
A Model for Role Administration Using Organization
Structure

Sejong Oh
Lab. for Information Security Technology

George Mason University
4400 University Drive,
Fairfax, Virginia 22030

soh2@gmu.edu

Ravi Sandhu
SingleSignOn.Net and

George Mason University
4400 University Drive,
Fairfax, Virginia 22030

sandhu@gmu.edu, www.list.gmu.edu

ABSTRACT
Role-based access control (RBAC) is recognized as an excellent
model for access control in an enterprise environment. In large
enterprises, effective RBAC administration is a major issue.
ARBAC97 is a well-known solution for decentralized RBAC
administration. ARBAC97 authorizes administrative roles by
means of ‘role ranges’ and ‘prerequisite conditions’. Although
attractive and elegant in their own right, we will see that these
mechanisms have significant shortcomings.

We propose an improved role administration model named
ARBAC02 to overcome the weaknesses of ARBAC97.
ARBAC02 adopts the organization unit for new user and
permission pools independent of role or role hierarchy. It uses a
refined prerequisite condition. In addition, we present a bottom-
up approach to permission-role administration in contrast to the
top-down approach of ARBAC97.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access
controls

General Terms
Security

Keywords
Access control, RBAC, Role administration

1. INTRODUCTION
Access control is a central concern for information security in
enterprises. Role-based access control (RBAC) is a proven and
increasingly commonplace technology for this purpose. In RBAC,
access rights are associated with roles, and users are assigned
appropriate roles thereby acquiring the corresponding
permissions. The notion of role is an enterprise or organizational
concept. Therefore RBAC allows us to model security from the
perspective of the enterprise, because we can align security

modeling to the roles and responsibilities in the company. The
RBAC model has been shown to be “policy-neutral” in the sense
that using hierarchies and constraints, a wide range of security
policies can be expressed, including discretionary access control
(DAC), mandatory access control (MAC), and user-specific
access control [6, 10].

In large enterprise-wide systems, the number of roles can be in the
hundreds or thousands, and users can be in the tens or hundreds
or thousands. Managing these roles, users, and their
interrelationships is a formidable task that is often highly
centralized in a small team of security administrators. The
motivation behind RBAC is to simplify the administration. An
appealing possibility is to use RBAC itself to manage RBAC, to
provide further administrative convenience, especially in
decentralizing administrative authority, responsibility, and tasks
[2]. ARBAC97 (administrative RBAC ’97), which is based on the
RBAC96 model in Figure 1 [7], allows decentralized
administration of user-role assignment (URA97), permission-role
assignment (PRA97), and role-role assignment (RRA97).

In spite of the advantages and elegance of the ARBAC97 model,
it also has some significant shortcomings, or undesirable side
effects. The main point of decentralized RBAC administration is
the control and scoping of the administration domain (or
boundary) of each administrative role. For this purpose,
ARBAC97 uses role ranges and prerequisite conditions. In
particular, prerequisite roles are used as user and permission pools
for administration roles. As we will see, this approach has some
weaknesses due to undesirable couplings.

The objective of this paper is to analyze the weaknesses of the
ARBAC97 model, and to propose an improved administration
model named ARBAC02. ARBAC02 retains the main features of
ARBAC97, and adds the concept of the organization unit as new
user and permission pools. We modify the URA97 and PRA97
components of ARBAC97. RRA97 is not modified in this work.

The rest of this paper is organized as follows. Section 2 presents
our motivation. We briefly review ARBAC97 and describe its
weaknesses. Section 3 presents the ARBAC02 model. We
introduce organization structure as a candidate for user and
permission pools, describe our modification of URA97 and
PRA97, and show the advantages of the ARBAC02 model.
Section 4 presents our conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’02, June 3-4, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-496-7/02/0006…$5.00.

155

2. MOTIVATION
2.1 Summary of ARBAC97 Model
ARBAC97 has three components: URA97 is concerned with user-
role administration, PRA97 is concerned with permission-role
administration, and RRA97 deals with role-role administration.
We focus on URA97 and PRA97. Detailed motivations and
rationales for URA97 and PRA97 are given in other papers [1-3,
7, 11]. Here we explain these models by an example using the
regular role hierarchy and administrative role hierarchy of Figures
2 and 3.

