and after Add time may

access.

• On SR, all the users lose access to the object. On LR, all the users who had access

at Remove time may retain access.

34

π-system Specification

There are two scenarios to consider when a user requests access to an object: (i) the user

Join event occurred prior to object Add event or (ii) the object Add event occurred prior

to user Join event. Intuitively, if the specification correctly addresses these two scenarios, it

would be complete. We now consider these two scenarios separately. Formula λ1 addresses

the scenario where the object is added after the user joined the group (figure 3.3).

λ1 =((¬SL ∧ ¬SR) S ((SA ∨ LA) ∧ ((¬LL ∧ ¬SL) S (SJ ∨ LJ))))

Since Join occurred prior to Add, regardless of whether the object was LA’ed6 or SA’ed or

whether the user was SJ’ed or LJ’ed, the user should be authorized to access the object

in both cases as per the core Availability property. Formula λ1 says that the user has not

been SL’ed and the object has not been SR’ed since it was added with SA or LA. Further,

when the Add occurred, the user was a current member (that is, no SL or LL since SJ or

LJ).

In figure 3.3, an SL or SR since object add time denies access to the requested object.

However, it is alright for an LL or LR to occur during that period. Recall that an LR

authorizes current users at remove time to retain access and LL authorizes a leaving user to

retain access to objects authorized during the membership period. Similarly, if the user was

not a current member when the object was added (for e.g., joined and left the group before

the object was added), authorization cannot hold as per our core Provenance property.

Scenario (ii) where an Add occurs prior to Join is more interesting. As shown in fig-

ure 3.4, there are four possible cases. Let us first consider cases (a) and (b) where the object

is SA’ed to the group. Recall that an SA’ed object can be accessed only by existing users

(that is, the users who joined the group prior to object Add). Clearly, regardless of the

type of Join, the user is not authorized to access objects that were SA’ed prior to the user

Join time. Thus Authz cannot hold in cases (a) and (b).
6We use the abbreviation of the form “LA’ed” to refer to the fact that the object in question is Liberally

Added.

35

Figure 3.3: Formula λ1.

Consider cases (c) and (d) where the object is LA’ed to the group. In case (c), the object

is LA’ed and the user is SJ’ed. An SJ’ed user is authorized to access only those objects

that were added after join time. Thus (c) is also a failed case. Authorization is successful

in case (d) where both Add and Join are Liberal operations. An LJ’ed user can access all

current LA’ed objects and any newly added object in the future (LA or SA). We can now

formulate λ2 as shown below.

λ2 =((¬SL ∧ ¬SR) S (LJ ∧ ((¬SR ∧ ¬LR) S LA)))

Figure 3.5 illustrates λ2. It says that the user has not been SL’ed and the object has not

been SR’ed since the user LJ’ed the group. Further, at Join time, the object in question

was still part of the group (that is, it has not been LR’ed or SR’ed since it was added). We

can now formally specify the π-system.

Definition 3.3 (π-system). The π-system is given by:

π = 2(Authz ↔ λ1 ∨ λ2) ∧
∧

0≤j≤3

τj

Note that π is a syntactically correct g-SIS specification by definition. π says that a user

is authorized to access an object if and only if λ1 or λ2 holds and the trace is well-formed.

36

Figure 3.4: Cases when Add occurs prior to Join.

Figure 3.5: Formula λ2.

Entailment Theorems

In this section, we show that the π-system entails the Core and Membership Renewal

properties. Since Membership operations are mixed (i.e., both Strict and Liberal operations

are allowed), a specific Membership property cannot be verified for this specification. Later,

we show the verification of Membership Properties in a specification where the operations

are fixed for all users and objects in a group. We begin with the Mixed Operations and

Membership Renewal Semantics Entailment Theorem.

Theorem 3.3 (Mixed Operations Entailment Theorem). The π-system entails the Core

Properties (ϕ0 to ϕ5):

π ²
∧

0≤q≤5

ϕq

37

Theorem 3.4 (Membership Renewal Semantics Entailment Theorem). The π-system en-

tails the Membership Renewal Properties (β0 to β3):

π ²
∧

0≤r≤3

βr

Again, we utilize the model checker NuSMV [34] to prove these theorems. The model

of the π-system is specified using NuSMV. We discuss the code for the model and results

in appendix B.1. Here, the NuSMV model is expressed in terms of events Join, Leave, Add

and Remove (declared as boolean variables) that are allowed to occur concurrently in a

non-deterministic manner. The theorem is expressed as an implication having the π-system

in the antecedent and the Core and Membership Renewal properties in the consequent.

NuSMV takes the model and the LTL formula and determines whether the formula holds

in all possible traces generated by the model. The output from NuSMV in appendix B.1

shows that the LTL formula holds against the model. Thus we verify the theorems, i.e., the

π-system satisfies the Core and Membership Renewal properties.

The significance of this Mixed Operation Entailment Theorem is two-fold. First, it

shows that any specification that one derives from the π-system is guaranteed to be a g-SIS

specification (i.e., it would satisfy the core properties.) For example, one can derive various

fixed operation g-SIS specifications from the π-system. By substituting all operations in

formula π with either Strict or Liberal versions of membership semantics, we obtain the Most

Restrictive and Most Permissive π-system respectively. Note that if the most restrictive

model (SJ, SL, SA, SR) permits a user to access an object, the most permissive model (LJ,

LL, LA, LR) should also grant access to the same object. Such fixed operation specifications

are guaranteed to be admitted as g-SIS. Next, the core g-SIS properties are consistent. That

is, the core properties can be satisfied, namely, by the π-system, and do not conflict with

each other.

As mentioned earlier, the Most Restrictive π-system specification is one where only Strict

operations are allowed. Since Liberal operations are not allowed in such a specification, we

38

substitute Liberal operations with “False” in formulas λ1 and λ2 and thereby obtain the

µ-system defined below.

Definition 3.4 (µ-system). The µ-system is given by:

µ = 2(Authz ↔ ((¬SL ∧ ¬SR) S (SA ∧ (¬SL S SJ)))) ∧
∧

0≤i≤3

τi

Note that specification µ is a syntactically and semantically correct g-SIS specification

since it is a specific form of π. Further, since only Strict operations are allowed, µ must

satisfy all the Strict versions of Membership Properties (formulas α0 to α3).

Theorem 3.5 (Most Restrictive Entailment Theorem). The µ-system entails the Core

Properties (ϕ0 to ϕ5), Membership (α0 to α3) and Membership Renewal Properties (β0 to

β3).

µ ² (
∧

0≤j≤5

ϕj ∧
∧

0≤k≤3

αk ∧
∧

0≤l≤3

βl)

We take a similar approach to that of Theorem 3.3 to prove this theorem. Again, the

proof and the discussion of code and NuSMV results is given in appendix B.2.

3.1.6 A Family of Fixed Operation g-SIS Models

Consider g-SIS models where the group operations are fixed for all users and objects. For

example, a g-SIS model may only allow Liberal operations for all users and objects (LJ, LL,

LA, LR) in the group. That is, every user admitted to the group will be given LJ. Similarly,

objects will be added only with LA and so on. Another example of a fixed operations model

is (SJ, SL, SA, SR) where all operations are Strict. Note that the fixed operation (SJ, SL,

SA, SR) model is more restrictive in terms of authorization than the (LJ, LL, LA, LR)

model. If a more restrictive model (such as (SJ, SL, SA, SR)) permits a user to access

an object, a less restrictive model ((LJ, LL, LA, LR)) would also grant access to the same

object.

39

Figure 3.6: A family of g-SIS models: The cartesian product of User and Object Model
results in a lattice of 16 g-SIS models with fixed operation types.

Thus if the type of operations are fixed for all users and objects, there are 16 possible

models ranging from the most restrictive model allowing only Strict operations: (SJ, SL,

SA, SR) to the most permissive model allowing only Liberal operations: (LJ, LL, LA, LR).

This is illustrated in figure 3.6. Parts (a) through (d) show that the Strict operation is

more restrictive than the Liberal operation. Parts (e) and (f) show the user and object

model that is obtained by the Cartesian product of user and object operations respectively.

Finally, a lattice of 16 g-SIS models is obtained by the Cartesian product (e) × (f).

Lattice Reduction

The following observations can be made about 16 possible fixed operation g-SIS models in

figure 3.6:

1. The type of object add has no significance in a model allowing only SJ. This is

because, with SJ, joining users can only access newly added objects. Thus regardless

of how the object is added, a joining user cannot access objects added prior to join

40

Figure 3.7: Reduced lattice with 8 fixed operation g-SIS models.

time. And if the object is added after join time, the users can access the object

regardless of how it is added (as per the core availability property).

2. Similarly, the type of user join has no significance in a model allowing only SA.

3. LR has no significance in a model with SJ. LR allows users who had access at the time

of remove to retain access. These are users who joined with SJ prior to the object add

time. Users who joined with SJ after the removed object’s add time had no access

to begin with. Thus an SJ model supporting only LR is as though the model has no

support for remove operation for a given user once the user is authorized to access

that object.

4. Similarly, LR has no significance in a model with SA.

Thus, based on these observations, we only have 8 unique g-SIS models with fixed operation

types (as illustrated in figure 3.7):

41

1. (SJ, SL, SA, SR)=(SJ, SL, LA, SR)=(LJ, SL, SA, SR)

2. (SJ, SL, SA, LR)=(SJ, SL, LA, LR)=(LJ, SL, SA, LR)

3. (SJ, LL, SA, SR)=(SJ, LL, LA, SR)=(LJ, LL, SA, SR)

4. (SJ, LL, SA, LR)=(SJ, LL, LA, LR)=(LJ, LL, SA, LR)

5. (LJ, SL, LA, SR)

6. (LJ, SL, LA, LR)

7. (LJ, LL, LA, SR)

8. (LJ, LL, LA, LR)

Thus the type of Add has no significance on the authorization in these 8 specifications. In

many usage scenarios, object operations do not remain fixed for all group objects. Certain

objects may need to be added with SA to restrict access to existing group members while

others may be added with LA when such a restriction is not required. Similarly, certain

objects may be removed with SR while others with LR. Thus, object operations may differ

from one object to another. On the other hand, in many dynamic scenarios such as in

emergency response or clinical work flow systems, even the user operations may differ from

one user to another. For instance, physicians may be given an LJ so they have access to all

the patient records. However, nurses are rotated in shifts and thus may be given SJ and SL.

Thus the nurses get to see patient information that is pertinent during their shift period.

One can derive additional specifications from the π-system where some of the member-

ship operations may vary while others remain fixed for various users and objects.

Usage Scenarios

We now discuss two usage scenarios: a large-scale subscriptions scenario where the opera-

tions are fixed for all users and a small-scale collaboration scenario where the operations

could be mixed.

42

Subscription Models In general, user operations define the semantics of most subscrip-

tion models. Thus most subscription models fall into one of the four categories: (SJ, SL),

(SJ, LL), (LJ, SL) and (LJ, LL). Consider a premier online news magazine ABS Corp. that

offers four levels of membership:

1. Level 1; $10/year (SJ, SL): These subscribers can only access news articles that are

published after they started paying the subscription fee. Level 1 subscribers cannot

access ABS’s archives (effected by SJ). If they cancel their subscription, they lose

access to all news articles.

2. Level 2; $12/year (SJ, LL): Similar to Level 1 but subscribers can retain access to

news articles that they paid for even after canceling their subscription.

3. Level 3; $15/year (LJ, SL): Level 3 subscribers can access rich archives filled with

post-news analysis, predictions, annotations and opinions from experts. But if they

cancel their subscription, they lose access to all news articles including archives.

4. Level 4; $17/year (LJ, LL): Similar to Level 3, but even after canceling membership,

subscribers can login and view all articles that they had access before leaving.

Object operations do not fundamentally change the subscription model’s semantics. Nev-

ertheless, they model useful scenarios. For example, if an object is added with SA, only

existing users in the group may access. Thus SA objects model sales promotion or dis-

counted price available only for current group members.

Mission Oriented Group Consider a g-SIS model with the operation types: (LJ, SL,

SA/LA, SR) where all operations are fixed except object Add. Objects can be added to the

group by type SA or LA. Let us consider a simple collaboration scenario where the group

is mission oriented, so many users may join and leave the group to contribute and receive

information over time.

Consider two users Alice and Bob who join the group at the same time. If Bob wants

to ensure that any information he shares with Alice is not accessible to future users who

43

may join the group, he can add objects with SA. SA objects are only accessible to existing

members at add time. This allows current members of the group to share information

privately. On the other hand, to the mission’s end, information can be made available to

future users by LA’ing objects to the group. Suppose Alice leaves the group and later Cathy

joins with LJ. Cathy cannot access SA objects shared between Alice and Bob before her

join time. Cathy can only access existing LA objects.

3.1.7 Read-Write g-SIS (single object version)

We specified the core properties for read-only authorizations in g-SIS in section 3.1.2. In

this section, we specify the core properties for write authorizations in g-SIS. We assume that

objects are not versioned. That is, updating an object always overwrites the object and

only one version of the object exists at any time. In the following section, we study a g-SIS

model with object versions. We now specify the core properties for write authorization for

a Read-Write g-SIS model with no versioning of objects.

1. Persistence Properties: These properties consider the conditions under which autho-

rization to write may change.

Authorization Persistence: When a user u is authorized to write to an object o, it

remains so at least until a group event involving u or o occurs.

ϑ0 = 2(Authz(u, o, w) → (Authz(u, o, w) W (Join ∨ Leave ∨Add ∨ Remove)))

Revocation Persistence: When a user u is not authorized to write to an object o, it

remains so at least until a group event involving u or o occurs.

ϑ1 = 2(¬Authz(u, o, w) → (¬Authz(u, o, w) W (Join ∨ Leave ∨Add ∨ Remove)))

44

2. Authorization Provenance: Unlike authorization provenance for read, we require

that in order to write to an object, both the user and the object are current members

in the group. This is formalized in ϑ2 below. An important observation is that the

user needs to be authorized to read an object in order to write.

ϑ2 =2(Authz(u, o, w) → (Authz(u, o, r) ∧ (¬Leave(u, g) S Join(u, g))

∧ (¬Remove(o, g) S Add(o, g))))

3. Bounded Authorization: These properties specify the conditions under which write

authorizations may change during non-membership period.

Bounded User Authorization: A past user cannot write to any object unless he/she

re-joins the group. This is stated in formula ϑ3 below.

ϑ3 = 2(Leave → (¬Authz(u, o, w) W Join))

Bounded Object Authorization: Recall that the bounded user authorization property

for read stated that any read authorization that a user has during non-membership

period should have held at the time of leave. Consider a leaving user who retains read

authorization to a few objects at leave time. With write operation, if such objects are

updated by existing group users, the past user can continue to read new information.

To prevent such unwanted information flow, we constrain that past users may continue

to read objects authorized at leave time as long as the objects are not updated by

some existing group user. To specify this property, we introduce a new operation

called Update (o,g) which occurs whenever some user writes to an object o in group

g. Formula ϑ4 below states that if an object is updated, any past user cannot read

the object unless the user re-joins the group.

ϑ4 = 2((Update(o, g) ∧ (¬Join S Leave)) → (¬Authz(u, o, r) W Join))

45

Property ϑ5 below states that past objects cannot be updated by any user unless it

is re-added.

ϑ5 = 2(Remove → (¬Authz(u, o, w) W Add))

4. Availability: Availability specifies the conditions under which authorization must suc-

ceed.

ϑ6 = 2(Join → ((Add → (Authz(u, o, w) W (Leave ∨ Remove))) W Leave))

This property states that after a user joins a group, any object that is added sub-

sequently should be authorized to write. Obviously, the user should be a current

member when the object in question is added.

Like earlier, we require that any read-write single version g-SIS specification satisfy all of

the core properties specified above (ϑ0 to ϑ6).

3.1.8 Read-Write g-SIS (object versioning)

Earlier, we introduced a family of g-SIS models where read and write operations were

performed on the object on the whole. In such a setting, it is possible that if multiple

users update the same object at the same time, the latest write will always take precedence

and overwrite the object. In a distributed system such as g-SIS, the same object may be

updated by multiple parties, potentially offline without the intervention of a central server.

As we will see later in the following chapter, we will present an enforcement model based

on super-distribution where objects may be obtained from any source and accessed offline

by group users if authorized. To this end, in this section, we discuss a versioning model in

which each update operation results in a new version of the same object. Note that with the

introduction of versioning, access control decision needs to be made on the new versions. It

is possible that different versions of the same object may have different authorizations.

46

Versioning Model

With object versioning, we introduce a number of additional group operations to manage

versions. We retain the 4 operations from the earlier single version g-SIS model (Join,

Leave, Add and Remove). The Add operation is used to add a version from an external

entity to the group and Remove operation removes the added version from the group. The

added version could be updated using an Update operation which results in a new version.

Such updated versions may be merged back with the source entity that initially shared it

with the group using the Merge operation.

Furthermore, new objects may be created internally in the group. We assume that a

new object is created with an initial version of v0. Such a new version may be updated

subsequently using the Update operation. Any version of the internally created object may

be exported to an external entity using the Export operation.

Any version in the group may be suspended and subsequently resumed using the Suspend

and Resume operations respectively. We assume that Update may be performed only on

existing object versions in the group. Thus any version that is removed or suspended can

not be updated. Note that a Remove operation can only be performed on the version

that was added by an external entity to the group using a corresponding Add operation.

New versions created by updating such a version can not be removed. They may only be

suspended/resumed or exported in the future.

We now discuss the life-cycle of an object to elucidate our versioning model. There are

two cases of an object version: (a) it was externally created in some source entity (e.g.

organization) and shared with the group, or (b) it was internally created in the group.

Case (a) Externally Created Object: Figures 3.8 and 3.9 show the life-cycle of an

object version that was externally created in some source entity and shared with the group.

As shown in figure 3.8, such a version may be shared with the group using the Add operation.

Once added, it may be updated using the Update operation resulting in creation of a new

version of the same object. The life-cycle of such updated versions is shown in figure 3.9.

47

External version

Never member

External version

Current member

External version

Past member

External version

Current and

Suspended

member

External version

Past and

Suspended

member

Add

Update

Remove

Add

SuspendResume

SuspendResume

Figure 3.8: External Object Lifecycle I.

Unborn version

from External

version

Newly born

version from

External version

Newly born

version from

External version

Merged

Newly born

Suspended

version

Merged

Suspended

version

Update

Update

Merge

SuspendResume

SuspendResume

Update

Figure 3.9: External Object Lifecycle II.

48

Unborn

Internal

object

Newly born

Internal version

Newly born

Exported

Internal version

Newly born

Suspended

Internal version

Newly born

Exported and

Suspended

version

Create

Update

Export

SuspendResume

SuspendResume

Update

Export

Figure 3.10: Internal Object Lifecycle I.

However, Update does not change the state of the previously existing updated version. Thus

the previously existing version remains in the same state even after the Update operation.

This added version may be removed using the Remove operation and may subsequently be

re-added. Note that in any state, the version may be suspended and resumed any number

of times. Suspended versions are not accessible to any user in the group unless it is resumed

using Resume. Also, a removed version cannot be updated.

As shown in figure 3.9, a new version may be created from the externally created object

using the Update operation. Such a new version created from the external version may

be merged back only to the external entity that initially shared the version. Note that

subsequent updates create a new version but does not change the state of the version being

updated. Again, the version in any state may be suspended and subsequently resumed.

Case (b) Internally Created Object: Figures 3.10 and 3.11 show the life-cycle of an

object that is created internally in the group. As shown in figure 3.10, a new object with an

initial version of v0 may be created using the Create operation. Such an internally created

version and any subsequent version created using Update may be exported to an external

49

Unborn version

from Internal

object

Newly born

Internal version

by Update

Newly born

Updated and

Exported

Internal version

Newly born

Updated and

Suspended

Internal version

Newly born

Updated,

Exported and

Suspended

version

Update

Update

Export

SuspendResume

SuspendResume

Update

Export

Figure 3.11: Internal Object Lifecycle II.

entity using the Export operation. Versions may be suspended and resumed as earlier.

As shown in figure 3.11, new versions of internally created object may be created using

the Update operation which may in turn be exported to an external entity. Note that in

figures 3.10 and 3.11 the versions may be exported multiple times but to different entities.

Clearly, this versioning model allows two or more entities (such as organizations) to share

their resources (users and objects) using the group. New versions created from the shared

object may be merged back to the source entity. Also, new objects and updated versions may

be internally created in the group. This may represent new ideas and intellectual property

created during the sharing process. Such internally created objects may be exported to an

external entity depending on who the stake-holders are in the sharing and collaboration

process.

We emphasize that we have not specified the administrative model for authorizing op-

erations such as Merge, Export much as we did not specify administrative models for Join,

Leave, Add and Remove.

50

Table 3.3: Summary of group operations
Operation Explanation

Join (u,g) Join user u to group g.

Leave (u,g) Leave user u from group g.

Add (o.vi,g) Add version vi of object o to group g.

Remove (o.vi,g) Remove version vi of object o from group g.

Create (o.v0,g) Create object o in group g. This creates a version 0 of o.

Update (o.vi,o.vj ,g) Update version vi of object o in group g resulting in a new version vj .

Suspend (o.vi,g) Suspend version vi of object o in group g.

Resume (o.vi,g) Resume version vi of object o in group g.

Export (o.vi,fromg, tog) Export version vi of object o in group fromg to group tog.

Merge (o.vi,fromg, tog) Merge version vi of object o in group g to group tog.

Well-Formed Traces

Table 3.3 gives an overview of group operations in the versioning model. Like earlier, each of

these operations could be of different type and each operation displayed in the table denote

a disjunction of such types. Where obvious, we omit the parameters for these operations

for convenience. The following formulas specify constraints on g-SIS language that separate

well-formed traces from all possible traces.

A. Two operations cannot occur on the same user or object in the same state.

τ0 ≡2(¬(Add ∧ Remove) ∧ ¬(Join ∧ Leave) ∧ ¬(Suspend ∧ Resume)∧

¬(Create ∧ Suspend) ∧ ¬(Create ∧Update) ∧ ¬(Create ∧ Export)∧

¬(Add ∧ Suspend) ∧ ¬(Add ∧Update) ∧ ¬(Add ∧Merge)∧

¬(Remove ∧ Suspend) ∧ ¬(Remove ∧Update) ∧ ¬(Remove ∧Merge)∧

¬(Update ∧ Suspend) ∧ ¬(Update ∧ Export) ∧ (Update ∧Merge))

51

B. For any given user or object, two types of operations cannot occur at the same time.

τ1 ≡∀i, j 2((i 6= j) → ¬(joini ∧ joinj)) ∧ ∀i, j 2((i 6= j) → ¬(leavei ∧ leavej)) ∧

∀i, j 2((i 6= j) → ¬(addi ∧ addj)) ∧ ∀i, j 2((i 6= j) → ¬(removei ∧ removej))

∀i, j 2((i 6= j) → ¬(suspendi ∧ suspendj)) ∧ ∀i, j 2((i 6= j) → ¬(resumei ∧ resumej))

∀i, j 2((i 6= j) → ¬(createi ∧ createj)) ∧ ∀i, j 2((i 6= j) → ¬(updatei ∧ updatej))

∀i, j 2((i 6= j) → ¬(exporti ∧ exportj)) ∧ ∀i, j 2((i 6= j) → ¬(mergei ∧mergej))

C. An enabling and disabling operation should occur alternatively. Note that merge and

export operations can never re-occur for the same object version between two groups. Sim-

ilarly, the create operation can never re-occur for the same object version in the group.

