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ABSTRACT
We develop the foundations for a theory of Group-Centric Secure
Information Sharing (g-SIS), characterize a specific family of mod-
els in this arena and identify several directions in which this the-
ory can be extended. The traditional approach to information shar-
ing, characterized as Dissemination-Centric in this paper, focuses
on attaching attributes and policies to an object (sometimes called
“sticky policies”) as it is disseminated from producers to consumers
in a system. In contrast, Group-Centric sharing envisions bringing
the subjects and objects together in a group to facilitate sharing.
The metaphor is that of a secure meeting room where participants
and information come together to enable parties to “share” infor-
mation for some common purpose.

We formalize the concept of an Information-Sharing Group us-
ing Linear Temporal Logic (LTL), by specifying g-SIS properties.
We begin with a core set of properties (Simultaneity, Provenance,
Persistence, Availability, etc.) that any g-SIS model must satisfy.
Next we identify additional properties regarding specific variations
of group operations (Strict, Liberal, Lossy, Lossless, etc.). Finally,
we specify the correct authorization behavior for a sub-family of
g-SIS specifications using LTL and formally prove that the specifi-
cations satisfy the properties using the model checker NuSMV.

1. INTRODUCTION AND MOTIVATION
This paper introduces and formalizes the concept of Group-

Centric Secure Information Sharing (g-SIS). The need to share in-
formation is driven by multiple forces. Post 9/11, the need-to-
share principle has supplanted the traditional need-to-know which
caused failure to “connect the dots.” In our information age, busi-
nesses collaborate not only with allies, but also with competitors
to advance their own interests. For the individual citizen, modern
healthcare requires timely sharing of medical information amongst
care providers while maintaining privacy. The explosive phenom-
ena of social networking enables individuals to interact without ge-
ographic barriers, but with an expectation of security and privacy.

In all of these cases, we see the need to “share but protect.” This
paper will develop formal models and analysis for a style of infor-
mation sharing that we call Group-Centric. Intuitively, users and
information come together in a group to facilitate sharing. We
identify two metaphors: a secure meeting room and a subscrip-
tion service. A meeting room brings people together to “share”
information for some common purpose. The purpose can range
from collaboration on a specific goal-oriented task (such as design-
ing a new product) to participation in a shared activity (such as
a semester long class) to a dynamic coalition (such as a mission-
oriented group that is driven towards completion of a particular
task). Subscription metaphor speaks to a potentially larger scale
sharing with a publisher disseminating information to subscribers
who in turn participate in blogs and forums. We show that these

simple and familiar metaphors enable a rich space of policies that
will be investigated in a systematic incremental fashion. In par-
ticular, we show that the temporal interactions of users joining and
leaving the group and information being added and removed is crit-
ical to determination of who can see what in the group.
Secure meeting room Visualize a conversation room (albeit vir-
tual) where users may join, leave and re-join, but only hear the con-
versation occurring during their participation period. In general, a
meeting room has the notion of simultaneous presence of partici-
pants engaged in the meeting. For simplicity, we will also use this
metaphor to include the idea of a “secure document room”, such as
often used during merger and acquisition. Users bring documents
to this room wherein they are asynchronously accessible by partic-
ipants from different stakeholders and third-party agents. Users’
participation may be intermittent as influenced by their availability,
need to know, etc. Let us consider some example scenarios:

Program committee meeting: In a program committee meeting,
members are privy only to conversations occurring in their pres-
ence. Alice, a committee member, may be excused from the room
when her paper is being discussed and may re-join the room af-
ter that discussion has concluded. The conversation that occurred
during her absence is not accessible to her. In a different setting,
all conversations are recorded on a smartboard in the room and as
Alice re-joins she is able to see what happened during her absence.

Collaborative product development: Consider collaborative prod-
uct design between ABC Corp. and XYZ Corp. Say ABC estab-
lishes a group by pulling in engineers from across the company.
Certain sensitive documents are provided to these ABC engineers,
but these are not accessible to XYZ engineers. Documents created
after the XYZ engineers join the group are shared by both ABC
and XYZ engineers. Moreover, both XYZ and ABC engineers re-
tain access to such new documents even after leaving the group. In
a different consulting scenario, incoming XYZ engineers may ac-
cess the sensitive ABC documents during their membership period,
but lose access once the collaboration ends.

Employee stock options: Stock option benefits typically change
over time. New employees only get to see benefits as of their join-
ing and not previously existing ones. Similarly, organizations may
share some information with existing employees, but withhold it
from future employees. In these cases, certain objects are shared
only with existing group members and not with future members.
Furthermore, when employees leave the company, they may be al-
lowed to retain certain information (such as their profile, recom-
mendations, etc.), but denied access to sensitive proprietary infor-
mation (such as design documents, code, etc.).
Subscription service Another metaphor is that of the subscription
service where access to content may depend upon when the sub-
scription began and the terms of subscription. The publisher may
contribute information that the participants read and possibly re-
spond to via content in associated blogs and forums.
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Magazine Subscription: Consider an online news magazine ABS
that offers four levels of membership. Level 1 ($10/year) sub-
scribers can access news articles that are published after they started
paying the subscription fee. If they cancel their subscription, they
completely lose access. Level 2 ($12/year) is similar to Level 1
except subscribers can retain access to news articles that they paid
for even after canceling their subscription. In addition to Level 2
services, Level 3 ($15/year) subscribers can access rich archives
filled with post-news analysis, predictions, annotations and opin-
ions from experts. But if they cancel their subscription, they lose
all access. Level 4 ($17/year) is similar to Level 3, except even after
canceling membership, subscribers can login and view all articles
that they had access before leaving.

Secure multicast: In secure multicast [31], new members join-
ing the group cannot access content transmitted prior to their join
time. This is referred to as “backward secrecy”. Similarly, mem-
bers leaving the group can no longer access any new content. This
is referred to as “forward secrecy”. Thus access is dependant on
when the subjects join and leave the group.

Clearly, the “secure meeting room” metaphor suggests a smaller-
scale information sharing scenario whereas the “subscription ser-
vice” metaphor indicates a potentially larger-scale. These examples
illustrate two important principles in the group-centric approach.
The first principle is “share but differentiate”. Sharing is enabled
by joining and adding information to group. Yet, users’ access is
differentiated by the time at which they join and the time at which
the requested information is added to the group, as well as possibly
by other attributes. The second principle is the notion of “groups
within groups”. That is, in a given g-SIS system, there may be
multiple related groups. The relationship between these groups
can be of any number of varieties familiar to computer scientists.
One well-known structure is that of a hierarchy, where subjects at
a higher level dominate those at the lower levels in terms of read
access. Another common relationship is that of mutual exclusion
where the same user is prohibited from joining conflicting groups.

Methodology and Focus.
Methodologically, we believe that secure systems design is best

accomplished in two layers enabling consideration of system de-
sign issues a few at a time. It is useful to consider the interaction
of operations that affect authorizations independent of the way in
which those operations affect some particular notion of authoriza-
tion state. Thus, instead of specifying the effect of various oper-
ations on an authorization state, we specify the circumstances in
which an action is authorized directly in terms of the operations
that have come before. To this end, we propose to use temporal
logic as a precise, well understood means to specify and analyze
those circumstances. Thereby alternative designs can be specified
with precise semantics, compared, and studied with respect to their
suitability for a given application. The designer’s intuitions about
dependencies among design characteristics can be captured and as-
sessed. Informed by such analysis, the designer can select among
the various operations and associated semantic specifications to de-
fine what we think of as the application policy layer of the system
design [35]. Of course, real systems have specific representations
of authorization state, which are modified by performing operations
and examined to determine whether an action is permitted. This is
part of the design of what we characterize as the enforcement layer
of the system design. In general, but particularly in distributed sys-
tems, design decisions must be made at this layer that have a signif-
icant impact on security and functionality. In this paper, we focus
solely on the application policy layer. A complete analysis of en-
forcement layer design issues is out of scope for this paper.

