
PBDM: A Flexible Delegation Model in RBAC

Xinwen Zhang
George Mason University

xzhang6@gmu.edu

Sejong Oh
George Mason University

soh2@gmu.edu

Ravi Sandhu
George Mason University

NSD Security

sandhu@gmu.edu

ABSTRACT
Role-based access control (RBAC) is recognized as an efficient ac-
cess control model for large organizations. Most organizations have
some business rules related to access control policy. Delegation
of authority is among these rules. RBDM0 and RDM2000 mod-
els are recently published models for role-based delegation. They
deal with user-to-user delegation. The unit of delegation in them
is a role. But in many cases users may want to delegate a piece
of permission from a role. This paper proposes a flexible delega-
tion model named Permission-based Delegation Model (PBDM),
which is built on the well-known RBAC96 model. PBDM supports
user-to-user and role-to-role delegations with features of multi-step
delegation and multi-option revocation. It also supports both role
and permission level delegation, which provides great flexibility in
authority management. In PBDM, a security administrator spec-
ify the permissions that a user (delegator) has authority to delegate
to others (delegatee), then the delegator creates one or more tempo-
rary delegation roles and assigns delegatees to particular roles. This
gives us clear separation of security administration and delegation.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Access Con-
trol

General Terms
Security

Keywords
Access control, RBAC, Delegation

1. INTRODUCTION
Access control is an important security issue in large organiza-

tions such as commercial companies, hospitals, government orga-
nizations, and colleges. Role-based access control (RBAC) is a
proven and increasingly commonplace technology for these organi-
zations. In RBAC, access rights are associated with roles, and users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’03,June 2–3, 2003, Como, Italy.
Copyright 2003 ACM 1-58113-681-1/03/0006 ...$5.00.

are assigned appropriate roles thereby acquiring the corresponding
permissions. The notion of role is an enterprise or organizational
concept. RBAC allows us to model security from the perspective
of the organization, because we can align security modelling to the
roles and responsibilities in the organization. Most large organi-
zations have some business rules related to access control policy
such as need-to-know, separation of duty, rotation of sensitive job
position, and so on. Delegation of authority is an important one of
these. Delegation means that a person gives all or part of his au-
thority to somebody. There are three types of situations in which
delegation takes place.

1. Backup of role. When an individual is on a business trip or
long-term absence, the job functions need to be maintained
by others. This requires that somebody be delegated the au-
thority to do the absent individual’s job.

2. Decentralization of authority. When an organization needs
to setup initially or reorganize subsequently, job functions
are distributed from higher job positions to lower job posi-
tions in the organization structure.

3. Collaboration of work. Oftentimes people need to collabo-
rate with others in the same organization or other organiza-
tions. In this case, we need to grant some access authority to
share information.

The first and third cases need temporary delegation of authority
rather than the second case which needs durable delegation. Tem-
porary delegation means that the term of delegation is short; after
the term ends, delegated authority is revoked or expired.

A number of models dealing with various aspects of delega-
tion have been published, including [5-10]. The RBDM0 [2,3]
and RDM2000 [1] models, in particular, are primarily based on
roles. In this paper we propose a flexible delegation model based on
RBAC, named PBDM (Permission-based Delegation Model). The
PBDM model covers all three cases of “backup of role”, “collabo-
ration of work”, and “decentralization or distribution of authority”.

The rest of this paper is organized as follows. Section 2 presents
related work and our motivation. We briefly review RBDM0 and
RDM2000 model. Section 3 then presents PBDM0 model. Section
4 presents PBDM1 model, which is extended from PBDM0. Sec-
tion 5 presents PBDM2, which is a role-to-role delegation model
extended from PBDM1. Section 6 compares our model with RBDM0
and RBDM2000. Conclusions and future work are presented in
Section 7.

2. RELATED WORKS AND MOTIVATION
There has been considerable work on different aspects of dele-

gation, including the following. Gasser and McDermott addressed

user-to-machine delegation [7]. Stein explored delegation and in-
heritance on the object-oriented environment [8]. Nagaratnam and
Lea introduce process-to-process delegation in the distributed ob-
ject environment [9]. Sandhu et al addressed delegation among the
role administrators in the ARBAC97 model [5]. Goh and Baldwin
dealt with delegation as an attribute of role [10].

RBDM0 and RDM2000 are closely related to our model. RBDM0
[2,3] addresses human-to-human delegation, whereby a user in a
role (delegator role) delegates his role membership to another user
in another role (delegatee role). RBDM0 is the first attempt to
model delegation involving user-to-user based on roles. It formal-
ized the delegation model with total delegation and flat roles. It also
deals with revocation, delegation with hierarchical roles, and multi-
step delegation. The last two features are discussed very shortly.

