
Induced Role Hierarchies with Attribute-Based RBAC

Mohammad A. Al-Kahtani
George Mason University
malkahta@gmu.edu

Ravi Sandhu
NSD Security, Inc. &

George Mason University
sandhu@gmu.edu

ABSTRACT
The Role-Based Access Control (RBAC) model is traditionally
used to manually assign users to appropriate roles. When the
service-providing enterprise has a massive customer base,
assigning users to roles ought to be automated. RB-RBAC (Rule-
Based RBAC) provides the mechanism to dynamically assign
users to roles based on a finite set of authorization rules defined
by the enterprise’s security policy. These rules may have seniority
relation among them, which induces a roles hierarchy. The main
contribution of this paper is to explore the possible discrepancies
between the Induced Roles Hierarchy and any existing roles
hierarchy. The functional impact of existing discrepancies and
ways of reconciling them are discussed.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – Access
Control.

General Terms
Security

Keywords
Access Control, Roles, RBAC, Attributes, Authorization Rules,
Roles Hierarchies.

1. INTRODUCTION
Role-Based Access Control (RBAC) has emerged as a proven and
superior alternative to traditional discretionary and mandatory
access controls [6, 7]. RBAC greatly simplifies the management
of permissions by associating them with roles to which users are
assigned, thereby acquiring the roles' permissions. The users are
manually assigned to roles based on criteria specified by the
enterprise. As the Internet becomes more accessible, an increasing
number of service-providing enterprises make their services
available to their users via the Internet. RBAC can be used to
manage users’ access to the enterprise services and resources.

In many environments, the number of users can reach the
hundreds of thousands or millions. Typical examples are banks,
utility companies, and popular Web sites, to name a few. This
renders manual user-to-role assignment a formidable task. In [1],
a new model is introduced to automatically assign users to roles
based on a finite set of assignment rules derived from the security
policy of the enterprise. These rules take into consideration the
attributes of users and any constraints set forth by the enterprise.
The rules may have some sort of seniority relations among them.
These relations can be used to induce a hierarchy among the roles
even if these roles were treated as flat roles. Often times, an
enterprise has a role hierarchy that is based on the relations that
can be derived from the permissions assigned to roles. In such
cases the induced roles hierarchy coexists with the given roles
hierarchy.

In this paper, we discuss the nature of this induced role hierarchy
(IRH). We also address different types of discrepancies that might
occur between the induced role hierarchy and the hierarchy used
by the enterprise. The functional impact of these discrepancies
and ways of reconciling them are discussed.

The paper is organized as follows. In section 2 we summarize
related research. In section 3, RB-RBAC is revisited. In section
4, we introduce the IRH and discuss discrepancies that might
exist between IRH and any given roles hierarchy (GRH) derived
from the permissions relation among roles. In section 5 we touch
on issues that we have not explored in this paper, though they are
closely related to the topic discussed. Section 6 concludes the
paper.

2. RELATED WORK
The main concept of RBAC is the role, which can be viewed as a
semantic construct around which access control policy is
formulated. Permissions are associated with roles to which users
are assigned based on factors such as their responsibilities and
qualifications. Users can be easily reassigned roles. The set of
permissions assigned to a role can be modified as deemed needed
by the enterprise. The roles can by organized in role hierarchies to
reflect the organization’s lines of responsibility and authority [7].