 URA97 Model
URA97 has two components, one dealing with the assignment of
users to roles (the grant model) and the other with revocation of

user membership (the revocation model). User-role assignment is
controlled in URA97 by the can-assign relation such as:

can-assign(x, y, z) // x: administrative role,
 y: prerequisite condition, z: role range

For example, can-assign(PSO1, ED, {E1}) means that a member
of the administrative role PSO1 (or a member of an administrative
role senior to PSO1) can assign a user who has current
membership in ED to be a member of the regular role E1. The
prerequisite condition is a Boolean expression of the prerequisite
role and/or constraint. For example, in the prerequisite condition
‘E1 ∧ QE1

’, ‘E1’ is a prerequisite role and ‘QE1

’ is a constraint.
The prerequisite condition ‘E1 ∧ QE1

’ indicates users who belong
to E1 and do not belong to QE1. User revocation in URA97 is

Users

Roles

Admini-
strative
Roles

Permi-
ssions

Admin.
Permi-
ssions

Constraints...

Sessions

Role hierarchy

Administrative
Role hierarchy

Users

Roles

Admini-
strative
Roles

Permi-
ssions

Admin.
Permi-
ssions

Constraints...

Sessions

Role hierarchy

Administrative
Role hierarchy

Figure 1. Summary of the RBAC96 Model
Director (DIR)

Project lead 1 (PL1)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Engineer 1 (E1)

Project lead 2 (PL2)

Production
Engineer 2

(PE2)

Quality
Engineer 2

(QE2)

Engineer 2 (E2)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Engineer 1 (E1)

Project lead 2 (PL2)

Production
Engineer 2

(PE2)

Quality
Engineer 2

(QE2)

Engineer 2 (E2)

Engineering Department (ED)

Employee (E)
Figure 2. Example of Regular Role Hierarchy

Senior Security Officer (SSO)

Department Security Officer (DSO)

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)

Senior Security Officer (SSO)

Department Security Officer (DSO)

Project Security Officer 1 (PSO1) Project Security Officer 2 (PSO2)
Figure 3. Example of Administrative Role Hierarchy

156

controlled by the can-revoke relation, such as:

 can-revoke(x, z) // x: administrative role,
 z: role range

For example, can-revoke(PSO1, {PE1, QE1}) means that a
member of the administrative role PSO1 (or a member of an
administrative role senior to PSO1) can revoke a user whose
current membership is in PE1 or QE1. Table 1 and Table 2 show
examples of can-assign and can-revoke in URA97. Here the role
ranges are expressed by identifying lower and upper boundary
points in a role hierarchy.

In the role range a ‘(’ or ‘)’ mean that the range does not include a
boundary value. ‘[’ or ‘]’ means that the range includes a
boundary value. For example, ‘[E1, PL1)’ is equivalent to {E1,
PE1, QE1} in Figure 2.

Table 1. Example of can-assign in URA97

Admin. Role Prereq. Condition Role Range

PSO1 ED [E1, E1]
PSO1 E1 ∧ QE1

 [PE1, PE1]
PSO1 E1 ∧ PE1

 [QE1, QE1]
PSO2 ED [E2, E2]
PSO2 E2 ∧ QE2

 [PE2, PE2]
PSO2 E2 ∧ PE2

 [QE2, QE2]
DSO ED ∧ PL2

 [PL1, PL1]
DSO ED ∧ PL1

 [PL2, PL2]
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

Table 2. Example of can-revoke in URA97

Admin. Role Role Range

PSO1
PSO2
DSO
SSO

[E1, PL1)
[E2, PL2)
(ED, DIR)
[ED, DIR]

What is the point of URA97? In the URA97 model, the role
range and prerequisite condition (or role) are used to restrict each
administrative role. The role range is used as the boundary of
target roles to assign users, and the prerequisite role is used as a

domain to pick users. Therefore we can replace the term
‘prerequisite role’ in URA97 with ‘user pool’ (See Figure 4).
User-role administration can be decentralized by assigning the
proper user pool and role range to administrators.