τ2 ≡2(Join →© (¬Join W Leave)) ∧2(Leave →© (¬Leave W Join)) ∧

2(Add →© (¬Add W Remove)) ∧2(Remove →© (¬Remove W Add)) ∧

2(Suspend →© (¬Suspend W Resume)) ∧2(Resume →© (¬Resume W Suspend))∧

2(Export(o.vi, fg, tg) →© ¬ ♦ Export(o.vi, fg, tg))∧

2(Merge(o.vi, fg, tg) →© ¬ ♦ Merge(o.vi, fg, tg))∧

2(Create(o.v0, g) →© ¬ ♦ Create(o.v0, g))

52

D. In a group, a disabling event cannot occur before an enabling event. Also, update, merge

and export can occur on an object version only after it is added to or created in the group.

τ3 ≡2(Leave → ¨Join) ∧2(Remove → ¨Add) ∧2(Resume → ¨Suspend)∧

2(Suspend(o.vi, g) → ¨(Add(o.vi, g) ∨ Create(o.vi, g) ∨ ∃vj . Update(o.vj , o.vi, g)))∧

2(Update(o.vi, o.vj , g) → ¨(Add(o.vi, g) ∨ Create(o.vi, g) ∨ ∃vk.Update(o.vk, o.vi, g)))∧

2(Merge(o.vi, fg, tg) → ¨ Add(o.vi, fg)∨

¨ (∃vj .Add(o.vj , fg) ∧ ∃vk.Update(o.vk, o.vi, fg)))∧

2(Export(o.vi, fg, tg) → ¨ Create(o.vi, fg)∨

¨ (Create(o.v0, fg) ∧ ∃vj .Update(o.vj , o.vi, fg)))

Core Properties

Following are the core g-SIS properties for read and write authorizations.

1. Persistence Property: Note here that the create group operation is not a required

condition for Authz to change since create is concerned with creating a new (different)

object. The − in Authz in the antecedent and consequent both refer to either a read

or write action.

κ0 = 2(Authz(u, o.vi,−) →(Authz(u, o.vi,−) W (Join ∨ Leave ∨Add ∨ Remove∨

Update ∨ Suspend ∨ Resume ∨ Export ∨Merge)))

κ1 = 2(¬Authz(u, o.vi,−) →(¬Authz(u, o.vi,−) W (Join ∨ Leave ∨Add ∨ Remove∨

Update ∨ Suspend ∨ Resume ∨ Export ∨Merge)))

53

2. Authorization Provenance: We accommodate the possibility of Create, Suspend,

Resume and Update operations to specify provenance for read and write.

κ2 =(¬Authz(u, o.vi, r) W (Authz(u, o.vi, r)∧

(¬Leave(u, g) S Join(u, g)) ∧ ((¬Remove(o.vi, g) ∧ ¬Suspend(o.vi, g)) S

(Resume(o.vi, g) ∨Add(o.vi, g) ∨ Create(o.vi, g) ∨ ∃vj .Update(o.vj , o.vi, g)))))

For write, the user needs to be a current member to update any version in the group.

Also, the user can update only those versions that he/she is authorized to read. Note

that Export and Merge operation do not impact authorizations in the group.

κ3 =2(Authz(u, o.vi, w) → Authz(u, o.vi, r) ∧ (¬Leave(u, g) S Join(u, g))

∧ ((¬Remove(o.vi, g) ∧ ¬Suspend(o.vi, g)) S (Resume(o.vi, g)

∨Add(o.vi, g) ∨ Create(o.vi, g) ∨ ∃vj .Update(o.vj , o.vi, g)))))

3. Bounded Authorization: Properties κ4 and κ5 are similar to the single version g-SIS.

κ4 =2((Leave(u, g) ∧ ¬Authz(u, o.vi, r)) → (¬Authz(u, o.vi, r) W Join(u, g)))

κ5 =2((Remove(o.vi, g) ∧ ¬Authz(u, o.vi, r)) → (¬Authz(u, o.vi, r) W Add(o.vi, g)))

54

Property κ6 states that group users cannot read or write to a suspended version unless

it is resumed. Also a past user cannot write to any version in the group (Property

κ7).

κ6 =2(Suspend(o.vi, g) → ∀u. (¬Authz(u, o.vi, r)∧

¬Authz(u, o.vi, w)) W Resume(o.vi, g))

κ7 =2(Leave(u, g) → ∀vi. (¬Authz(u, o.vi, w) W Join(u, g)))

4. Availability: A current group user is authorized to read or update any version that is

created (by means of Add or Create or Update operation) after the user’s join time.

κ8 =2(Join(u, g) → ((Add(o.vi, g) ∨ Create(o.vi, g) ∨ ∃vj .Update(o.vj , o.vi, g) →

Authz(u, o.vi,−) W (Leave(u, g) ∨ Remove(o.vi, g))) W Leave(u, g)))

5. Version Dependency Properties: κ9 states that if a current user can read or write

the base version (version 0) of an object o, then the user can read or write all unsus-

pended versions of o in the group.

κ9 =2((Authz(u, o.v0,−) ∧ (¬Leave(u, g) S Join(u, g))) →

∀vi. (((¬Suspend(o.vi, g) ∧ ¬Remove(o.vi, g)) S (∃vj .Update(o.vj , o.vi, g)∨

Create(o.vi, g) ∨ Resume(o.vi, g))) → Authz(u, o.vi,−))))

κ10 states that if a user can read some version of an object o, then all prior

unsuspended versions of o can be read by that user.

55

κ10 =2(Authz(u, o.vi, r) → ¨ ((∃vj .Update(o.vj , vi, g) ∨ Create(o.vi, g))∧

(∀vk.(¬Suspend(o.vk, g) ∧ ¬Remove(o.vk, g)) S (∃vl.Update(o.vl, vk, g)

∨ Create(o.vk, g)) → Authz(u, o.vk, r))))

κ11 states that if a user u can write some version of o, then u can write to all unsus-

pended versions of o.

κ11 =2(Authz(u, o.vi, w) → ∀vj . ((¬Suspend(o.vj) ∧ ¬Remove(o.vi, g)) S

(∃vx. Update(o.vx, o.vj , g) ∨ Resume(o.vj , g))) → Authz(u, o.vj , w))

6. Object Create Property: This property states that only current users in the group

can create an object.

κ12 =2(Create(o.v0, g) → (¬Leave(u, g) S Join(u, g)))

7. Version Publish Properties: Property κ13 states that a version of an object can be

exported to an external entity only if the object was created internally in the group.

Property κ14 states that a version of an object can be merged to an external entity

only if some previous version of that object was added to the group from that external

entity. The B operator is a weaker version of S where if q in (p B q) never occurred

in the past, then p holds all the way from the initial state.

κ13 =2(Export(o.vi, fg, tg) → ¨ Create(o.v0, fg) ∧ (¬Suspend(o.vi, fg) S

(Resume(o.vi, fg) ∨ Create(o.vi, fg) ∨Update(o.vj , o.vi, fg))))

56

κ14 =2(Merge(o.vi, fg, tg) → ¨ ∃vx.Add(o.vx, fg) ∧ ((¬Suspend(o.vi, fg)

∧ ¬Remove(o.vi, fg)) B (∃vj .Update(o.vj , o.vi, fg) ∨ Resume(o.vi, fg))))

All of these core properties (κ0 to κ14) must be satisfied by any read-write g-SIS specification

with object versioning. Depending on the specific needs of the application, one of the three

sets of core properties discussed earlier may be used to develop g-SIS specifications. We

specified core properties for a read-only g-SIS model (with new object Add), a read-write

single version g-SIS model and a read-write g-SIS model with object versioning.

3.2 Case Study: Inter-Organizational Collaboration

In this section, we present a case-study of group-centric sharing built around an inter-

organizational collaboration scenario. Collaboration, in general, can be of many different

types and at different scales. In most inter-organizational and similar collaboration sce-

narios, a group is established between participating organizations to promote sharing and

collaboration. Each organization, a stake holder, may share its resources (e.g. users and

objects) with others by adding them to the common group. As collaboration proceeds,

objects may be created (e.g. new intellectual property) which may be transferred back

to the stake holders. Such collaboration scenarios have many characteristics: small-scale

vs large-scale, short-term vs long-term, dynamic vs static membership, equal vs unequal

stakeholders, unilateral vs bi/multi-lateral administration, uniform vs differentiated permis-

sions, etc. Joint product design between two or more organizations, merger and acquisition

scenarios, program committee meetings, micro-collaboration such as in a research paper

where multiple authors collaborate, collaboration for hire between a product team in an

organization and temporary consultants/contractors, interest groups such as in IETF where

members participate in writing RFCs, etc. are few examples of collaboration scenarios with

such characteristics. On the other hand, we have massively large-scale, highly distributed

collaboration scenarios where users may not represent a specific organization and the notion

57

of group tends to be fuzzy. Examples of such scenarios include Wikipedia, Crowd-Sourcing

(where humans answer questions that are hard for a computer to solve efficiently such

as describing a photograph), etc. In this case study, we focus on the inter-organizational

collaboration scenario.

3.2.1 Collaboration Scenarios

We discuss three distinct collaboration scenarios below. Later we specify a complete formal

policy model for one of them. We then generalize these in to a unified framework for

developing policy models for group-centric collaboration.

Scenario #1 (Bilateral Organizational Collaboration) Consider two organizations

A and B that want to collaborate for some common purpose such as developing Intellectual

Property (IP). We refer to A and B as Source Organizations (SO). A Collaboration Group

(CG) is established and each organization shares its resources (users, objects, etc.) by

adding them to the group. Thus the objective of the collaboration is to share assets, develop

IP and take-away identical set of results. All users in CG are treated equally in terms of the

privileges that they can exercise in the group. While user and object membership change

is expected, it is not expected to be frequent. User authentication to CG is performed

through an inter-organizational federated identity system. That is, there is no local id for

CG and users use their SO id to authenticate and participate in CG. Further, we also assume

federated CG administration. That is, the respective SO (A and B) is responsible for adding

and removing its users and objects to CG. For example, if A decides to remove its user from

CG, B is not required to participate in that administrative process. However, a collective

CG admin is established for controlling objects such as IP that may be created in CG. CG

admins are representatives from A and B. CG admins decide what information from CG

flows back to participating SOs. In this case, during and at the end of collaboration, CG

admins export intermediate results and the final IP back to both A and B.

58

Scenario #2 (Organizational Collaboration for Hire) Consider organizations A

and B where A is a defense services organization and B is a consulting company. This is

similar to scenario #1, except A is the ultimate stakeholder and sets of consultants from

B are admitted to CG periodically. Org A users in CG are long-term members, whereas

different sets of B consultants are brought into CG at different periods of time for a specific

purpose. Thus, B users are authorized to access objects added only during their period of

membership but A users may access all objects in CG. Users in CG may be substituted with

another user temporarily from corresponding SO. Substituted users inherit all permissions

of the outgoing user. Authentication to CG is performed through a federated id between A

and B. However, A controls membership to CG. That is A may decide to add and remove

users and objects to CG at its discretion. At the end of collaboration, A takes away the

results. B is compensated for its service.

Scenario #3 (Qualified Open Collaboration) Consider an interest group such as in

IETF where many users jointly work on an RFC. Here users share, collaborate and finally

publish or release the results of collaboration, say, to the public. All users are treated equally

in CG. Users are authenticated to CG through a federated id system or based on a local

identity infrastructure. Membership change is expected to be highly frequent with different

users coming in and going out and possibly re-joining while contributing information and

collaborating in CG. We assume that CG is self-administered. That is membership to CG is

controlled by CG admin(s) who also control final release of the results of the collaboration.

These scenarios albeit relatively simple, illustrate the relevance of groups in a wide variety

of collaboration scenarios.

3.2.2 Formal Specification of Bilateral Inter-Organizational Collabora-

tion

We formally specify a complete policy model for the bilateral inter-organizational collabo-

ration discussed in scenario #1 earlier. We closely follow the attribute-based UCON model

59

Figure 3.12: Each entry gives the operation name followed by its principal target (specified
in further detail in the subsequent tables). Operations labeled over arcs belong to the
administrative model and those within the group or organizations (all identical) belong to
the operational model.

for usage control [9]. Authorization to perform an operation (such as reading an object)

is expressed over the attributes (e.g. user id, group membership, etc.) of the entities in-

volved in the operation (such as the user and the object). A unique and powerful capability

of UCON is that if the operation succeeds, the attributes may be updated. For exam-

ple, if the operation is to remove a user from a group, the user’s membership attribute is

updated accordingly. In the following, for convenience, we interchangeably use the terms

“organization” and “org” and “collaboration group” and “group” respectively. In UCON

terminology, our model is a UCONA model, involving only authorizations but no obligations

or conditions.

Overview

We assume a federated administrative model for managing user and object membership in

the group. User membership in the group is controlled by respective org’s admins. Each

collaborating org has total control on users and objects that they want to contribute or

remove from the group.

In a distributed sharing setting such as inter-organizational collaboration, we expect that

objects will be versioned. We assume a general version model where each write operation on

60

an object creates a new version of that object (see section 3.1.8). Orgs can share a specific

version of an object with other orgs by adding it to the collaboration group. The same

version may be shared by an org with one or more collaboration groups. Newer versions of

the object created in the org are not automatically available to users in the group unless

explicitly shared. Similarly, newer versions created in the group from the version shared

by an org are not automatically available to users in the org unless explicitly shared. Such

new versions in the group can be merged back to that org as allowed by the group admins.

New objects (and new versions of those objects) may be created in the group during

collaboration. The group’s admins (representatives from each collaborating org) may export

specific versions of such objects to all collaborating organizations (recall that in scenario #1

each org is an equal stakeholder). We use a pull model here where specific versions in the

group are marked as importable and it is the responsibility of collaborating orgs’ admins to

import such versions back to their respective orgs as and when they are made available.

Figure 3.12 illustrates a group that is established between two orgs A and B (more

generally, any number of orgs may participate). Operations labeled over the arcs are ad-

ministrative operations and those that are contained within the group and the orgs belong

to the operational model where users create subjects (processes) and exercise their privi-

leges. Thus an administrative model specifies the authorization for operations such as Join

and Leave, while the operational model specifies the authorizations for user to create a

subject and exercise privileges in the group and organization. We discuss these two models

below.

Attributes

Table 3.4 specifies the sets and attributes in the system. UNIV ORG, UNIV CG, UNIV U,

UNIV S, UNIV O, UNIV V represent the universal sets (name spaces) of orgs, groups

established between such orgs, users, subjects, objects and object versions respectively.

Similarly sets ORG, CG, U, S and O represent the existing sets of respective entities. Note

that since each object in the set O require the name space of UNIV V, we do not maintain

61

Table 3.4: Attribute Definitions

Universal sets of names: Existing sets of names:

UNIV ORG: The universe of ORG: Set of all existing

organizations collaborating organizations

UNIV CG: The universe of CG: Set of all existing groups

collaboration groups established between orgs in ORG

UNIV U: The universe of users U: Set of all existing users

UNIV S: The universe of subjects S: Set of all existing subjects

UNIV O: The universe of objects O: Set of all existing objects

UNIV V: The universe of versions

User Attributes: Objects Attributes:

Att (U) = {uorg, ucg, orgadmin, cgadmin} Att (O) = {member, currV}
uorg : U → ORG member : O → ORG ∪ CG

ucg : U → 2CG currV : O → 2UNIV V

orgadmin : U → {True, False}
cgadmin : U → 2CG

Object Version Attributes:

Att (O, UNIV V) = {vMember, vSuspended, importable}
vMember : O×UNIV V ↪→ 2ORG∪CG

vSuspended : O×UNIV V ↪→ {True, False}
importable : O×UNIV V ↪→ {True, False}
As shown, vMember, vSuspended and importable are partial functions

that are undefined for object versions that do not currently exist.

Group Attributes: Subject Attributes:

Att (CG) = {assoc} Att (S) = {sOwner, type, belongsTo}
assoc : CG → 2ORG sOwner : S → U

type : S → {ro, rw}
belongsTo : S → ORG ∪ CG

62

a single set of existing versions. As will be discussed later, we address this by maintaining

an attribute of the object, currV, which keeps track of the existing versions of that object.

User Attributes: “User” is the representation of a human in the system. We assume that a

user can be a member of only one organization7. Thus attribute uorg specifies the member-

ship organization of a user. But there could be any number of groups established between

the organizations and the user may be a member of more than one group. Thus ucg maps the

user to a set of groups as indicated by 2CG (the power set of CG). The orgadmin attribute

specifies if the user is an administrator of his/her membership organization. The user could

be assigned as an administrator of one or more groups as specified by the cgadmin attribute.

Object Attributes: Each object is a member of a single entity (an org or a group) as

represented by the memberattribute. The object implicitly becomes a member of an org or

a group depending on where it is created. The currV attribute maintains the list of current

versions of an object.

Object Version Attributes: Each object may have many versions and specific versions may

be shared by organizations with one or more groups. Also, specific versions in a group

may be made available to all participating organizations by the group’s admins. Thus

given an object and version, attribute vMember lists the orgs and/or groups to which the

version belongs and vSuspended specifies if the version has been suspended. In our model,

we support a Suspend operation instead of a Delete operation. In the case the version

was created in a group, importable specifies if the version can be imported by all orgs

associated with the group (we will discuss this process in detail in section 3.2.2).

Group Attributes: The assoc attribute of a group lists the set of collaborating orgs that

are associated with the group.
7This may not be realistic in practice since many users are typically members of multiple organizations.

For simplicity, we assume a single organization user membership for the purpose of this case-study.

63

Subject Attributes: “Subjects” represent processes that execute on behalf of the user. The

sOwner attribute specifies the user that owns the subject (the creator of the subject), type

specifies whether the subject is read-only or read-write and belongsTo specifies the org or

group in which the subject was created.

Administrative Model

In tables 3.5 and 3.6, we formally specify a set of administrative operations that are rele-

vant to the collaboration group (as illustrated in figure 3.12). In the models we discuss, we

confine the group operation semantics to Liberal Join, Strict Leave for users and Liberal

Add, Strict Remove for objects (that is we follow the fixed operation model (LJ, SL, LA,

SR) from section 3.1.6). Note that any variation of these semantics will only affect the au-

thorizations of Join, Leave, Add and Remove operations leaving the rest of the specification

intact. Note that we do not consider organizational administrative operations such as the

user joining and leaving the org due to space limitations and organizational variations. In

the tables, the notation used is similar to that of UCON. the first column specifies the op-

eration that is to be performed, the second column specifies the conditions under which the

operation is authorized and the final column specifies the attributes and sets that need to

be updated if the operation succeeds. In the third column, an attribute/set name denoted

with a superscripted prime refers to its new value after the update and that without the

superscripted prime refers to its existing value before the update.

• Establish collaboration group: A set of administrative users come together to form

a collaboration group between their representative organizations. In the first column

in table 3.5, uSet is the set of users and cg is the group to be established. Note

that cg cannot be an existing group name. Since UNIV CG is the set of universe of

group names and CG the existing group names, we require that cg be picked from the

unused group names set UNIV CG −CG. In all of the following operations, we take

a similar approach whenever a new name is required.

64

Table 3.5: Administrative model

Operation Authz Requirement (→) Updates

∀uSet ⊆ U. ∀u1, u2 ∈ uSet.(orgadmin(u1)∧ assoc′(cg) =
⋃
∀u∈uSet uorg(u)

∀cg ∈ UNIV CG− CG. (u1 6= u2 → uorg(u1) 6= uorg(u2))) ∀u ∈ uSet.

Establish(uSet, cg) cgadmin′(u) = cgadmin(u) ∪ {cg}
CG′ = CG ∪ {cg}

∀u1, u2 ∈ U.∀cg ∈ CG. orgadmin(u1) ∧ cg ∈ cgadmin(u1)∧ ucg′(u2) = ucg(u2) ∪ {cg}
Join(u1, u2, cg) (uorg(u1) = uorg(u2))∧

cg /∈ ucg(u2) ∧ uorg(u1) ∈ assoc(cg)

∀u1, u2 ∈ U.∀cg ∈ CG. orgadmin(u1) ∧ cg ∈ cgadmin(u1)∧ ucg′(u2) = ucg(u2)− {cg}
Leave(u1, u2, cg) (uorg(u1) = uorg(u2))∧ ∀s ∈ S.

cg ∈ ucg(u2) ∧ uorg(u1) ∈ assoc(cg) sOwner(s) = u2 ∧ belongsTo(s) = cg

S′ = S− {s}

∀u ∈ U.∀o ∈ O. uorg(u) = member(o)∧ vMember′(o, v) =

∀v ∈ currV(o).∀cg ∈ CG. uorg(u) ∈ assoc(cg)∧ vMember(o, v) ∪ {cg}
Add(u, o, v, cg) cg ∈ cgadmin(u) ∧ orgadmin(u)∧

uorg(u) ∈ vMember(o, v)∧
cg /∈ vMember(o, v)

∀u ∈ U.∀o ∈ O. uorg(u) = member(o)∧ vMember′(o, v) =

∀v ∈ currV(o).∀cg ∈ CG. ∧uorg(u) ∈ assoc(cg)∧ vMember(o, v)− {cg}
Remove(u, o, v, cg) cg ∈ cgadmin(u) ∧ orgadmin(u)∧

uorg(u) ∈ vMember(o, v)∧
cg ∈ vMember(o, v)

∀u1, u2 ∈ U.∀cg ∈ CG. orgadmin(u2) ∧ cg ∈ cgadmin(u1)∧ cgadmin′(u1) = cgadmin(u1)− {cg}
Substitute(u1, u2, cg) uorg(u1) = uorg(u2)∧ cgadmin′(u2) = cgadmin(u2) ∪ {cg}

uorg(u1) ∈ assoc(cg)

65

In column 2, for Establish to succeed, we require that there be exactly one administra-

tive user in the set uSet from each collaborating organization. That is any two users

in uSet cannot belong to the same organization. In other scenarios, this operation

may simply be performed by one admin user from a single organization.

Subsequently, in column 3, the assoc attribute of cg is updated to the set of organi-

zations of the users in uSet and every user in uSet is made an administrator of cg by

setting the respective user’s cgadmin attribute. Finally, since the group name cg is

now used, we update the existing group names set CG accordingly.

• Join user to group: An org’s admin user u1 is allowed to join the same org’s user u2

to the group cg if an association exists between u1 and u2’s org and cg. Note that u1

should also be an admin of cg (that is, u1 participated in cg’s Establish process and

became the group admin at that time or was later substituted to be the group admin).

u2’s ucg attribute is updated to reflect the fact that the user is now a member of cg.

• Leave user from group: Leave operation is similar to join, except all the subjects

executing on the user’s behalf that were created in the group should be killed. To

this end, we update the existing subjects set S by removing all the subjects executing

in the group that are owned by the leaving user. As we will see in the operational

model, this ensures that such subjects cannot continue performing any actions.

• Add object version to group: A user u is allowed to add a specific version v of an

object o to a group cg if u is an admin of the organization to which the object version

belongs and also an admin of cg. After add, the vMember attribute of the object

version is updated to reflect the fact that the version is now a member of cg.

• Remove object version from group: This is similar to Add operation. Again, u is

both an admin of the group from which the version is being removed and the org that

initially shared the version with the group. In contrast to Leave operation, subjects

need not be killed because the user is still a current member in the group.

66

• Substitute group admin: In the event a cg admin is unavailable or has to leave the

group, we provide a Substitute operation to replace the leaving admin. Here, current

cg and org admin u1 needs to be substituted with another org admin u2. Note that

we make u2 a cgadmin in the update column. This operation is essentially delegation

of permissions and more sophisticated approaches may be taken, for example, as

discussed in delegation in RBAC [38–40]. For our purpose, this simple substitution

operation serves to illustrate the requirement.

• Export a version in group to all source orgs: We use a pull model for exporting any

object version created newly in the group. That is, the cg admins mark an object

version in cg as importable and the collaborating orgs can subsequently copy that

version to their respective orgs using the following Import operation. In table 3.6, a

set of cg admins come together to authorize Export. Export requires that every user

in uSet is a cg admin and users in uSet represent every org associated with cg. The

object version should belong to cg and not have been suspended. Note that Export

can only be performed on versions of an object that was natively created in cg (as

ensured by the requirement member(o)=cg). The importable attribute of the object

version is set to True.

