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ABSTRACT
There have been two parallel themes in access control re-
search in recent years. On the one hand there are efforts to
develop new access control models to meet the policy needs
of real world application domains. In parallel, and almost
separately, researchers have developed policy languages for
access control. This paper is motivated by the considera-
tion that these two parallel efforts need to develop synergy.
A policy language in the abstract without ties to a model
gives the designer little guidance. Conversely a model may
not have the machinery to express all the policy details of
a given system or may deliberately leave important aspects
unspecified. Our vision for the future is a world where ad-
vanced access control concepts are embodied in models that
are supported by policy languages in a natural intuitive man-
ner, while allowing for details beyond the models to be fur-
ther specified in the policy language.

This paper studies the relationship between the Web On-
tology Language (OWL) and the Role Based Access Control
(RBAC) model. Although OWL is a web ontology language
and not specifically designed for expressing authorization
policies, it has been used successfully for this purpose in
previous work. OWL is a leading specification language for
the Semantic Web, making it a natural vehicle for providing
access control in that context. In this paper we show two dif-
ferent ways to support the NIST Standard RBAC model in
OWL and then discuss how the OWL constructions can be
extended to model attribute-based RBAC or more generally
attribute-based access control. We further examine and as-
sess OWL’s suitability for two other access control problems:
supporting attribute based access control and performing se-
curity analysis in a trust-management framework.
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1. INTRODUCTION
As applications become more sophisticated, intelligent,

and function in open and dynamic environments, they re-
quire greater degrees of decision making and autonomy. A
long range vision is to have societies of intelligent, adap-
tive, autonomous agents, but even today, we find the new
levels of autonomy emerging in infrastructures such as Grid
computing, web services and pervasive computing. These
systems must exchange information about services offered
and sought and negotiate for information sharing. A new
challenge is to secure these applications in open, dynamic
environments.

Two parallel themes in access control research are promi-
nent in recent years. One has focused on efforts to de-
velop new access control models to meet the policy needs
of real world application domains. These have led to sev-
eral successful, and now well established, models such as the
RBAC96 model [28], the NIST Standard RBAC model [9]
and the RT model [20]. This line of research continues with
recent innovations such as Usage Control models [24, 25].
In a parallel, and almost separate thread, researchers have
developed policy languages for access control. These include
industry standards such as XACML [23], but also academic
efforts ranging from more practical implemented languages
such as Ponder [7] to theoretical languages such as [15] and
finally to Semantic Web based languages such as Rei [16]
and KAoS [34]. Policy languages grounded in Semantic
Web technologies allow policies to be described over hetero-
geneous domain data and promote common understanding
among participants who might not use the same informa-
tion model. This paper is motivated by the consideration
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that these two parallel efforts—accesss control models and
Semantic Web based policy languages—need to develop syn-
ergy to enable the development of security infrastructures
with verifiable security properties for emerging open, and
dynamic environments.

A policy language in the abstract without ties to a model
gives the designer too much freedom and no guidance. Con-
versely a model may not have the machinery to express all
the policy details of a given system or may deliberately leave
important aspects unspecified. For instance the NIST Stan-
dard RBAC model only allows for the specific constraints of
static and dynamic separation of duties. There is no room
for any additional constraint. On the administrative front,
the NIST Standard RBAC model is silent on how users and
permissions are added to roles. On both counts a policy lan-
guage built around the NIST Standard RBAC model would
be useful in specifying these additional but very important
details that are not captured directly in the model. Our vi-
sion for the future is a world where mature access control
concepts are embodied in models, which are supported by
policy languages in a natural intuitive manner, while allow-
ing for details beyond the models to be further specified in
the policy language. We expect a many-to-many relation
between access control models and policy languages in that
a single model such as the NIST Standard can be supported
by multiple policy languages, and conversely a single policy
language such as Ponder can support multiple models.

Now what does it mean for a policy language to support
a model? Clearly there must be some way of expressing the
components and behavior of the model in the language. To
be useful this expression must be “natural” in some intuitive
sense so that it provides leverage to a human in thinking
along the lines of the model while expressing model details
in the language. As we will see an expressive language will
have multiple ways of supporting a model, each with their
own pros and cons. In the context of this paper, OWL [22]
can represent roles as classes and sub-classes in one approach
and as attributes in an alternate approach. None of this
should be surprising to computer scientists.

In this paper we specifically study the relationship be-
tween OWL and RBAC. OWL is a web ontology language
and not specifically a language for authorization policies.
Nonetheless it is not surprising that a powerful language
such as OWL can support RBAC. Our motivation for using
OWL is that it is a W3C standard that has been widely used
for defining domain vocabularies, and has also been used
previously to develop policy languages for the Web such as
Rei and KAoS. The motivation for picking RBAC is due
to its real world success and considerable academic study.
Support for variations of RBAC in OWL can thus have im-
mediate practical application. Being interested in OWL’s
general suitability for use with access control problems, we
also briefly explore supporting attribute based access con-
trol and performing security analysis in a trust-management
framework by using OWL1.

The paper is organized as follows. First we show two dif-
ferent ways to support the NIST Standard RBAC model in
OWL as discussed above. Then we show how the OWL con-

1In future work we would like to extend this study to the
relationship between OWL and more elaborate models such
as usage control, as well as extend OWL with additional
deontic policy elements such as in Rei. However, this is
beyond the current scope.

structions can be extended to model attribute-based RBAC [1]
or more generally attribute-based access control, and we as-
sess OWL’s ability to support security analysis. We conclude
the paper with a few suggestions for future work.