Initially, RBAC was motivated by closed-enterprise systems in
mind. In this type of environment, the security administrator(s)
assign roles manually to users. Park and Sandhu presented RBAC
as a sound candidate to control users’ access to resources and
services in large-scale Web environments [5]. They identified
architectures that can be used to implement RBAC on the Web.
They also showed how existing technologies can be utilized to
support these architectures. However, the architectures proposed
were only in the context of enterprise-wide systems in which

PERMISSION TO MAKE DIGITAL OR HARD COPIES OF ALL OR
PART OF THIS WORK FOR PERSONAL OR CLASSROOM USE
IS GRANTED WITHOUT FEE PROVIDED THAT COPIES ARE
NOT MADE OR DISTRIBUTED FOR PROFIT OR COMMERCIAL
ADVANTAGE AND THAT COPIES BEAR THIS NOTICE AND
THE FULL CITATION ON THE FIRST PAGE. TO COPY
OTHERWISE, OR REPUBLISH, TO POST ON SERVERS OR TO
REDISTRIBUTE TO LISTS, REQUIRES PRIOR SPECIFIC
PERMISSION AND/OR A FEE.

SACMAT’03, JUNE 1-4, 2003, COMO, ITALY

COPYRIGHT 2003 ACM 1-58113-681-1/03/0006…$5.00.

systems administrators assign users to roles on the basis of users’
responsibilities in the enterprise.

Based on certificates issued by third parties, Herzberg et al.
presented a Trust Establishment (TE) system that defines the
mapping of strangers to predefined business roles [3]. The system
maps users to roles using well-defined logical rules. Each role has
one or more rules defining how a client can be assigned that role.
The TE system gathers certificates related to a specific client and
makes a decision regarding the client’s eligibility for a specific
role. The system proposed in [3] does not address relations that
might exist among different rules. TE system relies on bottom-up
buildup of the public key infrastructure (PKI), which imports all
the issues related to PKI.

Zhong, et al. proposed a schema to use RBAC on the Web and a
procedure for user-role assignment [9]. Based on legitimacy of
information gathered, assignment policies, and the trustworthiness
threshold specified by system administrators, the schema assigns a
client to a role. Users’ trustworthiness represents the degree to
which the enterprise believes that a user will not do harm to its
systems. It is accumulated gradually over time and drops if
harmful actions or potential harmful actions are discovered. There
is a major drawback to this approach. A malicious user may logon
to the system for an extended period of time without performing
any suspicious acts. As time goes on, he acquires a high
clearance, which may enable him to inflict damage on the system.
Also, the scheme depends on many security parameters, which
must be given initial values. This approach leaves determining
these values to system administrator(s), but does not provide any
guidelines on how to determine them.

Lightweight Directory Access Protocol (LDAP) targets
management applications and browser applications that provide
read/write interactive access to directories supporting the X.500
models [4]. Roles can be stored in directories and retrieved when
needed. LDAP has been augmented to support dynamic groups. A
dynamic group is an object with a membership list of
distinguished names that is dynamically generated using LDAP
search criteria. The dynamic membership list may then be
interrogated by LDAP search and compare operations, and be
used to identify a group’s access control subjects [2]. This feature
could be used to automatically assign users to roles in large
enterprises. However, implementing LDAP solely for the sake of
dynamically assigning users to roles is an unwieldy solution.
Also, LDAP returns a simple list of attributes (which represent
roles in our case) with no logical structure attached to them. If, for
example, a client can assume one of two mutually exclusive roles,
LDAP does not provide a simple mechanism to express this.

Yao et al. [8] present an RBAC model that does not recognize
role hierarchies explicitly. Instead, they propose a role activation
dependency that is dynamic. A set of parameterized rules governs
the activation of every role. Their model is rich in terms of
expressing the rules, and associated conditions. However, we
think that eliminating role hierarchies is a debatable issue to say
the least. Role hierarchies have value not only from the user-
assignment perspective of roles but also from the permission-
assignment perspective. Also, by making the hierarchies implicit
via side effects of role activation rules, the model does not
explicitly capture various relations that might exist among roles.

Al-Kahtani and Sandhu [1] propose a new RBAC-based model to
automate the process of assigning users to roles. Based on the
security policy of the enterprise, the model can be used to define a
set of authorization rules that take as input the attributes
associated with a specific user and produce the role(s) that user is
entitled to have. The model recognizes possible seniority relations
among authorization rules, however, it stops short from exploring
the nature of this relation and its outcomes. This model is further
discussed in the next section.