RDM2000 [1] is an extension of RBDM0. It supports regular
role delegation in role hierarchy and multi-step delegation. A rule-
based declarative language has been proposed to specify and en-
force policies. It usescan delegate condition with prerequisite
roles to restrict the scope of delegation. The unit of delegation in
RBDM0 or RDM2000 is “role”. Delegation means that “delega-
tor” assigns “delegatee” to some role. No delegator can delegate
a piece of role; they cannot break a role. But in many situations,
such as “backup of role” or “collaboration of work”, a delegator
wants to delegate a piece of a role. Figure 1 shows the cases of a
partial delegation. Case 1 and case 2 require that unit of delega-
tion should be permission rather than role. Case 3 requires that unit
of delegation should be both permission and role. The RBDM0
and RDM2000 models cannot cover these cases. Therefore a new
delegation model is needed.

3. PBDM0
As discussed in section 2, permission level delegation is required

in the real world. In this section we develop PBDM0 to address this
requirement. An intuitive overview of this model is described first
then a formal definition will be presented.

3.1 Overview of PBDM0
PBDM0 is designed with the following considerations in mind.

It is based on the RBAC96 model. As such it extends RBAC96
to include user-to-user delegation. It provides for single-step as
well as multi-step delegation. The focus is on temporary delega-
tion rather than durable delegation. A delegator can delegate both
permissions and roles to delegatees. To facilitate control of dele-
gation by security administrators, we adapt control concepts from
ARBAC97.

Before addressing formal PBDM0, we will show an example
for intuitive understanding. Let us consider Case 3 in Figure 1.
John wants to delegate a permission “change schedule” and a role
“PE” to Jenny. In PBDM0 model, John can delegate according to
following 3 phases.

P1 John creates a temporary delegation role “D1”.

P2 John assigns the permission “change schedule” to D1 with
permission-role assignment and role “PE” to D1 with role-
role assignment.

P3 John assigns Jenny toD1 with user-role assignment.

As a result of delegation, the access control information in Fig-
ure 1 is changed to Figure 2. Jenny acquires new permissions:
“change schedule” and “req program”. The central idea of PBDM0
is to create one or more temporary delegation roles (DTR), and as-
sign permissions or roles to them. In PBDM0, roles inDTR are

different and distinct from regular roles (RR). DTR cannot be
assigned to any other roles because PBDM0 does not allow role-to-
role delegation, because role-to-role delegation with PBDM0 will
generate invalid permission inheritance in role hierarchy. Suppose
D1 is assigned toQE in Figure 2, then all users ofQE and senior
of QE will get the permissions ofD1, which is not permitted by
security administration.

Revocation is the reverse process of delegation. A delegator can
remove his/her own delegation at any time. Revocation includes
three cases:

1. Remove user from delegatees, that is, revoke the user-delegation
role assignment.

2. Remove one or more pieces of permissions from delegation
role.

3. Revoke delegation role.

PBDM0 supports multi-step delegation and revocation. In Fig-
ure 2, Jenny has all permissions assigned toD1. Based on this
delegation role, Jenny can create another temporary roleD2 and
assign any permissions ofD1 to D2, then assign user toD2. This
process is very similar to the delegation from John to Jenny, except
the new delegation role is generated from an existing delegation
role. This multi-step delegation process results in a multi-step re-
vocation.

3.2 Formal Definition of PBDM0
Figure 3 shows basic components of PBDM0 based on RBAC96

model. PBDM0 differs from RBAC96 with respect to the com-
ponents of roles, user-role assignment (UA), permission-role as-
signment (PA), and role-role assignment (RRA). In PBDM0,
roles are partitioned into regular roles (RR) and delegation roles
(DTR). This partition induces a parallel partition ofUA andPA.
UA is separated into user-regular role assignment (UAR) and user-
delegation role assignment (UAD). PA is similarly separated into
permission-regular role assignment (PAR) and permission-delegation
role assignment (PAD). Delegation role can be placed in the regu-
lar role hierarchy when a delegator delegates a regular role or roles
to a delegatee, otherwise it is isolated from the hierarchy. A delega-
tion role cannot have any senior regular role if it is placed in the role
hierarchy, since delegated permissions cannot be inherited through
role-role assignment. In general, definition ofRR, UAR, PAR,
and the regular role hierarchy (RRH) is responsibility of security
administrators. Definition ofDTR, UAD, PAD and delegation
role hierarchy (DTRH) is responsibility of general users which
essentially adds a form of discretionary access control (DAC) to
the RBAC96 model.