 PRA97 Model

PRA97 has similar features to URA97. PRA97 has two
components, one dealing with assignment of permissions to roles
and the other with revocation of permissions; these two
components are controlled by the can-assignp and can-revokep
relations, such as:

can-assignp(x, y, z) // x: administrative role,
 y: prerequisite condition, z: role range

can-revokep(x, z) // x: administrative role,
 z: role range

For example, can-assignp(DSO, DIR, [PL1,PL1]) means that a
member of the administrative role DSO (or a member of an
administrative role senior to DSO) can take any permission
assigned to the DIR role and make it available to the regular role
PL1. Tables 3 and 4 show examples of can-assignp and can-
revokep in the PRA97 model.

Table 3. Example of can-assignp in PRA97

Admin. Role Prereq. Condition Role Range

DSO DIR [PL1, PL1]

DSO DIR [PL2, PL2]

PSO1 PL1 ∧ QE1

 [PE1, PE1]

PSO1 PL1 ∧ PE1

 [QE1, QE1]

PSO2 PL2 ∧ QE2

 [PE2, PE2]

PSO2 PL2 ∧ PE2

 [QE2, QE2]

Table 4. Example of can-revokep in PRA97

Admin. Role Role Range

PSO1
PSO2
DSO
SSO

(E1, PL1)
(E2, PL2)
(ED, DIR)
[ED, DIR]

As can be seen, the prerequisite role in PRA97 is used as a
domain for selecting permissions. Therefore we can replace the

Prerequisite Role Role Range

ED [E1, E1]

User pool Boundary of roles

User-role assignment

Prerequisite Role Role Range

ED [E1, E1]

User pool Boundary of roles

User-role assignment
Figure 4. Relationship between Prerequisite role and Role

Range in URA97

Prerequisite Role Role Range

DIR [PL1, PL1]

Permission pool Boundary of roles

Permission-role assignment

Prerequisite Role Role Range

DIR [PL1, PL1]

Permission pool Boundary of roles

Permission-role assignment

Figure 5. Relationship between Prerequisite Role and Role
Range in PRA97

157

term ‘prerequisite role’ in PRA97 with ‘permission pool’ (See
Figure 5). Permission–role administration can be decentralized by
assigning the proper permission pools and role ranges to
administrators.

2.2 Shortcomings of URA97 and PRA97
The ARBAC97 model supports simple and decentralized security
administration. However, from a practicality viewpoint, it has
some significant shortcomings. In this section, we describe some
weaknesses of URA97 and PRA97 with respect to the prerequisite
roles.

 Weaknesses in URA97
UA1. Multi-step user assignment
Suppose that a newly employed engineer ‘John’ will be assigned
to role ‘QE1’ role in the environment of Figure 2, Figure 3, and
Table 1. To do so, John should be a member of prerequisite role
‘E1’. Before John can become a member of ‘E1’, he must be a
member of the prerequisite role ‘ED’. Similarly, before John can
be a member of ‘ED’, he should be a member of prerequisite role
‘E’. To summarize, John’s role assignments must follow the
order:

 assign John to E → assign John to ED → assign John to E1
→ assign John to QE1

This example shows that URA97 requires multi-step user
assignments. Roles higher in the role hierarchy may require more
assignment steps. This may require the work of two or more
security officers.

UA2. Duplicated user-role assignment (UA) information
Suppose that ‘Tom’ is a member of the QE1 role. Tom is therefore
an explicit member of ‘E’, ‘ED’, ‘E1’ and ‘QE1’, and the
corresponding information exists in the URA information as
shown in Table 5, as a result of the multi-step user assignment. In
Table 5, tuples 1, 3, and 5 do not affect Tom’s access rights
because ‘QE1’ inherits the access rights of ‘E’, ‘ED’, and ‘E1’.
From the point of view of Tom’s access rights, the three tuples are
redundant. They are required only for administrative purposes.
One thousand users and four-step user-role assignment require
4000 tuples in the URA information, although only 1000 tuples
are required for access control.

Table 5. User-Role Assignment Information

No Role Assigned user

1

3

5

7

E

ED

E1

QE1

Tom

Tom

Tom

Tom

UA3. Restricted composition of user pool
Suppose the company in this example wants to maintain human
resource pools H1, H2, and H3. Suppose also a new policy
requires that a ‘Production Engineer’ should be selected from H1
and a ‘Quality Engineer’ should be selected from H2. It is
impossible to realize this new policy without changing the role
hierarchy. In the URA97 model, the user pool is based on the
prerequisite roles, and the prerequisite roles are part of the role
hierarchy. This example shows that thereby the user pool is
restricted by the structure of roles or the role hierarchy.
Sometimes the real world requires a more flexible user pool, and
this causes a more complicated role hierarchy in URA97. URA97
has an unnecessary coupling between two distinct concepts.