Figure 1: Subject Membership States.

Our focus in this paper is on semantics of the basic group op-
erations and their temporal interactions. We propose an abstract
set of group operations: Join and Leave for subjects, Add and Re-
move for objects. Subjects may Join, Leave and re-Join the group.
This is illustrated in figure 1. Similarly, objects may be Added, Re-
moved and re-Added to the group. Further each of these operations
could be of various types such as Lossy/Lossless, Restorative/Non-
Restorative, etc. For example, in Lossless Join, a joining subject
never loses access to objects authorized prior to joining the group.
Similarly, in Restorative Join, the joining subject may regain access
to objects authorized during past membership period. There may
also be additional operations such as post-dated Join, back-dated
Join, substitution of one subject by another, etc. One of the goals
of our future work is to formally analyze the expressive power of
these operations, and identify the essential ones versus those that
add convenience but no new fundamental expressive power (see
for e.g., [11, 37]). In general, there may be any number of such
variations beyond those explicitly identified in this paper. Temporal
aspects of access control have been previously studied (e.g., [10]),
where temporal aspects are introduced as extensions to prior mod-
els of role based access control. In g-SIS the temporal interactions
are so fundamental that they must be investigated and understood
before even the first model can be formulated.

We recognize the importance of authorization for these opera-
tions. It is clearly not sufficient for a security policy to specify the
semantics of Join, Leave, Add and Remove. A complete policy
must also specify the authorization for these operations. In sim-
ple cases, a distinguished group owner may be responsible for all
of these operations. More realistically the authorization will be
decentralized and distributed. The problem of decentralized autho-
rization and its administration has been investigated in the access
control literature for over three decades. The formal treatment of
this area began with the landmark paper of HRU [19] that showed
that so-called safety analysis in even this simple model was unde-
cidable. Numerous papers on models such as take-grant [26], SPM
[32], TAM etc. [33, 20] followed. With the growing popularity of
role-based access control in the 1990’s, decentralized administra-
tive models were proposed in that context [34]. Clearly, the area of
decentralized authorization and its administration has been exten-
sively studied. We hypothesize that suitable administration models
for g-SIS can be developed utilizing the insights of this accumu-
lated previous work. These will necessarily be application depen-
dant. Consider two different g-SIS applications, one where users
need to pay to join a group and another where users are admitted
based on organizational needs. The administrative model for these
two applications is likely to be different.

We believe that authorizations concerning the operational as-
pects that bear on group membership is a more immediate and
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novel problem, and this will be the focus of this research.1 Without
a basic understanding of the semantics of group operations, we be-
lieve that it would be premature to consider administrative models.
Henceforth, we leave the development of an administrative g-SIS
model for future work.

In this paper we develop the foundations for a theory of Group-
Centric Information Sharing, characterize a specific sub-family of
models in this arena and identify several directions in which this
theory can be extended. The principal contributions of this paper
are as follows. We formalize the concept of Group-Centric Infor-
mation Sharing using Linear Temporal Logic (LTL) [27], by speci-
fying three levels of properties. We first specify the Core Properties
(Simultaneity, Provenance, Persistence, etc.) that must be satisfied
by any g-SIS specification. Next we specify, the Membership and
Membership Renewal Properties which are based on specific vari-
ations of group operations. These properties need not be satisfied
by all g-SIS specifications but suggest some useful operational se-
mantics for many applications. Finally, we specify the correct au-
thorization behavior for a sub-family of g-SIS specifications2 and
show using model checking that they satisfy the properties.

The remainder of this paper is organized as follows. In section 2,
we discuss related work. In section 3, we discuss the formal g-SIS
language and various g-SIS properties. In section 4, we discuss a
sub-family of g-SIS specifications and show by using model check-
ing that the specifications satisfy the Core Properties. In section 5,
we re-visit our metaphors and discuss how the group operations can
express many scenarios. In section 6, we identify several directions
in which this work can be extended and conclude.

2. RELATED WORK
The traditional approach to information sharing, which we char-

acterize as Dissemination-Centric in this paper, focuses on attach-
ing attributes and policies to an object as it is disseminated from
producers to consumers in a system. These policies are sometimes
described as being “sticky”. As an object is disseminated further
down a supply chain the policies may get modified, such modifi-
cation itself being controlled by existing policies. This mode of
information sharing goes back to early discussions on originator-
control systems [18, 28, 4, 29] in the 1980’s and Digital Rights
Management in the 1990’s and 2000’s. XrML [1], ODRL [3] and
XACML [2] are recent examples of policy languages developed for
this purpose. Dissemination-Centric Sharing describes in advance
the characteristics of subjects who may access the object by attach-
ing “sticky policies” to be enforced when a subject accesses the
object. The vision of Group-Centric Sharing differs in that it advo-
cates bringing the subjects and objects together to facilitate sharing.

We envision that Dissemination-Centric and Group-Centric
Sharing will co-exist in a mutually supportive manner. For ex-
ample, objects could be added with “sticky” policies in a Group-
Centric model. In this case, the objects may have controls imposed
by both the Group-Centric model and the “sticky policies”. Also,

1We propose to use temporal logic for specifying the semantics of
these operations, primarily because of the importance of temporal
interactions between these. An alternative might be to use more
native access control formalisms such as HRU [19]. It would be an
interesting exercise to recast the results we obtain in this research
within the HRU formalism perhaps as a prelude to developing for-
mal administrative models. Nevertheless we feel that starting our
investigation with a HRU-style formalism would not be productive.
2We confine our attention to correct authorization behavior with re-
spect to read access in a single group using LTL. Our future work
involves extensions to other forms of accesses such as write or up-
date and multiple groups.

the “sticky policies” on the object could determine whether or not
an object can be added to the group in the first place. It may turn
out that at a theoretical level whatever Dissemination-Centric can
achieve Group-Centric can also achieve and vice versa. But at
a pragmatic level, we believe these are significantly different ap-
proaches to information sharing.

Older approaches to Secure Information Sharing (SIS) can be
classified into at least three categories. First is Discretionary Ac-
cess Control (DAC) [17, 25, 16] which proposes to enforce controls
on sharing information at the discretion of the “owner” of the ob-
ject. Although, this is similar in objective to SIS, DAC does not
correlate the controls on copies with that of the original.

The second is Mandatory Access Control (MAC) [8, 15, 16]
which allows information to flow in one direction in a lattice of
security labels. Copies of information made from one or more ob-
jects inherit the least upper bound of the labels from the individual
objects. Thereby the copies are controlled at least as strictly as the
original. Historically, one directional information flow has not been
the most common requirement of SIS. In particular, MAC does not
allow the owner of the object to share information but also to pro-
tect it from other users in the same or higher security levels. MAC
also suffers from covert channel issues whereby information flow
contrary to the labels can occur via malware.

The third is Originator Control or ORCON [18, 28, 4, 29] in
which the owner of the object decides which user(s) may have ac-
cess to it. The owner is the principal source of the policy to be
enforced. As information flows from one container to another, the
policy is also propagated. In other words, it is a “sticky policy”.