• Import a version from group to org: The semantics of import operation is to copy

the importable object version in cg to the actor’s organization. The cg admin u

(who is also an admin of his/her organization) copies the importable object version

o1, v1 to object version o2, v2 in u’s organization (a new version v2 of the object o2

is created in org as part of Import). This is allowed if an association exists between

u’s organization and cg and importable attribute of o1, v1 is True. Similar to Export,

Import can only be performed on versions of an object that was natively created in cg.

The currV attribute of o2 is updated to reflect the fact that v2 has been used. Note

that the imported and exported objects may be added to another group. To prevent

such information flow, additional attributes need to be brought into the model.

67

Table 3.6: Administrative model (continued)

Operation Authz Requirement (→) Updates

∀uSet ⊆ U.∀cg ∈ CG. ∀u1 ∈ uSet.cg ∈ cgadmin(u1)∧ importable′(o, v) = True

∀o ∈ O.∀v ∈ currV(o). assoc(cg) =
⋃
∀u2∈uSet uorg(u2)∧

Export(uSet, cg, o, v) ¬vSuspended(o, v)∧
cg ∈ vMember(o, v)∧
member(o) = cg ∧ ¬importable(o, v)

∀u ∈ U.∀o1, o2 ∈ O. member(o1) = cg∧ currV′(o2) = currV(o2) ∪ {v2}
∀v1 ∈ currV(o1). importable(o1, v1)∧ /∗where v2 ∈ UNIV V− currV(o2)

∀cg ∈ CG. cg ∈ cgadmin(u) ∧ orgadmin(u)∧ is a newly generated version id ∗ /

Import(u, o1, v1, o2, cg) uorg(u) ∈ assoc(cg)∧ vMember′(o2, v2) =

¬vSuspended(o1, v1)∧ vMember(o2, v2) ∪ uorg(u)

member(o2) = uorg(u)

∀uSet ⊆ U.∀cg ∈ CG.
⋃
∀u1∈uSet uorg(u1) = assoc(cg)∧ vMember′(o, v) =

∀o ∈ O.∀v ∈ currV(o). ∀u2 ∈ uSet.(cg ∈ cgadmin(u2))∧ vMember(o, v) ∪member(o)

Merge(uSet, cg, o, v) ∃u3 ∈ uSet.uorg(u3) = member(o)∧
cg ∈ vMember(o, v)∧
member(o) /∈ vMember(o, v)

∀uSet ⊆ U.∀cg ∈ CG. ∀u1 ∈ uSet.(orgadmin(u1)∧ ∀u2 ∈ U.uorg(u2) ∈ assoc(cg).

Disband(uSet, cg, disband) cg ∈ cgadmin(u1))∧ (ucg′(u2) = ucg(u2)− {cg}⋃
∀u∈uSet uorg(u) = assoc(cg) cgadmin′(u2) = cgadmin(u2)−{cg})

assoc′(cg) = NULL

∀o ∈ O.cg = member(o).

member′(o) = NULL

∀o ∈ O.

∀v ∈ currV(o).cg ∈ vMember(o, v).

vMember′(o, v) =

vMember(o, v)− {cg}
CG′ = CG− {cg}
S′ = S−⋃

∀s∈S.belongsTo(s)=cg s

68

• Merge a version to org: The “merge” operation is performed on new object versions

in cg that were created from a version that was previously shared by an organization

with cg. Versions can only be merged back to an organization that shared an older

version in the past. Hence, we verify that the object is actually a member of one

of the collaborating organizations. Similar to Export, we need one admin from each

collaborating organization in cg to authorize this operation. This is required to ensure

that content of the version that is to be merged back to one of the collaborating

organizations is appropriate.

• Disband group: The semantics of this operation is to delete the group. We assume

that each of the collaborating organizations have copied all the group objects back

to their respective organizations before Disband operation is performed. Similar to

group creation, we require that one administrator from each associated organization in

the group be present to authorize this operation. Once disbanded, the corresponding

attributes of every user, object and object version in the group are updated as shown.

Also, all subjects executing in the group should be killed. At this point, any object

that has not been copied to collaborating orgs become inaccessible.

Operational Model

For the operational model, the user-subject relationship is critical. We assume “user”

represents a human who can create “subjects” in the system that execute on his/her behalf.

We assume that each user may have multiple subjects, however each subject is owned by

one user. The user may be a member of one or more collaboration groups established

between any number of orgs. A typical user will then create a subject to read and write

objects in the user’s org and those in one or more collaboration groups of which he/she is

a member. While it may be reasonable to trust the user in this scenario, we cannot trust

subjects (programs) running on behalf of the user due to trojan horse issues. Clearly, it

is critical to control information flow here. For instance, we should not allow a subject to

copy arbitrary information from the org to one of the user’s membership groups or copy

69

information from one group (between org A and B) to another group (between A and C) if

the user is member of both groups.

To this end, in our user-subject model, we allow two types of subjects specified at

creation time by the user: read-only and read-write. A user can create a read-only subject to

freely read information from his/her org and all groups that he/she is a member of. However

read-only subjects cannot write information anywhere. Such a subject is convenient for the

purpose of aggregation. The user can use a read-only subject to aggregate information from

various groups in one place in order to read them, scan for alerts, etc. If the user wants

to write information, he/she needs to create a read-write subject. However, due to the

possibility of malicious subjects (trojan horses that may copy arbitrary information from

one group to other or from an org to group and vice versa), we restrict read-write subjects

to one group specified at creation time. Suppose an org A user is a member of group 1 and

group 2 that are established between orgs A and B and A and C respectively. A read-write

subject created by the user in group 1 will not be allowed to read information from group

1 and write to group 2. However, it can read and write any object that is in group 1. If

the user needs to write to objects in group 2, he/she needs to create a separate read-write

subject in group 2.

We discuss a set of operations involved in the operational model as specified in tables 3.7

and 3.8. The operations contained within the group or the orgs in figure 3.12 belong to the

operational model. These operations allow a user to create subjects and exercise privileges

in a group or an org.

• CreateRO subject: A user can create a read-only subject in either an organization

or a group if he/she is a member of the respective entity. Note that the subject’s

type attribute is set to read-only and the creating user is made the owner of the

subject. The parameter entity specifies where the subject should be rooted (the

user’s organization or a specific group of which the user is a member) and belongsTo

attribute is set accordingly. Recall that read-only subjects may read objects from

multiple entities (groups and source org). However, they cannot write to any object.

70

Table 3.7: Operational model
Operation Authz Requirement (→) Updates

∀u ∈ U.∀s ∈ UNIV S− S. uorg(u) = entity ∨ entity ∈ ucg(u) sOwner′(s) = u

∀entity ∈ ORG ∪ CG. type′(s) = ro

CreateRO(u, s, entity) belongsTo′(s) = entity

S′ = S ∪ {s}

∀u ∈ U.∀s ∈ UNIV S− S. uorg(u) = entity ∨ entity ∈ ucg(u) sOwner′(s) = u

∀entity ∈ ORG ∪ CG. type′(s) = rw

CreateRW(u, s, entity) belongsTo′(s) = entity

S′ = S ∪ {s}

∀u ∈ U.∀s ∈ S. sOwner(s) = u ∨ (orgadmin(u)∧ sOwner′(s) = NULL

Kill(u, s) belongsTo(s) = uorg(u))∨ type′(s) = NULL

belongsTo(s) ∈ cgadmin(u) belongsTo′(s) = NULL

S′ = S− {s}

∀s ∈ S.∀o ∈ O. ((type(s) = rw∧ None
∀v ∈ currV(o). belongsTo(s) ∈ vMember(o, v))

Read(s, o, v) ∨
(type(s) = ro∧
(uorg(sOwner(s)) ∈ vMember(o, v)

∨ vMember(o, v) ∩ ucg(sOwner(s)) 6= φ)))

∧
¬vSuspended(o, v)

• CreateRW subject: A user can create a read-write subject in either an organization

or a group if he/she is a member of the respective entity. The subject’s type attribute

is set to read-write and the creating user is made the owner of the subject. The

parameter entity specifies where the subject should be rooted (the user’s organization

or a group) and belongsTo attribute is set accordingly. Note that read-write subjects

can read and write objects only in the entity specified by the belongsTo attribute.

• Kill subject: A subject can be killed by either the owner of the subject or by the

administrator of the organization or the group where the subject is rooted. The

existing subjects set S is updated once the subject is killed.

71

• Read an object version: A subject can only read un-suspended object versions. If

the subject is of type read-only, the subject can read object versions from the owner’s

organization or any of the groups of which the user who owns the subject is a member.

On the other hand, if it is a read-write subject, the subject can read object versions

only from the organization or group where it is rooted (as specified by the belongsTo

attribute). Note that we need an ongoing authorization check even after the initial

authorization for Read. In the event s is no longer an element of S (which happens

if the subject is killed or if the user leaves group) or the version being read gets

suspended or ceases to exist in the group or org, the read operation should stop as

indicated below.

stopped(s, o, v, Read) ←s /∈ S ∨ vSuspended(o, v) ∨ (uorg(sOwner(s)) /∈

vMember(o, v) ∧ (vMember(o, v) ∩ ucg(sOwner(s))) = φ)

The notion of stopped is adopted form the UCON model [9]. An enforcement model

will provide additional details of how the stopped operation may be enforced.

• Update an object version: Subjects of type read-write may update un-suspended

object versions. Updating an object version creates a new version of the object in the

same organization or group where the subject is rooted. As shown, the new version

v2 is made a member of the organization or group where the subject is rooted. This

operation should stop in the event s /∈ S or the version being updated ceases to exist.

stopped(s, o, v1, Update) ← s /∈ S ∨ belongsTo(s) /∈ vMember(o, v1)

• Create an object: A read-write subject can create a new object in the organization

or group where it is rooted. As shown, the object is created with a new version v

which is made a member of the subject’s rooted org or group.

72

Table 3.8: Operational model (continued)
Operation Authz Requirement (→) Updates

∀s ∈ S.∀o ∈ O. type(s) = rw∧ currV′(o) = currV(o) ∪ {v2}
∀v1 ∈ currV(o). belongsTo(s) ∈ vMember(o, v1)∧ /∗where v2 ∈ UNIV V− currV(o)

Update(s, o, v1) ¬vSuspended(o, v1) is a newly generated version id ∗ /

vMember′(o, v2) = belongsTo(s)

vSuspended′(o, v2) = False

importable′(o, v2) = False

∀s ∈ S.∀o ∈ UNIV O−O. type(s) = rw currV′(o) = currV(o) ∪ {v}
Create(s, o) / ∗ where v ∈ UNIV V

is a newly generated version id ∗ /

vMember′(o, v) = belongsTo(s)

member′(o) = belongsTo(s)

vSuspended′(o, v) = False

importable′(o, v) = False

O′ = O ∪ {o}

∀s ∈ S.∀o ∈ O. type(s) = rw∧ vSuspended′(o, v) = True

∀v ∈ currV(o). belongsTo(s) ∈ vMember(o, v)∧
Suspend(s, o, v) ¬vSuspended(o, v)

∀s ∈ S.∀o ∈ O.∀v ∈
currV(o).

type(s) = rw ∧ belongsTo(s) ∈
vMember(o, v)∧

vSuspended′(o, v) = False

Resume(s, o, v) vSuspended(o, v)

73

• Suspend/Resume a version: A read-write subject can suspend or resume an object

version that is member of the organization or group where the subject is rooted. The

vSuspended attribute is set to True or False accordingly.

3.3 Group-Centric Collaboration Framework

In this section, we present a framework for developing group-centric collaboration mod-

els. The framework consolidates many issues that are typical in most inter-organizational

collaboration scenarios as discussed earlier.

Formal specification of one of the scenarios allowed us to realize a host of issues that

needed to be resolved even in the most simple inter-organizational collaboration scenario

where two or more orgs establish a group to share their resources. The resources we con-

sidered included only users and objects. There were no sub-groups or hierarchical groups

within the collaboration group and all users had the same permissions in the group (that is

permissions did not depend on other user attributes such as role). Based on this detailed

case study, we consolidate various alternatives and issues into a framework for developing

group-centric collaboration models.

At a high level, organizational collaboration scenarios can be classified into three dis-

tinct phases. In the Begin Collaboration phase, participating organizations make various

fundamental decisions about the collaboration. For example, which entities may participate

in the collaboration, the entity that controls the collaboration group, etc. Next, in the Col-

laboration Phase, users participate in the collaboration. During this phase, new ideas are

born and in general, the group evolves. The collaborating organizations need to decide on

how to handle issues such as who controls membership to the collaboration group, what is

the policy if a member exits the source organization, etc. Finally, in the End Collaboration

phase, some or all of participating organizations take away the results of the collaboration

(this may also happen during the Collaboration Phase). In the following discussion, we refer

to the organizations that participate in the collaboration by contributing users and objects

as Source Organizations (SO). The group that is established for collaboration is referred to

74

Figure 3.13: Begin Collaboration Phase.

as Collaboration Group (CG). Any other organization that facilitates the collaboration is

referred to as third-party.

Begin Collaboration Phase

In this phase (figure 3.13), there are at least three important high-level decisions to be

made. First a decision on who is responsible for administration of the CG needs to be

made. For example, when 3 SOs A, B and C collaborate, CG may be controlled and

hosted at one of the SOs or control may be shared between two of the SOs or all of them.

Alternatively, the control could be outsourced to a third-party. Next, participating SOs

need to decide if CG users will be differentiated in terms of privileges that they can exercise

in the group where a specific group structure may be established for this purpose. In the

simplest case, it could be a flat group where all users are treated equally or users may

be differentiated as per their attributes such as their roles, time of joining the group, etc.

In more complex settings, various structures and constraints could be established. For

example, the groups could be set up in a hierarchical fashion where membership at higher

group may automatically grant permissions to lower groups. Further constraints such as

mutual exclusion (where membership in one group may be mutually exclusive to membership

in one or more other groups) and/or conditional membership (where membership in a source

group may be required for continued membership in another group) may be imposed. A

75

Figure 3.14: Collaboration Phase.

final issue is whether users and objects from a non-participating organization are allowed

to be present in CG. In some scenarios this may be desirable where although only two

organizations formally initiate and establish a collaboration, a limited number of users may

be admitted from a different organization. The users may also be individual contributors

who may not belong to any organization. In other cases, this may not be allowed due to

the sensitivity of collaboration.

Collaboration Phase

During this phase (figure 3.14), collaboration occurs and users and objects may be added and

removed and the CG evolves. First, users need to be authenticated to CG. Authentication

can be carried out locally by CG or could be federated to respective SOs. While main-

taining a local identity infrastructure is not desirable in inter-organization collaboration, it

76

is practical in scenarios where users don’t belong to any organization, yet collaborate. In

federated id systems, respective organizations authenticate their users and send a verifiable

assertion that the user has been authenticated. CG can verify the assertion and decide to

let the user in or not. Clearly, it is the responsibility of SOs to correctly authenticate their

users.

The next issue is handling membership change. As mentioned earlier in section 3.2.2,

users may join and leave the group with SJ or LJ and SL or LL respectively. Administration

of user join and leave may be federated or controlled locally by the CG. In federated admin,

the SOs admit and remove their users to/from CG at their discretion. In self CG admin,

the CG admins are responsible for managing users. Admission policy could vary depending

on the scenario. For example, only faculty members from accredited universities may be

allowed to join CG.

Similar to user membership, object membership may be either federated or self admin-

istered by CG. In federated admin, participating SOs decide what objects they want to

contribute to CG. Note that federated object remove is tricky in some situations. Suppose

that organization A adds an object to CG and organization B members in CG update those

objects. In federated remove, if organization A decides to remove the object from CG,

organization B CG members may lose access to that object. Clearly, the object update

model is relevant in this scenario. If updating an object, creates a new version, we have the

flexibility to support any type of policy for object remove. Thus if organization A removes

the original object, in some scenarios, newer versions of that object may be allowed to re-

main in CG. On the other hand, object remove may be controlled by CG admins locally. At

remove time, they may choose to either export the removed object to all the stakeholders

in the collaboration or take no action, in which case the object is simply removed from the

group with no information flowing back to other stakeholders. Further objects could be

added and removed in Strict or Liberal fashion as mentioned in section 3.2.2.

The next issue is whether user substitution is allowed which involves questions related to

delegation of substituting user’s permissions in CG. For example, it could be temporary or

77

Figure 3.15: End Collaboration Phase.

permanent substitution, single-step (where only one level of substitution allowed) vs multi-

step (where subsequent substitutions may be allowed), etc. There are a number of such

alternatives and many issues in the delegation framework [38–40] proposed for role-based

access control apply here.

A final issue is how to handle CG users leaving their respective SOs. In certain scenarios,

an instant or lagged revocation to CG may be required. In other scenarios, user’s exit from

SO may not affect their membership in CG. Instant revocation to CG can be enforced

if the user’s validation with the SO is carried out with every login. This is simple in

organizational federated id scenarios. However, in both local id and outsourced federation,

user’s membership in SO needs to be verified every time the user attempts to login to CG.

Similar issues exist in lagged revocation, except that membership validation with SO is

performed periodically instead of doing it at every login. Clearly, instant revocation may

incur significant performance penalty while lagged revocation may incur assurance penalty

while achieving better performance.

End Collaboration Phase

When the collaboration ends (figure 3.15), CG may be torn down or suspended if future

collaboration is anticipated. In either case, the results of the collaboration may need to

published to the stakeholders of the collaboration. In some cases, participating organizations

may all be equal stakeholders, while in others, only some of the participating organizations

may be stakeholders and the remaining SOs may not own the final outcome. In certain

unique scenarios (such as is confidential military operations), the results of collaboration

78

Table 3.9: Informal Policy model for the 3 usage scenarios based on the framework

Issues Scenario #1 Scenario #2 Scenario #3

1. Who creates and owns
CG?

Collective admin Org A admins CG admins

2. Differentiate Users? No Yes. Timeliness of
membership.

No

3. User/object membership Federated Federated Self-admin

4. Users/objects from 3rd
party?

No No N/A

5. Authentication to CG Federated id Federated id Local id

6. Membership policy (LJ, SL), (LA, SR) (LJ, SL) for A, (SJ,

SL) for B, Mixed op-
erations for objects
(SA/LA, SR/LR)

(LJ, SL), (LA, SR)

9. Handling user exit from
SO

Handled by federated
id

Handled by federated
id

N/A

10. Handling object deletes
in SO

SR from group SR/LR at CG admin
discretion

SR/LR at CG admin
discretion

11. User substitution Yes. Single-step, tem-
porary, complete in-
heritance.

Yes. Single-step, tem-
porary, complete in-
heritance.

No

12. Disband CG Orgs A and B take
away results

Only org A takes away
results

CG admins publish

79

may need to be destroyed after the mission is accomplished in which case there may not be

any tangible information flowing back to stakeholders.

Based on this framework, table 3.9 outlines an informal policy model for the three sce-

narios discussed in section 3.2.1 (recall that the complete model presented was for scenario

#1).

80

Chapter 4: Enforcement Models for g-SIS

In this chapter, we discuss an enforcement model for the π-system of read-only g-SIS policy

models discussed in section 3.1.5. An enforcement model identifies various components such

as trusted servers, clients and administrators and specifies the interaction between them to

realize the g-SIS policy model. We discuss three object distribution approaches in g-SIS:

Super-Distribution (SD), Micro-Distribution (MD) and a hybrid approach that combines

the advantages of SD and MD. We also identify and analyze the problem of “stale-safety”

in g-SIS. “Stale-safety” is concerned with enforcing safe authorization policy given that

authorization decision will inevitably be made based on stale authorization information

in distributed systems such as g-SIS. We specify stale-safe security properties of varying

strength and formally verify these properties against the SD based g-SIS enforcement model

using model checking.

4.1 g-SIS Architecture

An important g-SIS objective that we are interested in is to enable offline access. We

strongly believe that some degree of offline access is highly desirable in SIS where discon-

nected access attempts are likely. A motivation for offline access in the context of SD in P2P

networks in mobile devices can be found in [41]. Offline periods of access can be restricted by

various measures such as time, usage, etc. Thus, we expect that sometimes access decisions

will be made locally without contacting a central authority. This requires that authoriza-

tion information such as user attributes be stored locally and used in a trustworthy manner.

Nevertheless, authorization information needs to be periodically refreshed with the central

authority. In this section, we assume that the users interact with other entities using ac-

cess machines running a Trusted Reference Monitor (TRM) whose software configuration

81

can be verified. Authorization information such as the group key(s) will only be available

to the TRM in a trustworthy state. Thus the TRM can faithfully enforce group policies

locally. Later, we discuss TPM-based protocols for interaction between various entities in

the system.

4.1.1 System Characterization

The g-SIS system consists of users and objects, trusted access machines (using which users

access group objects), a Group Administrator (GA) who is responsible for updating user

and object attributes and a Control Center (CC) that maintains the attributes. An access

control policy is specified using user and object attributes. A user’s access machine has a

Trusted Reference Monitor (TRM) that maintains a local copy of user attributes which are

refreshed periodically with the CC so as to reflect changes, if any, in their values. There

are many approaches to trigger a refresh of user attributes. For example, a refresh could

be triggered based on time-out or a count on the number of times the user attributes (e.g.

group key) may be used by the TRM to decrypt group objects. Offline access to secure clock

is not feasible in TPMs today and so we take the usage count based approach for refresh

(see for example [42, 43]). Object attributes are embedded in the object itself. An object

removed from the group is listed in the Object Revocation List (ORL) which is provided to

the TRM as part of refresh. A g-SIS system can be characterized as follows:

User attributes {id, Join TS, Leave TS,ORL, gKey,N}
Object attributes {id, Add TS}
Access Policy Authz(u, o, read) → Join TS(u) ≤ Add TS(o)

∧ Leave TS(u) = NULL ∧ o /∈ ORL(u)

User attribute Join TS is join time of a user, Leave TS is the leave time of user (if the user

has left the group, NULL otherwise), ORL is the Object Revocation List that identifies

82

the list of objects that have been removed from the group along with their history of add

and remove time-stamps, gKey represents the group keys (symmetric or asymmetric key

pair) using which objects can be encrypted and decrypted and N is the usage count that

limits usage of gKey before a refresh of user attributes is required with CC. Object attribute

Add TS is the time at which an object was added to the group. Attribute id represents a

unique identity for each user and object.

Authz specified here is an attribute-based specification of the fixed operation (SJ, SL,

LA, SR) model discussed in section 3.1.6. The access policy here specifies that a user is

allowed to read an object as long as both the user and object are current members of the

group and the object was added after the time at which the user joined the group. While any

fixed operation model based on the π-system (see sections 3.1.5 and 3.1.6) can be specified

and enforced by the TRM using these sets of attributes, we use the access policy specified

here as a running example in this chapter.

4.1.2 System Architecture

Figure 4.1 shows the g-SIS architecture which illustrates the interaction between various

components. The GA controls group membership and policies. The CC is responsible for

maintaining authoritative attributes of group users and objects on behalf of the GA.

• User Join (steps 1.1-1.4): Joining a group involves obtaining authorization from the

GA followed by obtaining group credentials from the CC. In step 1.1, the TRM on

user’s access machine contacts the GA and requests authorization to join a group.

The GA authorizes the user join in step 1.2 (by setting AUTH to TRUE). The user

furnishes the authorization to join the group and the evidence that the access machine

is in a good software state to the CC in step 1.3. The integrity evidence is a signed hash

that proves that the chain of software loaded during the boot-up process including

the system steady-state is trustworthy. The CC remotely verifies GA’s authorization,

that the user’s access machine is trustworthy (using the integrity evidence) and has

a known TRM that is responsible for enforcing g-SIS policies. In step 1.4, the CC

83

Figure 4.1: g-SIS Architecture.

provisions the attributes after setting them with appropriate values. We refer to these

attributes as group credentials or simply credentials. Note that we assume that the

credentials are provisioned such that only the TRM can access them.