3. THE RB-RBAC MODEL
3.1. The Model Description
In [1], Al-Kahtani and Sandhu modify RBAC such that it
becomes rule-based, thus, they refer to it as Rule-Based RBAC or
RB-RBAC. In this model, an enterprise defines the set of rules
that are triggered to automatically assign users to roles. These
rules take into account:

• The attributes of the client that are expressed using
attributes’ expressions as defined by the language
provided by the model.

• Any constraints on using roles.

Figure 1: RB-RBAC model

Figure 1 shows that users have many-to-many explicit relation
with attribute values. Further, they have many-to-many implicit
relation with attribute expressions. One user could have one or
more attribute expressions depending on the information he
provides. Conversely, two or more users may provide identical
attribute expressions. A specific attribute expression corresponds
to one or more roles. An example of a rule that yields multiple
roles is when a client is entitled to several mutually exclusive
roles. The figure also shows that a role may be hierarchically
related to one or more roles (in the usual partial order of roles).
The figure also shows that a role may correspond to one or more
attribute expressions.

Attributes

Expressions

Users

Roles

Permissions

Constraints

Attributes

values

3.2. RB-RBAC Usage
In RBAC, individual(s) responsible for user-role assignment
explicitly assign users to roles. Nonetheless, RB-RBAC could be
used in two different ways to assign users to roles:

• Implicit user-role assignment: In this mode, no human
intervention is allowed and RB-RBAC automatically
triggers authorization rules to assign users to roles.

• A hybrid of implicit and explicit user-role assignment:
Users are assigned to roles either implicitly by invoking
the appropriate authorization rules, or explicitly by
security administrator(s).

The discussion in this paper is confined to implicit user-role
assignment.

3.3. Basic Assumptions
RBAC96 allows specifying constraints to enforce specific
business principles [7]. In this paper, for the most part, we assume
that no constraints exist. We also use an abridged version of RB-
RBAC model. This version recognizes one operator in the right
hand side of an authorization rule, namely the “AND” operator.
We did so for the sake of simplifying the discussion.

3.4. Seniority Among Authorization Rules
3.4.1. Definition
In some cases, it might be desirable to compare two rules in terms
of their attribute expressions to determine what kind of relation
exists between the two, if any. In [1], the concept of seniority
levels was introduced to capture any relations that might exist
among different authorization rules based on their corresponding
attribute expressions. Seniority levels are first assigned to the
basic building blocks of attributes expressions, namely the
attribute pairs. When giving seniority levels to attributes of
numeric values, the following method is used:

§ For comparative operators {≥, >}, seniority follows the
normal order.

§ Seniority levels go in reverse order with comparative
operators {<, ≤}.

In case of equality operators {=, ≠} and sets, seniority levels –if
they exist- must be manually specified.

Clearly, satisfying an attribute pair that has high seniority level
implies satisfying all the ones that have lower seniority levels.
(See table 1)

Table 1: Seniority among attribute pairs

 Attribute Pair Remarks

1 Age ≥ 18 If 1 is satisfied, then 2 and 3 are
also satisfied

2 Age ≥ 13 If 2 is satisfied, then 3 is also
satisfied

3 Age ≥ 6 Only 3 is satisfied

To capture the seniority relations that might exist among
authorization rules, we define the dominance binary relation Ð on
Attribute_Expressions such that:

Ð = {(AEi, AEj) | AEi → AEj is true}

Where both AEi and AEj belong to Attribute_Expressions and
“→” represents logical implication. We write (AEi, AEj) ∈ Ð
which means that AEi dominates AEj.

Another way of stating the above relation between AEi and AEj is
to say that Rulei is senior to Rulej (denoted by ≥):

Rulei ≥ Rulej ⇔ (AEi, AEj) ∈ Ð.