 Weaknesses in PRA97

PA1. Multi-step permission assignment
PA2. Duplicated permission-role assignment (PA) information
PA3. Restricted composition of permission pool

We omit the explanation of problems PA1, PA2, and PA3 because
they are similar to UA1, UA2, and UA3.

PA4. No restriction for permission pool
Suppose there exists a can-assignp(SO1, R2, [R1,R1]). Then SO1
can assign any permission of R2 to R1. There is no restriction.
How is it possible to specify some permission for R2 only? This
cannot be directly expressed in PRA97. In the PRA99 model [4]
this requirement is expressed by the immobile membership
concept. However, this approach requires additional information
about the permission pool.

PA5. Undesirable side effect
PA5 is a corollary of PA4. Consider the role hierarchy and role
range of Figure 6. If can-assignp(PSO1, PL1, [QE1, QE1] exists,
then ‘PSO1’ can assign any permissions of ‘PL1’ to ‘QE1’.
Consequently, ‘QL’ inherits all permissions of ‘QE1’ because
‘QL’ is a parent role of ‘QE1’. It means that ‘PSO1’ can move
some permissions of ‘PL1’ to ‘QL’. However, as can be seen,
‘QL’ is outside the role range of ‘PSO1’, so this permission flow
is illegal.

 What are the origins of these shortcomings of ARBAC97? First,
the user pool and permission pool are dependent on the structure
of the role or role hierarchy. A prerequisite role is dependent on
its lower or higher prerequisite roles. (As described above, a
prerequisite role functions as a user pool or a permission pool.)
As a result, all prerequisite roles form a dependency chain along
the role hierarchy. Figure 7 shows this situation. This dependency
is a strong restriction for constructing the user pool or permission
pool (UA3/PA3). In addition, it causes duplicate administrative
work (UA1/PA1) and redundant data (UA2/PA2).

DIR

PL1

PE1 QE1

PL2

QE2 PE2

QL

Role Range
Of PSO1

Role Range
Of DSO

illegal flow : A Permission

DIR

PL1

PE1 QE1

PL2

QE2 PE2

QL

Role Range
Of PSO1

Role Range
Of DSO

illegal flow : A Permission
Figure 6. Undesirable Side Effect in PRA97 Model

158

Second, there is the top-down nature of permission-role
administration, allowing security administrators to select any
permission from their prerequisite roles. This leads to undesirable
behavior (PA4/PA5).

If we want to apply the ARBAC97 model in the real world, we
should resolve these problems.

3. THE ARBAC02 MODEL
To overcome the weaknesses of ARBAC97 model, we chose two
strategies. First, we use the organization structure as new user and
permission pools instead of prerequisite roles in a role hierarchy.
Second, based on the organization structure, we propose a
bottom-up approach to permission-role assignment. Before we

describe the ARBAC02 model, we introduce the concept of
organization structure.

3.1 Organization Structure as a User /
Permission Pool
For information systems development the organization is a good
concept as a domain for analysis of business functions and
activities. Generally, organization structure is a tree structure and
has the characteristic of inheritance. An organization structure is
composed of organization units, each encompassing the relevant
people who work to achieve the mission of the organization unit.
To achieve the given mission, each organization unit has a set of
job functions or tasks. To perform the job functions or tasks, users
need to access information resources. In other words, job
functions or tasks are related to permissions. We can redefine the
organization unit as ‘a group of people and functions
(permissions) to achieve the given mission’. Moffett discussed the

meaning of organization and role hierarchy [8, 9]. Perwaiz and
Sommerville showed how to manage permission–role relationship
using organization units [5]. Therefore the organization unit is a
suitable container for the user pool and permission pool. For the
purpose of role administration, we can use different organization
structures for the user pool and the permission pool. There is no
conflict because these organization structures are only used for the
purpose of user pool or permission pool administration,
respectively.