2. SEMANTIC WEB AND OWL
The Semantic Web refers to both a vision and a set of tech-

nologies. The vision was first articulated by Tim Berners-
Lee as an extension to the existing web in which knowledge
and data could be published in a form easy for computers
to understand and reason with. Doing so would support
more sophisticated software systems that share knowledge,
information and data on the Web just as people do by pub-
lishing text and multimedia. Under the stewardship of the
W3C, a set of languages, protocols and technologies have
been developed to partially realize this vision, to enable ex-
ploration and experimentation and to support the evolution
of the concepts and technology.

The current set of W3C standards are based on RDF [17],
a language that provides a basic capability of specifying
graphs with a simple interpretation as a “semantic network”
and serializing them in XML and several other popular Web
systems (e.g., JSON). Since it is a graph-based representa-
tion, RDF data are often reduced to a set of triples where
each represents an edge in the graph (Person32 hasMother
Person45) or altrnatively, a binary predication (e.g., has-
Mother(Person32,Person45). The Web Ontology Language
OWL [5] is a family of knowledge representation languages
based on Description Logic (DL) [3] with a representation
in RDF. OWL supports the specification and use of ontolo-
gies that consist of terms representing individuals, classes of
individuals, properties, and axioms that assert constraints
over them. The axioms can be realized as simple assertions
(e.g., Woman is a sub-class of Person, hasMother is a prop-
erty from Person to Woman, Woman and Man are disjoint)
and also as simple rules.

The use of OWL to define policies has several very impor-
tant advantages that become critical in distributed environ-
ments involving coordination across multiple organizations.
First, most policy languages define constraints over classes
of targets, objects, actions and other constraints (e.g., time
or location). A substantial part of the development of a
policy is often devoted to the precise specification of these
classes, e.g., the definition of what counts as a full time stu-
dent or a public printer. This is especially important if the
policy is shared between multiple organizations that must
adhere to or enforce the policy even though they have their
own native schemas or data models for the domain in ques-
tion. The second advantage is that OWL’s grounding in
logic facilitates the translation of policies expressed in OWL
to other formalisms, either for analysis or for execution.

3. ROWLBAC: RBAC IN OWL
Our goal is to define OWL ontologies that can be used to

represent the RBAC security model and to show how they
can be used to specify and implement access control systems.
In doing so, we are able to identify which portion of RBAC
can be modeled within Description Logic (DL), and which
part requires other logical reasoning. In this section, we
define two different approaches to modeling RBAC using
OWL. For each approach, there is an ontology that defines
the basic RBAC concepts including subjects, objects, roles,
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role assignments, and actions. Roles are central to RBAC
and it is not surprising that much of the complexity in an
RBAC system revolves around how roles are represented and
managed. One aspect is the kind of RBAC system we want
to model. Common variations include the following [10]:

• Flat RBAC: users get permissions through roles, many-
to-many user-role assignment, many-to-many permission-
role assignment, users can use permissions of multiple
roles simultaneously.

• Hierarchical RBAC: Flat RBAC + must support role
hierarchy

• Constrained RBAC: Hierarchical RBAC + must sup-
port static and dynamic separation of duties (SOD)

• Symmetric RBAC: Constrained RBAC + must sup-
port permission-role review

Our two approaches mainly differ in their representation
of roles but they support all combinations of the above fea-
tures. Our ontologies also define some special types of ac-
tions, including those for RBAC control such as activating
a role, assigning a role, etc. and classes of actions to repre-
sent those that are permitted and those that are prohibited.
As part of access control or monitoring, we need to recog-
nize (or classify in DL) a specific action as being permitted,
prohibited or (perhaps) fulfilling an obligation.

In addition to the basic RBAC ontology, each approach
also has an ontology that models a specific domain ontology;
defining the classes of roles, actions, subjects and objects in
the domain, their relations and attributes as well as speci-
fying which actions are permitted, prohibited or obligatory.
For example, if we are writing a policy to control use of
devices in a wireless environment, we will need to define ap-
propriate roles (e.g., admin, powerUser, user, guest), objects
(e.g., printer, videoRecorder, display), and subjects.

To use the system, we will also need some data about
instances (e.g., Mary, Printer13) in the domain and some
use cases to test the design where subjects take on various
roles and attempt to perform actions.

We use the N3 representation syntax2 for OWL in all our
examples.

3.1 Scenario
We use a single scenario to illustrate our ROWLBAC ap-

proaches so that we can compare and contrast between them.
We consider the case of US persons and permissions asso-
ciated with them. The role hierarchy consists of two main
classes: USPerson and ForeignPerson. USPerson is
further divided into Citizen, Resident, and Visitor and
Residents can be either Permanent Residents, Perma-

nent Residency Applicants, or Temporary Residents.
Please refer to Figure 1 for details of this role hierarchy. A
static separation of duty constraint exists between Resident

and Citizen, and Permanent Resident and Temporary

Resident. Though a person may be both a Visitor and a
Temporary Resident, he is not allowed to activate both
roles at once i.e. a dynamic separation of duty constraint
exists between Visitor and Resident.