PBDM0 Model:
Sets:U , S, P , RR, DTR, PA, PAR, PAD, UA, UAR, UAD
RRH ⊆ RR×RR: regular role hierarchy
DTRHu ⊆ DTR×DTR: delegation role hierarchy owned by a
useru
R = RR ∪DTR
RR ∩DTR = ∅
UAR ⊆ U ×RR
UAD ⊆ U ×DTR
UA = UAR ∪ UAD
PAR ⊆ P ×RR
PAD ⊆ P ×DTR
PA = PAR ∪ PAD
senior(r) : R → 2R: a function mapping a role to all its senior
roles in role hierarchy.
∀dtr ∈ DTR · senior(dtr) ∩ RR = ∅: for each delegation role

[Role hierarchy]
 [User
-
 Role Assignment]

Role
 User

PL (Project Leader)
 John

PE (Programming Engineer)
 Tom

QE (Quality Engineer)
 Smith

PJ (Project)
 Jenny

PM (Production Manager)
 Scott

[Permission
 -
 Role Assignment]

Role
 Permission

PL

 change_schedul
e

 confirm_program

PE

 req_program

QE

 review_program

 error_report

PJ

 use_pj1_bbs

PM

 check_prod_plan

Case 1.
 John wants to delegate only 'change_schedule' to 'Jenny'

Case 2.
 John wants to delegate 'change_schedule' to 'Tom' and

'confirm_program' to 'Smith'

Case 3.
 John wants to delegate 'change_schedule' and 'PE' to Jenny

PL

PE
 QE

PJ

E

PD

PM

Figure 1: Cases of Permission Level Delegation

[Role hierarchy]
 [User
-
Role Assignment]

Role
 User

PL
 John

PE
 Tom

QE
 Smith

PJ
 Jenny

PM
 Scott

D1
 Jenny

[Permission
-
Role Assignment]

Role
 Permissions

PL
 change_schedule

confirm_program

PE
 req_program

QE
 review_program

error_report

PJ
 use_pj1_bbs

PM
 check_prod_plan

D1
 change_schedule

D1

PL

PE
 QE

PJ

E

PD

PM

PJ

req_program

Figure 2: Example of PBDM0

there is no senior regular role.
own(u) : U → 2DTR and@(u1, u2 ∈ U, dtr ∈ DTR) · (u1 6=
u2) ∧

�
dtr ∈ own(u1) ∧ dtr ∈ own(u2)

�
: a function mapping a

user to a set of delegation roles which he/she created.
permissions r(r) : RR → 2P , a function mapping a regular role
to a set of permissions.
permissions d(r) : DTR → 2P , a function mapping a delega-
tion role to a set of permissions.
permission∗(u): a function mapping a user to a set of permission
with UAR andUAD (when multi-step delegation is allowed).
permissions r(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAR}
permissions d(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAD}
permission∗(u) = {p : P | ∃r ∈ RR · (u, r) ∈ UAR∧ (r, p) ∈
PAR} ∪ {p : P | ∃r ∈ DTR · (u, r) ∈ UAD ∧ (r, p) ∈ PAD}
∀dtr ∈ DTR, (∃u ∈ U ·�dtr ∈ own(u)

�∧�permissions d(dtr)

⊆ permission∗(u)
�
: the permissions pool for a delegation role

owned by a user is the permission set that assigned to this user by
UAR andUAD (when multi-step delegation is allowed).
can delegate ⊆ RR×Pre con×P range×M wherePre con:

prerequisite condition,P range: delegation range,M : maximum
delegation depth: a relation to to mapping a user to his/her delega-
tion range with prerequisite conditions.

can delegate is a constraint onUAD andPAD. For exam-
ple, can delegate(PL, PJ, {change schedule, PE}, 1) means
that a user who hasPL can delegate{change schedule, PE} to
others who havePJ role. In addition, the delegated role or permis-
sion cannot be re-delegated to other users with the maximum depth
of delegation is 1. Table 1 shows an example ofcan delegate.

In PBDM0, theUAR andPAR are managed by organization
security administrator, whileUAD andPAD is managed by in-
dividual user with the ownership relation betweenU andDTR.
Only owner can assign permissions or users to his/her delegation
roles. A delegation role can be deleted only by owner.

4. PBDM1
As we defined in above section, PBDM0 solves the problem of

Regular

Roles

Delegation

Roles

Permissions
Users
 Roles

.

.

.