Figure 8 shows the role administration concept in the ARBAC02
model. First, users and permissions are assigned to proper
organization units by the Human Resources (HR) and Information
Technology (IT) groups. Then the security administration group
assigns the users and permissions in organization units to regular
roles. We do not elaborate the functions of the HR and IT groups
because they are outside the scope of role-based security
administration. We assume the activities of these groups are
somehow accomplished in the system.

3.2 Description of ARBAC02 Model
In this section, we describe the central notions of ARBAC02
model: to adopt new user and permission pools independent of the
role or role hierarchy and a bottom-up method of permission-role
administration.

E2

: User poolE

ED

E1

determine

determinedetermine

E2

: User poolE

ED

E1

determine

determinedetermine

(a) Dependency among user pools in URA97

PL1 : Permission
pool

DIR

PL2

determine determine

PL1 : Permission
pool

DIR

PL2

determine determine

(b) Dependency among permission pools in PRA97

Figure 7. Dependencies in URA97/PRA97

(Above is inferred from Table 1 and Table 3)

Assigned by
human resource (HR)

group

Assigned by
information technology (IT)
group

Users System Resources

Org. structure
for user pool

Org. structure
for permission pool

Role hierarchy

Assign user to role
by security admin.

group

Assign permission to role
by security admin.
group

HR and IT
Area

Security
admin.
Area

Assigned by
human resource (HR)

group

Assigned by
information technology (IT)
group

Users System Resources

Org. structure
for user pool

Org. structure
for permission pool

Role hierarchy

Assign user to role
by security admin.

group

Assign permission to role
by security admin.
group

HR and IT
Area

Security
admin.
Area

Figure 8. Role Administration Concept in ARBAC02

159

Engineering
Department (ED)

Project 1 (PJ1) Project 2 (PJ2)

Production Division (PRD)

Purchasing
Department (PD)

Manufacturing
Department (MD)

Quality Control (QC) Stock Control (SC)

Engineering
Department (ED)

Project 1 (PJ1) Project 2 (PJ2)

Production Division (PRD)

Purchasing
Department (PD)

Manufacturing
Department (MD)

Quality Control (QC) Stock Control (SC)

Figure 10. An Example of OS-P (permission pool)

Engineering
Department (ED)

Project 1 (PJ1) Project 2 (PJ2)

Production Division (PRD)

Purchasing
Department (PD)

Manufacturing
Department (MD)

Quality Control (QC) Stock Control (SC)

Engineering
Department (ED)

Project 1 (PJ1) Project 2 (PJ2)

Production Division (PRD)

Purchasing
Department (PD)

Manufacturing
Department (MD)

Quality Control (QC) Stock Control (SC)
Figure 9. An Example of OS-U (user pool)

 New user and permission pools

Definition 1. OS-U is an organization structure represented as a
user pool. It contains users who are pre-assigned by the HR
group. Figure 9 shows an example of the OS-U. Any organization
unit can have users. If ‘Tom’ is a member of ‘PJ1’, it may mean
that he has a job position in project 1. If ‘John’ is a member of
‘ED’, it may mean that he is a director of an engineering
department. OS-U has a tree structure and the characteristic of
inheritance. Therefore Tom as a member of ‘PJ1’ is also a
member of ‘ED’ and ‘PRD’.

Definition 2. OS-P is an organization structure represented as a
permission pool. It contains permissions that are pre-assigned by
the IT group. OS-P has an inverted tree structure as shown in
Figure 10. In OS-P, common permissions are assigned to the
lower sections of the organization structure and special
permissions are assigned to the higher sections of the organization
structure. For example, access permissions for all members of the
production division are assigned to ‘PRD’ and special
permissions for members of project 1 are assigned to ‘PJ1’.

From Figure 10, we can expect that users belonging to ‘PJ1’
inherit permissions in ‘ED’ and ‘PRD’. However, it is important
that the permission membership is inherited downward in OS-P.
For example, the entire set of permissions for ‘ED’ is
{permissions assigned to ‘ED’} ∪ {permissions assigned to
‘PJ1’} ∪ {permissions assigned to ‘PJ2’}.

Assumption 1. We assume that simple and basic versions of OS-
U and OS-P are given, and users and permissions are pre-assigned
to the proper positions of the given organization structures.