• Add Object (steps 2.1-2.2): From here on, the user is considered a group member.

Objects may be added to the group by users after the CC sets the Add TS (step

2.1). The CC verifies the object1 and sets the Add TS attribute. We assume object

attributes are embedded in the object itself. The CC then releases the protected object

to the Object Source (step 2.2). The Object Source acts as the object repository from

which users may obtain objects. It is possible for the CC itself to act as the Object

Source, but in practice, this may be an independent entity.

• Read Objects (step 3): Users may read group objects as per the group policy using

the credentials obtained from the CC. This is locally mediated and enforced by the

TRM. Note that the objects may be obtained from Object Source and stored locally.

Because of the presence of a TRM on user’s access machines, these objects may be
1We treat this as an abstract step because verification of object depends on the specific application. In

one case, this could simply be proof-reading while in another it could be a verification that the content is
appropriate.

84

read offline conforming to the policy. Recall that various authorization policies are

possible as discussed in section 4.1.1.

• Attribute Refresh (steps 4.1-4.2): The TRM refreshes user attributes with the CC

periodically. More generally, g-SIS policy, like the one discussed in section 4.1.1, may

be updated or replaced in these steps. A usage count limits the number of times the

credentials (e.g., gKey) may be used to read group objects (like consumable rights).

Thus objects may be read until the usage count is exhausted and the TRM will be

required to refresh user attributes in steps 4.1 and 4.2 before any further read access

can be granted.

• Administrative Actions (steps 5.1-5.2 and 6.1-6.2): The GA may have to remove

a user or object from the group. In step 5.1, the GA instructs the CC to remove

a user. The CC in turn marks the user for removal by locally setting the user’s

Leave TS attribute in step 5.2. This attribute update is communicated to the user’s

TRM during the refresh steps 4.1 and 4.2. In the case of object remove, an Object

Revocation List or ORL is provisioned by the CC on the user’s access machine. Thus

for object removal (steps 6.1-6.2), the object’s id, Add TS and Remove TS are added

to the ORL.

4.1.3 Super Vs Micro-Distribution in g-SIS

We now discuss SD and MD approaches for object distribution and access in the g-SIS

architecture. In figure 4.1, steps 2.1 and 2.2 are object distribution steps and step 3 is the

offline object read step. We compare and point out the pros and cons of each approach

and present a superior hybrid approach in the following section. In this dissertation, Super-

Distribution (SD) refers to widespread distribution of protected group objects while only

authorized users may read them. Here all group users share a single group key using which

objects are encrypted and decrypted. Micro-Distribution (MD) refers to custom encryption

of objects for each authorized user. Figures 4.2 and 4.3 illustrate the difference between SD

85

Figure 4.2: Super-distribution in g-SIS.

and MD in g-SIS. For simplicity, we assume that a symmetric key is used for encrypting

and decrypting objects in both SD and MD. Our discussions below apply equally well to

SD and MD approaches using asymmetric keys.

In SD based approach all group users share a single group key for encrypting and

decrypting group objects. Thus in SD (figure 4.2), an Author (a group user) creates an

object, encrypts the object using the group key (mediated by TRM) and sends it to the

CC for approval and distribution. The CC verifies the object, time-stamps object add

and releases this protected object into the infospace (referred to as Object Cloud) through

conventional networks such as WWW, Email, etc. or sneakernet such as USB flash drives.

These are steps 2.1 and 2.2 in figure 4.1 for SD approach. Other group users can obtain such

encrypted objects and store them locally in their access machines for later offline access.

Note that group objects need not be obtained from CC or a specific Object Source in SD.

Since the group key is shared with all group users, the TRM can decrypt the object and

display to the user offline without involving the CC every time.

In MD (figure 4.3), the CC shares a unique key with each group user. In contrast, in SD

the same key is shared with all users in the group. The Author (a group user) creates an

object, encrypts the object using the author’s key shared with the CC (mediated by TRM)

and sends it to the CC for approval and distribution. The CC approves the object, time-

stamps object add and saves it locally. These are steps 2.1 and 2.2 in figure 4.1 for the MD

86

Figure 4.3: Micro-distribution in g-SIS.

based approach. When a User requests access to the object, the CC specifically encrypts

the object with the key shared with that User. This is a critical difference from SD. Since

objects need to be individually encrypted/prepared for each group user, the scalability of the

system is gravely affected (here scalability refers to performance in the context of increasing

number of objects shared amongst group users). Since a large number of objects may be

shared within the group, the requirement that the CC decrypt and then custom encrypt

each object for each group user affects the scalability of MD based enforcement model. In

SD, the object is encrypted once and all authorized group users are able to access them

without the intervention of the CC. We discuss how MD differs from SD in g-SIS.

• User Join: In SD, the CC provisions the group key for each joining user. In MD,

the CC needs to create and share a new key with each joining user. This requires

maintenance of a large number of keys.

• Object Add: In MD, the TRM would send the object to the CC. The CC needs to

encrypt this object with every other user’s key on demand so that it is accessible to

them. This suffers from scalability and performance issues.

• Object Access: In MD, the first time a user needs to access an object, it needs to be

obtained from the CC where it is custom encrypted for that user. It can thereafter

87

be accessed offline whenever authorized. Note that every group object needs to be

initially obtained from CC in MD. In contrast, the objects could be obtained through

any means in SD since all objects are encrypted with the group key.

• Attribute Refresh, User and Object Remove: There is no difference between SD and

MD approach for g-SIS.

• Assurance and Recourse: In SD, if any one of the group user’s access machine is

compromised, the group key can be exposed and all group objects can be read in

plaintext. A new group key can be provisioned after recovering from the compromise—

although this can only guarantee secrecy of new objects that will be created. Due to

this single point of failure problem, the sensitivity of information that be can be

distributed using SD model may be limited. In MD, if any one access machine is

compromised, only objects that were encrypted for the specific user using that access

machine will be compromised. Other group objects remain safe because they were

encrypted with different keys. In summary, in SD a compromise can result in large-

scale access violation while in MD the violation is limited. This is the trade-off between

scalability and assurance of each model.

Clearly, the SD based architecture has important scalability and performance benefits of

simplified key management (single key per group) and the usability and convenience of

offline access and “encrypt once and access where authorized” where group users can quickly

share objects with other users. The MD based architecture on the other hand has important

failsafe benefits such as limited damage in case of access machine compromise. Note that

MD suffers from key management issues regardless of whether symmetric or asymmetric

key cryptography is used. For the later, a public-private key pair needs to be shared by

the CC with each group user. A more useful and practical architecture should combine

the benefits of SD and MD based architecture (thereby minimizing the disadvantages of

respective approaches). The hybrid architecture that we discuss in the following section

attempts to achieve this by using split-key RSA.

88

Table 4.1: Comparison of SD, MD and Hybrid approach in g-SIS architecture.

Aspect SD MD Hybrid

Key type Symmetric/Asymmetric Symmetric/Asymmetric Asymmetric

Number of
encryption
keys per
group

One One per group user
shared with CC

One

Number of
decryption
keys per
group

One One per group user
shared with CC

One split variant for
the same RSA expo-
nent per group user

Add object Encrypt with group
key

Encrypt with key
shared with CC

Encrypt with private
key

Read object Decrypt with group
key and read (en-
crypt once and access
where authorized).
Offline access enabled
throughout.

First time, CC cus-
tom encrypts the re-
quested object for the
user (encrypt differ-
ently for each user).
Subsequent reads can
be carried out offline.

First time, CC de-
crypts the object with
its split decryption
key. Subsequent reads
can be carried out
offline (encrypt once
and access where
authorized).

Usability
(with respect
to users)

Very high (offline ac-
cess, no CC participa-
tion).

Medium (To add ob-
ject, need to encrypt
with the key shared
with the CC. The CC
in turn decrypts and
custom encrypts for
each user.).

High (Encryption is
performed with a uni-
form encryption key).

Performance
(with respect
to CC)

Very high (CC never
participates in encryp-
tion/decryption).

Medium (CC partic-
ipates in decrypting
and custom encrypting
each object for each
group user).

High (CC does not
have to decrypt and
custom encrypt the ob-
ject like in MD. In-
stead, it performs a
one time split key de-
cryption operation per
document).

Assurance Low (compromising
one user’s access ma-
chine exposes group
key thereby poten-
tially exposing all
group objects).

High (Only objects in
the compromised ac-
cess machine are ex-
posed)

High (Only objects in
the compromised ac-
cess machine exposed).

89

Figure 4.4: Hybrid approach in g-SIS.

4.1.4 Hybrid Approach Using Split-Key RSA

In this section, we present a hybrid approach that addresses the drawbacks of SD and MD

based architecture thereby achieving the benefits of each approach.

Split-Key RSA

We provide a brief overview of split-key RSA in this section. Detailed discussions of the

algorithm and proofs can be found in [44–47]. In split-key RSA, the decryption key is

comprised of multiple parts each held by various parties (or users) involved in the decryp-

tion process. Thus if e and d denote encryption (public) and decryption (private) keys

respectively, d can be split into n parts—d1, d2, ..., dn and shared with possibly n different

parties. Thus a message encrypted with e can be decrypted only if all n parties participate.

90

Without the loss of generality, let us consider only two splits (and thus two parties).

e ∗ d = 1 mod ϕ(n) (4.1)

d1 ∗ d2 = d mod ϕ(n) (4.2)

C = M e mod n (4.3)

(M)d1d2
mod n = (4.4)

(M)d2d1
mod n =

(M)d1∗d2 mod n =

Md mod n

In classical RSA [48], the encryption (e) and decryption (d) keys for a given n are related

by equation (4.1). In split-key RSA with two splits, d can be split into two portions as

guided by equation (4.2). A message M is encrypted using a single operation as shown in

equation (4.3). Finally, the fundamental operation of exponentiation in RSA is given by

equation (4.4). Thus decrypting a message M using the split keys d1 and d2 in any order

in equivalent to decrypting the message using d. Also, note that d can be split into two

parts in any number of ways, there by yielding pairs of different splits such as d1 and d2,

d3 and d4, etc. Thus a message encrypted with e can be decrypted using d1 and d2 or d3

and d4, etc.

Hybrid Approach in g-SIS

Figure 4.4 illustrates the hybrid approach. Split-RSA keys are created for each group.

When a user joins a group, the CC creates a unique split decryption key pair (d1 and d2

for this user), keeps one split (d2) and shares the other decryption split key (d1) with the

joining user. The CC also shares the same encryption key (e) with every joining user. Thus,

91

in figure 4.4, the Author (a group user) adds an object by encrypting it with e and sending

it to the CC. The CC approves the object, sets the add time-stamp and releases it into the

object cloud similar to SD. The first time other group users need to access the object, they

send a request to the CC. The CC performs the decryption on the object using its split

decryption key d2 for that user and sends it back to the user. The user then decrypts this

blob using his/her split-key d1 (mediated by TRM) to get the final plain-text object. The

blob from CC can be stored locally and future read accesses can be performed completely

offline. Note that, in practice, a symmetric object key would be used and the split-key

decryption operation will be carried out on the object key instead of the entire object to

minimize performance penalty of asymmetric key operation. Table 4.1 summarizes and

compares g-SIS architectures based on SD, MD and hybrid approaches. Clearly, the hybrid

approach for g-SIS architecture combines the advantages of both SD and MD approach and

minimizes their disadvantages.

4.2 Stale-safe Security Properties

The concept of a stale-safe security property is based on the following intuition. In a dis-

tributed system authoritative information about user and object attributes used for access

control is maintained at one or more secure authorization information points. Access con-

trol decisions are made by collecting relevant user and object attributes at one or more

authorization decision points, and are enforced at one or more authorization enforcement

points. Because of the physical distribution of authorization information, decision and en-

forcement points, and consequent inherent network latencies, it is inevitable that access

control will be based on attributes values that are stale (i.e., not the latest and freshest

values). In a highly connected high-speed network these latencies may be in milliseconds, so

security issues arising out of use of stale attributes can be effectively ignored. In a practical

real-world network however, these latencies will more typically be in the range of seconds,

minutes and even days and weeks. For example, consider a virtual private overlay network

92

on the internet which may have intermittently disconnected components that remain dis-

connected for sizable time periods. In such cases, use of stale attributes for access control

decisions is a real possibility and has security implications.

We believe that, in general, it is not practical to eliminate the use of stale attributes

for access control decisions.2 In a theoretical sense, some staleness is inherent in the in-

trinsic limit of network latencies, of the order of milliseconds in modern networks. We are

more interested in situations where staleness is at a humanly meaningful scale, say minutes,

hours or days. In principle, with some degree of clock synchronization amongst the autho-

rization information, decision and enforcement points, it should be possible to determine

and bound the staleness of attribute values and access control decisions. For example, a

SAML (Security Assertion Markup Language) assertion produced by an authorization de-

cision point includes a statement of timeliness, i.e., start time and duration for the validity

of the assertion. It is upto the access enforcement point to decide whether or not to rely on

this assertion or seek a more timely one. Likewise a signed attribute certificate will have

an expiry time and an access decision point can decide whether or not to seek updated

revocation status from an authorization information point.

Given that the use of stale attributes is inevitable, the question is how do we safely use

stale attributes for access control decisions and enforcement? Our central contribution is to

formalize this notion of “stale-safety” in the specific context of group-centric secure infor-

mation sharing (g-SIS) as defined in this dissertation. We also demonstrate specifications

of systems that do and do not satisfy this requirement. We believe this formalism can be

extended to more general contexts beyond g-SIS, but this is beyond the current scope. We

believe that the requirements for “stale safety” identified here represent fundamental secu-

rity properties the need for which arises in virtually any secure distributed systems in which

the management and representation of authorization state is decentralized in any degree.
2Staleness of attributes as known to the authoritative information points due to delays in entry of real-

world data is beyond the scope of this dissertation. For example, if an employee is dismissed there may
be a lag between the time that action takes effect and when it is recorded in cyberspace. The lag we are
concerned with arises when the authoritative information point knows that the employee has been dismissed
but at some other decision point the employee’s status is still showing as active.

93

In this sense, we suggest that we have identified and formalized a basic security property

of distributed enforcement mechanisms, in a similar sense that non-interference [49] and

safety [50] are basic security properties that are desirable in a wide range of secure systems.

Specifically, we present formal specifications of two stale-safe properties, one strictly

stronger than the other. The most basic and fundamental requirement we consider deals

with ensuring that while authorization data cannot be propagated instantaneously through-

out the system, in many applications it is necessary that a request should be granted only

if it can be verified that it was authorized at some point in the recent past. The second,

stronger property says that to be granted, the requested action must have been authorized

at a point in time after the request and before the action is performed. We believe that the

first property, weak stale-safety, is a requirement for most actions (e.g., read or write) in

distributed access control systems. We also believe that the second property, strong stale-

safety, is (further) required of some or all actions in many applications (we will later discuss

why strong property is desirable in system involving write actions).

We further show how these two properties can be strengthened to bound the acceptable

level of staleness in terms of time elapsed between the point at which the request was last

known to have been authorized and the point at which the action is performed. Thus,

including these two strengthened versions, we have a total of four stale-safe properties.

4.2.1 Stale-safety

The sequence diagram in Figure 4.5 illustrates the staleness problem. The User and the

TRM interacts with the GA and CC in steps 1 to 5 to join the group. The TRM refreshes

attributes with the CC in steps 6 and 7. Shortly after the refresh, the GA removes this

user (step 8) by setting his/her Leave TS attribute at the CC (a non-null value). Note that

this step is not visible to the TRM until the next refresh steps 11 and 12. In the mean

time, the User may request access to objects the were obtained via super-distribution (step

9). At this point, the TRM evaluates the policy based on the attributes that it maintains.

This will be successful by policy in section 4.1.1 and the object is displayed to the user in

94

step 10. Note the difference in Leave TS values between the CC and TRM. Only after the

following refresh (steps 11 and 12) does the TRM notice that the user has been removed

from the group and denies any further access (steps 13 and 14).

Figure 4.6 shows a timeline of events involving a single group. User u1 joins the group

and the attributes are refreshed with the CC periodically. RT represents the time at which

refreshes happen. The time period between any two RT’s is a Refresh Window, denoted

RWi. After join, RW0 is the first window, RW1 is the next and so on. Suppose RW4 is

the current Refresh Window. Objects o1 and o2 were added to the group by some group

user (or the GA) during RW2 and RW4 respectively and they are available to u1 via super-

distribution. In RW4, u1 requests access to o1 and o2. An access decision will be made by

the TRM in the access machine as per the attributes obtained at the latest RT.

Clearly, our example access policy discussed in section 4.1.1 will allow access to both o1

and o2. However it is possible that u1 was removed by the GA right after the last RT and

before Request(u1, o1, access) in RW4 (see figure 4.5). Ideally, u1 should not be allowed to

access either o1 or o2.

From a confidentiality perspective in information sharing, granting u1 access to o1 is

relatively a lesser problem than granting access to o2. This is because the CC or the GA

authorized u1 to read o1 in the past and hence assume that information has already been

released to u1. In the worst case, u1 continues to access the same information (o1) until

the next RT. However, u1 never had an authorization to access o2 and letting u1 access o2

means that u1 has gained knowledge of new information to which u1 was never authorized.

This is a critical violation and should not be allowed. Such scenarios are what our stale-safe

security properties address. A user cannot access an object if it was added to the group

after the last refresh time even if the authorization policy allows access.

The property we discussed considers attributes to be stale if it is time-stamped later than

the last refresh time-stamp of the access machine. A more strict property may require the

access machine to refresh attributes before granting any access. That is, when u1 requests

access to o1, the stricter version of the stale-safe property mandates that the access machine

95

Figure 4.5: Staleness Illustration.

Figure 4.6: Events on a time line illustrating staleness leading to access violation.

96

refreshes the user attributes before making an authorization decision. Further, it is natural

to consider elapsed time since the last refresh to be an important issue in limiting staleness

of authorization data. We formalize these notions in the following subsection.

4.2.2 Formal Property Specification

In this section we use Linear Temporal Logic (LTL) [29] to specify four different formal

stale-safety properties of varying strength. Our formalization uses the following predicates:

request (u,o,op) u requests to perform

an action op on o.

Authz (u,o,op) u is authorized to perform

an action op on o.

Join (u) and Leave (u) Join & Leave events of u.

Add (o) and Remove (o) Add & Remove events of o.

perform (u,o,op) u performs op on o.

RT (u) The TRM contacts the CC

to update user attributes.

In the forthcoming formulae (ϕ0, ϕ1 and ϕ2) and subsequent sections, we drop the corre-

sponding parameters u, o and op in these predicates for convenience. They should however

be interpreted with the respective semantics described above. Further, we assume that the

very first join event of a user is equivalent to RT (since attributes are set at join time).

Access Policy Specification

We first formalize the access policy discussed in section 4.1.1 as an example. Note that, in

distributed systems such as g-SIS, events such as Remove and Leave cannot be instanta-

neously observed by the TRM. Such information (that a user or an object is no longer a

group member) can only be obtained from CC at subsequent refresh times (RT’s). Thus, we

have a notion of ideal or desirable policy that assumes instant propagation of authorization

97

information (like that of a centralized system). This is enforceable only at the CC. However,

while designing the TRM (that is, in a distributed setting), one has to re-formulate this

ideal policy using available authorization information so that it is enforceable locally by the

TRM. We call the former AuthzCC and the latter AuthzTRM.

AuthzCC below is the same policy in section 4.1.1 represented using LTL. Figure 4.7

illustrates AuthzCC. AuthzCC says that u is allowed to perform an action op on o if the

object was added to the group and both the user and object have not left the group since.

Also, the user joined the group prior to the time at which the object was added to the

group and has not left the group ever since. As the name implies AuthzCC can be enforced

only by the CC and not the TRM. This is because the Leave and Remove events at CC are

not visible to the TRM until the next refresh. Thus when a request is received, the TRM

cannot ensure that no Leave occurred since Join or no Remove occurred since Add.

AuthzCC ≡ ((¬Remove ∧ ¬Leave) S (Add ∧ (¬Leave S Join)))

Let us now re-formulate AuthzCC so that it is enforceable locally at TRM. Recall from

section 4.1 that once a user joins the group, authorization information such as object add

time is available instantaneously to the TRM via super-distribution. Thus whether an

object Add event occurred can be instantaneously verified by the TRM without contacting

the CC. However, verification of whether a user join or leave event or an object remove event

occurred can be ascertained only at refresh time (RT) with the CC. AuthzTRM shows the

re-formulation of AuthzCC as enforceable by the TRM. As shown, the occurrence of Join,

Leave and Remove are ascertained at RT. However, Add is not subject to this constraint

and its occurrence is ascertained freely.

AuthzTRM ≡ (¬RT S (Add ∧ (¬RT S (RT ∧ (¬Leave S Join))))) ∨

(¬RT S (RT ∧ ((¬Remove ∧ ¬Leave) S Add) ∧ (¬Leave S Join)))

98

Figure 4.7: Ideal Access Policy (AuthzCC).

AuthzTRM is a disjunction of two cases. The first part takes care of the case in which

the requested object is added after the most recent RT. This is illustrated in case (a) of

figure 4.8 where we are only able to verify that the user was still a member at RT. Since

the object was not added prior to that point, we are unable to do a similar check for the

object. The second part handles the situation where the object is added before the most

recent RT. This is illustrated in case (b) of figure 4.8 where we are able to verify that at

RT both the user and object are current members. Note that in both cases (a) and (b), our

evaluation of policy is based on authorization information (except Add) available at RT.

ϕ0 ≡ -© ((¬perform ∧ (¬RT ∨ (RT ∧AuthzCC))) S

(AuthzTRM ∧ (¬request ∧ ¬perform) S request))

ϕ′0 ≡ -© ((¬perform ∧ (¬RT ∨ (RT ∧AuthzCC))) S (request ∧AuthzCC))

Figure 4.9 is a pictorial representation of formula ϕ0. It illustrates how a reference

monitor reacts to a request to access an object. When a request arrives from a user, the

TRM subsequently verifies if the policy (AuthzTRM) holds. If successful, the TRM allows

the user to perform the requested action. Note that if an RT occurs in the meantime, the

TRM re-evaluates the policy with the updated attributes. Thus, ϕ0 says that the operation

was authorized sometime between request and perform. Clearly, the formula 2 (perform →
ϕ0) reflects this behavior of the TRM. In contrast, the formula 2(perform → ϕ′0) is not

enforceable as argued earlier since AuthzCC cannot be verified at request time. However,

observe that verifying that AuthzTRM holds at the time of request will allow the user access

99

Figure 4.8: Approximate Access Policy (AuthzTRM).

Figure 4.9: Formula ϕ0.

to objects that were added during the time between RT and request∧AuthzTRM in figure 4.9.

We illustrated this in case (a) of figure 4.8. As discussed earlier, it is unsafe to let users

access these objects before a refresh can confirm the validity of their group membership.

We next specify stale-safe security properties of varying strength. The weakest of the

properties we specify requires that a requested action be performed only if a refresh of

authorization information has shown that the action was authorized at that time. This

refresh is permitted to have taken place either before or after the request was made. The

last refresh must have indicated that the action was authorized and all refreshes performed

since the request, if any, must also have indicated the action was authorized. This is

the weak stale-safe security property. By contrast, the strong stale-safe security property

requires that the confirmation of authorization occur after the request and before the action

is performed.

100

Figure 4.10: Formula ϕ1.

Figure 4.11: Formula ϕ2.