The instances we use are Alice, and Bob. Alice’s possi-
ble roles are Citizen and Permanent Resident, which

2http://www.w3.org/TeamSubmission/2008/SUBM-n3-
20080114/

L E G E N D P e r s o nU S P e r s o n F o r e i g n P e r s o nC i t i z e nP e r m i t t e d : V o t e ,W o r k , J u r y R e s i d e n t V i s i t o rP r o h i b i t e d :W o r kP e r m a n e n tR e s i d e n tP e r m i t t e d : W o r k T e m p o r a r yR e s i d e n tW o r k V i s aH o l d e rP e r m i t t e d : W o r k B u s i n e s sV i s a H o l d e rP e r m i t t e d : W o r k

C l a s s N a m eP e r m is s io nP r o h i b it io nS u b C la s sN a m eP e r m is s io nP r o h i b it io n
P e r m R e s i d e n c yA p p l i c a n tP e r m i t t e d : W o r k S t u d e n t V i s aH o l d e rP r o h i b i t e d : W o r k

Figure 1: US Persons role hierarhcy

should violate the static separation of duty constraint as
Permanent Resident is a subclass (meaning parent role)
of Resident and there is a SSOD constraint between Res-

ident and Citizen. Bob’s can be a Visitor, and a Tem-

porary Resident. Alice activates her Citizen role and
now has the permission to Vote, Work, and perform Jury

duty, which are associated with Citizen role. She then
deactivates her Citizen role and activates the Permanent

Resident role. She is still permitted to Work but can no
longer Vote or perform Jury duty. Bob activates his Vis-

itor role and finds that he is prohibited from Working. On
activating his TemporaryResident role, he causes a dy-
namic separation of duty violation. He now tries activating
the Citizen role but is not able to because it is not one of
his possible roles.

3.2 Common Elements
The main concepts of RBAC including actions, subjects,

and objects are common to both approaches of modeling
RBAC with OWL.

3.2.1 Actions
An Action is a class that has exactly one subject, which

must be an instance of the Subject class, and one object or
resource, which must be an instance of the Object class.

Action a rdfs:Class.
subject a rdfs:Property, owl:FunctionalProperty;

rdfs:domain Action;
rdfs:range Subject.

object a rdfs:Property, owl:FunctionalProperty;
rdfs:domain Action;
rdfs:range Object.

This can be easily modified to make the object optional
to describe actions that to not have an object (e.g., login)
and to have additional properties for time, location, man-
ner, instrument, etc. To control access, we introduce two
important Action subclasses for permitted and prohibited
actions: PermittedAction and ProhibitedAction. Every
action is either permitted or prohibited and no action can
be both permitted and prohibited. We can express this in
our ontology as:
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PermittedAction rdfs:subClassOf Action;
owl:disjointWith ProhibitedAction.

ProhibitedAction rdfs:subClassOf Action;
owl:disjointWith PermittedAction.

Action owl:equivalentClass
[ a owl:Class;

owl:unionOf (PermittedAction ProhibitedAction) ].

3.2.2 Subjects
The Subject class represents things that can serve as a

subject of an action. The RBAC ontology defines some key
properties that a subject can have (depending on the de-
tails of the representation) and leaves the specification of
additional properties and subclasses to the specific domain
model.

Subject a rdfs:Class.

3.2.3 Objects
The Object class represents things that can be the object

of an RBAC action and is basically defined as a class and can
be given additional properties, if required by the domain.

Object a rdfs:Class.

3.3 Approach 1: Roles as Classes
A natural way to represent RBAC roles in OWL is as

classes to which individual subjects can belong. We rep-
resent role hierarchies by OWL class hierarchies in which
the inheritance relation is the inverse of the role dominance
relations, meaning that the ordering is reversed: a role rep-
resented by a subclass dominates a role represented by its
superclass. This corresponds to the intuition that in role
hierarchies, members get more privilages as one moves up
the hierarchy, while in class hierarchies, classes get more
attributes as you move down. Note that OWL supports
multiple inheritance.

Suppose we want to model the US Persons hierarchy; we
will have three base classes, Citizen, Resident, and Vis-

itor, which are defined as subclasses of a Role class. The
other classes in the domain are defined as subclasses of one
of these classes. We have an active role, which is an Active-

Role, associated with each role class in the ontology via the
activeForm property. OWL classes represents sets of indi-
viduals, so the Citizen class is the set of individuals who
have the Citizen role as one of their possible roles and the
ActiveCitizen role is the set of individuals who have acti-
vated their Citizen role. Since a subject can activate a role
only if it is one of her possible roles, each active role class is a
sub-class of its associated role class. In a flat RBAC system
we can define a class and active role class for each possible
role without defining subclass relationships between them.
(In the following examples, rbac:X refers to the term X as
defined within the rbac namespace) Role and ActiveRole

are defined in our ontology as

rbac:Role a owl:Class.
rbac:ActiveRole a owl:Class.

In order to model roles using this approach, each role is
defined as follows

<RoleName> rdfs:subclassOf rbac:Role.
<ActiveRoleName> rdfs:subclassOf rbac:ActiveRole;

rdfs:subclassOf <RoleName>.
<RoleName> rbac:activeForm <ActiveRoleName>.

The US Person role class would be represented as

USPerson rdfs:subClassOf rbac:Role.
ActiveUSPerson rdfs:subclassOf rbac:ActiveRole;

rdfs:subClassOf USPerson.
USPerson rbac:activeForm ActiveUSPerson.

If Alice is in the Citizen role and has activated it, and
Bob is in Visitor and TemporaryResident role, we would
assert

Alice a Citizen, ActiveCitizen.
Bob a Visitor, TemporaryResident.