There are various policies for maintaining OS-U and OS-P. It is
obvious that maintaining OS-U and OS-P requires the cooperation
of the security administration group, the HR group, and the IT
group. Figure 11 shows the ARBAC02 model including the two
new components, OS-U and OS-P.

Now we redefine the prerequisite condition in the ARBAC97
model.

Definition 3. A Prerequisite condition of URA is a Boolean
expression using the usual ∧ and ∨ operators on terms of the form

x and x

, where x is a regular role or organization unit in OS-U. A
prerequisite condition is evaluated for a user u by interpreting x to
be true if

Case 1. x ∈ role: (∃x’ ≥ x)(u, x’) ∈ URA
Case 2. x ∈ org. unit of OS-U: (∃x’ ≤ x)(u, x’)} ∈ UUA

and x

 to be true if

Case 1. x ∈ role: ¬(∃x’ ≥ x)(u, x’) ∈ URA
Case 2. x∈org. unit of OS-U: ¬(∃x’ ≤ x)(u, x’)} ∈UUA

Definition 4. A Prerequisite condition of PRA is a Boolean
expression using the usual ∧ and ∨ operators on terms of the form
x and x

 where x is a regular role or organization unit in OS-P. A
prerequisite condition is evaluated for a permission p by
interpreting x to be true if

Case 1. x ∈ role: (∃x’ ≤ x)(p, x’) ∈ PRA
Case 2. x ∈ org. unit of OS-P: (∃x’ ≥ x)(p, x’)} ∈ PPA

and x

 to be true if

Case 1. x ∈ role: ¬(∃x’ ≤ x)(p, x’) ∈ PRA
Case 2. x ∈ org. unit of OS-P: ¬(∃x’ ≥ x)(p, x’)} ∈PPA.

(Note. URA: user-role assignment, UUA: user-organization
assignment on OS-U, PRA: permission–role assignment, PPA:
permission-organization assignment on OS-P. To distinguish role
and organization unit names, we use an ‘@’ in the head of
organization unit names.)

ARBAC02 adopts the same notation of can-assign, can-revoke,
can-assignp, and can-revokep from ARBAC97. The difference in
definition of the prerequisite condition between the ARBAC97
and ARBAC02 models is that prerequisite roles are replaced by
organization units. The effect is described in the next section.
Following the redefinition of the prerequisite condition, an
example of can-assign in ARBAC97:

can-assign(PSO1, E1 ∧ QE1

, [PE1,PE1])

Users

Roles

Admini-
strative
Roles

Permi-
ssions

Admin.
Permi-
ssions

Constraints...

Sessions

Role hierarchy

Administrative
Role hierarchy

User
Pool unit

Permission
Pool unit

OS-U

OS-P

Users

Roles

Admini-
strative
Roles

Permi-
ssions

Admin.
Permi-
ssions

Constraints...

Sessions

Role hierarchy

Administrative
Role hierarchy

User
Pool unit

Permission
Pool unit

OS-U

OS-P

Figure 11. Components of ARBAC02 Model

160

can be described in the ARBAC02 model as:

can-assign’(PSO1, @PJ1 ∧ QE1

, [PE1,PE1]).

Table 6 shows refined can-assign equivalent to Table 1.

Table 6. Refined can-assign Equivalent to Table 1

Admin. Role Prereq. Condition Role Range

PSO1 @PJ1 ∧ QE1

 [PE1, PE1]
PSO1 @PJ1 ∧ PE1

 [QE1, QE1]
PSO2 @PJ2 ∧ QE2

 [PE2, PE2]
PSO2 @PJ2 ∧ PE2

 [QE2, QE2]
DSO @ED ∧ PL2

 [PL1, PL1]
DSO @ED ∧ PL1

 [PL2, PL2]
DSO @ED (ED, DIR)
SSO @ED (ED, DIR]

 Bottom-up approach to permission-role administration

One of the weaknesses of ARBAC97 is the top-down approach to
permission–role administration. The ARBAC02 model adopts a
bottom-up approach. In the ARBAC02 model, common
permissions are assigned to lower roles in the role hierarchy, and
higher roles inherit common permissions, while special
permissions are assigned to higher roles. For example, common
permissions for all users are assigned to role ‘E’, common
permissions for engineering department members are assigned to
‘ED’, and common permissions for Project 1 members are
assigned to ‘E1’. The remaining special permissions are assigned
to appropriate higher roles of ‘E1’. Table 7 shows an example of
the refined can-assignp.