Recently, information sharing challenges have been considered
in the context of Dynamic Coalition Problem or DCP (see [30, 12,
21, 22, 7, 38] for example). The DCP is concerned with the chal-
lenges involved when a coalition is dynamically formed, for exam-
ple, in response to a crisis. Government, civilian and other com-
mercial organizations may need to form a coalition (who may oth-
erwise distrust each other) and share information quickly to solve
the problem at hand. In [9], the authors provide a formal temporal
authorization model that focuses on database management systems.
Specifically, the model extends traditional authorizations with the
notion of temporal intervals of their validity. In [5], the authors
use a role-based delegation framework for specifying policies for
resource and information sharing within and across organizations.
Our work largely differs from all these approaches in that we solely
focus on the policy models for the group-centric SIS problem. Fur-
ther, formal specification of g-SIS properties using LTL enables us
to automate verification using model checking techniques.

To the best of our knowledge, this is the first effort towards de-
veloping a formal model for the group-centric approach to SIS. At
a policy level, the closest work to group-centric sharing that can be
found in the literature is in the area of Secure Multicast [31]. It
will be evident later that the g-SIS specifications subsume policies
considered by Secure Multicast. A conceptual framework of the
Group-Centric approach was presented in [24] and [23].

3. FORMAL REQUIREMENTS OF G-SIS
SYSTEMS

In this section, we present a collection of core properties that
must be satisfied by any g-SIS system. These properties charac-
terize a g-SIS system. After that, we discuss several orthogonal
aspects of candidate g-SIS operation semantics and provide speci-
fications for a specific sub-family of these operation semantics. We
begin by defining the g-SIS language that we use to state g-SIS
properties and specifications.
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Table 1: Intuitive summary of temporal operators used in this paper
Future/Past Operator Read as Explanation

© Next (© p) means that the formula p holds in the next state.
2 Henceforth (2 p) means that the formula p will continuously hold in all future states starting

from the current state.
Future U Until (p U q) means that q will occur sometime in the future and p will hold at least

until the first occurrence of q.
W Unless (p W q) is a weaker form of (p U q). It says that p holds either until the next

occurrence of q or if q never occurs, it holds throughout.
-© Previous ( -© p) means that formula p held in the previous state.

Past ¨ Once (¨ p) means that formula p held at least once in the past.
S Since (p S q) means that q happened in the past and p held continuously from the

position following the last occurrence of q to the present.

3.1 g-SIS Language
We use Linear Temporal Logic to characterize g-SIS properties

and specifications. A brief overview of temporal operators used in
this paper is given in table 1. To formalize the LTL language we
use and its semantics, suppose S is a finite set of subjects, O is a
finite set of objects, andR is a finite set of actions, such as read and
write. Let P be a set of predicates over sorts S,O and/orR, and let
{A,B} be a partition of P . Predicates in A are called actions and
intuitively encode actions or events that occurred in the transition
to the current state. Predicates in B are used to encode aspects of
a given state, such as operations that are authorized or not autho-
rized. We let F be the set of atomic formulas obtained by applying
a predicate p ∈ P to a list of arguments of the appropriate num-
ber and sorts. LTL formulas are constructed from F by applying
logical connectives and temporal operators in the usual way.

For the purpose of this paper, a g-SIS language is required
to satisfy the following3. It must include a collection of join-
group events, leave-group events, add-object events, and remove-
object events: A = {joini|1 ≤ i ≤ m} ∪ {leavei|1 ≤ i ≤
n} ∪ {addi|1 ≤ i ≤ p} ∪ {removei|1 ≤ i ≤ q}, B = {Authz},
and R = {r}, where r refers the right to exercise “read” oper-
ations. Also, an atomic formula in a g-SIS language should be
formed in the natural way: for all s ∈ S, o ∈ O, r ∈ R,
joini(s), addi(o), . . . , Authz(s, o, r) ∈ F .

Formally, a state is a function from variable-free formulas F into
the set {True,False}. We use Σ to denote the set of all states. A
trace σ is an infinite sequence of states, that is, it is an ω-sequence
in Σ ω . In the following, we often wish to write sub-formulas that
state, for example, some type of join event occurs. It is therefore
convenient to introduce the following shorthands:

Join(s) = (join1(s) ∨ join2(s) ∨ ... ∨ joinm(s))

Leave(s) = (leave1(s) ∨ leave2(s) ∨ ... ∨ leaven(s))

Add(o) = (add1(o) ∨ add2(o) ∨ ... ∨ addp(o))

Remove(o) = (remove1(o) ∨ ... ∨ removeq(o))

The properties we consider treat the authorization a subject has
to access an object independently of actions involving other sub-
jects and objects. Thus, it is often convenient to omit the pa-
rameters in all of the predicates. For instance, when we write
Authz → (Join ∧ (¬(Leave ∨ Remove) S Add)) we mean
∀s ∈ S.∀o ∈ O.Authz(s, o, r) → (Join(s) ∧ (¬(Leave(s) ∨
Remove(o)) S Add(o))). Note that Join, Leave, Add, Remove
and Authz, all refer to the same pair of s and/or o. In addition to us-

3We suggest that the language represented here should be a sub-
language of any g-SIS language designed in the future.

ing these shorthands in formulas, we continue to use these words to
informally refer to intuitive notions of corresponding operations.

Well-Formed Traces.
We now introduce four formulas that define what we call well

formed traces.

A. An object cannot be Added and Removed and a subject cannot
Join and Leave at the same time4.

τ0 = 2(¬(Add ∧ Remove) ∧ ¬(Join ∧ Leave))

B. For any given subject or object, two types of operation cannot
occur at the same time.

τ1 = ∀i, j 2((i 6= j) → ¬(joini ∧ joinj))∧
∀i, j 2((i 6= j) → ¬(leavei ∧ leavej)) ∧
∀i, j 2((i 6= j) → ¬(addi ∧ addj))∧
∀i, j 2((i 6= j) → ¬(removei ∧ removej))

C. If a subject s joins a group, s cannot join again unless s first
leaves the group. A similar rule applies for other operations.

τ2 = 2(Join →© (¬Join W Leave)) ∧
2(Leave →© (¬Leave W Join)) ∧
2(Add →© (¬Add W Remove))∧
2(Remove →© (¬Remove W Add))

D. A Leave event cannot occur before Join. Similarly for objects.

τ3 = 2(Leave → ¨Join) ∧ 2(Remove → ¨Add)

3.2 Core g-SIS Properties
We begin with the Core properties, all of which must be sat-

isfied by any g-SIS specification5. Next we specify a few useful
additional properties. We specify these properties with the assump-
tion that Join, Leave, Add and Remove are the only events that
influence a g-SIS specification. If need be, these properties can be

4Note that here and below we introduce names of the form τj for
each of the formulas for later reference. The equality introduces
shorthands for the respective formulas
5While we do not claim that these properties are complete, the no-
tions of simultaneity, provenance, persistence, bounded authoriza-
tion and availability are nevertheless core to g-SIS. It is beyond our
current scope to discuss completeness of core g-SIS properties.
Note that each of these formulas define a safety property [6, 36]
in the sense that any trace that does not satisfy the property can be
recognized as such by examining a finite prefix of the trace.
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extended to g-SIS specifications involving additional aspects (such
as a “role”) in the context of a given application.

1. Overlapping Membership (Simultaneity) Property:
Intuitively, a group subject can access a group object
only if they were both members of the group at least once:
2(Authz → (¨Add ∧ ¨Join)). However, we further wish
to require that the subject and object were simultaneously
members of the group at some point in the past. This is
formalized in ϕ0 below.