Constraints

Role Hierarchy

Sessions

PAD

PAR
UAR

UAD

Figure 3: PBDM0 Model

Rule No users assigned regular role Pre con P range M
R1 PL PE {confirm program} 1
R2 PL PJ ∨ PM {change schedule, PE} 3
R3 QE PJ {error report} 2
R4 PM PD {check prod plan} 3

Table 1: Example ofcan delegate

permission level delegation and revocation. But there are still two
main shortcomings with PBDM0:

1. In PBDM0, a user can assign any permission to a delegation
role, and assign any user to this delegation role. This will
result in a risk that a malicious user can delegate high level
permissions to a low level user without notice of the security
administrator. The reason for this is that a security adminis-
trator has no permission to manage or monitor theUAD and
PAD owned by individual user.

2. PBDM0 only supports user-to-user delegation as we showed
in Section 3. In the real world, there are many cases that role-
to-role delegation is expected. For example, in a department,
if the project leader (PL) is out of work, part of thePL’s
permissions can be delegated toQE, and other permissions
can be delegated to the project leader in another department.
This delegation is determined based on role, not user.

In this section we extend PBDM0 to address the first problem. The
new model is named PBDM1 which supports security administrator
involved delegation and revocation.

4.1 Overview of PBDM1
In this model, there are three different layers of roles: regular

roles (RR), delegatable roles (DBR), and delegation roles (DTR).
Permissions assigned to regular roles cannot be delegated to other
roles or users. A delegatable role is the role whose permission can
be delegated to other roles or users by creating delegation role. For
each delegatable role there is a regular role on which it is based.
There is a one-to-one mapping between regular roles and delegat-
able roles. The users that assigned to a delegatable role are exactly
the same as that assigned to a regular role it based on. That is,

a pair of (regular role, delegatable role) will be used as a single
role in user-role assignment. It follows that a pair of regular role
and delegatable role in PBDM1 is exactly the same as the regular
role in PBDM0. The reason that we divide a role into two parts
is that we want to facilitate the involvement of security adminis-
trator. In PBDM1, each delegatable role is created by a security
administrator. The permission-delegatable role assignment (PAB)
is also managed by security administrator. Therefore the security
administrator can control the permission flow by assigning differ-
ent permission to delegatable role. From this the first problem in
PBDM0 is solved.

There is ownership betweenU andDTR which is similar to the
relationship betweenU andDTR in PBDM0. Each user owns a
set of delegation roles and has no common ones with others. Same
as PBDM0, the delegation roles owned by a user can form a role
hierarchy determined by this user.

In PBDM1, RR andDBR are durable roles whileDTR are
temporary at owner’s discretion. The permission-regular role as-
signment (PAR), user-regular role assignment (UAR), permission-
delegatable role assignment (PAB), and user-delegatable role as-
signment (UAB) are managed by security administrators, while
permission-delegation role assignment (PAD) and user-delegation
role assignment (UAD) are managed by individual users.

Figure 4 and 5 show the roles, permissions and user assignments.
When John wants to delegate some of his delegatable permissions
to others, it will follow the three phases similar to that in Section 3,
except that the permissions only can be taken fromPL′:

P1 John creates a temporary delegation role “D2”.

P2 John assigns the permission “change schedule” to D2 from
PL′ with permission-role assignment and role “PE′” to D2
with role-role assignment.

PJ

PE
 QE

PL

QE'
PE'

PJ'

PL'

RR

DBR

D2
DTR

Figure 4: Role and Role Hierarchy in PBDM1

P3 John assigns Jenny toD2 with user-role assignment.

4.2 Formal Definition of PBDM1
Figure 6 shows basic components of PBDM1 extended from

PBDM0. Similar to PBDM0, a delegation role can be placed in
the delegatable role hierarchy when a user delegates a whole del-
egatable role or roles to a delegatee, otherwise it is isolated from
the hierarchy. Same as PBDM0, a delegation role cannot have any
senior delegatable role or regular role since delegated permissions
cannot be inherited.