If Rulei ≥ Rulej, then this implies that users who satisfy the
attribute expression of rule Rulei also satisfy Rulej and, hence, are
entitled to the roles produced by Rulej. In the context of
discussing seniority levels, we give ourselves the freedom to use
rules and attribute expressions interchangeably.

3.4.2. The Characteristics of the Dominance
Relation Ð
In this section, the nature of relation Ð is closely examined.
Assuming we have the authorization rules shown in Table (2), the
rightmost column in the table shows the relations among these
rules. Figure (2) depicts the relations in table (2).

Table 2: Relations among authorization rules

Figure 2: A directed graph representing relation in table 2

One can argue that attribute expressions 2 and 3 are logically
equivalent and should be consolidated in one equivalent class. In
other words, one of these attributes expressions, say AE3 should
be deleted as is the case in figure (3). The impact of this will be
discussed later. As pointed to above, relation Ð is in fact a logical
implication.

Attribute Expression Roles Relations

AE1 = Salary> 1000 ? age > 50 r1 AE1 ? AE2, AE3,
and AE4

AE2 = Salary> 1000 ? age > 40 r2 AE2 ? AE4

AE2 ≡ AE3

AE3 = + (Salary = 1000 V age
= 40)

r3 AE3 ? AE4

AE3 ≡ AE2

AE4 = Salary> 400 r4

AE5 = Age > 60 r5 Not related to any
attribute
expression

AE1

AE3 AE2

AE4

AE5

Figure 3: Collapsing equivalent expressions of figure 2

4. INDUCED ROLES HIERARCHY AND
GIVEN ROLES HIERARCHY

4.1 Induced Role Hierarchy
It could be argued that the most crucial step in utilizing RB-
RBAC model is specifying the authorization rules. This means
determining what logical combination of attribute pairs a user is
required to have in order for that user to be assigned to a role(s).
The starting point for this process could be a security policy
document the enterprise strives to implement. This document is
expected to list a set of flat roles the permissions of which may
not be disclosed for a two-fold reason:

• Knowing the exact permissions of each role is not
needed to specifying authorization rules.

• The enterprise may want to hide the details of the
permissions and their level of granularity.

As a by-product of specifying the authorization rules, an induced
hierarchy among the roles is generated if the authorization rules
hold seniority relations among them. In this hierarchy, the role(s)
produced by a dominant rule will be senior to the ones produced
by a subordinate rule. In order to assemble IRH, we define
dominance binary relation R on Roles such that:

R = {(ri,rj) | (∃ Rulei) (∃Rulej) [AEi → ri ? AEj → rj ? (AEi,
AEj) ∈ Ð]}

such that (ri,rj) ∈ R means that ri is senior to rj in IRH.

IRH specifies the relations that exist among roles based on the
relations that exist among the authorization rules that produce
them. This does not necessarily reflect the lines of responsibilities
and authority as viewed by the enterprise. A junior role in IRH
inherits all the users assigned to its ancestor(s). Formally:

(ri,rj) ∈ R → ri users ⊆ rj users

Figure 4 shows different ways of depicting IRH that corresponds
to attributes expressions in figure 3. In figure 4 (a) and (b), we
maintain roles r2 and r3 as separate entities. However, the
authorization rules set that produces figure 4 (a) will have 2
authorizations rules with identical attribute expressions such that
one of these rules yields r2 while the other yields r3. On the other
hand, the authorization rules set that corresponds to figure 4 (b)
will have one rule that produces r2 and r3 simultaneously. From a
functional standpoint, the two figures are identical.