ϕ0 = 2(Authz →¨(Add ∧ (¬Leave S Join)) ∨
¨(Join ∧ (¬Remove S Add)))

This formula states that if a subject is able to access an object
then there exists a point in the past (¨) where (a) the object
was added at a time when the subject was a current member
(¬Leave S Join) or (b) the subject joined the group at a time
when the object was a current member (¬Remove S Add).

2. Authorization Provenance: Authorization Provenance re-
quires that authorization cannot begin for the first time
during a non-membership period. The Overlapping
Membership property does not capture this notion.

ϕ1 = 2(Authz → ¨(Join ∧ (¬Leave U Authz)))

This formula states that if Authz holds in any state, then it
should have held during the subject’s membership (sometime
after subject Join) at least once in the past.

3. Persistence Properties: These properties talk about the condi-
tions under which authorization periods may begin and end.

Authorization Persistence: When a subject s is authorized to
access an object o, it remains so at least until a group event
involving s or o occurs6.

ϕ2 = 2(Authz → (Authz W (Join ∨ Leave∨
Add ∨ Remove)))

Revocation Persistence: When a subject s is not authorized
to access an object o, it remains so at least until a group event
involving s or o occurs.

ϕ3 = 2(¬Authz → (¬Authz W (Join ∨ Leave∨
Add ∨ Remove)))

4. Bounded Authorization: These properties require that autho-
rizations not begin during non-membership periods of sub-
jects and objects. Note that periods of authorization and non-
authorization begin in the state in which the Join, Leave,
Add or Remove occurs.

Bounded Subject Authorization: The set of all objects that
a subject can access during non-membership periods is
bounded at Leave time. This set cannot grow until the sub-
ject rejoins.

ϕ4 = 2((Leave ∧ ¬Authz) → (¬Authz W Join))

6Note that a subject may Join a group, Leave subsequently and
retain access to some objects. It is possible this subject may lose
access to these objects by Joining the group again. We call this a
Lossy Join where joining a group may actually require a subject
to relinquish prior authorizations. This is the reason we include
enabling operations such as Join and Add in the W (unless)
predicate in the above formula. In general, there are many flavors
of group operations that will be discussed in detail in the following
sections.

Figure 2: Subject Operations Illustration.

Figure 3: Object Operations Illustration.

The above property states that new authorizations cannot be
granted to a subject during non-membership period. Any ob-
ject that is accessible after Leave should have been autho-
rized at the time of Leave.

Bounded Object Authorization: The set of all subjects who
can access a removed object is bounded at Remove time,
which cannot grow until re-Add.

ϕ5 = 2((Remove ∧ ¬Authz) → (¬Authz W Add))

5. Availability: Availability specifies the conditions under which
authorization must succeed.

ϕ6 = 2(Join → ((Add → Authz) W Leave))

This property states that after a subject joins a group, any
object that is added subsequently should be authorized. Ob-
viously, the subject should be a current member when the
object in question is added. Note that this authorization will
persist as guided by the Authorization Persistence Property.

We next discuss additional properties that are based on specific
variations of group operations. Unlike the core properties, not all g-
SIS specifications are required to satisfy these properties. Instead,
these properties define certain group operation semantics that are
useful for many applications. We classify these properties into two
categories: Membership and Membership Renewal Properties.

3.3 Membership Properties
Membership properties characterize the semantics of authoriza-

tions enabled when a subject joins or an object is added and those
which are disabled when a subject leaves or an object is removed
from the group. In the following subsection (Membership Renewal
Properties), we consider properties when a subject or an object is
re-admitted.

Strict Join (SJ) Vs Liberal Join (LJ): In SJ, the joining subject can
only access those objects added after Join time. LJ additionally
allows the subject to access objects that were added prior to join
time. Suppose that in figure 2 the second Join (s1) is an SJ. Then
s1 can access o4 and o5 and cannot access o3. If the Join was an
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LJ instead of SJ, s1 can also access o2 and o3. This can be for-
malized by requiring that joini, a type of Join, would be admitted
as SJ only if it satisfies α0 stated below:

α0 = 2(Authz → ¨(Add ∧ (¬Leave S joini)))

In a g-SIS specification with LJ, there exists at least one well-
formed trace for which Authz does not satisfy α0.

Strict Leave (SL) Vs Liberal Leave (LL): In SL, the leaving subject
loses access to all objects. In LL, the leaving subject can retain
access to objects authorized prior to the time of Leave. In figure 2,
on SL, s1 loses access to all group objects (o1 and o2) authorized
during the membership period. An LL will allow s1 to retain access
to o2 (and possibly o1). leavei, a type of Leave, would be admitted
as SL only if it satisfies α1 below:

α1 = 2(Authz → (¬leavei S Join))

In a g-SIS specification with LL, there exists at least one well-
formed trace that does not satisfy α1.

Strict Add (SA) Vs Liberal Add (LA): In SA, the added object can
be accessed only by subjects already in the group. In LA, there are
no such restrictions. The added object may be accessed by subjects
that join (e.g., LJ) later. If Add (o2) in figure 3 is an SA, only
s1 can access the object. Subjects s2 and s3, joining later, cannot
access this object. But on LA current subject s1 and future subjects
s2 and s3 may access o2. addi, a type of Add, would be admitted
as SA only if it satisfies α2 below:

α2 = 2(addi → (¬¨Join → (¬Authz W Add)))

In a g-SIS specification with LA, there exists at least one well-
formed trace that does not satisfy α2.

Strict Remove (SR) Vs Liberal Remove (LR): In SR, the removed
object cannot be accessed by any subject. In LR, subjects who
had access to the object at the time of remove may continue to
access (of course subjects joining later are not allowed to access the
removed object—this respects the Overlapping Membership core
property). In figure 3, if Remove (o1) is an SR, every group subject
(including s1) loses access to o1. If Remove (o1) is an LR, s1 can
continue to access o1. However s2 and s3 will not have access to
o1. removei, a type of Remove, would be admitted as SR only if
it satisfies α3 below:

α3 = 2(removei → (¬Authz W Add))

In a g-SIS specification with LR, there exists at least one well-
formed trace that does not satisfy α3.

3.4 Membership Renewal Properties
Membership Renewal Properties characterize what, if any, au-

thorizations from previous membership period(s) are enabled or
disabled when members re-join and subsequently leave the group.
In the meeting room metaphor, Alice may leave the room and re-
enter later. These properties are concerned with her authorizations
from her previous session(s) in the room and its continuity when
she leaves the room again. As the name implies, these properties
are applicable only to returning members. We discuss these below.

Lossless Vs Lossy Join: In Lossless Join, a re-joining subject
does not lose authorization(s) held immediately prior to re-joining.
A Join operation that causes a subject to lose some or all prior au-
thorizations is called Lossy. Suppose in figure 2 s1 retains access
to o2 at the time of Leave (due to LL). When s1 re-joins sub-
sequently, in a Lossless Join (regardless of whether it is a SJ or
LJ), access to o2 will not be revoked. If access to o2 is revoked

by re-joining the group, the Join is Lossy. The following formula
characterizes Lossless Join:

β0 = 2((Join ∧ ¬Remove ∧ -© Authz) → Authz)

In a g-SIS specification with Lossy Join, there exists at least one
well-formed trace that does not satisfy the above property.