PBDM1 Model:
Sets:U , S, P , R, RR, DBR, DTR, PAR, PAB, PAD, UAR,
UAB, UAD
RRH ⊆ RR×RR: regular role hierarchy
DBRH ⊆ DBR×DBR: delegatable role hierarchy
DTRHu ⊆ DTR×DTR: delegation role hierarchy owned by a
useru
R = RR ∪DBR ∪DTR
RR ∩DBR = ∅
RR ∩DTR = ∅
DBR ∩DTR = ∅
UAR ⊆ U ×RR
UAB ⊆ U ×DBR
UAD ⊆ U ×DTR
UA = UAR ∪ UAB ∪ UAD
PAR ⊆ P ×RR
PAB ⊆ P ×DBR
PAD ⊆ P ×DTR
PA = PAR ∪ PAB ∪ PAD
user r(r) : RR → 2U : a function mapping a regular role to a set
of users that assigned to this role.
user b(r) : DBR → 2U : a function mapping a delegatable role
to a set of users that assigned to this role.
own b(r) : DBR → RR: a function mapping each delegatable
role to a single regular role on which it is based.
∀rr ∈ RR, ∃u : U, dbr : DBR · (u, rr) ∈ URA ∧ rr =
own b(dbr) ⇒ user r(rr) = user b(dbr): all users that as-
signed to a regular role must be the assigned to the corresponding
delegatable role, and there is no other users assigned to this role.
own d(r) : DBR → 2DTR and@(dbr1, dbr2 ∈ DBR, dtr ∈

DTR)·(dbr1 6= dbr2)∧
�
dtr ∈ own d(dbr1)∧dtr ∈ own d(dbr2)

�
:

a function mapping a delegatable role to a set of delegation roles.
permissions r(r) : RR → 2P , a function mapping a regular role
to a set of permissions.
permission b(r) : DBR → 2P , a function mapping a delegat-
able role to a set of permissions.
permissions d(r) : DTR → 2P , a function mapping a delega-
tion role to a set of permissions.
permission∗(u): a function mapping a user to a set of delegatable
permissions withUAB andUAD (when multi-step delegation is
allowed).
permissions r(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAR}
permissions b(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAB}
permissions d(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAD}
permission∗(u) = {p : P | ∃r ∈ DBR · (u, r) ∈ UAB ∧
(r, p) ∈ PAB} ∪ {p : P | ∃r ∈ DTR · (u, r) ∈ UAD ∧ (r, p) ∈
PAD}
∀dtr ∈ DTR, ∃u ∈ U ·�dtr ∈ own d(u)

�∧�permissions d(dtr)

⊆ permission∗(u)
�
: the permissions pool to create a delegation

role owned by a user is the delegatable permissions that assigned
to this user byUAB andUAD (when multi-step delegation is al-
lowed).
can delegate ⊆ DBR×Pre con×P range×M wherePre con:
prerequisite condition,P range: delegation range,M : maximum
delegation depth: a relation to to mapping a delegatable role to its
delegation range.
can delegate is a constraint onUAD andPAD. For example,
candelegate(PL′, PJ ′, {change schedule, PE}, 1) means that
a user havingPL′ (also hasPL) can delegate{change schedule,
PE} to others who havePJ ′ (also hasPJ) role. In addition, the
delegated role or permission cannot be re-delegated to other users
with the maximum depth of delegation is 1.

In PBDM1, theUAR, UAB, PAR, andPAB are managed
by organization security administrator, whileUAD andPAD is
managed by individual user with theowner d relation betweenU
andDTR. Therefore a form of discretionary access control (DAC)
is added to RBAC.

4.3 Delegation Revocation in PBDM1
PBDM1 provides more options than PBDM0 for the delegation

revocation. With the separation of delegatable permissions and
non-delegatable permissions by a security administrator, the del-
egation revocation can be security administrator involved. Possible
revocation mechanisms by individual user are:

1. Remove a user from delegatees, that is, revoke the user-delegation
role assignment.

2. Remove one or more pieces of permissions from delegation
role.

3. Revoke delegation role.

Above options are exactly the same as that in PBDM0. With PBDM1,
possible revocation mechanisms by a security administrator can be:

1. Remove one or more pieces of permission from a delegatable
role to its regular role.

2. Revoke a user from regular role and delegatable role.

5. PBDM2
Both PBDM0 and PBDM1 cannot support role-to-role delega-

tion. A role-to-role delegation is expected in many cases as we

use_pj1_bbs

PAR

RR
 Permissions

PL

PE

QE

PJ

 change_schedule

error_report

PAB

DBR
 Permissions

PL'

PE'

QE'

PJ'

confirm_program

req_program

review_program

PAD

DTR
 Permissions

D2
 change_schedule

UA

U
 Roles

John

Tom

Smith

Jenny

PL, PL'

PE, PE'

QE, QE'

PJ, PJ', D2

req_program

Figure 5: PA and UA in PBDM1

RR

Permissions
Users

R

.

.