3.3.1 Hierarchical roles.
Using OWL classes to represent RBAC roles makes adding

hierarchical roles easy. We can use rdfs:subclassOf to de-
fine sub-roles such as

<RoleName> rdfs:subclassOf <SuperRoleName>.

If we want Citizen, Resident, and Visitor roles to be
sub-roles of US Person, and Permanent Resident and
Temporary Resident to be sub-roles of Resident, we
need add the following assertions

Citizen rdfs:subclassOf USPerson.
Resident rdfs:subclassOf USPerson.
Visitor rdfs:subClassOf USPerson.

PermanentResident rdfs:subclassOf Resident.
TemporaryResident rdfs:subclassOf Resident.

3.3.2 Static separation of duty
An RBAC static separation of duty constraint specifies

pairs of roles where any subject can only have one of the
pair as a possible role. We might, for example, specify that
no one have access to both the Citizen and Resident role.
We can specify this constraint in our OWL representation
by asserting that the two classes that represent them are
disjoint. We use an existing OWL property, disjointWith,
for this purpose

Citizen owl:disjointWith Resident.

3.3.3 Dynamic separation of duty
An RBAC dynamic separation of duty constraint holds

between two roles when no subject can have both simulta-
neously active. Again, we can use OWL’s disjointWith

property to specify that this constraint holds but this time
between the active roles associated with the classes. If we
want a dynamic separation of duty constraint to hold be-
tween the Visitor and Temporary Resident roles, we
need to assert

ActiveVisitor owl:disjointWith ActiveTemporaryResident.

3.3.4 Associating Permissions with Roles
In order to associate permissions, or prohibitions with

roles, we use OWL class expressions 3 to create classes of
permitted or prohibited actions. As only Citizens are al-
lowed to vote, we create an action, PermittedVoteAction,
which is the subclass of rbac:PermittedAction and whose
subjects can only be individuals who have activated their
Citizen role.

3OWL Class Expressions: http://www.w3.org/TR/2004/
REC-owl-guide-20040210/#ComplexClasses
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PermittedVoteAction a rdfs:Class;
rdfs:subClassOf rbac:PermittedAction;
owl:equivalentClass [

a owl:Class;
owl:intersectionOf

( Vote
[ a owl:Restriction;

owl:allValuesFrom ex:ActiveCitizen;
owl:onProperty rbac:subject

]
)

] .

3.3.5 Enforcing RBAC
In this approach, we exploit the ability of DL to easily

model classes and use OWL constructs to represent roles,
subjects, actions, and to associate permissions/prohibitions
with roles. We use DL subsumption reasoning to figure out
whether users are permitted to perform actions associated
with roles. However, for enforcing static separation of duty
and dynamic separation of duty constraints, and for role
activation and deactivation we use rules in N3Logic, which
is a rule language that allows rules to be expressed in a
Web environment using RDF [6]. Other rule languages that
support OWL could also have been used instead.

For enforcing dynamic separation of constraints we use
the following rule

{ ?A a ActivateRole;
subject ?S;
object ?RNEW.

?RNEW activeForm ?ARNEW.
?S a ?RCURRENT.
?RCURRENT activeForm ?ARCURRENT.
?ARNEW owl:disjointWith ?ARCURRENT.

} => { ?A a ProhibitedRoleActivation; subject ?S;
object ?RNEW; role ?RCURRENT;
justification "Violates DSOD constraint".}.

The role activation rule is

{ ?ACTION a ActivateRole;
subject ?SUBJ;
object ?ROLE.

?SUBJ a ?ROLE.
?ROLE activeForm ?AROLE.
?AROLE rdfs:subClassOf ActiveRole.

} => { ?ACTION a PermittedRoleActivation;
subject ?SUBJ; object ?ROLE.
?SUBJ a ?AROLE }.

3.4 Approach 2: Roles as Values
An alternate way to model roles is as instances of the

generic Role class using two properties role and active-

Role to link a subject to her possible and active roles, re-
spectively. This representation is on the surface simpler than
the previous one, but it requires special rules to implement
hierarchical roles. We define the role and activeRole prop-
erties as follows

rbac:Role a owl:Class.
rbac:role a owl:ObjectProperty;

rdfs:domain rbac:Subject;
rdfs:range rbac;Role.

rbac:activeRole rdfs:subPropertyOf rbac:role.

Note that the activeRole property is a sub-property of
role, since a subject’s activated roles must be a subset of
her possible roles. Since it is a sub-property, it inherits the
domain and range of the role property. For our running
example, we define flat roles as instances of Role.

USPerson a rbac:Role.
Citizen a rbac:Role.
Resident a rbac:Role.

If Alice is in the Citizen role and has activated it, and
Bob is in Visitor and TemporaryResident role, we would
assert

Alice rbac:role Citizen;
rbac:activeRole Citizen.

Bob rbac:role Visitor, TemporaryResident.

3.4.1 Hierarchical roles
Adding the capability to define role hierarchies is more

difficult in this representation and requires adding rules to
the ontology, either in SWRL [14] or N3 [6], depending on
the kind of reasoner used. We start by defining a property,
subRole, which holds between two roles to state that one is
the sub-role of the other. We define subRole as

rbac:subRole a owl:TransitiveProperty;
rdfs:domain rbac:Role;
rdfs:range rbac:Role.