A Lossy Join is useful in scenarios when authorizations from
past membership and those from the new membership are in con-
flict of interest. For example, if a student registers for a course,
drops after the mid-term and re-registers the following semester,
he/she may be required to relinquish access to exercise solutions
and other materials from past enrollment. The student would be
given a Lossy Join in this scenario.

Non-Restorative Vs Restorative Join: In a Non-Restorative Join,
authorizations from past membership periods may not be explicitly
restored at the time of re-join. On the other hand, a Restorative
Join explicitly restores authorizations from past membership peri-
ods. Suppose in figure 2 when s1 leaves, SL is applied and SJ is
applied on re-join. A Restorative SJ in this scenario will allow s1
to re-gain access to o2 from past membership period. Note that the
notion of Restorative LJ is subtle but important. Suppose o1 was
removed with LR and an SL is applied at the time of Leave. In this
case, s1 will continue to access o1 until the time of Leave. If LL is
applied on re-join, a Restorative LJ will allow s1 to re-gain access
to o1, but a Non-Restorative LJ will not.

Formalizing Non-Restorative Join is complicated because we
want our characterization to be independent of the exact seman-
tics of the Join operation in question. Intuitively, we want to re-
quire that the Non-restorative Join does not add any authorizations
that it would not have added if the subject had a different history.
However LTL does not enable one to compare different traces. The
solution we take is to consider two different subjects within a single
trace. Because the two subjects can have different histories with the
same trace, this strategy enables us to formalize the property:

ρ1 = joini(s1) ∧ joini(s2)

ρ2 = (Authz(s1, o, r) ∧ ¬Authz(s2, o, r)) →
-© (Authz(s1, o, r) ∧ ¬Authz(s2, o, r))

β1 = ∀i2(ρ1 ∧ ρ2)

In formula ρ1, subjects s1 and s2 both join the group at the same
time by means of the same type of Join. ρ2 says that if s1 is au-
thorized to access an object in the current state and s2 is not, this
should also be the case in the previous state (and vice-versa). The
Non-Restorative Join property is characterized by formula ρ. It
states that if two subjects Join the group at the same time with the
same type of Join, then any difference in access at Join time is the
result of some operation prior to the current Join operation. Let us
use formula ρ2 to understand the intuition. Because both s1 and s2
Join at the same time with same type, any access that is necessarily
enabled by this Join for s1, would also be enabled for s2. Any ad-
ditional access that s1 may have that s2 does not have could arise
only because s1 had access to that object before joining the group.
This captures the fact that access is not restored from past but is a
consequence of the type of Leave operation applied to the subject
when he/she left the group.

In Restorative Join, there exists at least one well-formed trace
that does not satisfy the Non-Restorative Join property. If a subject
joins a group using Restorative Join, some or all of the accesses to
objects authorized during past membership period may be restored
(unless it has been removed). Note that this is in addition to the
authorizations that current Join may enable. The formula 2(Join∧
((¬Leave ∧ ¬Remove) S (Leave ∧ -© Authz)) → Authz), for
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example, characterizes a type of Restorative Join where all past
authorizations are restored.

A Restorative Join is applicable in scenarios where an incentive
is provided for a subject to re-join the group. On the other hand, in
subscription service scenarios, a Restorative and Non-Restorative
Join may be priced differently, which may decide what prior au-
thorizations to their past subscription materials will be restored.

Gainless Vs Gainful Leave: After re-joining the group, a sub-
sequent Leave operation could either be Gainless or Gainful. In
Gainless Leave, authorizations that never held during current mem-
bership period cannot be obtained by leaving the group. On
the other hand, a Gainful Leave allows new authorizations to be
granted at the time of Leave. Suppose that in figure 2 a Lossless
SJ is applied when s1 re-joins the group. Because of SJ, only o4
and possibly o5 can be accessed. If s1 leaves the group in the fu-
ture with LL, a Gainless LL will not grant any new authorizations
other than that to o4 and o5. A Gainful LL, for example, may ad-
ditionally grant access to o3. β2 characterizes Gainless Leave:

β2 = 2((Leave ∧ (¬Join U (Authz ∧ ¬Join))) →
-© ((¬Authz ∧ ¬Join) S (Authz ∧ (¬Join S Join))))

This formula says that if the subject is authorized to access an ob-
ject during non-membership period then it should have been autho-
rized during the most recent membership period. In a g-SIS spec-
ification with Gainful Leave, there exists at least one well-formed
trace that does not satisfy the Gainful Leave property.

A Gainful Leave is useful in scenarios where an incentive is pro-
vided for a subject to leave the group. This is commonplace in
voluntary retirement or a severance package for employees.

Non-Restorative Vs Restorative Leave: In Non-Restorative
Leave, authorizations that the subject had prior to joining the group
are not explicitly restored at Leave time. In Restorative Leave,
some or all of such authorizations are restored at Leave time. Sup-
pose in figure 2 s1 left the group with LL and re-joins with Lossy
SJ. In this case, s1 possibly loses access to both o1 and o2 at re-
join time. Later on, if s1 leaves with Gainful LL, a Restorative
Leave will allow s1 to re-gain access to o1 and o2 at the time of
leave, but a Non-Restorative leave will not.

In the meeting room metaphor, suppose Alice is re-invited as a
consultant on demand and is required to relinquish her past autho-
rizations due to a conflict of interest with new authorizations that
will be enabled by current membership. After Alice performs her
duties and leaves the group, it is natural that she will need access
to objects for which she lost authorization when joining the group.
The following formula characterizes Non-Restorative Leave:

β3 = 2(Leave ∧Authz → -© Authz)

In Restorative Leave, there exists at least one well-formed trace
that does not satisfy the Non-Restorative Leave Property. For ex-
ample, the formula 2((Leave ∧ ¬Remove ∧ -© ((¬Leave ∧
¬Remove) S (Join ∧ -© Authz))) → Authz) characterizes a
specific type of Restorative Leave where access to all objects au-
thorized prior to Join is restored.

4. G-SIS SPECIFICATION
A g-SIS specification formally defines the conditions under

which authorization is granted in terms of past joins, leaves, adds,
and removes. In this section, we present the syntactic form of
such specifications written in LTL and a collection of semantic
constraints, which we call core properties, that they are required
to satisfy. As a proof of concept of our approach, we develop a
sub-family of g-SIS specifications and successfully verify that these

specifications entail the core properties.

4.1 Syntax and Semantics Definitions
The syntax and semantics of a g-SIS specification are defined as

follows:

DEFINITION 4.1 (SYNTACTIC CORRECTNESS). A g-SIS
specification is syntactically correct if it is of the form:

γ = ∀s ∈ S.∀o ∈ O.2(Authz(s, o, r) ↔ ψ(s, o)) ∧
^

0≤j≤3

τj

in which ψ is an LTL formula constructed by using temporal op-
erators and predicates in A, and the conjunction τj specifies the
well-formedness requirements of a g-SIS trace.

DEFINITION 4.2 (SEMANTIC CORRECTNESS). A g-SIS
specification γ is semantically correct if:

γ ²
^

0≤i≤6

ϕi

Thus a g-SIS specification must obey the well-formedness require-
ments and the core properties. Note that the specification is not
required to satisfy Membership and Membership Renewal proper-
ties (α’s and β’s) since they are not core to g-SIS.

4.2 Design of Mixed g-SIS Specification
In this section, we discuss the design of a g-SIS specification that

is based on a selection of Membership and Membership Renewal
group operations discussed earlier. We formally show that such a
specification satisfies the g-SIS properties.