.
 Constraints

Role Hierarchy

Sessions

PAD

PAR
UAR

UAD

DBR

DTR

UAB
 PAB

Figure 6: PBDM1 Model

mentioned in Section 4. In PBDM0 and PBDM1, the delegation
role cannot be assigned to another regular role or delegatable role,
since the permission inheritance along the role hierarchy will re-
sult in invalid permission flow. In this section, we will present a
new model extended from PBDM1, named PBDM2, which sup-
ports role-to-role delegation with multi-step delegation and multi-
option revocation features.

5.1 Overview of PBDM2
PBDM2 is a role-to-role delegation model. Figure 7 shows the

roles and hierarchies in this model. Similar to PBDM1, the roles
are divided into different layers. In PBDM2, there are four differ-
ent layers: regular roles (RR), fixed delegatable roles (FDBR),
temporal delegatable roles (TDBR), and delegation roles (DTR).
RR andFDBR are exactly the same asRR andDBR in PBDM1.
The delegation roles are similar to that in PBDM0 and PBDM1, but
the owner of a delegation role is a fixed delegatable role, not a user.
In PBDM2, a delegator is a fixed delegatable role. A temporal dele-
gatable role has the permissions that it receives from delegator with
role-role assignment. There is a one-to-one mapping between RR,
FDBR and TDBR. The users that assigned to a temporal delegat-
able role, a fixed delegatable role and a regular role are exactly the
same if these three roles are in the one-to-one relation. That is, a
pair of (regular role, fixed delegatable role, temporal delegatable
role) will be used as a single role in user-role assignment. It fol-

lows that a pair of (regular role, fixed delegatable role) is exactly
the same as a pair of (regular role, delegatable role) in PBDM1 and
the same as the regular role in PBDM0. By dividing the delegatable
role into fixed and temporal delegatable roles, a temporal role can
receive permissions delegated by a fixed delegatable role. Since
there is no role hierarchy for TDBR, invalid permission flow will
not happen, then a role-to-role delegation can be achieved.

There are role hierarchies inRR andFDBR layers. The three-
layer roles are distinguished by the delegation and inheritance prop-
erties of their permissions assigned. On the user-role assignment
side, there is only one layer, that is, set of (regular role, fixed del-
egatable role, temporal delegatable role) will be used as a single
role in user-role assignment. Similar to PBDM1, a fixed delegat-
able role is created by a security administrator. There is a owner-
ship between FDBR and DTR. Each fixed delegatable role owns a
set of delegation roles and has no common ones with others. The
delegation roles owned by a fixed delegatable role can form a role
hierarchy.

The most important difference between PBDM2 and PBDM1 is
that PBDM2 model is for role-to-role delegation. Therefore, all
the delegation authority will be managed by a security administra-
tor. There is no individual user can own any delegation roles and
permissions. Suppose a delegation roleD3 will be created based
on PL′ and delegated toQE′′, the following three phases will be
performed by a security administrator:

PJ

PE
 QE

PL

QE'
PE'

PJ"

PL'

D3

PE"

PL"

QE"

PJ'

RR

FDBR

TDBR

Figure 7: Roles and Role Hierarchy in PBDM2

P1 Create a delegation roleD3.

P2 Assign permissionchange schedule to D3, and assignPE′

to D3.

P3 AssignD3 to QE′′.

Since the delegation roleD3 is assigned to a temporal delegatable
rolesQE′′, the relation betweenD3 andPE′ are not shown in
the role hierarchy. The arrow line shows the temporal delegat-
able role-delegation role assignment (RAD). Figure 8 shows the
permission-role assignments in this example.PL′′ receives the
permissionuse pj2 bbs delegated by some role inproject2 de-
partment. The permission directly assigned toQE′′ is empty, but
it inherits all permissions fromD3 by RAD.

5.2 Formal Definition of PBDM2
Figure 9 shows basic components of PBDM2.
PBDM2 Model:

Sets:U , S, P , R, RR, FDBR, TDBR, DTR, PAR, PAFB,
PATB, PAD, UAR, UAFB, UATB, UAD, RAD
RRH ⊆ RR×RR: regular role hierarchy
FDBRH ⊆ FDBR × FDDBR: fixed delegatable role hierar-
chy
DTRHr ⊆ DTR ×DTR: delegation role hierarchy owned by a
roler
DBR = FDBR ∪ TDBR: delegatable roles
R = RR ∪DBR ∪DTR
RR ∩DBR = ∅
RR ∩DTR = ∅
DBR ∩DTR = ∅
FDBR ∩ TDBR = ∅
UAR ⊆ U ×RR
UAFB ⊆ U × FDBR
UATB ⊆ U × TDBR
UA = UAR ∪ UAFB ∪ UATB
PAR ⊆ P ×RR
PAFB ⊆ P × FDBR
PAD ⊆ P ×DTR
PA = PAR ∪ PAFB ∪ PAD
RAD = TDBR×DTR
user r(r) : RR → 2U : a function mapping a regular role to a set