We can then use subRole to specify sub role relationships
between roles and create the role hierarchy. For example,
portion of the scenario domain can be defined as

Citizen rbac:subRole USPerson.
Resident rbac:subRole USPerson.
Visitor rbac:subRole USPerson.

PermanentResident rbac:subRole Resident.
TemporaryResident rbac:subRole Resident.

In order to model the roles using this approach, each role
is defined as follows

<RoleName> a rbac:Role.
<RoleName> rbac:subRole <SuperRoleName>.

3.4.2 Static and dynamic separation of duty
The representation of static and dynamic separation of

duty constraints is also more complicated here than in the
earlier ‘roles as classes’ approach. It requires the introduc-
tion of properties to link the constrained roles. We define
two properties: ssod to represent static separation of duty
constraints and dsod for dynamic separation of duty con-
straints properties. These properties hold between role in-
stances and are defined to be symmetric and transitive.

rbac:ssod a owl:symmetricProperty, owl:TransitiveProperty;
rdfs:domain rbac:Role;
rdfs:range rbac:Role.

rbac:dsod a owl:symmetricProperty, owl:TransitiveProperty;
rdfs:domain rbac:Role;
rdfs:range rbac:Role.

For example, to specify a static separation of duty con-
straint between roles Resident and Citizen and a dynamic
separation of duty constraint between Visitor and Tempo-

raryResident, we would assert the following.

Resident rbac:ssod Citizen.
Visitor rbac:dsod TemporaryResident.

3.4.3 Associating Permissions with Roles
As roles in the domain are instances of Role class, they

can be directly associated with actions that are permitted
or prohibited for individuals in that role. We introduce two
properties namely permitted and prohibited for this pur-
pose.
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Property Roles as Classes Roles as Values

Defining Roles

<RoleName> rdfs:subclassOf rbac:Role. <Ac-

tiveRoleName> rdfs:subClassOf rbac:ActiveRole.

<ActiveRoleName> rdfs:subclassOf <Role-

Name>. <RoleName> rbac:activeForm

<ActiveRoleName>

<RoleName> a rbac:Role.

Role Hierarchy <RoleName> rdfs:subclassOf <SuperRole-

Name>

<RoleName> rbac:subRole <SuperRoleName>

Permission Association OWL class expression <RoleName> rbac:permitted <Action>

Static Separation of

Duty Constraint

<Role1> owl:disjointFrom <Role2> <Role1> rbac:ssod <Role2>

Dynamic Separation of

Duty Constraint

<ActiveRole1> owl:disjointFrom <ActiveRole2> <Role1> rbac:dsod <Role2>

Queries role activation permitted, separation of duty, ac-

cess monitoring

role activation permitted, separation of duty, ac-

cess monitoring

Enforcing RBAC Mostly using DL reasoning Mostly using rules

Table 1: Approaches to Modeling RBAC in OWL

rbac:permitted a rdfs:Property;
rdfs:domain Role;
rdfs:range Action.

rbac:prohibited a rdfs:Property;
rdfs:domain Role;
rdfs:range Action.

Consider the permitted actions, Vote, Work, and Jury

Duty, associated with the Citizen role

Citizen rbac:permitted Vote, Work, JuryDuty.

Prohibitions can be described similarly

Visitor rbac:prohibited Work.

3.4.4 Enforcing RBAC
Though this approach leads to a more concise RBAC spec-

ification, we are unable to utilize DL reasoning for most of
the reasoning including role hierarchy reasoning, role activa-
tion, separation of duty constraints, and permission/prohibition
association. We need to introduce rules to do each of this.
As before, we have developed rules in N3Logic. Some rule
examples follow.

The following rules enfore the hierarchy for both the role

and activeRole properties.

# role inheritance.
{ ?S role ?R.
?R subRole ?R2

} => {?S role ?R2.}.

# activerole inheritance.
{ ?S activeRole ?R.
?R subRole ?R2

} => {?S activeRole ?R2.}.

For enforcing static separation of constraints we use the
following rules

{ ?S role ?ROLE1, ?ROLE2.
?ROLE1 ssod ?ROLE2.

} => { [] a SSODConflict; subject ?S;
ssod-role ?ROLE1; ssod-role ?ROLE2}.

In order to check if an individual is permitted to perform
an action, we check if the permission is associated with any
of her active roles

{ ?A a ?RACTION; subject ?S.
?RACTION a Action.
?ROLE permitted ?RACTION.
?S activeRole ?ROLE.

} => { ?A a PermittedAction;
role ?ROLE;
action ?RACTION; subject ?S }.

3.5 Comparing the two approaches
An advantage of defining roles as classes is that queries

about a particular access request (Can John use printer
p43?) and queries about a general class of access requests
(Can every student use lab printers?) can be answered effi-
ciently using a standard DL reasoner through subsumption
reasoning. We say that description A subsumes descrip-
tion B when A logically entails B. Thus, professor using
a printer subsumes assistant professor using a color printer
which might in turn subsume John using printer p43. Given
a description, either of a instance or a class, a DL reasoner
can efficiently find all of the other descriptions that it sub-
sumes and that are subsumed by it.

If we treat roles as values the specification is simpler and
more concise but can not exploit a DL reasoner’s ability to
determine the subsumption relationships between a query
and all of the classes in our policy. We can, of course, still
take a description of an instance action (e.g., John using
printer p43) and classify it as either permitted or prohib-
ited. What we can not do, is determine if a description
representing a generalized action is necessarily permitted or
prohibited. Table 1 provides an overview of the differences
between the two approaches.