Weak Stale-safe Security Property

Let us introduce two formulas formalizing pieces of stale-safe security properties. Intuitively,

ϕ1 can be satisfied only if authorization was confirmed prior to the request being made. On

the other hand, ϕ2 can be satisfied only if authorization was confirmed after the request.

ϕ1 ≡ -© ((¬perform ∧ (¬RT ∨ (RT ∧AuthzCC)))

S (request ∧ (¬RT S (RT ∧AuthzCC))))

ϕ2 ≡ -© ((¬perform ∧ ¬RT) S (RT ∧AuthzCC ∧

((¬perform ∧ (¬RT ∨ (RT ∧AuthzCC))) S request)))

Figure 4.10 illustrates formula ϕ1. ϕ1 says that prior to the current state, the operation has

not been performed since it was requested. Also since it was requested, any refreshes that

may have occurred indicated that the operation was authorized (¬RT ∨ (RT ∧ AuthzCC)).

Finally, a refresh must have occurred prior to the request and the last time a refresh was

performed prior to the request, the operation was authorized.

101

Observe that formula ϕ1 mainly differs from ϕ0 on the point at which AuthzCC is

evaluated. Referring to figure 4.10, evaluating AuthzCC at the latest RT guarantees that

requests to access any object that may be added during the following refresh window will

be denied.

Note that ϕ1 is satisfied if there is no refresh between the request and the perform.

It requires that any refresh that happens to occur during that interval indicate that the

action remains authorized. In our g-SIS application, this could preclude an action being

performed, for instance, if the user leaves the group, a refresh occurs, indicating that the

action is not authorized, the user rejoins the group, and another refresh indicates that the

action is again authorized. For some applications, this might be considered unnecessarily

strict.

Figure 4.11 illustrates formula ϕ2. ϕ2 does not require that there was a refresh prior to

the request. Instead it requires that a refresh occurred between the request and now. It

further requires that the operation has not been performed since it was requested and that

every time a refresh has occurred since the request, the operation was authorized.

Note that ϕ2 can be satisfied without an authorizing refresh having occurred prior to

the request, whereas ϕ1 cannot. Thus, though ϕ2 ensures fresher information is used to

make access decisions, it does not always logically entail ϕ1 as it is many times satisfied by

traces that do not satisfy ϕ1.

Thus the formula perform → ϕ1 requires that a confirmation of authorization occur

after the request has been received. The formula perform → ϕ2 requires that confirmation

of authorization is obtained after the request, before the action is performed.

Definition 4.1 (Weak stale safety). An enforcement model has the weak stale-safe security

property if it satisfies the following LTL formula:

τ0 = 2 (perform → (ϕ1 ∨ ϕ2))

102

Strong Stale-safe Security Property

This property is strictly stronger than weak stale safety and unlike weak stale safety, it is

a reasonable requirement for higher assurance systems.

Definition 4.2 (Strong stale safety). An enforcement model has the strong stale-safe se-

curity property if it satisfies the following LTL formula:

τ1 = 2 (perform → ϕ2)

Note that the formulas (ϕ0, ϕ1 and ϕ2) were concerned about the temporal placement

of refresh time (RT) with respect to the time at which the request came from the user, the

time at which the requested action is performed and the verification if authorization held.

This separation of request and perform is important to differentiate weak-stale safety from

strong-stale safety property. In weak-stale safety, although authorization held at RT prior to

request, it is possible for an RT to occur between request and perform. If fresh attributes

are available, it is important to re-check if authorization holds in light of this update.

Formula ϕ1 requires that authorization continue to hold at such occurrences. On the other

hand, strong-stale safety mandates that after request, the action cannot be performed until

authorization is verified with up-to-date attributes.

“Freshness” of Authorization

Let us now consider how to express requirements that bound acceptable elapsed time be-

tween the point at which attribute refresh occurs and the point at which a requested action

is performed. We refer to this elapsed time as the degree of freshness. For this we introduce

a sequence of propositions {Pi}0≤i≤n that model n time intervals. These propositions par-

tition each trace into contiguous state subsequences that lie within a single time interval,

with each proposition becoming true immediately when its predecessor becomes false. They

can be axiomatized as P1 U (2¬P1 ∧ (P2 U (2¬P2 ∧ (P3 U (... U

103

(2¬Pn−1 ∧2Pn)...))))). This partially defines correct behavior of a clock, given by a com-

ponent of the FSM. Note that is it not possible to express in LTL that the clock transits

from Pi to Pi+1 at regular intervals of elapsed time. The current time can be interrogated

by the other FSM components with which it is composed. It can also be referred to in the

variant stale-safe properties presented in the following paragraphs. If the clock is accurate

with respect to transiting from Pi to Pi+1 at regular intervals, the enforcement machine

obeying these variant properties will enforce freshness requirements correctly.

We now formulate variants of ϕ1 and ϕ2 that take a parameter k indexing the current

time interval. These formulas use two constants, `1 and `2 which represent the number

of time intervals since the authorization and the request, respectively, that is considered

acceptable to elapse prior to performing the requested action. The formulas prohibit per-

forming the action if either the authorization or the request occurred further in the past

than permitted by these constants.

ϕ1(k) ≡ -© ((¬perform ∧ (¬RT ∨ (RT ∧AuthzCC))) S

(request ∧
∨

max(0,k−`2)≤i≤k

Pi∧

(¬RT S (RT ∧AuthzCC ∧
∨

max(0,k−`1)≤i≤k

Pi))))

ϕ2(k) ≡ -© (¬perform ∧ ¬RT) S

(RT ∧AuthzCC ∧
∨

max(0,k−`1)≤i≤k

Pi ∧

((¬perform ∧ (¬RT ∨ (RT ∧AuthzCC))) S

(request ∧
∨

max(0,k−`2)≤i≤k

Pi))

104

With these formulas, we are now able to state variants of weak and strong stale safety

that require timeliness, as defined by the parameters `1 and `2.

Definition 4.3 (Timely, weak stale safety). An FSM has the timely, weak stale-safe security

property if it satisfies the following LTL formula:

2 (
∧

0≤k≤n

(perform ∧ Pk) → (ϕ1(k) ∨ ϕ2(k)))

Definition 4.4 (Timely, strong stale safety). An FSM has the timely, strong stale-safe

security property if it satisfies the following LTL formula:

2 (
∧

0≤k≤n

(perform ∧ Pk) → ϕ2(k))

4.2.3 Stale-safe Systems

We discuss the significance of the weak and strong stale-safe properties in the context

of stale-safe systems designed for confidentiality or integrity. Confidentiality is concerned

about information release while integrity is concerned about information modification. Both

weak and strong properties are applicable to confidentiality –the main trade-off between

weak and strong here is usability. Weak allows users to read objects when they are off-line

while strong forces users to refresh attributes with the server before access can be granted.

Depending on the security and functional requirements of the system under consideration,

the designer has the flexibility to choose between weak and strong to achieve stale-safety.

In the case of integrity, the weak property can be risky in many circumstances –the strong

property is more desirable. This is because objects modified by unauthorized users may

be used/consumed by other users before the modification can be undone by the server.

For instance, in g-SIS, a malicious unauthorized user (i.e. a malicious user who has been

revoked group membership but is still allowed to modify objects for a time period due to

stale attributes) may inject bad code and share it with the group. Other unsuspecting

105

users who may have the privilege to execute this code may do so and cause significant

damage. In another scenario, a malicious user may inject incorrect information into the

group and other users may perform certain critical actions based on faulty information.

Thus, although both weak and strong properties may be applicable to confidentiality and

integrity, integrity systems satisfying only the weak property may have certain undesirable

characteristics as discussed in this section.

4.3 Formal Verification of Stale-Safety

In this section, we use model checking to formally verify and build stale-safe systems. We

first build a finite state machine hierarchy [51–53] to represent how the three components,

CC, GA, and TRM, interact to enforce the g-SIS policy specified in section 4.1.1 (also see

figure 4.1). We show that such a system is not stale-safe. Next, we show how to modify

such a system to satisfy the weak or strong stale-safe security property.

4.3.1 Notations and Conventions

The enforcement model is composed of multiple hierarchical transition systems (HTS) via

a collection of composition operators. An HTS is an extended state machine that consists

of transitions and a hierarchical set of states. Formally, a hierarchical transition system

(HTS) is an 8-tuple,< S, H, I, F, E, V, VI , T >, where S is a finite set of states, H is the

state hierarchy, and each state s ∈ S is either a basic state or a super state that contains

other states. Each super state must have a default state. I ⊆ S is the non-empty set of

initial states. F ⊆ S is the set of final basic states. E is a finite set of events. V is a finite

set of typed variables. V − I is a predicate describing the initial values of variables. T is

a finite set of transitions. A transition label can include a triggering event, a condition on

the triggering event, and an action, which can be assignments to typed variables or event

generation. The elements on the transition label are optional. A transition executes only

if it is enabled (i.e., the HTS is currently in the source states, the positive triggering event

106

occurs and the negative event is absent, and the condition evaluates to true). If more than

one transition is enabled, the transition whose source states have the lowest rank (i.e., are

closest to the basic states) is chosen to execute. If multiple transitions, whose source states

have the same rank, are enabled, the ones labeled with triggering events have priority. A

state may have an entry transition, which executes whenever the state is entered and has

the highest priority.

A specification of a system is a hierarchical composition of HTSs; and concurrency,

synchronization, communication are introduced via composition operators, such as parallel,

rendezvous, and interrupt. A component in the composition can be an HTS or a composed

HTS (CHTS). The composition operators control when the CHTSs execute and how the

CHTSs share data (e.g., generated events). In the parallel composition of multiple compo-

nents, all the component execute together if they are enabled simultaneously. Otherwise, the

enabled components execute in isolation. (NuSMVs synchronous composition matches this

definition of parallel composition.) In binary rendezvous composition, exactly one transition

in the sending component generates a rendezvous event that triggers exactly one transition

in the receiving component, and both transitions execute together. If only one component

is enabled by (or generates) a synchronization event in the same step, then the first com-

ponent is forced to wait until the other component is ready. Otherwise, the behavior of

the components is interleaved, executing transitions that do not involve rendezvous events.

The interrupt composition allows control to pass between components via a set of interrupt

transitions. These transitions may have sources and destinations that are sub-states of the

components rather than the components’ root states. In the interrupt composition, either

the source, the destination, or an interrupt transition is chosen to execute. In the context

of this paper, it is always the case that the interrupt transition has the lowest priority.

4.3.2 Modeling g-SIS

In specifying the g-SIS enforcement architecture in figure 4.1, we consider the interaction

between the GA, CC and the TRM in the context of a single user and a single object.

107

To verify the stale-safe properties against the g-SIS model with any number of users and

objects, it suffices to prove that the properties hold in the case of one user and one object.

This is because, in g-SIS, authorization for a user on an object has no implication on the

authorization for the same user on any other object. This is evident from the formulation

of both AuthzCC and AuthzE. Similarly, a user’s authorization has no implication on the

authorizations of any other user. Henceforth, verifying stale-safety for one user-object pair

for the entirety of both user and object membership life-cycle (i.e., join, leave and re-join

for the user and add, remove and re-add for the object), proves that the properties hold for

all possible pairs of users and objects.

In the enforcement model (Figure 4.12), the GA, CC, and TRM are specified as CHTSs.

The GA is modeled as a parallel composition of two HTSs: GA User models the behavior

when a user joins and leaves a group, GA object models the behavior when an object

leaves the group. The GA User and GA Object HTSs keep track of the user and object

membership states respectively. For simplicity, we omit the two step join process discussed

in figure 4.1 and let the GA join a user to the group by sending a request directly to the

CC. Furthermore, we assume that only the GA may add/remove the object to/from the

group.

The CC is modeled as a CHTS containing a parallel composition of CC User and

CC object, and an interrupt transition. CC User models how to set the join or leave

time stamps when a user joins or leaves a group. CC Object models how to set the add or

remove time stamps when an object is added or removed. The GA and CC are composed

using the rendezvous synchronization operator. Consider the interaction between GA User

and CC User machines in figure 4.12. In GA User, when join user occurs in userNonMem-

ber state, a req join TS event is generated and userMember state is entered. This event

is captured by the CC User machine and the Join TS is set for the user. The time-stamp

is obtained from the Clock3. Similarly, when leave user occurs in the userMember state, a

req leave TS event is generated and userNonMember state is entered. Note that the user’s
3Since we need a finite model for model checking, in our code we actually limit the number of ticks to a

finite value such as 10.

108

membership state is always synchronized between the GA and CC machines. As shown, the

GA Object machine handles object membership states and behaves similar to the GA User

machine. However, in the case of CC Object, when req add TS is received in the objNon-

Member state from GA Object, Add TS is set and objectMem state is entered. objectMem

is a super-state that models super-distribution of the added object. In more complex sce-

narios, super-distribution may be modeled by a separate FSM but a super-state is sufficient

for our purpose here. In this state, the superDistr event models the fact that the protected

object is distributed into the cloud. Recall that the Add TS is embedded in the object itself

and thus the TRM can obtain it directly from the object when an access decision needs to

be made. When req remove TS is received from GA User, the Add TS is set, the ORL is

updated and CC Object enters objectNonMem state.

The CC CHTS also responds to refresh event and send to TRM machine, TRM0, up to

date attributes (Join TS, Leave TS and ORL). Note that Add TS is not updated as part

of the refresh due to super-distribution. There could any number of copies of the object in

the cloud. If an object needs to be re-added after being removed, a new Add TS is set on

another copy of the same object and super-distributed. When the user requests access to a

copy of an object, the TRM can easily detect if the object has been removed (or re-added)

by comparing the Add TS embedded in the object and the latest (Add TS, Remove TS)

specified in the ORL.

The user machine Group User represents the interface to a user in the system. If a

request to perform an action on an object is received (reqPerform), such as to read an

object, Group User sends a request to the TRM machine (TRM0) and waits in the waiting

state. TRM0 decides whether the perform is allowed or denied and accordingly the user

may or may not be allowed to perform the requested action.

The TRM machine, TRM0, has three possible states. In the idle state, the machine

receives request from Group User. The TRM and Group user CHTSs are composed using

the rendezvous synchronization operator. The authorized state represents the fact that the

requested action is authorized to be performed (i.e., AuthzE is true). The refreshed state

109

idle

entry/waitAnswer=0

waiting

entry/waitAnswer=1
reqPerform ^request

succeed ^perform

fail ^rejectGroup_User

idle

entry /pendResponse = 0

authorized

refresh request

[AuthzE]

/pendResponse = 1

refresh request [AuthzE] ^fail

refresh ^succeed

refreshed

entry /updateAttributes

refresh

refresh

request

refresh

[AuthzE

pendResponse=1]

[AuthzE

pendResponse=1]

^fail

[pendResponse=0]

refresh request

/pendResponse=1

TRM_StaleUnsafe

userNonMember userMember

join_user ^req_join_TSGA_User

CC_Object

leave_user ^req_leave_TS

objectNonMember objectMember

add_object ^req_add_TSGA_Object

remove_object ^req_remove_TS

userNonMem userMem

req_join_TS /set_join_TS
CC_User

req_leave_TS /set_leave_TS

objectNon

Mem

req_remove_TS /set_remove_TS

/ORL=ORL {(add_TS, Remove_TS)}

req_add_TS /set_add_TS

single cloud

^superDistr

objectMem

refresh /sendAttribute(join_TS, leave_TS, ORL)

CC

GA

Figure 4.12: Independent FSMs modeling the g-SIS architecture. The TRM machine,
TRM0, is not stale-safe.

110

represents the fact that the TRM copy of attributes have been refreshed with CC. In the

idle state in TRM0, there are three possible scenarios: a request occurs, a refresh occurs or

both request and refresh occur simultaneously. Whenever a refresh event occurs in the idle

state, the machine enters the refreshed state and updates the attributes by obtaining them

from CC. If a request is received and AuthzE is not satisfied, a fail response is sent back to

Group User. But if AuthzE holds, the machine enters the authorized state and generates

a succeed event and transitions back to the idle state. As shown, the succeed event is

captured by Group User which subsequently allows the user to perform the requested action.

However, if a refresh occurs in the authorized state, TRM0 transitions to the refreshed state,

updates the attributes and re-checks if AuthzE holds in light of the updated attribute values.

This ensures that if the machine is in authorized state and new attribute values are available,

AuthzE is re-evaluated based on the new attribute values. In the idle state, if both a request

and refresh are received, the request is cached by TRM0. It enters the refreshed state and

updates the attributes. It then processes the cached request by checking if AuthzE holds. If

true, it enters the authorized state, otherwise it returns to the idle state directly by rejecting

the requested action. Note that the variable pendResponse keeps track of whether a request

has been processed or not.

We now prove a sequence of theorems. These theorems are concerned about various

properties that we discussed in this section. We utilize the open-source model checker

called NuSMV [54] to prove the theorems. We encode our models in the NuSMV language

and specify the properties we need to verify in LTL. The model checker verifies if the LTL

property is satisfied by the model. The proof for these theorems such as the counter exam-

ples generated by NuSMV is given in appendix C.2. Furthermore, due to space limitations,

we provide the complete code and results generated by NuSMV in [55].

Definition 4.5 (∆0-system). Let ∆0 represent a g-SIS enforcement system, which is a

composition of GA, CC, Group User, and TRM0, where GA and CC, and Group User and

TRM0 rendezvous respectively, and then execute concurrently via parallel composition.

111

Theorem 4.1 (Unenforceablity Theorem). The ∆0-system does not enforce AuthzCC. That

is:

∆0 2 2(perform → ϕ′0)

This theorem states that AuthzCC is not enforced at TRM0. This is self-evident because,

as discussed earlier, certain events such as user leave and object remove are not immediately

visible to TRM0. Thus there will be instances in which TRM0 will allow a user to perform

even when AuthzCC is false. The model checker produces a counter-example as explained

in appendix C.2.1.

Note that this does not prove that no system can enforce TRM0. One can argue that it

is possible to design alternative TRMs which may enforce AuthzCC. However, we believe

that the ∆0-system as characterized is a general representation of a typical distributed

system where authoritative authorization information used for authorization decisions is

not synchronized between the clients and server.

Theorem 4.2 (Enforceablity Theorem). The ∆0-system enforces AuthzTRM. That is:

∆0 ² 2(perform → ϕ0)

This theorem states that the ∆0-system enforces AuthzTRM. Recall that 2(perform →
ϕ0) ensures that the user can perform if AuthzTRM is satisfied. This is successfully verified

as shown in appendix C.2.1.

Theorem 4.3 (Weak Unsafe TRM Theorem). The ∆0-system does not satisfy the Weak

Stale-Safety property. That is:

∆0 2 2(perform → (ϕ1 ∨ ϕ2))

This theorem states that the ∆0-system is not stale-safe. Specifically, it fails the weak

stale-safety security property. The counter-example generated by NuSMV is explained in

appendix C.2.1.

112

Idle

entry/ pendResponse = 0request refresh [AuthzE]

/pendResponse=1

request refresh [AuthzE] ^fail

refresh [staleSafe=1]

^succeed

refreshed

entry /updateAttributes

refresh

request refresh

/pendResponse=1

refresh

[pendResponse=1]

[pendResponse=0]

check safe

refresh [staleSafe=0]

^fail

refresh request

[RT Add-TS]

/staleSafe=1

[RT < Add-TS] /

staleSafe=0

staleCheck

TRM_WeakStaleSafe

Figure 4.13: TRM1: This TRM machine satisfies weak stale-safety.

Corollary 1 (Strong Unsafe TRM Theorem). The ∆0-system does not satisfy the Strong

Stale-Safety property. That is:

∆0 2 2(perform → ϕ2)

Evidently, if ∆0-system fails the the weak property, it would also fail the strong property.

The same counter-example generated by NuSMV for theorem 4.3 applies here.

4.3.3 Weak Stale-Safe TRM

Figure 4.13 shows one possible design for TRM that satisfies weak stale-safety. This TRM

machine, TRM1, has a super-state called authorizing that ensures that any authorization

decision made is weak stale-safe. When the request is received, the machine enters the

super-state and first checks if AuthzE holds based on local attributes of the TRM. Next,

if AuthzE holds, it checks if the decision is weak stale-safe. This is achieved by verifying

that the object that is being requested access to was added before the most recent refresh

time—that is, RT ≥ Add TS. Here RT is a variable that maintains the time of most recent

refresh. This ensures that any object that is received via super-distribution and added after

the TRM’s last refresh time is unsafe to access. As illustrated in figure 4.6, the user could

113

potentially leave the group between the most recent RT and the object add time but the

TRM is not aware of this until next refresh. This could result in a situation where a user

is granted access to an object to which he/she was never authorized. We now prove that

TRM1 satisfies Weak Stale-Safety property.

Definition 4.6 (∆1-system). Let ∆1 represent a g-SIS enforcement system, which is a

composition of GA, CC, Group User, and TRM1, where GA and CC, and Group User and

TRM1 rendezvous respectively, and then execute concurrently via parallel composition.

Theorem 4.4 (Weak Stale-Safe TRM Theorem). ∆1 satisfies the Weak Stale-Safe Security

Property.

∆1 ² 2(perform → (ϕ1 ∨ ϕ2))

NuSMV successfully verifies that the ∆1-system satisfies the weak stale-safe security

property as shown in appendix C.2.2. Obviously, the ∆1-system does not satisfy the strong

stale-safety property.

∆1 2 2(perform → ϕ2)

As expected, NuSMV generates a counter-example showing that the ∆1-system does not sat-

isfy strong stale-safety. The explanation of the generated counter-example is given in C.2.2.

4.3.4 Strong Stale-Safe TRM

Figure 4.14 shows a straight forward way to satisfy strong stale-safety. Note that TRM2

refreshes the attributes with CC every time a request from the user is received. If after

refresh AuthzE holds, the user is allowed to perform, else the request is rejected. Clearly,

this should satisfy strong stale-safety because formula ϕ2 requires that a refresh be per-

formed after request before verifying if AuthzE holds, which is consistent with the model in

figure 4.14.

Definition 4.7 (∆2-system). Let ∆2 represent the g-SIS system represented by the collec-

tion of FSMs: GA User, GA Object, CC User, CC Object, CC Refresh, Group User and

TRM2.

114

Idle

entry/ pendResponse = 0

refreshed

entry /updateAttributes

request

/pendResponse=1

refresh

[AuthzE]

^fail

[AuthzE]

^succeed

TRM_StrongStaleSafe

Figure 4.14: TRM2: This TRM machine satisfies strong stale-safety.

Theorem 4.5 (Strong Stale-Safe TRM Theorem). ∆2 satisfies the Strong Stale-Safe Secu-

rity Property.

∆2 ² 2(perform → ϕ2)

NuSMV successfully verifies that the ∆2-system satisfies strong stale-safety as shown in

the result it generated in appendix C.2.3.

115

Chapter 5: Implementation Model for g-SIS

We specify protocols for each step in the architecture in figure 4.1. We intentionally omit

some system level details in these protocols for clarity. For example, we assume that the

messages in the presented protocols all carry a MAC (Message Authentication Code) and

are protected against replay appropriately using well-known techniques. The focus here is

on how the TPM and TRM play a role in enforcing access policies offline by preventing or

detecting tamper of group credentials by a malicious user. The TPM features a monotonic

counter, a hardware counter, intended to reflect freshness of any value. For the purpose

of this implementation model, we assume that a running version of the monotonic counter

module presented in many approaches in the literature (see for example [42,43]) is part of

the TRM.

Mutual Authentication A mutual authentication protocol (such as Authenticated

Diffie-Hellman [56]) is required for any two-party communication. In g-SIS, CC and GA are

identified using certificates CertCC and CertGA respectively, issued by a trusted Certificate

Authority (CA). For simplicity, we assume that a subject is tied to an access machine and

hence is identified using the id of the TRM. A TRM is identified by an Attestation Identity

Key (AIK) certificate. At the end of a mutual authentication protocol, the parties should

have authenticated each other and share two session keys Ks and Km used for encryption

and MAC respectively.