of users that assigned to this role.
user fb(r) : FDBR → 2U : a function mapping a fixed delegat-
able role to a set of users that assigned to this role.
user tb(r) : TDBR → 2U : a function mapping a temporal dele-
gatable role to a set of users that assigned to this role.
own fb(r) : FDBR → RR: a function mapping each fixed del-
egatable role to a single regular role on which it is based.
own tb(r) : TDBR → FDBR: a function mapping each tem-
poral delegatable role to a single fixed delegatable role on which it
is based.
∀rr ∈ RR, ∃u : U, fdbr : FDBR, tdbr : TDBR · (u, rr) ∈
URA∧rr = own fb(fdbr)∧fdbr = own tb(tdbr) ⇒ user r(rr)
= user fb(fdbr) ∧ user fb(fdbr) = user tb(tdbr): all users
that assigned to a regular role must be the assigned to the corre-
sponding fixed and temporal delegatable role, and there is no other
users assigned to these roles.
own d(r) : FDBR → 2DTR and@(fdbr1, fdbr2 ∈ FDBR, dtr ∈
DTR) · (fdbr1 6= fdbr2) ∧

�
dtr ∈ own d(fdbr1) ∧ dtr ∈

own d(fdbr2)
�
: a function mapping a fixed delegatable role to a

set of delegation roles.
rad(r) : TDBR → 2DTR: a function mapping a temporal dele-
gatable role to a set of delegation roles.
permissions r(r) : RR → 2P , a function mapping a regular role
to a set of permissions.
permission fb(r) : FDBR → 2P , a function mapping a fixed
delegatable role to a set of permissions.
permissions d(r) : DTR → 2P , a function mapping a delega-
tion role to a set of permissions.
permissions t∗(r) : TDBR → 2P : a function mapping a tem-
poral delegatable role to a set of permissions inherited fromRAD.
permissions f∗(r) : FDBR → 2P : a function mapping a fixed
delegatable role to a set of delegatable permissions withPAFB
andRAD (when multi-step delegation is allowed)
permissions r(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAR}
permissions fb(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAFB}
permissions d(r) = {p : P | ∃r′ ≤ r · (r′, p) ∈ PAD}
permission t∗(r) = {p : P | ∃r′ ∈ DTR·(r′, p) ∈ PAD∧r′ ∈
rad(r′)}
permissions f∗(r) = {p : P | (r, p) ∈ PAFB} ∪ {p : P |
∃r′ ∈ TDBR · p ∈ permissions t∗(r′) ∧ r = own tb(r′)}
∀dtr ∈ DTR, ∃fdbr ∈ FDBR · �dtr ∈ own d(fdbr)

� ∧

use_pj1_bbs

PAR

RR
 Permissions

PL

PE

QE

PJ

 change_schedule

error_report

PAFB

FDBR
 Permissions

PL'

PE'

QE'

PJ'

confirm_program

req_program

review_program

PAD

DTR
 Permissions

D3
 change_schedule

req_program

PATB

TDBR
 Permissions

PL"

PE"

QE"

PJ"

use_pj2_bbs

Figure 8: PA in PBDM2

RR

Permissions
Users

R

.

.

.
 Constraints

Role Hierarchy

Sessions

PAD

PAR
UAR

TDBR

DTR

UAFB
 PAFB
FDBR

UATB

Figure 9: PBDM2 Model

�
permissions d(dtr) ⊆ permission f∗(fdbr)

�
: the permis-

sions pool to create a delegation role owned by a role is the dele-
gatable permissions that assigned to this role byPAFB andRAD
(when multi-step delegation is allowed).
can delegate ⊆ FDBR × Pre con × P range × M where
Pre con: prerequisite condition,P range: delegation range,M :
maximum delegation depth: a relation to to mapping a fixed dele-
gatable role to its delegation range.