Both these approaches, however, have a fundamental prob-
lem with managing state changes due to the essentially mono-
tonic nature of RDF/OWL [12]. This implies non-monotonic
state changes such as role deactivations, and modifying role-
permission assignments must be handled outside the reason-
ers. Once the changes have been applied, the reasoners can
be used for queries within the context of the current state.

4. DISCUSSION: BEYOND RBAC
Our larger goal is not just to model RBAC concepts in

OWL. This paper is a first step in developing a foundation
on which we can build newer ideas for information assurance,
including attribute based access control, usage control and
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security analysis. This section assesses OWL’s suitability
for the first and last of these three goals, presenting some
of the challenges for modeling them in OWL, and possible
approaches to accommodating them.

4.1 Attribute based access control
Representing access constraints based on general attributes

of an action, including constraints on its subject and object,
follows naturally from our approach. This provides direct
support to a more general model of attribute-based access
control [35] which can be used even when the principals are
unknown, assuming that their attributes can be reliably de-
termined.

For example, suppose we want to specify a policy con-
straint faculty can use any printer located in a classroom. To
do this we would first extend the domain model to include a
Place class to represent physical spaces with subclasses for
various subtypes (e.g., Office, Classroom, Lab) and a location
property that links an Object to a Place. Our constraint can
then be easily expressed as a new class of permitted action
using a restriction or by a rule in N3 or SWRL. Here is how
it might be expressed as a rule in N3.

{ ?A a rbac:Action;
rbac:subject ?S;
rbac:object ?O.

?S a Faculty.
?O a Printer; location ?L.
?L a Classroom

} => { ?A a rbac:PermittedAction }.

The same constraint can easily be encoded in description
logic without resort to the rule sublanguage and correctly
handled by a standard description logic reasoner. We show
the N3 rule form for clarity. More complicated cases might
involve roles and constraints on both the action’s subject
and object. For example, we could specify that A university
member can use any device that is located in her office.

{ ?A a rbac:Action;
rbac:subject ?S;
rbac:object ?O.

?S a UniversityPerson; office ?L,
?O a Device; location ?L.

} => { ?A a rbac:PermittedAction }.

While this looks simple when expressed in a rule format,
the constraint that the value of the object’s location and
subject’s office represents (in description logic terms) a role
value map, the inclusion which in a description logic system
is known to make computing subsumption undecidable [30],
in general. However, with suitable restrictions (e.g., to a
Boolean combination of basic roles), the use of role value
maps does not effect decidability or worst-case reasoning
complexity [2].

Note that a description logic reasoner’s ability to compute
subsumption can be used to provide general answers to a
question like “What devices can Marie use” by generating
descriptions from the subsuming policy classes.

As a member of the faculty, Marie can use any
printer located in a classroom. As a university
member, she can use any devices located in her
office.

4.2 Security analysis
An administrative policy specifies and constrains who can

make what kinds of changes to a policy. Exploring the conse-
quences of an administrative policy involves reasoning about

type syntax description
1 A.r ← D simple member
2 A.r ← B.r1 simple inclusion
3 A.r ← B.r1.r2 linking inclusion
4 A.r ← B.r1 ∧ C.r2 intersection inclusion

Figure 2: RT has four types of policy rules.

type OWL encoding
1 D a A-r
2 B-r rdfs:subClassOf A-r
3 problematic
4 [owl:intersectionOf (B-r1 C-r2)] rdfs:subClassOf A-r.

Figure 3: RT rules of types 1, 2 and 4 can be easily

encoded in OWL. Type 3 rules are problematic.

possible changes in a fundamental way. Given an adminis-
trative policy and an initial object policy, one might want
to know whether it is possible for the access control policy
to evolve in such a way that some individual comes to have
simultaneous access to targets X and Y or whether every
subject in some role will always have access to a given tar-
get [21]. In general, to answer such queries requires us to
consider all the possible changes to a policy, both adding
and subtracting roles and privileges, that might take place.

While some queries about the consequences of an admin-
istrative policy can be handled by current OWL reasoners,
others can not. We will only give an example of a kind of
constraint that can be modeled in OWL and an example of
one that can not. Our examples will use the RT role-based
policy language [19] designed to support highly decentralized
attribute-based access control.

The RT has four types of statements shown in table 2.
Type 1 statements introduce individual principals to roles.
For example, Alice.friend ← Bob identifies Bob as a friend
of Alice. Type 2 statements provide a form of delegation
via the implication that principals in one role are necessar-
ily in another. For example, the statement Alice.friend ←
Bob.friend specifies that if a principal is a friend of Bob,
then they are also a friend of Alice. Type 3 statements
allow one to delegate to all members of a role. For exam-
ple, the statement Alice.friend← Bob.friend.friend says that
any friend of Bob’s friends is also a friend of Alice. Type 4
statements introduce intersection – a principal must be in
two roles in order to be included. For example, Alice.friend
← Bob.friend ∧ Carl.friend states that only principals who
are both Bob’s friends and Carl’s friends are in the set of
Alice’s friends.

We can easily represent the RT roles as OWL classes and
principals as instances. Since N3’s syntax won’t allow us to
‘dot’ in a class name, we use A-r instead of A.r to denote A’s
r role. Figure 3 shows how the different RT statements are
encoded, assuming A-r, B-r and C-r are defined as owl:Class.