4.2.1 Design Scope
In section 3, we discussed a few useful Membership and Mem-

bership Renewal properties. While a g-SIS specification should
satisfy all core properties, it may opt to satisfy a subset of Mem-
bership and Membership renewal properties depending on the re-
quirements posed by an application. In other words, Membership
and Membership Renewal properties are orthogonal and the opera-
tions can be mixed. We characterize the notion of an operation type
below:

∀i.Type(joini) ∈ {SJ,LJ}×{Lossless,Lossy}×
{Non-Restorative,Restorative}

∀i.Type(leavei) ∈ {SL,LL}×{Gainless,Gainful}×
{Non-Restorative,Restorative}

∀i.Type(addi) ∈ {SA,LA}
∀i.Type(removei) ∈ {SR,LR}

Mixed g-SIS specifications allow any variation of Membership op-
erations (Strict/Liberal) for subjects and objects. In such a specifi-
cation, different subjects and objects may be given different types
of respective operations. For example, SJ for s1, LJ for s2, SA for
o1, LA for o2, etc.

REMARK 4.3. In this paper, we confine our attention to Mixed
g-SIS specifications in which the operations are of the types indi-
cated below:

∀i.Type(joini) ∈ {SJ,LJ}×{Lossless}×{Non-Restorative}
∀i.Type(leavei) ∈ {SL,LL}×{Gainless}×{Non-Restorative}
∀i.Type(addi) ∈ {SA,LA}

∀i.Type(removei) ∈ {SR,LR}
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In the following formulas, for convenience, we assume that both
SJ and LJ are operations of type Lossless and Non-Restorative.
Similarly, both SL and LL are Gainless and Non-Restorative op-
erations.

4.2.2 Mixed Specification Design
There are two scenarios to consider when a subject requests ac-

cess to an object: (a) the subject Join event occurred prior to object
Add event and (b) the object Add event occurred prior to subject
Join event. Intuitively, if the specification correctly addresses these
two scenarios, it would be complete. We now separately consider
these two scenarios. Formula λ1 addresses the scenario where the
object is added after the subject joined the group (figure 4).

λ1 =((¬SL ∧ ¬SR) S ((SA ∨ LA) ∧ ((¬LL ∧ ¬SL)

S (SJ ∨ LJ))))

Since Join occurred prior to Add, regardless of whether the object
was LA’ed7 or SA’ed or whether the subject was SJ’ed or LJ’ed,
the subject should be authorized to access the object in both cases
as per our core Availability Property (ϕ6). Formula λ1 says that the
subject has not been SL’ed and the object has not been SR’ed since
it was added with SA or LA. Further, when the Add occurred, the
subject was a current member (that is, no SL or LL since SJ or LJ).

In figure 4, an SL or SR since object add time denies access to
the requested object. However, it is alright for an LL or LR to occur
during that period. Recall that an LR authorizes current subjects at
remove time to retain access and LL authorizes a leaving subject
to retain access to objects authorized during membership period.
Similarly, if the subject was not a current member when the object
was added (for e.g., joined and left the group before the object was
added), authorization cannot hold as per Overlapping Membership
Property.

Scenarios (b) where an Add occurs prior to Join is more inter-
esting. As shown in figure 5, there are four possible cases. Let
us first consider cases (a) and (b) where the object is SA’ed to the
group. Recall that an SA’ed object can be accessed only by existing
subjects (that is, the subjects who joined the group prior to object
Add). Clearly, regardless of the type of Join, the subject is not au-
thorized to access objects that were SA’ed prior to the subject Join
time. Thus Authz cannot hold in cases (a) and (b).

Consider cases (c) and (b) where the object is LA’ed to the
group. In case (c), the object is LA’ed and the subject is SJ’ed. An
SJ’ed subject is authorized to access only those objects that were
added after join time. Thus (c) is also a failed case. Authorization
is successful in case (d) where both Add and Join are Liberal op-
erations. An LJ’ed subject can access all current LA’ed objects
and any newly added object in the future (LA or SA). We can now
formulate λ2 as shown below.

λ2 =((¬SL ∧ ¬SR) S (LJ ∧ ((¬SR ∧ ¬LR) S LA)))

Figure 6 illustrates λ2. It says that the subject has not been
SL’ed and the object has not been SR’ed since the subject LJ’ed
the group. Further, at Join time, the object in question was still part
of the group (that is, it has not been LR’ed or SR’ed since it was
added). We can now formalize a Mixed g-SIS specification.

DEFINITION 4.4 (π-SYSTEM). The π-system is given by:

π = 2(Authz ↔ λ1 ∨ λ2) ∧
^

0≤j≤3

τj

7We use terminology of the form “LA’ed” to refer to the fact that
object o is Liberally Added in a state.

Figure 4: Mixed Operations - Formula λ1.

Figure 5: Cases when Add occurs prior to Join.

Note that π is a syntactically correct g-SIS specification. π says
that a subject is authorized to access an object if and only if λ1 or
λ2 holds and the trace is well-formed. Note that this definition is
consistent with definition 4.1. We show that π is also semantically
correct in the following subsection.

4.2.3 Formal Analysis
In this section, we show that a Mixed g-SIS Specification (π-

system) entails the Core and Membership Renewal properties.
Since Membership operations are mixed, a single Membership
property cannot be verified for this specification. Later, we show
the verification of Membership Properties in a specification where
the operations are fixed for all subjects and objects in a group. We
begin with the Entailment Theorem.

THEOREM 4.5 (ENTAILMENT THEOREM). The π-system
entails the Core Properties (ϕ0 to ϕ6) and Membership Renewal
Properties (β0 to β3):

π ² (
^

0≤q≤6

ϕq ∧
^

0≤r≤3

βr)

We utilize the model checker NuSMV [14] to prove this theo-
rem. Model checking is an automated formal analysis approach
that takes a finite model of a system and its properties written in
temporal logic formulas as input to verify if the properties hold in
the system. In the case that a property fails to hold, a model checker
produces a counterexample consisting of a trace that shows how the
failure can arise and can be used to correct the model or the prop-
erty specification.

A NuSMV model describes how variables can be modified in
each step of a system execution. The model of the π-system for
the purpose of our proof is very simple. The NuSMV model (ap-
pendix A) is expressed in terms of events Join, Leave, Add and
Remove (declared as boolean variables) that are allowed to occur
concurrently in a non-deterministic manner. The theorem is ex-
pressed as an implication having the Mixed g-SIS specification in
the antecedent and the Core and Membership Renewal properties
as the consequent. NuSMV takes the model and the LTL formula
to verify if the formula holds in all possible traces generated by
the model. As one can see, this is a non-traditional use of model
checker NuSMV since the model is not constrained. The output
from NuSMV in appendix A shows that the LTL formula hold
against the model. Thus we verify the Entailment Theorem, i.e.,
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Figure 6: Mixed Operations - Formula λ2.

the π-system satisfies the Core and Membership Renewal proper-
ties.

The significance of the Entailment Theorem is two-fold. First,
it shows that any specification that one derives from the family of
Mixed g-SIS specifications (π) is guaranteed to be a g-SIS spec-
ification (i.e., it would satisfy the core properties.) For example,
one can derive the Most Restrictive Mixed g-SIS specification by
substituting all operations with Strict versions in π. Such a specifi-
cation is guaranteed to be admitted as g-SIS. Next, the Core g-SIS
properties are consistent with respect to π. That is, the core proper-
ties can be satisfied by the π-system and do not conflict with each
other. In other words, the Core properties are enforceable. Further,
note that the theorem proves that formula π is semantically cor-
rect (the semantic definition of a g-SIS specification 4.2 is actually
weaker).