Figure 4: IRH generated by the rules in table 2

Figure 4 (c) shows the case in which r2 and r3 are collapsed into
one role (r6). From a functional perspective, this indicates that r6
is given the permissions of r2 and r3. From IRH standpoint, r6 is
given the user assigned to r2 and r3. Nonetheless, collapsing roles
is not always a prudent course of action. The following are
examples for situations in which functionality is adversely
affected when roles are combined:

a) When roles have different natures such as a striker and a
defender in a video game. Combining these roles yields a
role that is meaningless in this context.

b) When the new role has so much permissions, the
corresponding workload of which cannot be shouldered by
a single user.

c) When combining roles results in a violation of the principle
of separation of duties. An example for this is the roles of
programmer and tester. A user can be assigned to the
programmer role, and thus becomes able to perform certain
operations on the source code that he developed.
Alternatively, he may choose the tester role where he can
test code developed by other programmers but not his. If
these two roles where combined, this dynamic separation
will be violated.

In many situations, security officers come across a hierarchy that
is not derived from the authorization rules. An example of such
given roles hierarchy (GRH) is the one that reflects the current
business practice of the enterprise. Inheritance of permissions
flows upward in the GRH. In an ideal world, these two hierarchies
should be mirror images of each other. The implicit assumption is
that there is correlation between users-to-role assignment and
permission-to-role assignment. However, sometimes
discrepancies exist amongst the two hierarchies. The next section
describes possible discrepancies, their functional implications,
and how to resolve them.

4.2 Possible Discrepancies between IRH and
GRH

As discussed earlier, IRH was introduced as a by-product of the
relations that exist amongst different authorization rules, which
are extracted from the security policy that an enterprise wants to
put in place. We assume that the process of interpreting the
security policy into authorization rules is flawless. Figure 5 shows
two types of inheritance:

• User-role assignment inheritance, which flows from
senior roles to their junior roles.

r1

r3 r2

r4

r5

(a)

r1

r2 ,r3

r4

r5

(b)

r1

r6

r4

r5

(c)

AE1

AE2

AE4

AE5

• Permission-role inheritance, which flows in the
opposite direction.

Figure 5: An example of discrepancies between IRH and GRH

A node in the figure denotes a role, while an edge captures the
nature of relation between the two nodes at its ends. From an IRH
perspective, the possible discrepancies between two hierarchies
could be classified into the following categories:

4.2.1 Missing nodes
This category could be divided further depending on the location
of the missing node:

4.2.1.1 Leaf node
In Figure 5, node r7 is missing in IRH, which means that no
authorization rule assigns users to that role. But since the
permissions of r7 are inherited by r2 and r3, both are captured in
IRH, this scenario neither poses a threat to the system’s security,
nor does it reduce its functionality. That is:

 (ri ∈ GRH ? ri ∉IRH ? (∃rj : rj ∈ IRH ? rj ≥ ri)

? + (∃rk : ri ≥ rk)) → no harm

The (≥) relation is used as defined in [7]. To reconcile the two
hierarchies, r7 is deleted from GRH and its permissions is added to
its immediate ancestor(s). In real world, r7 could be the lowest
role to which the enterprise does not intend to assign users.
Rather, that role is nothing but a building block for constructing
senior roles. If none of r7 ancestors in GRH belongs to IRH, then
one of the following is true:

• The security policy, which was used to derive IRH, has
overlooked parts of the business practice of the
enterprise and, hence, some functionality is missing. In
this case, the policy needs to be modified such that an
authorization rule will assign users to the missed role.

• The business practice followed by the enterprise has
created unnecessary roles to which no users are to be
assigned. These roles have to be deleted from the GRH.

4.2.1.2 Non-leaf and non-root node
r3 is missing in the IRH part of Figure 5. This could result from
the enterprise recognizing r3 as a semantic construct that groups
several permissions, but not seeing any need for assigning users to

it. From a functionality standpoint, no harm is done so long as at
least one of r3 senior roles is part of IRH. Formally speaking:

(ri ∈ GRH ? ri ∉IRH ? rj ≥ ri ? rj ∈ IRH → no harm

This discrepancy could be reconciled by removing r3 from GRH
and assigning its permissions to its immediate senior role(s). If
none of r3 ancestors in GRH belongs to IRH, then we are faced
with a situation similar to the one discussed in the case (I) above.