Table 7. An Example of Refined can-assignp

Admin. Role Prereq. Condition Role Range

SSO @ED [E, DIR]

DSO @ED [ED, DIR)

PSO1 @PJ1 [E1, PL1)

PSO2 @PJ2 [E2, PL2)

PSO1 @PJ1 ∧ QE1

 [PE1, PE1]

PSO1 @PJ1 ∧ PE1

 [QE1, QE1]

PSO2 @PJ2 ∧ QE2

 [PE2, PE2]

PSO2 @PJ2 ∧ PE2

 [QE2, QE2]

One advantage of this approach is that we avoid duplicate
assignments of the same permission through the inheritance line
of the role hierarchy. For example, a permission that is assigned to
‘E’ is not required by ‘ED’, ‘E1’, and so on, therefore eliminating
redundancy.

3.3 Advantages of the ARBAC02 Model
 The effects of user and permission pools are independent of

role or role hierarchy

As described above, the user pool in the ARBAC97 model is
implemented by prerequisite roles, and a prerequisite role depends
on its prerequisite role in turn. As a result, the ARBAC97 model
induces multi-step user assignment (UA1) and redundant user-role
assignment information (UA2). Furthermore, composition of the
user pool is strongly restricted by the role hierarchy (UA3). In the
ARBAC02 model the user pool is implemented by the
organization unit independently of the role or role hierarchy. A
new user can be registered into the proper user pool in one step,
and be assigned to the proper role from the user pool in one step.
It is important that assigning a user to a user pool is separate
from assigning a user to a regular role in the ARBAC02 model.
As a result, the user assignment becomes simple and there is no
redundant user-role assignment information. (UA1 and UA2 are
resolved.) Figure 12 shows the comparison of the user-role

administration in the URA97 and ARBAC02 models.

Let us recall the situation in UA3. A company wants to maintain
human resource pools H1, H2, and H3. A new policy requires that
a ‘Production Engineer’ should be selected from H1 and a
‘Quality Engineer’ should be selected from H2. In the ARBAC02
model, new organization units H1, H2, and H3 can be added at
the proper positions in the organization structure. Then we change
a prerequisite condition such as:

can-assign(PSO1, PJ1 ∧ QE1

, [PE1, PE1])
to:

can-assign’(PSO1, @H1, [PE1, PE1])

This requires no change of role hierarchy because the user pool is
independent of the role hierarchy. (UA3 is solved.) PA1, PA2,
and PA3 are solved similarly.

 The effects of bottom-up permission–role administration

In the ARBAC02 model, common permissions for many roles are
assigned to lower positions in the role hierarchy while non-
common roles are assigned higher positions. Common
permissions are inherited by senior roles through the role
hierarchy. Permissions do not propagate downward in the role
hierarchy (as in ARBAC97). As a result, PL1 is not a prerequisite
role for PSO1 in Figure 13, and PSO1 cannot assign PL1’s
permissions to his/her role range. The undesirable side effect of
PA5 does not occur. PA4 is solved naturally because we do not

E

ED

E1

Tom

QE1

Tom

Tom

Tom

E

ED

E1

QE1
PJ1

Tom

URA97 model Proposed model

E

ED

E1

Tom

QE1

Tom

Tom

Tom

E

ED

E1

QE1
PJ1

Tom

URA97 model Proposed model
Figure 12. Comparison of User-Role Administration

161

adopt top-down permission–role administration, so the
prerequisite role is not restricted as a permission pool.

The ARBAC02 model overcomes the identified shortcomings of
URA97 and PRA97. It supports flexible composition of the user
and permission pools. The ARBAC02 model must maintain
additional components, namely the organization structure, but this
is not an extensive overhead. Moreover, the organization structure
is a natural notion for organizations.