COROLLARY 4.6 (MIXED G-SIS SEMANTIC CORRECTNESS).
The π-system is a semantically correct g-SIS specification:

π ²
^

0≤i≤6

ϕi

As mentioned earlier, the Most Restrictive Mixed g-SIS specifica-
tion is one where only Strict operations are allowed. Since Liberal
operations are not allowed in such a specification, we substitute
Liberal operations with “False” in formulas λ1 and λ2 and thereby
obtain the µ-system defined below.

DEFINITION 4.7 (µ-SYSTEM). The µ-system is given by:

µ = 2(Authz ↔ ((¬SL ∧ ¬SR) S (SA ∧ (¬SL S SJ))))

∧
^

0≤i≤3

τi

Note that specification µ is a synctactically and semantically cor-
rect g-SIS specification since it is a specific form of π. Further,
since only Strict operations are allowed, µmust satisfy all the Strict
versions of Membership Properties (formulas α0 to α3).

THEOREM 4.8 (MOST RESTRICTIVE ENTAILMENT THEOREM).
The µ-system entails the Core Properties (ϕ0 to ϕ6), Membership
Properties (α0 to α3) and Membership Renewal Properties (β0 to
β3).

µ ² (
^

0≤j≤6

ϕj ∧
^

0≤k≤3

αk ∧
^

0≤l≤3

βl)

We take a similar approach to that of Theorem 4.5 to prove Theo-
rem 4.8. The proof is given in appendix B. Note that with Strict and
Liberal variations of Membership operations, there are 16 possible
specifications where these operations are fixed (i.e., same type) for
every subject and object in the group. One can derive more specifi-
cations from the π-system where some of the operations are mixed
while others are fixed for all subjects and objects in the group.

5. DISCUSSION
We now discuss how these group operations apply to the scenar-

ios discussed earlier in section 1.

Magazine Subscription: In general, subject operations define the
semantics of most subscription models. ABS’s subscription models
would fall into one of the four categories: (SJ, SL), (SJ, LL), (LJ,
SL) and (LJ, LL). (SJ, SL) would be the Level 1 membership that
does not allow members to access archives. When the subscribers
stop paying the fee, they completely lose access to all objects. (SJ,
LL) would be Level 2 membership, which differs from Level 1 in
that it lets leaving members retain access to what they paid for. (LJ,
SL) would be Level 3 membership, which differs from Level 1 in
that subscribers can also access the archives during their member-
ship period. Finally, (LJ, LL) would be Level 4 membership which
differs from Level 3 access in that leaving members retain access
to what they paid for.

If ABS Corp. were to find some inappropriate content after pub-
lication, they can remove the article with SR. On the other hand,
ABS Corp. may decide to remove content that they do not want
their new subscribers to view. But the existing subscribers may
continue to access the removed article since they have already ‘paid
for the content. This is achieved by removing that article with LR.

From time-to-time, ABS Corp. may offer promotions only to
their current subscribers—such as discounted price for highly-rated
reports and other multimedia content. Such offers are added to the
group with SA. This way the offer is made available only to cur-
rent subscribers. Also, a Restorative Join would allow re-joining
subscribers to regain past accesses.

Collaborative Product Development: Re-visiting our earlier col-
laborative product design example between ABC and XYZ Corp.,
ABC can create a group and admit their engineers with LJ. Propri-
etary documents are made available to ABC engineers by adding
them with SA. Suppose incoming XYZ engineers are given an LJ,
SA objects added earlier cannot be accessed by them. After the
collaboration period, the respective engineers may leave the group
with LL so that access to newly developed design documents can
be retained. Note that our current Join semantics does not accom-
modate a scenario where an ABC engineer is admitted much later
and still allow access to SA objects added earlier. Specifically, this
requires a notion of a back-dated Join for the ABC engineer. In-
vestigating such useful additional semantics, such as back-dated
Join or suspending membership for brief period, is part of our fu-
ture work. In another scenario, if XYZ engineers were invited as
consultants on demand, they are given an SL so they cannot access
the design documents after leaving the group. If they were to be
re-invited later, a Restorative Join will allow them to access past
design documents in order to continue their collaboration.

6. FUTURE WORK AND CONCLUSION

Our work on developing single group read-only g-SIS models
will serve as a foundation for systematically extending this theory
in several directions. We are investigating further extensions along
three dimensions: read-write g-SIS model, multiple groups and ap-
plication of attributes such as roles in g-SIS.

We strongly believe that information sharing, being distributed
in nature, should support versioning so different subjects may edit
and update an object at the same time without having to obtain a
lock or “check out” the object. Thus writing an object creates a new
version of that object. Versioning brings many interesting questions
such as if the core properties identified here are adequate and how
the inter-dependency between various versions can be handled.

Next, we need to investigate g-SIS models in the context of mul-
tiple groups. Completely unrelated groups would not be interest-
ing so some relationship is necessary. One natural way to create a
structure is to impose a hierarchy similar to information flow mod-
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els such as Bell-LaPadula (BLP) [8], Biba [13], etc. and study how
temporal interactions in g-SIS relates to these models.

Finally, we need to investigate how specifications that are purely
based on temporal ordering of subject and object events can be
complemented with attribute-based access control. We believe at-
tributes such as “roles” play a vital role in information sharing.

In this paper, we proposed a group-centric family of models for
Secure Information Sharing. We specified a core set of proper-
ties that should be satisfied by the g-SIS specifications. We also
identified an additional set of properties in light of many variations
of group operations. We formally specified the properties using
LTL making them suitable to be verified by using model check-
ing which is an automated verification technique. We discussed the
specification of a family of g-SIS models that are based on mixed
Membership operations. Finally, we showed using NuSMV that
the specification semantically entails the g-SIS properties.
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APPENDIX
A. PROOF OF ENTAILMENT THEOREM

The following NuSMV model in the code listing simply allows
group events such as SJ, LJ, SR, etc. to occur concurrently in a
non-deterministic manner. This model produces all possible traces
in terms of these group events. We concern ourselves only with the
legal mixed g-SIS traces by formulating the g-SIS specification as
the antecedent and the core and membership renewal properties as
the consequent of an implication. The output shows that the g-SIS
properties are satisfied by all well-formed g-SIS traces.

In the NuSMV model, the group events and authorization are
declared as boolean variables in the VAR section. The DEFINE
section consists of macro definitions to improve the readability
of the code. The LTL formula to be checked are listed in the
LTLSPEC section. Comments follow the symbols - -. The logic
operators ∨, ∧, and ¬ are represented as |, &, and !, respectively.
The temporal logic operators © , 2, U , W , -© , ¨, and S
are represented as X, G, U, W, Y, O and S respectively in the LTL
formulas.