4.2.1.3 Stand-alone node
r4 in GRH represents this case. It entails harm only if the
following holds:

(∀ri ∈ GRH, r4 permission set - ∪(ri permission set) ≠ φ

If the above formula holds, then some permissions of r4 can never
be used. This indicates a flaw in either the security policy, or the
business practice of the enterprise. An example for this case is the
security officer who works for a bank but reports to a security
company. None of the bank employees is senior to that officer
although his permissions are recognized by the bank’s role
hierarchy.

4.2.1.4 Root node
Assuming that node r1 in IRH is missing. This results in a loss of
functionality since no user can be assigned to r1 and uses its
permissions. In this case, the policy has to be modified.

4.2.2 Additional Nodes
In the following cases, no functionality is ignored by the IRH, but
the security policy has added to IRH roles that have no
permissions associated with them.

4.2.2.1 Leaf node
In Figure 5, node r8 is an example of this case. To reconcile the
hierarchies, r8 must be removed and the security policy must be
modified such that the authorization rule(s), which produces r8,
must be altered so that it does not yield this problematic role.
Alternatively, the current business practice has to be revised to
incorporate r8 into GRH with the appropriate permissions. IRH
provides us with a useful insight into the permission set of r8, that
is, it should be a proper subset of the permission set of r2.

4.2.2.2 Non-Leaf and non-root node
r10 exists in the IRH but not in GRH. If r10 has a single child,
which belongs to GRH, then one can assume that r10 permissions
set is identical to that of its child, however, the set of users
assigned to r10 is a subset of its child’s users set. From a
functional standpoint, r10 is redundant to its child, r5 in this case,
because its users will be confined to the permissions associated
with r5. Role r10 should be removed from IRH and the
authorization rules should be modified so they yield r5 instead of
r10. Alternatively, r10 can be added to GRH with permission set
such that:

r5 permission set ⊂ r10 permission set ⊂ r2 permission set
However, if r10 has more than one child, which are nodes in GRH,
then r10 can be added to GRH such that:

r10 permission set = ∪ ri permission set
where ri ∈ GRH ? r10 ≥ ri

r1

r6

r9

(a) IRH

r2

r10

r1

r3

r6

r4

r2

r7

(b) GRH

Flow of user-role
Inheritance
r2 inherits r1

Flow of permission-role
Inheritance
r1 inherits r2

r5 r8

r5

r11 r11

r12 r12

r13 r13

4.2.2.3 Stand-alone node
This role has no functional purpose and, thus, has to be discarded.
An example for this is r9. The security policy should be modified
to reflect this.

4.2.2.4 Root node
Assume there is a role in IRH that is senior to r1, say rroot, then we
have 2 possibilities:

• If r1 is the only child, then r1 permission set = rroot permission set
which results in functional redundancy. This can be
solved by removing rroot from IRH.

• If rroot has more than one child that belong to GRH,
then:

rroot permission set = ∪ ri permission set
where: ri is the immediate child of rroot.

GRH may be modified to adopt rroot.

4.2.3 Missing Edges
The enterprise business practice sees a functional relation
between r1 and r11 and captures that in the form of an edge
between these roles in GRH. However, the security policy does
not recognize that and, therefore, no user-role inheritance exists
between them. The users assigned to r1 are capable of utilizing the
permissions attached to r11 since they are a subset of r1
permissions even if IRH fails to reveal this hidden relation. This
can be eliminated by modifying the policy so that the
authorization rule that generates r1 becomes senior to the one that
yields r11.