The type 3 roles do not have a clean representation in
OWL. Modeling these requires descriptions that involve“role
chains” also knows as “role composition” in the description
logic literature. Unrestricted role composition can introduce
undecidability and this feature is not included in the current
OWL standard, although a restricted form is included in a
proposed OWL 1.1 standard. We can, of course, model such
role chain constraints as rules, but current OWL reason-
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HQ.marketing ← HR.managers
HQ.marketing ← HQ.staff
HQ.marketing ← HR.sales
HQ.marketing ← HQ.marketingDelg ∧ HR.employee
HQ.ops ← HR.managers
HQ.ops ← HR.manufacturing
HQ.marketingDelg ← HR.managers.access
HR.employee ← HR.managers
HR.employee ← HR.sales
HR.employee ← HR.manufacturing
HR.employee ← HR.researchDev
HQ.staff ← HR.managers
HQ.staff ← HQ.specialPanel ∧ HR.researchDev
HR.manager ← Alice
HR.researchDev ← Bob

Growth and shrink restricted roles: HQ.marketing, HQ.ops
HR.employee, HQ.marketingDelg, HQ.staff

Figure 4: Example RT access policy with growth

and shrink restricted roles.

ers will not guarantee complete reasoning in all cases. We
believe, however, that the use of role composition in RT
can be handled by a DL reasoner. A more serious prob-
lem arises, however, when one considers reasoning about
the consequences of policy changes. Given OWL’s founda-
tion in classical first order logic, it works well when modeling
positive changes (i.e., additions of sentences) but not when
modeling negative ones (i.e., retraction of sentences).

A given policy state evolves into another as principals
issue and revoke policy statements. We want to analyze
whether security properties under the assumption that some
of roles are under our control or otherwise trusted, but others
are not. This can be modeled [21] as two types of roles used
to determine the reachable policy states – growth-restricted
and shrink-restricted. Growth-restricted roles will not have
new statements defining them added and shrink-restricted
roles will not have statements defining them removed. These
restrictions are not actually enforced, but are assumptions
underlying the analysis. Their presence enables the analysis
to provide us with reassurances of constraints like, “So long
as the people I trust don’t change the policy without first
running the analysis, only company employees will be able
to access the secret database.”

How can we model these additional constraints, growth
and shrink restriction, using OWL concepts? Representing
a shrink restricted description is trivial, since OWL is based
on a monotonic logic. All OWL descriptions are shrink re-
stricted. On the other hand, roles that are neither shrink
restricted nor growth restricted can be handled by simply
dropping all RT statements defining them. Unfortunately,
representing growth restricted roles that are not also shrink
restricted is somewhat problematic. This is because, given a
specification, partial or complete, of a class, it is not possible
in OWL’s framework to retract parts of the specification. If
we assume that a role is shrink restricted, it is possible to
model it as either growth enabled or growth restricted. A
growth enabled role is easy since that is the default case for
OWL descriptions. OWL assumes an “open world” seman-
tics in which it is always possible to add more knowledge,
so by default, descriptions are assumed to be partial. If we
want to model a role as being “growth restricted”, we can
do so by making its OWL description be both necessary and
sufficient. (This corresponds to the Clarke completion.)

Consider the access control policy of a company that has
a marketing strategy and an operations plan that it must

HQ-marketing owl:equivalentClass [owl:unionOf
(HR-managers HQ-staff HR-sales
[owl:intersectionOf (HQ-marketingDelg HR-employee)])].

HQ-ops owl:equivalentClass
[owl:unionOf (HR-manufacturing HR-managers)].

HQ-marketingDelg owl:equivalentClass HR-manufacturers-access.
HR-employee owl:equivalentClass [owl:unionOf

(HR-manufacturing HR-managers
HR-sales HR-researchDev)].

HQ-staff rdfs:subClassOf HQ-marketing;
owl:equivalentClass [owl:unionOf
(HR-managers [owl:intersectionOf (HQ-specialPanel HR-researchDev)])].

HR-managers rdfs:subClassOf
HQ-ops, HR-employee, HQ-marketing, HQ-staff.

HR-researchDev rdfs:subClassOf HR-employee.
HR-manufacturers-access owl:equivalentClass HQ-marketingDelg.
HR-manufacturing rdfs:subClassOf HQ-ops, HR-employee.
[owl:intersectionOf (HQ-specialPanel HR-researchDev)]

rdfs:subClassOf HQ-staff.
HR-sales rdfs:subClassOf HR-employee, HQ-marketing.
[owl:intersectionOf (HQ-marketingDelg HR-employee)]

rdfs:subClassOf HQ-marketing.
Alice a HR-managers.
Bob a HR-researchDev.

Figure 5: Example RT access policy in OWL with

growth and shrink restricted roles.

protect from competitors, while accessible to those employ-
ees with a need to know. A policy in RT is shown in Figure
4. Examples of properties to check include the following.

• Restriction. Are the marketing strategy and opera-
tions plan only available to employees? The property
holds if (HR.employee⊇HQ.marketing ∧HR.employee
⊇ HQ.ops). TRUE

• Access. Does everyone who has access to the opera-
tions plan also have access to the marketing plan? The
is true if (HQ.marketing ⊇ HQ.ops) TRUE

• Availability. Will Alice always have access to the
marketing plan? This is true if (Alice ∈HQ.marketing).
FALSE.