 The possibility of applying ARBAC02 to other areas

The ARBAC02 model is suitable for any areas requiring the
RBAC model. Furthermore the concept of the user and permission
pools can be separated from the ARBAC02 model, and can be

applied to non-RBAC environments, as shown in Figure 14. This
may be an interesting research topic.
4. CONCLUSION
The ARBAC97 model is simple and easily understood. ARBAC97
shows that RBAC itself can be used to manage RBAC. However,
from a practical viewpoint ARBAC97 has some serious
shortcomings caused by unnecessary integration of the user and
permission pools and the role hierarchy. In this paper, we introduce
the organization structure as new user and permission pools
independent of role or role hierarchy. In addition, we introduce a
bottom-up permission–role administration, in contrast to the top-
down manner of ARBAC97. Independent user and permission pools
give flexibility in constructing the user and permission pools, and
overcome the identified weaknesses of the ARBAC97 model. We
define ARBAC02 as an improved version of ARBAC97 and show
how the weaknesses of ARBAC97 are eliminated.

We believe that managing the user and permission pools and
managing the user-role and permission–role assignments are
related, but they are different areas. We do not describe in detail

the method of managing the user and permission pools, which is
delegated to the HR and IT groups. Developing an integrated
model that explicitly incorporates the activities of these groups is
a future research topic.

5. ACKNOWLEDGMENTS
This work is partially supported by the National Science
Foundation.

6. REFERENCES
[1] Ravi Sandhu and Venkata Bhamidipati, “The URA97 model

for role-based user-role assignment”, In Proceedings of IFIP
WG 11.3 Workshop on Database Security, August 1997.

[2] Ravi Sandhu and Venkata Bhamidipati, “The ARBAC97
model for Role-based administration of Roles: Preliminary
Description and Outline”, In Proceedings of second ACM
Workshop on Role-Based Access Control. November 1997.

[3] Ravi Sandhu and Venkata Bhamidipati, “Role-based
administration of user-role assignment: The URA97 model
and its Oracle implementation”, The Journal of Computer
Security, Vol.7, 1999

[4] Ravi Sandhu and Qamar Munawer, “The ARBAC99 model
for administration of roles”, In Proceedings of the Annual
Computer Security Applications Conference. 1999.

[5] Najam Perwaiz and Ian Sommerville, “Structured
management of role-permission relationships”, In
Proceedings of 6th ACM Symposium on Access Control
Models and Technologies (SACMAT2001), May 2001.

[6] James B.D. Joshi, Walid G. Aref, Arif Ghafoor, and Eugene
H. Spafford, “Security models for web-based applications”,
Communications of the ACM, Vol. 44, No.2, February 2001.

[7] Ravi Sandhu, Edward Coyne, Hal Feinstein and Charles
Youman, “Role-Based Access Control Models.” IEEE
Computer, Volume 29, Number 2, February 1996, pages 38-
47.

[8] Jonathan D. Moffett, “Control Principles and Role
Hierarchies”, In Proceedings of the 3rd ACM Workshop on
Role-Based Access Control. October 1998.

[9] Jonathan D. Moffett and Emil C. Lupu, “The use of role
hierarchies in access control”, In Proceedings of the 4th
ACM Workshop on Role-Based Access Control. October
1999.

[10] Sylvia Osborn, Ravi Sandhu and Qamar Munawer,
“Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies”,
ACM Transactions on Information and System Security,
Volume 3, Number 2, May 2000, pages 85-106.

[11] Ravi Sandhu, Venkata Bhamidipati and Qamar Munawer,
“The ARBAC97 Model for Role-Based Administration of
Roles”, ACM Transactions on Information and System
Security, Volume 2, Number 1, February 1999, pages 105-
135.

[12] Matunda Nyanchama and Sylvia Osborn, “The Role Graph
Model and Conflict of Interest”, ACM Transactions on
Information and System Security, Vol. 2, No. 1, February
1999, pages 3-33.

DIR

PL1

PE1 QE1

PL2

QE2 PE2

QL

Role Range
Of PSO1

Role Range
Of DSO

: A Permission

prohibited
DIR

PL1

PE1 QE1

PL2

QE2 PE2

QL

Role Range
Of PSO1

Role Range
Of DSO

: A Permission

prohibited

Figure 13. Prohibition of Downward Permission Flow

User
Pool Unit

OS-U

Permission
Pool Unit

OS-P

Access
Control
Model

1

Access
Control
Model

2

Access
Control
Model

k
……

User
Pool Unit

OS-U

Permission
Pool Unit

OS-P

Access
Control
Model

1

Access
Control
Model

2

Access
Control
Model

k
……

Figure 14. Applying User/Permission Pool to Other Models

162