5.3 Delegation Revocation in PBDM2
Similar to PBDM1, PBDM2 has the involvement of a security

administrator in delegation and revocation. Furthermore, PBDM2
provides revocation options in role layer with the separation of
original delegatable permissions and multi-step delegatable permis-
sions. Possible revocation mechanisms are:

1. Remove one or more pieces of permissions from delegation
role.

2. Revoke delegation role owned by a fixed delegatable role

3. Remove one or more pieces of permission from a fixed dele-
gatable role to its regular role.

6. DISCUSSION

All models in PBDM support flexible role and permission level
delegation. A delegator can delegate his/her entire or partial per-
missions to others. Partial revocation is also possible. The key
idea for this flexibility is to separate delegation role (DTR) from
regular role (RR) and delegatable role (DBR). In PBDM2, tem-
poral permissions delegated from other roles are separated from
its original delegatable permissions. In RBDM0 and RDM2000
model, there is no difference between them. Figure 10 illustrates
this point. In RBDM0 and RDM2000 model,PA is unique and a
delegator cannot touchPA. As a result permission level delegation
is not available. In the PBDM models a delegator can touchPA
throughPAD function, and permission level delegation is possi-
ble. Moreover the two previous delegation models have ambiguous
user-to-role assignment. A role has both originally assigned users
throughUAO and delegated users throughUAD. This induces
ambiguity between security administration scope and delegation
scope. In PBDM1 modelUA is clearly separated intoUAR, UAB
andUAD. Delegator cannot touch security administration scope
of UAR andUAB. Therefore our model matches more closely
with administrative RBAC model such as ARBAC97 [5]. Clearly
PBDM models have more powerful modelling features. RBDM0
and RDM2000 model can be interpreted as special cases of PBDM.
The advantages of these two models are thereby also available in
PBDM.

Permissions
Users
 DBR

PA
UAO

UAD

(a) RBDM0 and RBDM2000

(b) PBDM2

RR

Permissions
Users

R

Role Hierarchy

PAD

PAR
UAR

TDBR

DTR

UAFB
 PAFB
FDBR

UATB

Figure 10: RBDM0, RBDM2000 and PBDM1

7. CONCLUSION AND FUTURE WORK
We propose a flexible delegation model named PBDM, which in-

cludes three sub-models: PBDM0, PBDM1, and PBDM2. PBDM0
and PBDM1 models support user-to-user while PBDM2 supports
role-to-role delegation. All models support multi-step delegation
and revocation in role and permission level. In PBDM0, a user can
delegate all of permission from his/her roles to delegation roles. In
PBDM1, only delegatable permissions in a role are available for
a user to delegate. In PBDM2, delegatable permissions received
from other roles are separated from original delegatable permis-
sion, from which role-to-role delegation is support without illegal
permission flow. In PBDM1 and PBDM2 a security administrator
can control the permission flow by defining delegatable roles. Both
delegation and revocation are controlled by a security administra-
tor. PBDM is flexible and useful for management of delegation
authority in role-based access control environment. It is motivated
by temporary delegation situations.

The future work includes the study of constraints in RBAC dele-
gation models, such as separation of duty in user-to-user and role-
to-role delegation. Also, the delegation problems in distributed en-
vironment will be studied in the future.

8. REFERENCES
[1] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu, A

rule-based Framework for Role-Based Delegation, Proc. 6th
ACM Symposium on Access Control Models and
Technologies (SACMAT 2001), May, 2002.

[2] Ezedin Barka and Ravi Sandhu, Framework for Role-Based
Delegation Models, Proc of 16th Annual Computer Security
Application Conference (ACSAC 2000). December, 2000.

[3] Ezedin Barka and Ravi Sandhu, A Role-Based Delegation
Model and Some Extensions, Proc. of 23rd National
Information Systems Security Conference (NISSC 2000).
December, 2000.

[4] Ravi Sandhu, Edward Coyne, Hal Feinstein and Charles
Youman, Role-Based Access Control Models, IEEE
Computer, Volume 29, Number 2, February, 1996.

[5] Ravi Sandhu, Venkata Bhamidipati and Qamar Munawer,
The ARBAC97 Model for Role-Based Administration of
Roles, ACM Transactions on Information and System
Security, Volume 2, Number 1, February, 1999.

[6] Moffett, J.D., Delegation of Authority Using Domain Based
Access Rules, PhD Thesis. Dept of Computing, Imperial
College, University of London. 1990.

[7] Morrie Gasser, Ellen McDermott, An Architecture for
practical Delegation in a Distributed System, 1990 IEEE
Computer Society Symposium on Research in Security and
Privacy. May, 1990.

[8] Lynn Andrea Stein, Delegation Is Inheritance, Proc. of
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’87). October, 1987.

[9] Nataraj Nagaratnam, Doug Lea, Secure Delegation for
Distributed Object Environments, USENIX Conference on
Object Oriented Technologies and Systems. April, 1998.

[10] Cheh Goh and Adrian Baldwin, Towards a more Complete
Model of Role, Proc. of 3rd ACM Workshop on Role-Based
Access Control. October, 1998.