Notations X||Y refers to item X concatenated with item Y . Key operations are rep-

resented using an underscore and multiple items are enclosed within curly braces. Thus

{X||Y } Ks means that item X||Y is encrypted using Ks. If AK is an asymmetric key, then

116

{X} AK represents encryption of X using the public part of AK and {X} SignAK repre-

sents a signature on X using the private part of AK. Finally, {X} Km, Ks means that item

X has been MAC’ed and encrypted appropriately using keys Km and Ks respectively. We

use labels to refer to long cryptographic items for convenience. For example, P : {X||Y ||Z}
and a subsequent usage of P such as {P} Ks denotes {X||Y ||Z} Ks. A Mutual Authen-

tication (MA) protocol run between entities A and B is denoted MA(A:idA, B:idB) where

idA and idB are the identities of A and B respectively. For example, MA(TRM:AIKTRM,

GA:CertGA) denotes a protocol between TRM and GA.

5.1 TPM Based Protocols

In this section, we present TPM protocols supporting SD and Hybrid object distribution

approaches for the g-SIS enforcement model presented in section 4.1.

5.1.1 Protocols for SD Model

Join Protocol Figure 5.1 shows the protocol for a new user join (steps 1.1-1.4 in fig-

ure 4.1). In the authorization step, the GA verifies that the user is not a current member

and returns a signature on AIKTRM. “JoinAUTH” is simply a label that communicates

the semantics that the user with the id AIKTRM is allowed to join the group. In the provi-

sioning step, the TRM contacts the CC to obtain the group credentials. The TRM needs

to attest its platform software and hardware state to the CC before the credentials can be

provisioned. First, the TRM obtains the current virtual monotonic counter value from its

counter module. The nonces used in the mutual authentication can be reused as a nonce

for this operation (gx||gy represents Diffie-Hellman style exponents used as nonces). Next,

the TRM requests the TPM to create a non-migratable key-pair that will be owned by

the TRM. The TPM, in response, returns TRMpub, {TRMpriv||PCR} SRK. As discussed

earlier, this message implies that the private part of the created key-pair, TRMpriv, is sealed

117

Figure 5.1: Join (steps 1.1-1.4 in figure 4.1).

to a software state of PCR. Thus TRMpriv can be unsealed in the future by the TRM only

if the software state at unseal time matches the one specified in the PCR at seal time. If

the seal-time PCR represents a trustworthy software state, TRMpriv will be accessible to

TRM whenever the platform is in the same trustworthy state in the future.

These semantics can be communicated to a challenger (CC in this case) using the TPM’s

CertifyKey capability. The CertifyKey command takes the TRMpub key and the private

part’s associated PCR and a nonce and signs them using the AIKTRM. Again, note that the

nonce used here is the same as the ones used for mutual authentication which reflects the

118

Figure 5.2: Add (steps 2.1-2.2 in figure 4.1).

freshness of the certified key blob. The TPM will sign TRMpub using AIKTRM (which is a

key of type AIK) only if TRMpub is non-migratable. That is, the TRM key-pair can never

be accessed using any TPM other than the TPM that created the key-pair. Thus the CC

can get the following assurance by looking at the certified key (message labeled as R). The

private counter-part of TRMpub can be accessed only if the software state of the platform

is as represented by PCR. If the CC knows the hash-value of a well-known trusted platform

state, it can verify this value against the reported PCR and decide to trust the TRM or

not. The TRM further gathers the platform credentials (which reflects the trustworthiness

of the hardware). Finally, the TRM sends the GA’s join authorization (P), current virtual

monotonic counter value (Q), the certified TRM key (R) and the platform credentials (S)

to the CC. The CC verifies these values and returns the group credentials encrypted with

a symmetric key K which in turn is encrypted with TRMpub. As one can see, the group

credentials (e.g. gKey) can be accessed only with TRMpriv. But TRMpriv is accessible to

the TRM only if the platform is in the same software state as specified at seal-time and

only in the same platform it was created in. If all is well, the TRM can access the group

key and decrypt objects as per group policy.

Object Add and Offline Access Protocol The object to be added is first sent to the

CC for approval (figure 5.2). The CC sets the add time-stamp, signs it and the object is

ready for sharing with other users.

119

Figure 5.3: Object Read (step 3 in figure 4.1).

We assume that the objects that need to be read (step 3 in figure 4.1) are available

locally in the user’s access machine via super-distribution. When a user requests access

to an object (figure 5.3), the TRM sends a request to unseal the group credentials to the

TPM. Recall that the group credentials were sealed to a trusted platform state at join time.

Hence the TPM will unseal it only if the current platform state is still trustworthy. The

TRM then reads the current counter value and verifies that it is greater than or equal to

currentCount specified in the unsealed group credential. This check prevents a replay of

old credentials that could be launched by the user or other malware. Since the counter

will be incremented on every use of the group credential and the counter being monotonic,

the currentCount value in the older group credentials will be less than the value that was

read. The TRM also checks that the current counter value is lesser than or equal to the

refreshCount specified in the unsealed credential. This check verifies that the usage count

on the group credential has not yet been exhausted. Thus if the policy allows access to the

object (see section 4.1.1), the TRM increments the counter, decrypts the object and allows

the user to read the object. Note that the user or malware can never make or hijack copies

of plaintext object. The TRM allows the user to read the object only under a protected

memory section that it controls. If the usage count is exhausted (i.e., refreshCount reached),

the group credential needs to be refreshed before any further access will be allowed.

120

Figure 5.4: Refresh (Steps 4.1-4.2 in figure 4.1).

Figure 5.5: Leave (steps 5.1-5.2 in figure 4.1).

Refresh Protocol To refresh (figure 5.4), the TRM sends the current counter value (Q)

and a fresh certified TRM key (R) along with refresh request (refreshREQ) to the CC

(similar to join protocol). A new credential (T) is created with updated refreshCount. If

the user or object were removed, corresponding attributes are updated in new T.

Leave and Remove Protocols In figure 5.5, GA instructs the CC to remove a user

(AIKTRM). The CC sets the user’s Leave TS to the current time that its maintains. Simi-

larly, the ORL is updated in the case of object remove (figure 5.6). Note that the object id

could be its hash value and the updates are propagated to the TRM during refresh.

5.1.2 Protocols for Hybrid Model

W now present the protocols that are different for the Hybrid model from that of the

Super-Distribution based model. The protocols that are not discussed here (refresh, leave

and remove protocols) are identical to that of those specified earlier for the SD model.

121

Figure 5.6: Remove (steps 6.1-6.2 in figure 4.1).

Join Protocol The join protocol for the hybrid model shown in figure 5.7 is almost

identical to that of the join protocol in the SD model. The difference is in the last step of

the protocol where the group key is provisioned. Here the CC generates a custom decryption

split key for the TRM (gDecKeyUser) and encrypts it with other group credentials using the

TRMpub key. Note that the encryption key (gEncKey) remains the same for all group users.

As one can see, the group credentials (e.g. gEncKey and gDecKeyUser) can be accessed

only by using TRMpriv. But TRMpriv is accessible to the TRM only if the platform is in the

same software state as specified at seal-time and only in the same platform it was created

in. If all is well, the TRM can access the group credentials and access objects as per group

policy.

Object Add and Offline Access Protocol The object to be added is first sent to the

CC for approval (figure 5.8). The CC sets the add time-stamp, signs it and the object is

ready for sharing with other users.

We assume that the objects that need to be read (step 3 in figure 4.1) are available

locally in the user’s access machine via super-distribution. In the hybrid approach, the first

time the user requests to access an object (figure 5.9), the TRM requests the CC to do a

split key decryption operation on the object. The CC checks if the user is authorized to

read the object, fetches the split decryption key shared with the requesting user, performs

a decryption operation using its split key and returns the blob to the TRM. The TRM can

122

Figure 5.7: Join (steps 1.1-1.4 in figure 4.1).

then perform decryption using its portion of the split key and display the object to the user.

The TRM may also encrypt the object using a symmetric object key and store locally for

future accesses.

Subsequently, when a user requests access to an object (figure 5.10), the TRM sends a

request to unseal the group credentials to the TPM. Recall that the group credentials were

sealed to a trusted platform state at join time. Hence the TPM will unseal it only if the

current platform state is still trustworthy. The TRM then reads the current counter value

and verifies that it is greater than or equal to currentCount specified in the unsealed group

123

Figure 5.8: Add (steps 2.1-2.2 in figure 4.1).

Figure 5.9: Object Read (first time).

124

Figure 5.10: Object Read (subsequent accesses).

credential. This check prevents a replay of old credentials that could be launched by the

user or other malware. Since the counter will be incremented on every use of the group

credential and the counter being monotonic, the currentCount value in the older group

credentials will be less than the value that was read. The TRM also checks that the current

counter value is lesser than or equal to the refreshCount specified in the unsealed credential.

This check verifies that the usage count on the group credential has not yet been exhausted.

Thus if the policy allows access to the object (see section 4.1.1), the TRM increments the

counter, decrypts the object and allows the user to read the object. Note that the user or

malware can never make or hijack copies of plaintext object. The TRM allows the user to

read the object only under a protected memory section that it controls. If the usage count

is exhausted (i.e., refreshCount reached), the group credential needs to be refreshed before

any further access will be allowed.

5.2 Implementation Model Overview

We now provide an overview of the g-SIS Implementation Model and a supporting access

control framework.

125

Figure 5.11: g-SIS implementation model.

5.2.1 g-SIS Trusted Execution Environment

The TRM requires a trusted execution environment to run and hence a Trusted Computing

Base (TCB) needs to be established on the access machines. Many approaches have been

discussed in the literature and figure 5.11 shows one such approach using the L4 micro-

kernel [57]. L4 is a light-weight, message-based and secure microkernel. L4 ensures that

each service running in its context is isolated from each other. A Service Manager (SM)

is responsible for managing the L4 services. The TRM and TPM support services run as

L4 services each with its own protected address space. The SM owns the TPM device and

hence only it can access the TPM primitives. The grayed blocks form the TCB. We assume

that the BIOS acts as the Core Root of Trust for Measurement (CRTM). The CRTM is an

entity that can be trusted to measure the first piece of software in the boot chain. CRTM

initially measures TrustedGRUB [43], an extension of the GRUB bootloader, that can mea-

sure the integrity of various files and store it in TPM’s PCR during the boot process. After

the boot process is complete, the TPM PCR value reflects the integrity of the entire system.

This PCR value is reported to CC in order to attest to the platform’s integrity.

126

Figure 5.12: g-SIS Credentials Access Control.

5.2.2 Access Control For Group Credentials

Although the group credentials are sealed, the TPM cannot determine which software can

unseal the credentials. It is critical that L4 ensures only the TRM and not any other service

gets access to the group credentials like gKey. Our approach is to maintain a local identity

infrastructure for L4 threads such as the TRM and ensure that the identity will be preserved

across boot cycles. That is, the TRM should be uniquely identified across boot cycles.

Figure 5.12 shows the access control framework necessary for this purpose. When the

TRM is initially provisioned, a persistent local id is stored as an attribute of the TRM’s

ELF (Executable and Linkable Format) file. At boot time, when SM loads TRM, it reads

the persistent id from the ELF and maps it to the TRM’s assigned thread id for that session.

127

The SM maintains such mappings for all threads in an Identity Mapping table. This allows

SM to identify the TRM even if the thread id changes across boot cycles. Note that in

figure 5.12 the persistent id includes the identity of the CC which issued the credentials.

When SM receives a request to save a user’s credentials T from TRM (solid lines in

figure), it uses the Identity Mappings table to look up the TRM’s persistent id corresponding

to the requesting thread id. Note that the saveCredentials method indicates the identity

of the user (s) to which the credentials belongs—in the event multiple users use a single

machine. Next, it sets two attributes of T for later retrieval. The ‘label’ attribute is set

to the user to which the credentials belongs and the ‘owner’ attribute is set to the TRM’s

persistent id. SM then seals T so that only it can unseal T in the future and saves the

sealed blob.

When SM receives a request to retrieve the credential of s from the TRM (dotted lines in

figure), it looks up the requesting thread’s persistent id from the Identity Mappings table.

Next, it fetches the blob from storage that belongs to the user s using the ‘label’ attribute.

It then unseals and verifies that the set ‘owner’ attribute matches the persistent id that it

looked up earlier. The TRM can now use the credentials to serve user requests.

5.2.3 Proof-of-Concept

A complete implementation of the g-SIS model is beyond the scope of this dissertation.

However, we discuss a simpler version of the protocol in figure 5.1 that was implemented as

a Proof-of-Concept (PoC). This protocol was chosen because it is concerned about secure

provisioning of group credentials on the group user’s access machine which we believe is a

critical part of the implementation model.

For this PoC, we assume that a Trusted Computing Base (TCB) as shown in figure 5.11

has been established. That is, the TRM is executing in a Trusted Execution Environment

or TEE (which includes trusted hardware). The software state of the TEE is reflected by

the PCR value in the TPM after boot time and this PCR value can be reported to remote

entities which can verify that the TRM is executing in a trustworthy state.

128

TRM CCTPM
SIGMA

Attestation challenge

Create TRM key

Certify TRMpub

using AIK

Send

{TRMpub||PCR}_SignAIK

Send group key encrypted

with TRMpub key

Verify certified

TRM key

(TRMpub, {TRMpriv||PCR})

{TRMpub||PCR}_SignAIK

Figure 5.13: Proof-of-Concept: Provisioning protocol overview.

g
x

CCTRM

g
y
, certCC, SIGCC (g

x
, g

y
), MACKm (certCC)

g is public

certTRM, SIGTRM (g
y
, g

x
), MACKm (certTRM)

Ks=(g
x
)
y
= g

yx

Km=f(Ks)

Ks=(g
y
)
x
= g

xy

Km=f(Ks)

certTRM=SIGPrivacyCA(AIKpub)

SIGTRM=SIGAIK(g
y
, g

x
)

MACKm (certTRM)=MACKm (certAIK)

TRM generates

random secret x
CC generates

random secret y

Figure 5.14: SIGMA protocol for authentication.

For this PoC, we focus on secure provisioning of the group key on the user’s machine.

Figure 5.13 illustrates the abstract steps involved in the PoC. This interaction is between CC

and the TRM. The CC needs to remotely verify that the TRM is executing in a trustworthy

state and provision the group key to the TRM in such a manner that the key is accessible

to the TRM in the future only under the same trustworthy state in which it was initially

provisioned.

The protocol begins with the SIGMA protocol [58] in which the CC authenticates the

TRM. The SIGMA protocol is illustrated in figure 5.14. The TRM uses the AIK certificate

129

issued by a Privacy CA to authenticate itself to the CC. The TRM and CC each create

their own random secret and arrive at a session and mac key. Note that the certificate

used by the TRM is the AIK certificate issued by a Privacy CA. The AIK certificate

serves to identify the machine in which the TRM is executing. The Trusted Computing

Group [36] has a well-defined specification for the Privacy CA to follow in order to issue

the AIK identity certificate to any TPM enabled machine. Subsequently, he CC sends the

attestation challenge asking the TRM to prove that it is running in a TEE. The TRM

requests the TPM to create a non-migratable key that is bound to the hash value in the

TPM’s PCR which reflects the trustworthiness of its platform. The TPM creates a key pair

and binds the private part to the platform PCR. This in effect means that, in the future,

if any data is encrypted with the public key, it can be decrypted only when the platform is

in the same trustworthy state as reflected by the current PCR value. This is because the

private part of the TRM key will be “unwrapped” by the TPM only if the current value in

its PCR matches the one specified at the create time of this key pair. The following data

structure records the attributes of the TRM key created by the TPM.

typedef struct tdTPM_KEY{

TPM_STRUCT_VER ver;

TPM_KEY_USAGE keyUsage;

TPM_KEY_FLAGS keyFlags;

TPM_AUTH_DATA_USAGE authDataUsage;

TPM_KEY_PARMS algorithmParms;

UINT32 PCRInfoSize;

BYTE* PCRInfo;

TPM_STORE_PUBKEY pubKey;

UINT32 encDataSize;

[size_is(encDataSize)] BYTE* encData;

} TPM_KEY;

130

The keyFlags member of the structure specifies whether the key as indicated by the

pubKey member of the structure is migratable or not. The PCRInfo structure specifies

the set of PCR numbers selected (pcrSelection) and the required composite hash values

of the selected PCRs in order to use the private part of the key. This is indicated by

the digestAtRelease structure member. encData points to a data structure that stores the

confidential attributes of the key including the encrypted private part of the TRM key.

typedef struct tdTPM_PCR_INFO{

TPM_PCR_SELECTION pcrSelection;

TPM_COMPOSITE_HASH digestAtRelease;

TPM_COMPOSITE_HASH digestAtCreation;

} TPM_PCR_INFO;

As mentioned earlier in the join protocol in section 5.1.1, the TPM provides a

“Tspi Key Certify Key” protected capability that can be used to communicate to any re-

mote entity that the key pair was created and can be used only under such a trusted platform

state. Tspi Key Certify Key uses a certifying key to certify the TRM public key. If AIK

is used as the certifying key in Tspi Key Certify Key, the TPM additionally requires that

the TRM key be non-migratable. This means that the TRM key can never be used in any

other platform other than the platform in which it was created. The Tspi Key Certify Key

capability uses the AIK to sign the following TPM CERTIFY INFO data structure and

returns it to the TRM.

typedef struct tdTPM_CERTIFY_INFO{

TPM_STRUCT_VER version;

TPM_KEY_USAGE keyUsage;

TPM_KEY_FLAGS keyFlags;

TPM_AUTH_DATA_USAGE authDataUsage;

TPM_KEY_PARMS algorithmParms;

TPM_DIGEST pubkeyDigest;

TPM_NONCE data;

131

BOOL parentPCRStatus;

UINT32 PCRInfoSize;

[size_is(pcrInfoSize)] BYTE* PCRInfo;

} TPM_CERTIFY_INFO;

The pubkeyDigest specifies the digest of the TRM public key that is bound to the PCR

digest value specified by the PCRInfo structure. This indicates that the TRM private key

can be used only if the PCR value at that time matches the value pointed by PCRInfo.

Since the AIK is used to sign TPM CERTIFY INFO, a remote entity such as the CC

can ascertain that the TRM key is not migratable. This is an in-built behavior of the

Tspi Key Certify Key capability as enforced by the TRM. This can further be confirmed

by examining the keyFlags value and ensuring that it says the key is non-migratable.

At this point, the signed TPM CERTIFY INFO structure is sent to the CC. The CC

verifies that the structure was signed using the platform AIK certified by a known Privacy

CA. This ensures that the platform (hardware) is in a trustworthy state. The CC then

examines the structure and ensures that the structure members hold as per the expected

and pre-determined values. Subsequently, the CC encrypts the g-SIS group key using the

TRM public key and sends the blob to the TRM. The TRM can decrypt the group key

only if the platform and the software are in the same state as indicated by PCRInfo. The

fact that the PCR values are as expected implies that only the TRM can access the group

key and that the TRM’s execution environment is isolated from other programs executing

in the system.

Code Design

The PoC was implemented in a system with TPM v1.2 running Fedora Core 8 with Linux

Kernel 2.6.26.8-57.fc8. This kernel is pre-complied with the TPM driver. The TrouSerS

0.3.2-1 software stack [59] was used to access various TPM capabilities. TrouSerS is a

CPL (Common Public License) licensed Trusted Computing Software Stack primarily im-

plemented and maintained by IBM. It provides high-level APIs to various underlying TPM

132

functionalities exposed by the TPM via the driver. Due to space limitations, we provide

the complete code in [55].

TRM Design: Table 5.1 shows a high-level design of TRM code which is composed of 3

C program files: trm.c, trm helper.c and quote.c. In trm.c, the sendFile, recvFile modules

help to send and receive any arbitrary information to and from the CC respectively. For

example, the certified TRM key can be sent to the CC using sendFile and the group key can

be received from the CC using recvFile. Similarly, the sendString and recvString modules

are used to send and receive small amount of data in terms of strings to and from the CC

respectively. The main module in trm.c consists of 4 major steps. Steps 1 through 3 are

used for mutual authentication between the TRM and CC using the SIGMA protocol. At

the end of step 3, the TRM and CC share a secret session key and a mac key (for verifying

integrity of messages exchanged subsequently).

Step 4 is a critical module that implements the remaining protocol runs after SIGMA as

illustrated in figure 5.13. As shown in table 5.1, the step4 module creates a non-migratable

TRM key pair, uses the AIK to certify the TRM key, sends the certified TRM key and

the key’s attributes to the CC, receives the encrypted group key from CC and successfully

decrypts the group key as long as the platform remains in the trusted state. The createKey

module takes two parameters that specifies the id with which the created TRM key will

be registered in the user’s machine. The id is required in order to use the TRM key in

the future. The certifyKey module takes a nonce that will be included in the certified key

information in order to prevent replays in the future. For simplicity, the exponents used

in SIGMA is re-used as a nonce. This also has the benefit of tying the entire protocol to

a single session. For convenience, the attributes of the certified TRM key are extracted

and sent separately from the certified key to the CC. Thus two files are sent. The first

one contains the certified TRM key. The second file contains the properties of the certified

TRM key.

133

Table 5.1: Summary of TRM design
File Summary

trm.c int sendFile(char *filePath, int clientSocket)

int recvFile(char *fpath,unsigned char *fdata, FILE *fp)

int sendstring(char *string,int size,int sockfd))

int recvstring(char *string,FILE *fp)

int step4(int clientSocket, FILE* fp, char* key, char* gxgy, char* id1, char* id2)

Create TRM key (createKey(char*, char*))

Certify TRM key using AIK (certifyKey(char* gxgy))

Send certified key to CC

Send certified key attributes to CC

Receive group key

Decrypt group key (unBind (int))

int main(int argc, char *argv[])

Steps 1-3: SIGMA protocol, establish session and mac key

Step 4: Receive attestation challenge

step4(clientSocket,fp, key, gxgy, argv[3], argv[4])

trm helper.c TSS RESULT createKey(char* id1, char* id2)

TSS RESULT certifyKey(char* gxgy)

TSS RESULT unBind(int size)

quote.c int quote Main(char* nonce , int nonce length, unsigned char* retData)

Used to get the TPM to sign protocol nonce gx||gy using AIK.

trm helper.h,
quote.h

TRM configuration files

134

Following this, the TRM receives the group key from the CC that is encrypted with the

TRM key. The TRM uses the unBind module to successfully decrypt the group key. Note

that this will succeed only if the TPM’s PCR value (reflecting trustworthiness of the TRM

platform) matches the one specified at the creation time of the TRM key. As shown, the

trm helper.c is the main file that implements all the TPM code. The quote main module

in quote.c implements anti-replay in the SIGMA protocol by getting the TPM to sign the

nonce using the AIK. Finally, the header file trm helper.h and quote.h are used to configure

the TRM. For example, we specify the key ids of the storage root key of the TPM and TRM

key, the PCR number(s) to which the TRM key should be bounded at creation time, etc.

CC Design: The CC is primarily implemented in three C program files: cc.c, cc helper.c

and quote verify.c. The code design for CC is illustrated in table 5.2. Like the TRM, the CC

implements the sendFile, recvFile, sendString and recvString modules to send and receives

files and strings to and from the TRM respectively. For instance, the CC uses the recvFile

module to receive the attestation response from the TRM and the sendFile module to send

the group key to the TRM.