Code Listing
MODULE main
VAR
SL: boolean;
LL: boolean;
SA: boolean;
LA: boolean;
SJ: boolean;
LJ: boolean;
SR: boolean;
LR: boolean;

authz: boolean;

DEFINE
Join := SJ |LJ;
Leave := SL|LL;
Add := SA | LA;
Remove := SR | LR;

---------------------------------------
--Verification
LTLSPEC
G
(
--well-formed trace constraints
(!(Add & Remove) & !(Join & Leave) &
!(SJ & LJ) & !(SL & LL) &
!(SA & LA) & !(SR & LR) &

(Join -> X ((!Join U Leave) | G !Join)) &
(Leave -> X((!Leave U Join) | G!Leave)) &
(Remove -> X((!Remove U Add) | G!Remove)) &
(Add -> X((!Add U Remove) | G!Add)) &
(Leave -> O Join) & (Remove -> O Add) ) &

--Mixed g-SIS specification
(authz <-> (((!SL & !SR) S ((SA | LA) &

((!LL & !SL) S (SJ | LJ)))) |
((!SL & !SR) S (LJ & ((!SR &
!LR) S LA)))))
)
->

--Core Properties
G (

--Availability
(Join ->
(((Add -> authz) U Leave) |
G (Add -> authz))) &

--Bounded Object Authorization
(Remove & !authz) -> ((!authz U Add) |
G !authz) &

--Bounded Subject Authorization
(Leave & !authz) -> ((!authz U Join) |
G !authz) &

--Authorization Persistence
(!authz -> ((!authz U (Join | Leave |
Add | Remove)) | G !authz)) &

--Revocation Persistence
(authz -> ((authz U (Join | Leave |
Add | Remove)) | G authz)) &

--Authorization Provenance
(authz -> O (Join & (!Leave U
authz))) &

--Overlapping Membership
(authz -> O (Add & (!Leave S Join)) |
O (Join & (!Remove S Add))) &

--Membership Renewal Properties

--Lossless Join
((Join & !Remove & Y authz) -> authz) &

--Gainless Leave
((Leave & (!Join U (authz & !Join))) ->
Y ((!authz & !Join) S
(authz & (!Join S Join)))) &

--Non-Restorative Leave
((Leave & authz) -> Y authz)
)

Running NuSMV shows that the LTLSPEC specification is true
proving the Entailment Theorem 4.5.

--Run NuSMV

[ram@localhost smv]$ NuSMV gsis_v3.smv

*** This is NuSMV 2.4.3 (compiled on Mon May
5 02:33:40 UTC 2008)

*** For more information on NuSMV
see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.
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-- specification ( G ((((((((((((!
(Add & Remove) & !(Join & Leave))
& !(SJ & LJ)) & !(SL & LL)) &
!(SA & LA)) & !(SR & LR)) & (Join
-> X ((!Join U Leave) | G !Join)))
& (Leave -> X ((!Leave U Join)
| G !Leave))) & (Remove -> X ((!Remove
U Add) | G !Remove))) & (Add ->
X ((!Add U Remove) | G !Add))) & (Leave
-> O Join)) & (Remove -> O Add)) &
(authz <-> (((!SL & !SR) S ((SA | LA) &
((!LL & !SL) S (SJ | LJ)))) |
((!SL & !SR) S (LJ & ((!SR & !LR)
S LA)))))) -> G (((Join -> (((Add
-> authz) U Leave) | G (Add -> authz)))
& (Remove & !authz)) -> ((((!authz U Add)
| G !authz) & (Leave & !authz))
-> (((((((((!authz U Join) | G !authz)
& (!authz -> ((!authz U (((Join | Leave)
| Add) | Remove)) | G !authz))) & (authz
-> ((authz U (((Join | Leave) | Add) |
Remove)) | G authz))) & (authz ->
O (Join & (!Leave U authz)))) & (authz
-> ( O (Add & (!Leave S Join)) | O
(Join & (!Remove S Add))))) & (((Join &
!Remove) & Y authz) -> authz)) & ((Leave
& (!Join U (authz & !Join))) ->
Y ((!authz & !Join) S (authz & (!Join
S Join))))) & ((Leave & authz)
-> Y authz)))))
is true

[ram@localhost smv]$

B. PROOF OF MOST RESTRICTIVE EN-
TAILMENT THEOREM

In this case, we incorporate the Membership properties (α0 to
α3) into the consequent of the implication and run NumSV against
such a specification.

Code Listing

MODULE main

VAR

SL: boolean;
SA: boolean;

SJ: boolean;
SR: boolean;

authz: boolean;

DEFINE
Join := SJ;

Leave := SL;
Add := SA;

Remove := SR;

---------------------------------------
--Most Restrictive Entailment Theorem
LTLSPEC

G
(
--well-formed trace constraints
(!(Add & Remove) & !(Join & Leave) &

(Join -> X ((!Join U Leave) | G !Join)) &
(Leave -> X((!Leave U Join) | G!Leave)) &
(Remove -> X((!Remove U Add) | G!Remove)) &
(Add -> X((!Add U Remove) | G!Add)) &
(Leave -> O Join) & (Remove -> O Add) ) &

--Most Restrictive Mixed g-SIS Specification
(authz <-> ((!SL & !SR) S (SA & (!SL S SJ))))
)
->

--Core Properties
G (
(Join -> (((Add -> authz) U Leave) |
G (Add -> authz))) &
(Remove & !authz) -> ((!authz U Add) |
G !authz) &
(Leave & !authz) -> ((!authz U Join) |
G !authz) &
(!authz -> ((!authz U (Join | Leave |
Add | Remove)) | G !authz)) &
(authz -> ((authz U (Join | Leave |
Add | Remove)) | G authz)) &
(authz -> O (Join & (!Leave U authz))) &
(authz -> O (Add & (!Leave S Join)) |
O (Join & (!Remove S Add))) &

--Membership Renewal Properties
--Lossless Join
((Join & !Remove & Y authz) -> authz) &

--Gainless Leave
((Leave & (!Join U (authz & !Join))) ->
Y ((!authz & !Join) S (authz &
(!Join S Join)))) &

--Non-Restorative Leave
((Leave & authz) -> Y authz)

--Membership Properties
--alpha0
(authz -> O (Add & (!Leave S Join))) &

--alpha1
(authz -> (!SL S Join)) &

--alpha2
(SA -> (!O Join -> ((!authz U Add)
| G !authz))) &

--alpha3
(SR -> ((!authz U Add) | G !authz))
)

Running NuSMV shows that the LTLSPEC specification is true
proving the Most Restrictive Entailment Theorem 4.8.

[ram@localhost smv]$ NuSMV gsis_v4_strict.smv

-- specification ( G ((((((((!(Add & Remove)
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& !(Join & Leave)) & (Join -> X ((!Join U
Leave) | G !Join))) & (Leave -> X ((!Leave
U Join) | G !Leave))) & (Remove -> X ((
!Remove U Add) | G !Remove))) & (Add ->
X ((!Add U Remove) | G !Add))) & (Leave ->
O Join)) & (Remove -> O Add)) & (authz <->
((!SL & !SR) S (SA & (!SL S SJ))))) -> G
(((Join -> (((Add -> authz) U Leave) | G
(Add -> authz))) & (Remove & !authz)) ->
((((!authz U Add) | G !authz) & (Leave &
!authz)) -> (((((((((((((!authz U Join) |
G !authz) & (!authz -> ((!authz U (((Join |
Leave) | Add) | Remove)) | G !authz))) &

(authz -> ((authz U (((Join | Leave) | Add)
| Remove)) | G authz))) & (authz ->
O (Join & (!Leave U authz)))) & (authz ->
( O (Add & (!Leave S Join)) | O (Join &
(!Remove S Add))))) & (((Join & !Remove) &
Y authz) -> authz)) & ((Leave & (!Join U
(authz & !Join))) -> Y ((!authz & !Join)
S (authz & (!Join S Join))))) & ((Leave &
authz) -> Y authz)) & (authz -> O (Add &
(!Leave S Join)))) & (authz -> (!SL S
Join))) & (SA -> (!( O Join) -> ((!authz U
Add) | G !authz)))) & (SR -> ((!authz U Add)
| G !authz))))))

is true.

[ram@localhost smv]$
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