• Safety. Will anyone other than Alice and Bob ever be
able to access the marketing plan? This will be true
if it follows that (x ¬ ∈ HQ.marketing) for a Skolem
individual x. FALSE

Can we prove these properties in OWL? The first two can
be proven true by Pellet since they involve classes that are
shrink restricted. The second two can not be proven since
they involve roles that are not shrink restricted. As dis-
cussed in the next section, alternative techniques are needed
to fully evaluate some of these properties. This is not sur-
prising, as the complexity of security analysis in RT has been
shown to be EXPTIME-complete [31].

While there are limits to OWL’s applicability to security
analysis, other techniques show promise. In recent prior
work [26], we developed a model checking based approach to
analyze the trust management policy language, RT. We’ve
successfully verified several types of security properties, in-
cluding those shown above. Of course, as noted above,
many security properties are in general intractable. How-
ever, model checking-based tools can provide a great deal of
information contributing to the level of assurance one has
in ones policies. By representing the state space in a more
compatible form (e.g., OBDDs) and by incorporating appro-
priate optimization techniques, such as data abstraction and
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compositional reasoning, model checking can be employed to
effectively handle many cases.

5. RELATED WORK

5.1 Policy languages
Researchers have spent a few decades focusing on policies

including discretionary policies, mandatory policies such as
Bell and LaPadula policies and more recently trust and pri-
vacy policies. Role Based Access Control (RBAC) estab-
lishes relations between users–roles and permissions–roles
[29]. However it is difficult to apply the RBAC model when
roles can not be assigned in advance and it is typically not
possible to change access rights of a particular entity with-
out modifying the roles. Using policy languages like Rei
and KAoS [34] allow access rights (and the other deontic
constructs) to be associated with different credentials and
properties of entities, and not roles alone. More sophisti-
cated RBAC models allows delegation between roles [4], by
delegating the entire set of permissions associated with a set
of roles of the delegator to the delegatee.

Security Policy Language [27], can express several types
of complex authorization policies with simple elements im-
plemented by a security event monitor. Delegation Logic
[18] has the advantages of tractability, wide practical de-
ployment, and relative algorithmic simplicity, yet has good
expressive power. Ponder is an object oriented language for
specifying security and management policies [7] where poli-
cies are rules defining behavioral choices. It allows definition
of positive and negative authorization policies, and informa-
tion filtering, and a simple delegation model.

Other work on policies include XML-based policies for ac-
cess control as well as policies for trust negotiation [32]. Fur-
thermore, confidentiality, privacy and trust policies for se-
mantic web are also being investigated in [33]. XACML is a
general-purpose authorization policy model and XML-based
specification language specified by OASIS [11]. XACML
essentially enforced attribute based access control. While it
has the benefits of ABAC over RBAC, it suffers from the
same limitations that RBAC-based access with XML has -
it does not consider the semantics of the policies.

The policy languages described above have some common
limitations that make them difficult to extend for open, dis-
tributed, dynamic environments. They do not (i) engage
sharable semantic domain models; (ii) support reasoning
about the obligations or capabilities of other principals; (iii)
include the ability to reason over utilities; (iv) have delega-
tion models required by dynamic environments; (v) support
justification, advising and negotiation required for greater
autonomy.

5.2 RBAC and OWL
There have been some recent efforts to look at OWL as

a represenation language for RBAC policies. Di et al [8]
suggest modeling Roles, Users, Permissions, and Session as
classes, with properties to relate users to roles and roles to
permission(s). There are also functional mappings between
sessions and roles (i.e. the active role for the session) user
to session. However, while the authors do not make this
explicit, they need to step outside of OWL and add rules
to specify separation of duty and prerequisite constraints.
This means that the efficient DL reasoners will not be able
to deal with policies specified using their approach. It is

also unclear if this approach can handle queries that deal
with classes not instances, e.g. “Is there a faculty member
authorized to change grades?”).

Heilili et al [13] define users and roles as classes. How-
ever, in order to handle negative authorizations (which is an
extension of RBAC) each role has two correspoding classes,
each permission or prohibition on a resource has correspond-
ing classes for roles and users. In other words, for each per-
mission, we have a class of roles that have that permission,
and then a class of users who have that permission. Similarly
for each prohibition.

6. CONCLUSION
In an attempt to harmonize formal access control models

and declarative policy languages, we studied the relation-
ship between the RBAC security model and OWL and rep-
resented the RBAC model in OWL. We believe that this will
help in developing security frameworks with well understood
and verifiable security properties for open, dynamic envi-
ronments, which require coordination across multiple orga-
nizations and integration of different data formats. In this
paper, we described two possible approaches to RBAC in
OWL, representing roles as classes and sub-classes in one
approach and as attributes in an alternate approach. We
hope to use these OWL models as a starting point for build-
ing new ideas about information assurance and propose to
model and reason over general attribute based access control
such as the UCON model in a similar manner.
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APENDIX
You can access examples that we have implemented for the
two approaches at the following URL
http://dig.csail.mit.edu/2007/rowlbac/

For each approach we provide the required OWL files and a
readme file describing how the example can be run in CWM,
a simple forward chaining reason implemented in Python
that uses a special notation for rules expressed in RDF. In-
structions for downloading and installing it can be found at
http://www.w3.org/2000/10/swap/doc/CwmInstall

• Approach one example
http://dig.csail.mit.edu/2007/rowlbac/approach1/

• Approach two example
http://dig.csail.mit.edu/2007/rowlbac/approach2/
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