The main CC module implements the networking components using C sockets. After

initiation, the CC waits for connection requests from clients such as the TRM. On receipt,

the CC engages in a SIGMA mutual authentication with the TRM. It receives the TRM’s

AIK certificate issued by a Privacy CA. For the purpose of this implementation, we simulate

the privacy CA and identity creation. An AIK is created locally in the TRM’s machine

and certified using the privacy CA’s private key. We assume that the public of the privacy

CA is well-known. The CC uses the privacy CA’s public key certificate to verify the AIK

certificate and thereby authenticates the TRM. This steps confirms that the CC trusts the

privacy CA to have verified the platform credentials of the TRM’s machines (that is the

TPM was created by a trusted manufacturer and the platform hardware is in a trustworthy

state). Steps 1 to 3 in the main module implements the SIGMA protocol. Thus at the end

of step 3, the CC and TRM share a session and mac key.

135

Table 5.2: Summary of CC design
File Summary

cc.c int sendFile(char *filePath,int slaveSocket)

int recvFile(char *fpath,unsigned char *fdata, FILE *fp)

int sendstring(char *string,int size,int sockfd))

int recvstring(char *string,FILE *fp)

TSS RESULT step4(int slaveSocket, FILE *fp, char* key, char* gxgy)

Send attestation challenge to TRM

Receive attestation response from TRM: certified key and certified key attributes

Verify integrity of received info

Verify attestation info

Send group key

int main(int argc, char *argv[])

Wait for connection request from TRM

Steps 1-3: SIGMA protocol, establish session and mac key

Step 4: step4(slaveSocket, fp, key, buffer)

cc helper.c int verifyAttestaion(int vd size, char* gxgy)

Verify signature on certified TRM key (verifyCertifiedKey(vd, vd size))

Verify properties of certified TRM key (verifyCertifyInfo(tci, vd, gxgy))

Encrypt Group key (Bind())

TSS RESULT verifyCertifiedKey(BYTE* vd, int vd size)

TSS RESULT verifyCertifyInfo(TCPA CERTIFY INFO* tci, BYTE* vd, char*

gxgy)

Verify pub key digest (verifyPubKeyDigest(tci-¿pubkeyDigest.digest))

Verify PCR info of TRM key (verify if PCR value is trustworthy)

Verify if TRM is non-migratable

TSS RESULT verifyPubKeyDigest(BYTE* pubKeyDigest)

quote verify.c TSS RESULT quote verify(unsigned char* nonce , int nonce length, char* gxgy, int

gxgyLength, char* fPath, int fsize)

Verify the signatures are fresh using gx||gy as the nonce.

cc helper.h,
quote verify.h

CC configuration files

136

The step4 module in main is the critical module that sends attestation challenge, re-

ceives the attestation response from TRM, verifies the integrity of all the received messages,

verifies the contents of the received attestation and sends the group key if all of these steps

succeed. As shown in table 5.2, the cc helper.c file implements all these modules. After

sending the attestation challenge and receiving the response from the TRM, the verifyAttes-

tation module checks the AIK signature on the received data using the verifyCertifiedKey

module. The vd parameter points to the received attestation verification data. The ver-

ifyCertifiedKey module uses the AIK public key certificate issued by the privacy CA to

verify the signature on vd. Next, the verifyCertifyInfo module verifies the actual content of

the received certified data. It checks the integrity of the received TRM public key, verifies

that the key is bound to a trustworthy PCR on the TRM’s machine and that the TRM key

is not migratable to another machine. It also performs a number additional checks (e.g. the

algorithm used to create TRM key, etc) not listed in table 5.2.

The quote verify module is used by the CC to prevent against replay during the SIGMA

protocol. Specifically, it checks that the session nonce is part of all the exchanged messages

with the TRM. Finally, the header files cc helper.h and quote verify.h are used for configur-

ing the CC. For instance, cc helper.h specifies the trustworthy PCR numbers and their val-

ues to which the TRM key should be bound, the key usage properties (e.g. non-migratable),

etc.

137

Chapter 6: Conclusion and Future Work

In this dissertation, we presented Policy, Enforcement, and Implementation models for

Group-Centric Secure Information Sharing. In the policy layer, we developed the founda-

tions for g-SIS by specifying a core set of properties that are required of all g-SIS specifi-

cations. We proved that the core properties are satisfiable and independent. We identified

various temporal semantics of group operations and developed a π-system as a candidate

g-SIS model and proved that it satisfies the core g-SIS properties. We also extended the

core properties to read-write g-SIS models with and without object versioning. Further,

we discussed a case-study built around an inter-organizational collaboration scenario. We

presented a complete model involving administrative and operational components.

In the enforcement layer, we proposed a g-SIS enforcement model based on super, micro

and hybrid object distribution models. We identified novel enforcement level security prop-

erties for stale-safety in distributed systems. We proposed stale-safe properties of varying

strength and conducted formal analysis of g-SIS enforcement model specified as finite state

machines. We showed that the initial model is not stale-safe and showed how it can be easily

modified to satisfy the weak and subsequently the strong stale-safe security properties. We

verified the model using a mature open-source model checker called NuSMV.

In the implementation layer, we proposed a trusted computing technology based imple-

mentation model for g-SIS. We specified trusted computing based protocols to realize the

super, micro and hybrid object distribution based g-SIS enforcement models. As a proof-

of-concept we implemented one of the critical protocols, called the provisioning protocol,

using standard platforms with the Trusted Platform Module. At the end of the protocol,

the CC provisions group credentials in the user’s platform in such a manner that the TRM

running in a trusted execution environment can access the credentials in the future only if

the platform remains in a well-known trustworthy platform state.

138

The theory as presented in this dissertation is a first step towards studying g-SIS and

serves to identify several directions in which it can be extended in the future. The future

work can be categorized into Policy, Enforcement and Implementation layers of g-SIS as

discussed below.

Policy Layer: In the policy layer, a major area for future research is to study inter-group

relationships. For instance, a group may be set up between two organizations for a major

collaboration project. One can envision additional sub-groups that may be established for

a special purpose. Certain relationships between the primary group and sub-groups may be

set up for administrative convenience. Examples of such relationships include subordination,

conditional membership, mutual exclusion, etc.

In subordination, membership in a parent group group allows users to create subjects

and access objects in one or more subordinate groups. Subordination can be Read-only and

Read-Write. In read-only subordination, the user in a parent group can only read objects in

subordinate group using subjects. Read-Write subordination allows the user to both read

and write objects in subordinate groups.

In conditional membership, a user’s membership in a conditional group is contingent

upon her membership in an enabling group. In mutual exclusion, a user may not be allowed

to be a member of mutually conflicting groups at the same time. In dynamic exclusion,

the user may be allowed to be a member of mutually exclusive groups, but would not be

allowed to create subjects in conflicting groups at the same time.

We briefly discuss the application of subordination and conditional group membership

relations for flexible sharing across different lattices in the Bell-LaPadula (BLP) model. We

use the following assumptions and rules for this construction using groups:

1. A group represents a clearance level in BLP.

2. Users have a specific clearance in an organization but may belong to multiple groups

as allowed by the mutual exclusion relationship between groups. For instance, sup-

pose A TS and A S represent groups with top secret and secret users and objects

139

Figure 6.1: BLP in MGF.

respectively in an organization A. Users are not allowed to be members of both A TS

and A S groups. However, the user may belong to groups in other organizations. For

example, the user may belong to both A TS and B TS, where B is another organiza-

tion.

3. Objects have a single classification and thus belong to only one group.

4. Users can create subjects in any group that is Read-only or Read-Write Subordinate

to the user’s group. Thus, subjects are associated with a specific group.

5. A subject can read objects from any group that is Read-only or Read-Write Subordi-

nate to the subject’s group (subjects can only read at the same and lower levels).

6. A subject can write only to those objects in the subject’s group. Note that a user

can create and write to an object in a group only if RW Subordinate path exists

between the user’s and the object’s group. and groups to which the subject’s group is

Read-Write Subordinate to. That is subjects may write at the same and higher levels.

Figure 6.1 illustrates collaboration between two military organizations A and B. The four

groups in the middle column is referred to as a Mission Group Framework (MGF) established

140

for collaboration between organizations A and B. MGF facilitates this collaboration by

setting up Mission Groups (MS’s) and Common Groups (CG’s) for Top Secret (TS) and

Secret (S) users in A and B. In figure 6.1, we only explain the relationship between groups

in organization A (A TS and A S) and their relationship with MGF. A similar relationship

exists between groups in organization B and MGF.

A TS is the group containing users with TS clearance and objects with TS classification

in organization A. Similarly, A S is the group containing users with Secret (S) clearance

and objects with S classification in organization A. We define A S to be RW Subordinate

to A TS. This defines the domination relationship in BLP and allows A TS users to create

subjects and read and write objects in A TS and A S as defined by rules 4, 5 and 6.

MG TS contains TS users and objects from both A TS and B TS. Similarly, MG S

contains S users and objects from both A S and B S. TS objects in A TS and B TS

are shared with MG TS. We define a conditional membership relationship between A TS

and MG TS and B TS and MG TS respectively. This ensures that user’s membership

in MG TS is contingent upon his/her membership in A TS or B TS. Similarly, user’s

membership in MG S is contingent upon his/her membership in A S or B S due to the

condMem relationship defined between MG S and A S and MG S and B S respectively.

Note that MG S is made subordinate to MG TS and this allows MG TS users to read

and write to MG S objects. Users in MGF can send out periodic updates to their source

organizations using the common CG groups. This is achieved by making CG TS and CG S

RW Subordinate to MG TS and MG S respectively. Note that this prevents subjects in

MG TS to read from MG TS and write to CG TS. A user can create a subject in CG TS

and write information in CG TS about the status of mission. Further, an administrator can

also send updates about the mission status to CG TS by directly publishing information in

CG TS. If the users are trusted in MGF, the RW Subordinate definition between MG TS

and CG TS allows for controlled mission updates to reach A and B without the intervention

of an administrator during the course of the mission. A publish operation may facilitate

consolidated information to be moved from MG TS to CG TS towards the end of the

141

Figure 6.2: Mission Groups within organization A.

mission. Finally, note that CG TS is R Subordinate to A TS. This way A TS users cannot

write information to CG TS. They may only read objects from CG TS and possibly copy

to A TS. Note that both CG TS and CG S should not have any users. Otherwise, users in

CG TS, for example, can accidentally corrupt information in org A by writing to objects in

A TS (assuming R Subordinate allows write up).

Moreover mission groups can be established within a single organization. Users may be

specifically added to mission groups as allowed by their clearance level. This is illustrated

in figure 6.2.

Enforcement Layer: In the Enforcement layer, a major research work is on generaliza-

tion of stale-safety to multiple authorization information sources. For example, if autho-

rization information is obtained from sources A, B and C and a policy decision is made

based on the obtained attribute values, how do we ensure that when authorization decision

is made all the attributes held at the same time? If this cannot be ascertained, authoriza-

tion decision will be based on attributes that never held at the same time. For instance,

suppose that a user is allowed to enter a room only if she is member of the group and has

the Top Secret clearance. Suppose the Policy Decision Point first obtains the user’s group

membership attribute and then her clearance attribute. In this scenario, the group mem-

bership and clearance attributes may dynamically change at the time of evaluation. Thus

142

it is important to ascertain that there existed some time at which both the user’s attributes

held and an authorization was made based on those values.

Another important future work is on generalization of stale-safety to Attribute-Based

Access Control (ABAC). ABAC is generally preferred for specifying policies in distributed

systems due to its flexibility and ease of use. We believe that generalizing stale-safety so that

any policy specified using ABAC will be stale-safe would be a contribution with real-world

impact.

Implementation Layer: At the implementation layer, we implemented a protocol for

provisioning a group on the user’s machine. This however assumed that the user’s machine

is in a trustworthy state. Ascertaining the trustworthiness of user’s machine is a major

future research area. Platform trustworthiness includes the hardware and software state

of the system. TCG provides a means to measure the software at boot time and store

in the TPM’s PCR so that it can be reported to remote entities and the trustworthiness

of the software state of the system can thereby be verified. However, this only confirms

the software state of the system at boot time. Clearly, in any system, the software state

changes with time and it if often desirable to estimate the software state at the given time.

Measuring the run time integrity of a system is complex problem and is a potential area of

major future research.

143

Appendix A: Proof of Consistency and Independence

Theorems

The NuSMV models below describe how variables can be modified in each step of a

system execution. A model is specified using NuSMV. Here, the NuSMV model is expressed

in terms of Join, Leave, Add and Remove events (declared as boolean variables) that are

allowed to occur concurrently in a non-deterministic manner. The theorem is expressed as

an implication having the well-formed traces (the τ ’s) in the antecedent and the conjunction

of core properties as the consequent. NuSMV takes the model and the LTL formula and

determines whether the formula holds.

In the NuSMV model, the group events and authorization are declared as boolean

variables in the VAR section. The DEFINE section consists of macro definitions to improve

the readability of the code. The LTL formula to be checked are listed in the LTLSPEC

section. Comments follow the symbols - -. The logic operators ∨, ∧, and ¬ are represented

as |, &, and !, respectively. The temporal logic operators © , 2, U , W , -© , ¨, and S
are represented as X, G, U, W, Y, O and S respectively in the LTL formulas.

A.1 Consistency Theorem

The LTLSPEC towards the end of the following code negates the the whole consistency

theorem. This forces NuSMV to find and generate a counter-example in which all the core

properties hold.

MODULE main

VAR

authz: boolean;

Join: boolean;

Leave: boolean;

144

Add: boolean;

Remove: boolean;

LTLSPEC

!(

--well-formed trace constraints

(

G !(Add & Remove) & G !(Join & Leave) &

G (Join -> X ((!Join U Leave) | G !Join)) &

G (Leave -> X((!Leave U Join) | G!Leave)) &

G (Remove -> X((!Remove U Add) | G!Remove)) &

G (Add -> X((!Add U Remove) | G!Add)) &

G (Leave -> O Join) & G (Remove -> O Add)

)

->

--Core Properties

G((authz -> ((authz U (Join | Leave | Add | Remove)) | G authz)))

&

G((!authz -> ((!authz U (Join | Leave | Add | Remove)) | G !authz)))

&

((!authz U (authz & (!Leave S Join) & (!Remove S Add))) | G !authz)

&

G((Leave & !authz) -> ((!authz U Join) | G !authz))

&

G((Remove & !authz) -> ((!authz U Add) | G !authz))

&

145

G(Join -> (((Add -> ((authz U (Leave | Remove)) | G authz)) U

(Leave | Remove)) | G(Add -> ((authz U (Leave | Remove)) | G authz))))

)

Running NuSMV generates a counter-example in which all the core properties hold thereby

proving the Consistency Theorem.

*** This is NuSMV 2.4.3 (compiled on Tue May 22 14:08:54 UTC 2007)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

*** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

-- specification !(((((((((((((G !(Add & Remove) & G !(Join & Leave)) &

G (Join -> X ((!Join U Leave) | G !Join))) & G (Leave -> X ((!Leave U

Join) | G !Leave))) & G (Remove -> X ((!Remove U Add) | G !Remove))) &

G (Add -> X ((!Add U Remove) | G !Add))) & G (Leave -> O Join)) &

G (Remove -> O Add)) & G (authz -> ((authz U (((Join | Leave)

| Add) | Remove)) | G authz))) & G (!authz -> ((!authz U (((Join | Leave)

| Add) | Remove)) | G !authz))) & ((!authz U ((authz & (!Leave S Join)) &

(!Remove S Add))) | G !authz)) & G ((Leave & !authz) -> ((!authz U Join) |

G !authz))) & G ((Remove & !authz) -> ((!authz U Add) | G !authz))) &

G (Join -> (((Add -> ((authz U (Leave | Remove)) | G authz))

U (Leave | Remove)) | G (Add -> ((authz U (Leave | Remove)) | G authz)))))

is false

-- as demonstrated by the following execution sequence

146

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

authz = 0

Join = 1

Leave = 0

Add = 0

Remove = 0

-> Input: 1.2 <-

-> State: 1.2 <-

Join = 0

Leave = 1

-> Input: 1.3 <-

-> State: 1.3 <-

Leave = 0

-> Input: 1.4 <-

-> State: 1.4 <-

Join = 1

-> Input: 1.5 <-

-> State: 1.5 <-

authz = 1

Join = 0

Add = 1

-> Input: 1.6 <-

-> State: 1.6 <-

authz = 0

Leave = 1

147

Add = 0

-> Input: 1.7 <-

-> State: 1.7 <-

authz = 1

Join = 1

Leave = 0

-> Input: 1.8 <-

-- Loop starts here

-> State: 1.8 <-

Join = 0

-> Input: 1.9 <-

-> State: 1.9 <-

Leave = 1

-> Input: 1.10 <-

-- Loop starts here

-> State: 1.10 <-

Leave = 0

-> Input: 1.11 <-

-> State: 1.11 <-

A.2 Proof of Independence Theorem

Due to space constraints, the complete code listing and NuSMV output for the proof of

this theorem is given in [55]. The following code serves to illustrate the verification. In

the two LTLSPEC’s below, we specify 5 of the 6 core properties in the antecedent and

the other property (the Provenance property in this case) in the consequent. The first

LTLSPEC asserts that the Provenance core property in the consequent can be proved

from the remaining 5 properties in the antecedent. The second LTLSPEC asserts that the

Provenance property in the consequent cannot be proved from the remaining 5 properties

148

in the antecedent. NuSMV produces a counter example for both the assertions proving that

the Provenance property in the consequent is independent of the remaining 5 properties.

Complete verification and independence proof with counter-examples for the remaining

properties can be found in [55].

MODULE main

VAR

authz: boolean;

Join: boolean;

Leave: boolean;

Add: boolean;

Remove: boolean;

LTLSPEC

(

--well-formed trace constraints

(

G !(Add & Remove) & G !(Join & Leave) &

G (Join -> X ((!Join U Leave) | G !Join)) &

G (Leave -> X((!Leave U Join) | G!Leave)) &

G (Remove -> X((!Remove U Add) | G!Remove)) &

G (Add -> X((!Add U Remove) | G!Add)) &

G (Leave -> O Join) & G (Remove -> O Add)

)

&

149

G((authz -> ((authz U (Join | Leave | Add | Remove)) | G authz)))

&

G((!authz -> ((!authz U (Join | Leave | Add | Remove)) | G !authz)))

&

G((Leave & !authz) -> ((!authz U Join) | G !authz))

&

G((Remove & !authz) -> ((!authz U Add) | G !authz))

&

G(Join -> (((Add -> ((authz U (Leave | Remove)) | G authz)) U

(Leave | Remove)) | G(Add -> ((authz U (Leave | Remove)) | G authz))))

)

->

--Provenance Property

((!authz U (authz & (!Leave S Join) & (!Remove S Add))) | G !authz)

LTLSPEC

(

--well-formed trace constraints

(

G !(Add & Remove) & G !(Join & Leave) &

G (Join -> X ((!Join U Leave) | G !Join)) &

G (Leave -> X((!Leave U Join) | G!Leave)) &

G (Remove -> X((!Remove U Add) | G!Remove)) &

G (Add -> X((!Add U Remove) | G!Add)) &

G (Leave -> O Join) & G (Remove -> O Add)

)

&

150

G((authz -> ((authz U (Join | Leave | Add | Remove)) | G authz)))

&

G((!authz -> ((!authz U (Join | Leave | Add | Remove)) | G !authz)))

&

G((Leave & !authz) -> ((!authz U Join) | G !authz))

&

G((Remove & !authz) -> ((!authz U Add) | G !authz))

&

G(Join -> (((Add -> ((authz U (Leave | Remove)) | G authz))

U (Leave | Remove)) | G(Add -> ((authz U (Leave | Remove)) | G authz))))

)

->

-- Negation of Provenance Property

! ((!authz U (authz & (!Leave S Join) & (!Remove S Add))) | G !authz)

Running NuSMV generates a counter-example proving the independence of the Provenance

Property from the remaining five core properties.

*** This is NuSMV 2.4.3 (compiled on Tue May 22 14:08:54 UTC 2007)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

*** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

-- specification (((((((((((((G !(Add & Remove) & G !(Join & Leave)) &

G (Join -> X ((!Join U Leave) | G !Join))) & G (Leave ->

X ((!Leave U Join) | G !Leave))) & G (Remove -> X ((!Remove U Add)

151

| G !Remove))) & G (Add -> X ((!Add U Remove) | G !Add))) &

G (Leave -> O Join)) & G (Remove -> O Add)) & G (authz ->

((authz U (((Join | Leave) | Add) | Remove)) | G authz))) &

G (!authz -> ((!authz U (((Join | Leave) | Add) | Remove)) |

G !authz))) & G ((Leave & !authz) -> ((!authz U Join) |

G !authz))) & G ((Remove & !authz) -> ((!authz U Add) |

G !authz))) & G (Join -> (((Add -> ((authz U (Leave |

Remove)) | G authz)) U (Leave | Remove)) | G (Add ->

((authz U (Leave | Remove)) | G authz))))) -> ((!authz

U ((authz & (!Leave S Join)) & (!Remove S Add))) |

G !authz)) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

authz = 1

Join = 1

Leave = 0

Add = 0

Remove = 0

-> Input: 1.2 <-

-> State: 1.2 <-

authz = 0

Join = 0

Leave = 1

Add = 1

-> Input: 1.3 <-

-> State: 1.3 <-

152

Leave = 0

Add = 0

-> Input: 1.4 <-

-> State: 1.4 <-

Join = 1

-> Input: 1.5 <-

-- Loop starts here

-> State: 1.5 <-

Join = 0

Leave = 1

-> Input: 1.6 <-

-> State: 1.6 <-

Leave = 0

-> Input: 1.7 <-

-> State: 1.7 <-

Join = 1

-> Input: 1.8 <-

-> State: 1.8 <-

Join = 0

Leave = 1

-- specification (((((((((((((G !(Add & Remove) & G !(Join & Leave))

& G (Join -> X ((!Join U Leave) | G !Join))) & G (Leave ->

X ((!Leave U Join) | G !Leave))) & G (Remove ->

X ((!Remove U Add) | G !Remove))) & G (Add ->

X ((!Add U Remove) | G !Add))) & G (Leave -> O Join))

& G (Remove -> O Add)) & G (authz -> ((authz U

(((Join | Leave) | Add) | Remove)) | G authz))) &

G (!authz -> ((!authz U (((Join | Leave) | Add) | Remove))

153

| G !authz))) & G ((Leave & !authz) -> ((!authz U Join)

| G !authz))) & G ((Remove & !authz) -> ((!authz U Add)

| G !authz))) & G (Join -> (((Add -> ((authz U (Leave

| Remove)) | G authz)) U (Leave | Remove)) | G (Add ->

((authz U (Leave | Remove)) | G authz))))) -> !((!authz

U ((authz & (!Leave S Join)) & (!Remove S Add))) |

G !authz)) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

authz = 1

Join = 1

Leave = 0

Add = 1

Remove = 0

-> Input: 2.2 <-

-> State: 2.2 <-

authz = 0

Join = 0

Leave = 1

Add = 0

Remove = 1

-> Input: 2.3 <-

-> State: 2.3 <-

authz = 1

Join = 1

Leave = 0

154

Add = 1

Remove = 0

-> Input: 2.4 <-

-- Loop starts here

-> State: 2.4 <-

Join = 0

Add = 0

-> Input: 2.5 <-

-- Loop starts here

-> State: 2.5 <-

-> Input: 2.6 <-

-> State: 2.6 <-

Remove = 1

-> Input: 2.7 <-

-- Loop starts here

-> State: 2.7 <-

Remove = 0

-> Input: 2.8 <-

-> State: 2.8 <-

155

Appendix B: Proof of Entailment Theorems

B.1 Proof of Mixed Operations and Membership Renewal

Semantics Entailment Theorems

The following NuSMV model in the code listing simply allows group events such as SJ,

LJ, SR, etc. to occur concurrently in a non-deterministic manner. This model produces

all possible traces in terms of these group events. We concern ourselves only with the legal

mixed g-SIS traces by formulating the π-system g-SIS specification as the antecedent and

the core and membership renewal properties as the consequent of an implication. NuSMV

verifies that the LTLSPEC holds thereby proving both the theorems.

