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Abstract. Secrecy of private signing keys is one of the most important
issues in secure electronic commerce. A promising solution to this prob-
lem is to distribute the signing function among multiple parties. However,
a threshold signature scheme typically assumes that the shared signing
function can only be activated by a quorum number of parties, which
is inappropriate in settings where a user employs some public servers
for a threshold protection of her private signing function (therefore the
name “server-assisted threshold signatures”).
In this paper we present two efficient and provably secure schemes for
server-assisted threshold signatures, where the signing function is acti-
vated by a user (but in certain enhanced way). The first one (we call
TPAKE-HTSig) is tailored for the setting where a user has a networked
device that is powerful enough to efficiently compute modular exponenti-
ations. The second one (we call LW-TSig) is tailored for the setting where
a user has a smart card without a cryptographic co-processor. Modular
construction of the schemes ensures that any module can be substituted
without weakening security of the resultant scheme, as long as the sub-
stitutive one satisfies certain security requirement. In addition to the
two schemes, we also present a taxonomy of systems protecting private
signing functions.

1 Introduction

Secrecy of private signing keys is one of the most important issues in secure
electronic commerce. Threshold signatures enable us to achieve better security
(i.e., compromise of certain number of participants does not expose the private
key) and availability (i.e., a quorum number of participants suffice to sign mes-
sages). However, threshold signature schemes typically assume that the shared
signing function can only be activated by a quorum number of participants; oth-
erwise, the participant able to activate the function can always get signatures
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without compromising the private key. This assumption is relevant in certain
settings (e.g., enterprise applications) but inappropriate in settings where a user
employs some public servers (which perhaps provide service for economic incen-
tives) to provide a threshold protection for her private signing function (therefore
the name “server-assisted threshold signatures”).

1.1 Our Contributions

We propose two efficient and provably secure schemes for server-assisted thresh-
old signatures, where the signing function is activated by a user (but in cer-
tain enhanced way). The schemes are obtained via a modular composition ap-
proach, thereby any module can be substituted without weakening security of
the resultant scheme, as long as the substitutive one (with, for instance, better
performance) satisfies certain security requirements. The first scheme (we call
TPAKE-HTSig) is tailored for the setting where a user has a networked device that
is powerful enough to efficiently compute modular exponentiations. The second
scheme (we call LW-TSig) is tailored for the setting where a user has a smart
card with no cryptographic co-processor. In addition to the two schemes, we also
present a taxonomy of systems protecting private signing functions.

Remark. Having said that our schemes allow the substitution of component
modules as long as certain security requirement is satisfied, we stress that our
approach is less general than the approach of Canetti [10].

Outline. In Section 2 we present certain cryptographic preliminaries. In Sec-
tion 3 we present our first scheme TPAKE-HTSig, of which a formal security
analysis is given in Appendix B. In Section 4 we present our second scheme
LW-TSig. In Section 5, we present a taxonomy of systems for protecting private
signing functions (including our schemes). We conclude in section 6. Due to space
limitation, we eliminate from this version many discussions (including security
analysis of LW-TSig), which will be found in the full version of this paper.

2 Cryptographic Preliminaries

Message Authentication Codes (MACs). A function family {fk}k, where
k ∈ {0, 1}κ for some security parameter κ, is a secure MAC family if any ad-
versary A of probabilistic polynomial-time succeeds in the following game only
with negligible probability. First a random key k ∈ {0, 1}κ is chosen; then A
adaptively chooses messages m1, · · · , mn and receives the corresponding MAC

values fk(m1), · · · , fk(mn). A succeeds if it manages to generate a pair 〈m, tag〉,
where m �= m1, · · · ,mn but tag = fk(m). We refer the reader to [2] for details.

Signature Schemes. A signature scheme Sig consists of three algorithms
(Sig.Init, Sig.Sig, Sig.Ver). Taken as input a security parameter κ, the prob-
abilistic key generation algorithm Sig.Init returns a pair of public and private
keys (Y,X). Taken as input a message m and the private key X , the signing
algorithm Sig.Sig outputs a signature σ. Taken as input a tag σ, the public
key Y , and a message m, the verification algorithm Sig.Ver returns true if σ is
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a valid signature, and false otherwise. We require a signature scheme be secure
against adaptive chosen-message attack [17, 36].

Threshold Signature Schemes. A threshold signature scheme TSig consists
of three algorithms (TSig.Init, TSig.Sig, TSig.Ver). We focus on a subclass
of signature schemes such that their threshold version falls into the following
framework of specification; the motivation is to make concise the security proof
of the resultant scheme. (Nonetheless, this subclass covers many practical and
popular signature schemes [31, 5, 33, 11].)

1. Taken as input a security parameter κ, the number of tolerated corrupt
servers t, and the number of servers n, TSig.Init outputs a public key Y
so that the corresponding private key X is shared among the n servers
{S1, · · · , Sn} using an appropriate secret sharing scheme [34, 13, 28]. Let
X

(t+1,n)←→ (X(1), · · · , X(n)) denote such a secret sharing so that Si holds X(i),
where 1 ≤ i ≤ n.