4.2.4 Additional Edges
IRH has the edge that links r1 and r12, which GRH does not
recognize. From functional stance, this should not be a problem
since it is acceptable to assign a user to roles that are not
functionally related. Since the users assigned to r1 are also capable
of activating r12, to reconcile the two hierarchies, the permissions
set of r1 need to be modified to include that of r12, which results in
introducing an edge between the two roles in GRH. Formally:

(ri,rj) ∈ R ? + (rj ≥ ri) ? + (ri ≥ rj) → modify r1 permission set

4.2.5 Inconsistency
Normally, user-role assignment inheritance and permission-role
inheritance flow in opposite directions. Figure 6 shows a case in
which this normal behavior is violated due to a discrepancy
between IRH and GRH. Part (a) of the figure suggests that since
r2 is senior to r3, all users in r2 will be able to exercise the
permissions of r3 in addition to those of r2. Accordingly, one can
assume that r3 permissions set is included in r2. However, part (b)
shows that r2 permissions set is a subset of r3 permissions set,
which indicates that any user assigned to r3 should be able to use
the permissions assigned to r2. This result contradicts the one
derived from part (a). This contradiction manifests itself
graphically as two arrows flowing from r2 and r3. Either the policy
or the role-permission assignment has to be modified.

5. DISCUSSION
RBAC96 allows specifying constraints to enforce specific
functional requirements and business principles, the most notable

of which is the principle of separation of duties. In this paper, we
assume that no constraint is specified. However, the RB-RBAC
honors separation of duty that is expressed externally.

 Figure 6: Inconsistency

For example, if ri and rj are conflicting roles, then if we have
authorization rule:

rulei ? ri and rj

then rulei is considered inconsistent and the policy must be
modified so that this inconsistency is removed. One suggested
way to discover this inconsistency is to declare a set of conflicting
roles and check if any authorization rule has more than one
member of that set in its right-hand side. Also, the language
provided by RB-RBAC can be used to express constraint. The
above example can be expressed using the full language set of
RB-RBAC as follows:

rulei ? ri XOR rj

6. CONCLUSION
We have discussed the nature of the authorization rules in RB-
RBAC, specifically, the seniority relation that might occur
amongst them. We showed that this relation can induced a role
hierarchy, which can be assembled based on the direction of user-
role assignment inheritance. We gave an example for a situation
where this induced role hierarchy coexists with a given role
hierarchy. The discrepancies that might arise between the induced
role hierarchy and the given role hierarchy were explored.
Different types of discrepancies were identified and their
functional implications where discussed. Also, possible solutions
to reconcile these discrepancies were suggested.

7. REFERENCES
[1] Al-Kahtani, M., and Sandhu, R. A model for attribute-based
user-role assignment. Proceedings of the18th Annual Computer
Security Applications Conference (Las Vegas NV, December
2002).

[2] Dynamic Groups for LDAPV3 draft-haripriya-dynamicgroup-
00.txt, (October 2001).

[3] Herzberg, A., Mass, Y., and Mihaeli, J. Access control meets
public key infrastructure, or: Assigning roles to strangers.
Proceedings of the 2000 IEEE Symposium on Security and
Privacy, 2000.

[4] Lightweight Directory Access Protocol (v3), RFC2251,
(December 1997).

r1

(a) IRH

r2

(b) GRH

r3

r1

r3

r2

(c) Consolidated IRH and GRH

r1

r2

r3

[5] Park, J., Sandhu, R., and Ahn, G. Role-based access control
on the web. ACM Transactions on Information and System
Security, Vol. 4, No 1, 2001.

[6] Sandhu, R., Bhamidipati, V., and Munawer, Q. The

ARBAC97 model for role-based administration of roles. ACM
Transactions on Information and System Security. Vol.2, No.1,
February 1999, 105-135.

[7] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. Role-
based access control model, IEEE Computer, 29(2), (February
1996).

[8] Yao, W., Moody, K., Bacon, J. A model of OASIS role-based
access control and its support for active security. SACMAT’01
(Chantilly VA, May 2001).

[9] Zhong, Y., Bhargava, B., and Mahoui, M. Trustworthiness
based authorization on WWW. In IEEE workshop on “Security in
Distributed Data Warehousing” (New Orleans, October 2001).