Code Listing A

MODULE main

VAR

SL: boolean;

LL: boolean;

SA: boolean;

LA: boolean;

SJ: boolean;

LJ: boolean;

SR: boolean;

LR: boolean;

authz: boolean;

DEFINE

Join := SJ | LJ;

Leave := SL | LL;

156

Add := SA | LA;

Remove := SR | LR;

LTLSPEC

(

--well-formed trace constraints

G !(Add & Remove) & G !(Join & Leave) &

G (Join -> X ((!Join U Leave) | G !Join)) &

G (Leave -> X((!Leave U Join) | G!Leave)) &

G (Remove -> X((!Remove U Add) | G!Remove)) &

G (Add -> X((!Add U Remove) | G!Add)) &

G (Leave -> O Join) & G (Remove -> O Add) &

G(!(SJ & LJ) & !(SL & LL) & !(SA & LA) & !(SR & LR)) &

--Pi-system g-SIS specification

G(authz <-> (((!SL & !SR) S ((SA | LA) & ((!LL & !SL)

S (SJ | LJ)))) | ((!SL & !SR) S (LJ & ((!SR & !LR) S LA)))))

)

->

--Core Properties

(

G((authz -> ((authz U (Join | Leave | Add | Remove)) | G authz)))

&

G((!authz -> ((!authz U (Join | Leave | Add | Remove)) | G !authz)))

&

((!authz U (authz & (!Leave S Join) & (!Remove S Add))) | G !authz)

&

G((Leave & !authz) -> ((!authz U Join) | G !authz))

157

&

G((Remove & !authz) -> ((!authz U Add) | G !authz))

&

G(Join -> (((Add -> ((authz U (Leave | Remove)) | G authz))

U (Leave | Remove)) | G(Add -> ((authz U (Leave | Remove)) | G authz))))

)

&

--Membership Renewal Properties

--Lossless Join

G(

((Join & !Remove & Y authz) -> authz)

) &

--Gainless Leave

G(

((Leave & (!Join U (authz & !Join))) ->

Y ((!authz & !Join) S (authz & (!Join S Join))))

) &

--Non-Restorative Leave

G(

((Leave & authz) -> Y authz)

)

B.2 Proof of Most Restrictive Entailment Theorem

In the LTLSPEC below, the π-system g-SIS specification is replaced by the fixed operation

(SJ, SL, SA, SR) specification. Furthermore, we specify the corresponding membership

and membership renewal properties along with the core properties in the consequent.

NuSMV successfully verifies that the theorem is true.

158

Code Listing B

MODULE main

VAR

SL: boolean;

SA: boolean;

SJ: boolean;

SR: boolean;

authz: boolean;

DEFINE

Join := SJ;

Leave := SL;

Add := SA;

Remove := SR;

LTLSPEC

(

--well-formed trace constraints

G !(Add & Remove) & G !(Join & Leave) &

G (Join -> X ((!Join U Leave) | G !Join)) &

G (Leave -> X((!Leave U Join) | G!Leave)) &

G (Remove -> X((!Remove U Add) | G!Remove)) &

G (Add -> X((!Add U Remove) | G!Add)) &

G (Leave -> O Join) & G (Remove -> O Add) &

159

--Most Restrictive Mixed g-SIS Specification

G(authz <-> ((!SL & !SR) S (SA & (!SL S SJ))))

)

->

--Core Properties

(

G((authz -> ((authz U (Join | Leave | Add | Remove)) | G authz)))

&

G((!authz -> ((!authz U (Join | Leave | Add | Remove)) | G !authz)))

&

((!authz U (authz & (!Leave S Join) & (!Remove S Add))) | G !authz)

&

G((Leave & !authz) -> ((!authz U Join) | G !authz))

&

G((Remove & !authz) -> ((!authz U Add) | G !authz))

&

G(Join -> (((Add -> ((authz U (Leave | Remove)) | G authz)) U

(Leave | Remove)) | G(Add -> ((authz U (Leave | Remove)) | G authz))))

)

&

--Membership Renewal Properties

--Lossless Join: beta0

G(

((Join & !Remove & Y authz) -> authz)

) &

--Gainless Leave: beta2

G(

((Leave & (!Join U (authz & !Join))) ->

160

Y ((!authz & !Join) S (authz & (!Join S Join))))

) &

--Non-Restorative Leave: beta 3

G(

((Leave & authz) -> Y authz)

)

&

--Membership Properties

--Strict Join: alpha0

G(

(authz -> O (SA & (!SL S SJ)))

) &

--Strict Leave: alpha1

G(

(authz -> (!SL S SJ))

) &

--Strict Add: alpha2

G(

(SA -> (!O SJ -> ((!authz U SA) | G !authz)))

) &

--Strict Remove: alpha3

G(

(SR -> ((!authz U SA) | G !authz))

)

161

Appendix C: Stale-Safety Verification

C.1 Description of Code

There are four NuSMV modules that represent this model. They are the User, GA, TRM

and CC module. The GA essentially only talks to the CC (to notify the CC to change its

time stamps). The TRM talks to the CC (to get timestamps) and to the user (to notify

the user that it can perform or deny perform).

User Module:

This Module models a user that requests a perform action on an anonymous object. The

user is unaware of whether or not the object should be accessed (performed on) and relies

on the local TRM (modeled by the TRM module) to determine whether or not they can

perform (on the object). This model relies on a random decision by the user to access the

object.

TRM Module:

Each TRM (i.e., stale unsafe, weak and strong stale-safe TRMs) is based on a similar model.

The TRM randomly refreshes (with no restrictions) at which time the timestamps are set

to those of the CC. When the user makes a request this initiates a question-response event.

The TRM will only respond once it becomes ready to do so, at which point it will give an

answer to the request (i.e. allow perform or deny perform). The three models differ based

on when the TRM becomes ready. Also, the unsafe TRM gets its response to the request

different from the weak and strong TRM’s.

TRM Unsafe: The unsafe TRM is always ready (to respond). The response is the

evaluation of the policy with TRM’s (possibly stale) timestamps.

TRM Weak: This TRM is essentially always ready, and only becomes not ready when

staleness occurs. This happens when, in the previous state, the policy did not hold, but it

162

does hold in this state (without a refresh). This will make the TRM become not ready. The

value of the TRM’s response (to requests) is the value of the policy during the last refresh.

TRM Strong: This TRM only becomes ready when a refresh happens during the

question-response process (i.e. after a request is received). Again, the TRM’s response is

calculated from the latest refresh.

CC Module:

The CC maintains the most current time stamps. It does this by accepting add/remove

actions from the GA module. The TRM gets all of its timestamps from the CC during a

refresh. Every time an object is added by the GA the CC goes into a super distributed

state and the TRM will immediately pick up the new object add ts.

GA Module:

The GA is similar to the user in that it randomly performs 4 basic actions (the user only

performs one basic action). These actions are add/remove object and join/leave user. The

only restriction on the randomness is that the GA is smart in performing these actions.

Because the CC maintains up-to-date timestamp information, the GA can query the CC

as to whether or not a user/object is part of the group. In this way, the GA only performs

an add action when the user/object is not part of the group and only performs remove

actions when the user/object is part of the group.

Other Modules:

There is also a Clock module and a question-response module. The clock is straight forward,

it gives a sequential index to each state. It starts at zero and advances by one in each

state and stops when a maximum value is reached. The question-response module is the

workhorse since it models the interaction between the user and the TRM. This module

is only concerned with the timing of events: a question is asked then, some time later,

answered. It captures this interaction with 2 internal variables: responding and respond.

163

Responding just means that you are in the middle of a question, and respond signifies that

you are giving a response in this state. The question and the value of the response are not

part of this module; essentially this module can be used to determine when it is correct to

grab the response from the answerer. There are three external inputs given: ask, ready,

and force-response. These variables define the behavior of the questioner (by defining ask)

and the responder (by defining when the responder is ready and when the responder will

definitely respond).

C.2 Counter-Examples

C.2.1 Verification against ∆0-system

Verification of Unenforceablity Theorem

*** This is NuSMV 2.4.3 (compiled on Mon Feb 23 20:34:39 UTC 2009)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification G (perform -> Y (!perform S

(authzcc & ((!request & !perform) S request)))) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

State 1:

trm.object_remove_ts = 0

trm.user_leave_ts = 0

authzcc = 0

authztrm = 0

164

State 2:

ga.action_join_user = 1

trm.action_refresh = 1

trm.user_join_ts = 1

authzcc = 0

authztrm = 0

State 3:

user.request_perform = 1

ga.action_add_object = 1

ga.action_leave_user = 1

trm.object_add_ts = 2

trm.question.respond = 1

authztrm = 1

authzcc = 0

State 4:

user.action_perform = 1

authzcc = 0

As shown in the counter-example above, NuSMV successfully proves that AuthzCC is not

enforceable at TRM0. That is, ∆0 2 2(perform → ϕ′0). In this trace it should be clear

that [authzcc] is always false (value of 0). The user is joined in the 2nd state, where a

refresh also happens. This sets the user join ts for the TRM. In this state both authztrm

and authzcc are false. In the 3rd state, the user requests, the ga adds an object which

triggers object add ts to be set for the TRM, which changes the value of authztrm to true,

and, finally, the TRM responds to the user request in this state with a response of true

165

(authztrm). This fails the property because there is no point between the request and

perform where authzcc was true.

Verification of Enforceability Theorem

*** This is NuSMV 2.4.3 (compiled on Mon Feb 23 20:34:39 UTC 2009)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification G(perform -> Y ((!perform & (!rt | (rt &

authzcc))) S (authztrm & ((!request & !perform) S request))) is true

NuSMV successfully verifies 2(perform → ϕ0) against the ∆0-system as shown above.

Verification of Weak Stale-Safety against ∆0-system

*** This is NuSMV 2.4.3 (compiled on Mon Feb 23 20:34:39 UTC 2009)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification G (perform -> (Y ((!perform & (!rt |

(rt & authzcc))) S (request & (!rt S (rt & authzcc)))) |

Y ((!perform & !rt) S ((rt & authzcc) & (!perform S request)))))

is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

State 1:

166

trm.object_remove_ts = 0

trm.user_leave_ts = 0

authzcc = 0

authztrm = 0

State 2:

ga.action_join_user = 1

trm.action_refresh = 1

trm.user_join_ts = 1

authzcc = 0

authztrm = 0

State 3:

user.request_perform = 1

ga.action_leave_user = 1

ga.action_add_object = 1

trm.object_add_ts = 2

trm.question.respond = 1

authzcc = 0

authztrm = 1

State 4:

user.action_perform = 1

The counter-example generated by NuSMV clearly shows that the ∆0-system fails the weak

stale-safety security property. The user is joined in State 2 and the TRM refreshes. This

167

causes the TRM’s user join ts to be set, but both authzcc and authztrm are still false. In

the next (3rd state) the user requests, an object is added, the user is removed (leave), and

the TRM responds to the user’s request. Because the object is added, the CC will go into a

super distributed state and the TRM will instantly get the object add ts, which causes the

TRM’s policy to now evaluate to true (authztrm). Therefore the user performs in the next

state (4th state) with stale attributes. This fails the weak staleness property because there

is no refresh where authzcc held and yet there is a perform. Note: authzcc could have held

in State 3 if the ga had not removed the user, but the attributes in the TRM would still be

considered stale because it is never locally verifies that the object and user were part of the

group at the same time through a refresh before it allows a perform.

C.2.2 Verification against ∆1-system

Weak Stale-Safety

-- specification G (perform -> (Y ((!perform & (!rt | (rt & authzcc)))

S (request & (!rt S (rt & authzcc)))) | Y ((!perform & !rt) S

((rt & authzcc) & (!perform S request))))) is true

NuSMV successfully verifies that the ∆1-system satisfies the weak stale-safe security prop-

erty.

Strong Stale-Safety

-- specification G (perform -> Y ((!perform & !rt) S

((rt & authzcc) & (!perform S request)))) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

State 1:

168

trm.user_leave_ts = 0

trm.object_remove_ts = 0

authzcc = 0

authztrm = 0

State 2:

ga.action_add_object = 1

ga.action_join_user = 1

trm.action_refresh = 1

trm.object_add_ts = 1

trm.user_join_ts = 1

authzcc = 1

authztrm = 1

State 3:

user.request_perform = 1

ga.action_remove_object = 1

ga.action_leave_user = 1

trm.question.respond = 1

authzcc = 0

authztrm = 1

State 4:

user.action_perform = 1

As shown in the counter-example generated by NuSMV above, the ∆1-system fails strong

stale-safety. In State 2 the GA adds the object and joins the user and the TRM refreshes.

The refresh causes both user join ts and object add ts to be updated at the TRM which

makes authztrm true and also authzcc is true. In State 3, the user requests, the ga removes

169

the object and user, and the TRM responds to the users request. Because there is no

refresh, authztrm remains true (which is the value sent to the user) and the user is then

allowed to perform in State 4. Again, it’s not necessary that authzcc becomes false in this

state, just that between this request and the perform in State 4 there was no refresh by the

TRM.

C.2.3 Verification against ∆2-system

Strong Stale-Safety

-- specification G (perform -> Y ((!perform & !rt) S ((rt & authzcc)

& (!perform S request)))) is true

As shown in the NuSMV report above, the ∆2-system satisfies strong stale-safety.

170

Bibliography

171

Bibliography

[1] S. Rafaeli and D. Hutchison, “A survey of key management for secure group commu-
nication,” ACM Computing Surveys, vol. 35, no. 3, pp. 309–329, 2003.

[2] G. S. Graham and P. J. Denning, “Protection: principles and practice,” in AFIPS ’71
(Fall): Proceedings of the November 16-18, 1971 fall joint computer conference. New
York, NY, USA: ACM, 1971, pp. 417–429.

[3] B. W. Lampson, “Protection,” SIGOPS Operating Systems Review, vol. 8, no. 1, pp.
18–24, 1974.

[4] Trusted Computer System Evaluation Criteria, DoD National Computer Security Cen-
ter (DoD 5200.28-STD), December 1985.

[5] R. Sandhu, “Lattice-based access control models,” IEEE Computer, vol. 26, no. 11,
pp. 9–19, 1993.

[6] D. Bell and L. LaPadula, “Secure computer systems: Mathematical foundations,”
MITRE Technical Report MTR-2547, Tech. Rep., 1973.

[7] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based Access Control Mod-
els,” IEEE Computer, pp. 38–47, 1996.

[8] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-based access control to
enforce mandatory and discretionary access control policies,” ACM Transactions on
Information and Systems Security, vol. 3, no. 2, pp. 85–106, 2000.

[9] J. Park and R. Sandhu, “The UCONABC usage control model,” ACM Transactions on
Information and Systems Security, vol. 7, no. 1, pp. 128–174, 2004.

[10] M. C. Mont, S. Pearson, and P. Bramhall, “Towards accountable management of iden-
tity and privacy: Sticky policies and enforceable tracing services,” in DEXA ’03: Pro-
ceedings of the 14th International Workshop on Database and Expert Systems Applica-
tions. Washington, DC, USA: IEEE Computer Society, 2003, p. 377.

[11] S. Bandhakavi, C. C. Zhang, and M. Winslett, “Super-sticky and declassifiable release
policies for flexible information dissemination control,” in WPES ’06: Proceedings of
the 5th ACM workshop on privacy in electronic society. New York, NY, USA: ACM,
2006, pp. 51–58.

[12] D. W. Chadwick and S. F. Lievens, “Enforcing “sticky” security policies throughout a
distributed application,” in MidSec ’08: Proceedings of the 2008 workshop on middle-
ware security. New York, NY, USA: ACM, 2008, pp. 1–6.

172

[13] R. Graubart, “On the need for a third form of access control,” in Proceedings of the
12th National Computer Security Conference, 1989, pp. 296–304.

[14] C. J. McCollum, J. R. Messing, and L. Notargiacomo, “Beyond the Pale of MAC
and DAC–Defining New Forms of Access Control,” IEEE Symposium on Security and
Privacy, vol. 0, p. 190, 1990.

[15] M. Abrams, J. Heaney, O. King, L. LaPadula, M. Lazear, and I. Olson, “Generalized
framework for access control: Towards prototyping the ORGCON policy,” in Proceed-
ings of the 14th National Computer Security Conference, 1991, pp. 257–266.

[16] J. Park and R. Sandhu, “Originator control in usage control,” in POLICY ’02: Pro-
ceedings of the 3rd International Workshop on Policies for Distributed Systems and
Networks. Washington, DC, USA: IEEE Computer Society, 2002, p. 60.

[17] “eXtensible rights Markup Language,” www.xrml.org.

[18] “The Open Digital Rights Language Initiative,” www.odrl.net.

[19] C. Farkas and S. Jajodia, “The inference problem: a survey,” SIGKDD Explor. Newsl.,
vol. 4, no. 2, pp. 6–11, 2002.

[20] E. Bertino, P. A. Bonatti, and E. Ferrari, “Trbac: A temporal role-based access control
model,” ACM Transactions on Information and Systems Security, vol. 4, no. 3, pp.
191–233, 2001.

[21] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal role-based
access control model,” IEEE Transactions on Knowledge and Data Engineering, vol. 17,
no. 1, pp. 4–23, 2005.

[22] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating systems,”
Communications of the ACM, vol. 19, no. 8, pp. 461–471, 1976.

[23] R. J. Lipton and L. Snyder, “A linear time algorithm for deciding subject security,”
Journal of the ACM, vol. 24, no. 3, pp. 455–464, 1977.

[24] R. Sandhu, “The schematic protection model: its definition and analysis for acyclic
attenuating schemes,” Journal of the ACM, vol. 35, no. 2, pp. 404–432, 1988.

[25] R. S. Sandhu, “The typed access matrix model,” in Proceedings of the 1992 IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE Computer Society,
1992, p. 122.

[26] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The arbac97 model for role-based
administration of roles,” ACM Transactions on Information and Systems Security,
vol. 2, no. 1, pp. 105–135, 1999.

[27] T. Jaeger and J. E. Tidswell, “Practical safety in flexible access control models,” ACM
Transactions on Information and Systems Security, vol. 4, no. 2, pp. 158–190, 2001.

[28] R. Sandhu, K. Ranganathan, and X. Zhang, “Secure information sharing enabled by
trusted computing and PEI models,” in Proceedings of the 2006 ACM Symposium on
Information, computer and communications security. ACM, 2006, p. 12.

173

[29] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems.
Heidelberg, Germany: Springer-Verlag, 1992.

[30] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf, “Policy/mechanism separa-
tion in Hydra,” ACM SIGOPS Operating Systems Review, vol. 9, no. 5, pp. 132–140,
1975.

[31] E. M. Clarke, E. A. Emerson, and A. Sistla, “Automatic verification of finite-state
concurrent systems using temporal logic specifications,” ACM Transactions on Pro-
gramming Language and Systems (TOPLAS), vol. 8, no. 2, pp. 244–263, 1986.

[32] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cambridge, Mas-
sachusetts, USA: The MIT Press, 1999.

[33] K. McMillan, Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic, 1993.

[34] A. Cimatti, E.M.Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A new symbolic
model checker,” Journal on Software Tools for Tech. Transfer, pp. 410–425, 2000.

[35] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th IEEE Sympo-
sium on Foundations of Computer Science, vol. 526, 1977, pp. 46–67.

[36] “TCG Specification Architecture Overview,” http://www.trustedcomputinggroup.org.

[37] A. P. Sistla, “Safety, liveness and fairness in temporal logic,” in Formal Aspect of
Computing, 1994, pp. 495–511.

[38] E. Barka and R. Sandhu, “Framework for role-based delegation models,” in Proc. of
the 16th Annual Computer Security Applications Conference. Washington, DC, USA:
IEEE Computer Society, 2000, p. 168.

[39] X. Zhang, S. Oh, and R. Sandhu, “PBDM: a flexible delegation model in RBAC,” in
Proceedings of the eighth ACM symposium on Access control models and technologies.
ACM, 2003, p. 157.

[40] E. Barka and R. Sandhu, “Role-based delegation model/hierarchical roles (RBDM1),”
in Proceedings of the 20th Annual Computer Security Applications Conference. Tucson,
Arizona, USA, IEEE Computer Society, 2004, pp. 396–404.

[41] A. Osterhues, A. R. Sadeghi, M. Wolf, C. Stüble, and N. Asokan, “Securing Peer-
to-peer Distributions for Mobile Devices,” in 4th Information Security Practice and
Experience Conference, 2008.

[42] A. Sadeghi, M. Scheibel, C. Stüble, and M. Wolf, “Play it once again, Sam-Enforcing
stateful licenses on open platforms,” in 2nd Workshop on Advances in Trusted Com-
puting, 2006.

[43] U. Kühn, M. Selhorst, and C. Stüble, “Realizing property-based attestation and sealing
with commonly available hard- and software,” in Proc. of ACM workshop on Scalable
trusted computing, 2007.

174

[44] C. Boyd, “Digital multisignatures,” In Cryptography and Coding, pp. 241–246, Oxford
University Press, 1989.

[45] R. Ganesan, “Yaksha: Augmenting Kerberos with public key cryptography,” in Proc.
of the Symp. on Network and Dist. Syst. Security, 1995.

[46] R. GanesaN, “Yaksha security system,” Communications of the ACM, vol. 39, no. 3,
pp. 55–60, 1996.

[47] R. Sandhu, M. Bellare, and R. Ganesan, “Password-enabled PKI: Virtual smartcards
versus virtual soft tokens,” in Proceedings of the 1st Annual PKI Research Workshop,
2002.

[48] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126, 1978.

[49] J. Goguen and J. Meseguer, “Security policies and security models,” IEEE Symposium
on Security and Privacy, vol. 12, 1982.

[50] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating systems,”
Comm. of the ACM, pp. 461–471, August 1976.

[51] J. Niu, J. M. Atlee, and N. A. Day, “Template semantics for model-based notations,”
IEEE Transactions on Software Engineering, vol. 29, no. 10, pp. 866–882, October
2003.

[52] E. Mikk, Y. Lakhnech, and M. Siegel, “Hierarchical automata as model for state-
charts,” in ASIAN ’97: Proceedings of the Third Asian Computing Science Conference
on Advances in Computing Science. London, UK: Springer-Verlag, 1997, pp. 181–196.

[53] M. Yannakakis, “Hierarchical State Machines,” In Exploring New Frontiers of Theoret-
ical Informatics, International Conference IFIP TCS, LNCS, vol. 1872, pp. 315–330,
2000.

[54] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella, “Nusmv 2: An opensource tool for symbolic model checking,”
Lecture Notes in Computer Science, pp. 359–364, 2002.

[55] R. Krishnan, “Group-Centric Secure Information Sharing Models: Proofs of the-
orems and counter-examples from model checking.” http://www.profsandhu.com/
ram krishnan/ , 2009.

[56] W. Diffie, P. Oorschot, and M. Wiener, “Authentication and authenticated key ex-
changes,” Designs, Codes and Cryptography, vol. 2, no. 2, pp. 107–125, 1992.

[57] J. Liedtke, “Toward real microkernels,” Communications of the ACM, vol. 39, no. 9,
pp. 70–77, 1996.

[58] H. Krawczyk, “SIGMA: The SIGn-and-MAcapproach to authenticated Diffie-Hellman
and its use in the IKE protocols,” in Advances in Cryptography. Springer, 2003.

[59] Trousers, “A TSS implementation for Linux,” IBM. Retrieve from
http://trousers.sourceforge.net, 2005.

175

Curriculum Vitae

Ram Narayan Krishnan was born in 1979 in India. He received his Bachelor of Technology
degree in Computer Science and Engineering from Pondichery University in 2002 and Master
of Science degree in Computer Engineering from New Jersey Institute of Technology in
2003.

176