2. To sign a messagem, TSig.Sig runs as follows: Sij generates a partial signa-
ture σ(ij) = g1(m,X(ij)), then anyone can compute σ = g2(σ(i1), · · · , σ(iw))
from w valid partial signatures, where t + 1 ≤ w ≤ n, 1 ≤ ij ≤ n for
1 ≤ j ≤ w, g1 and g2 are certain algorithms that depend on Sig.

3. TSig.Ver is the same as Sig.Ver.

A threshold signature scheme TSig is secure if, (1) it is unforgeable under
adaptive chosen-message attack, where unforgeability is captured by presenting
a polynomial-time simulator that is able to emulate TSig by having oracle access
to the underlying Sig, and (2) it is robust, which means that an adversary
having corrupted t servers is still unable to prevent it from functioning. Concrete
threshold signature schemes can be found in, for instance, [16, 18, 30, 35].
A special and useful case of threshold signature schemes is the so-called two-

party signature schemes 2Sig=(2Sig.Init, 2Sig.Sig, 2Sig.Ver), where t = 1
and n = 2. In this case, robustness is weakened due to the deployment of a 2-out-
of-2 secret sharing. We refer the reader to [6, 25, 26, 38] for formal treatments
of some two-party signature schemes.

HybridThresholdSignature Schemes. A hybrid threshold signature scheme
HTSig is the hybrid of a two-party signature scheme 2Sig and a multi-party sig-
nature scheme TSig corresponding to the same underlying signature scheme
Sig. In such a scheme, the privileges of the participants are weighted; for exam-
ple, as shown in our first scheme TPAKE-HTSig, no signatures can be generated
without the consent of a user, no matter how the servers collaborate. A hy-
brid threshold signature scheme HTSig consists of three algorithms (HTSig.Init,
HTSig.Sig, HTSig.Ver). Taken as input a security parameter κ and the desired
access structure in the underlying secret sharing scheme, the initialization al-
gorithm HTSig.Init outputs a public key Y so that the corresponding private
key X is shared among the participants (according to the given access struc-
ture). Taken as input a message m and the shares of the private key, HTSig.Sig
outputs a signature σ. Typically, HTSig.Ver is the same as Sig.Ver. In Sec-
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tion 3.1 we will specify how to construct, and security definition of, HTSig for
the subclass of signature schemes we are interested in.

Threshold Password-Authenticated Key Exchange Schemes. A thresh-
old password-authenticated key exchange scheme, or TPAKE for short, enables
a set of servers to collaboratively authenticate a user using a password such
that compromise of certain number of servers does not enable the adversary to
conduct an off-line dictionary attack. A TPAKE scheme consists of two protocols:
(TPAKE.Init, TPAKE.Login). Suppose κ is the main security parameter, t is the
number of tolerated corrupt servers, and n is the number of servers. The basic
functionality of TPAKE.Init is:

1. The servers collaboratively generate certain system-wide configurations (if
any), some of which may be published.

2. Each user chooses her own password and sends its transformed version (e.g.,
after certain cryptographically-strong transformation) to the servers.

The invocation protocol TPAKE.Login is an algorithm of functionality that
after a user successfully authenticates herself to the servers, the user shares
a different on-the-fly session key with each of the servers. We will not present
any concrete TPAKE.Login (indeed we don’t pin down on any concrete TPAKE),
instead we will present a specification (including a security and robustness defini-
tion) of TPAKE, namely TPAKE.Login, in Appendix A. Note that the first concrete
TPAKE has been available [27].

3 The First Scheme: TPAKE-HTSig

Our first scheme is called TPAKE-HTSig, which stands for “‘Threshold Password-
Authenticated Key Exchange based’ server-assisted Hybrid Threshold Signa-
tures.” TPAKE-HTSig is tailored for the following real-world scenario: a user hav-
ing a networked device wants to enjoy a threshold protection of her private
signing function by taking advantage of multiple servers, where the user device
is powerful enough to efficiently compute modular exponentiations. The chal-
lenge in designing such a solution is that we must assure that only the user can
activate threshold signing sessions even if the user device has been compromised
(i.e., the secrets on it have been exposed). If we do not impose any restriction on
the adversarial capability, an adversary having compromised a user device can
always perfectly impersonate the user. Therefore, we assume that an adversary
can compromise a user device only when the user software is inactive or the
password is not in the device memory to which the adversary has access (such
an assumption seems reasonable and popular [4, 23, 25, 27]).

3.1 How to Construct a HTSig

Given Sig=(Sig.Init, Sig.Sig, Sig.Ver) that belongs to the abovementioned
subclass of signature schemes, we show how to construct a hybrid threshold
signature scheme HTSig=(HTSig.Init, HTSig.Sig, HTSig.Ver) from its two-
party variant 2Sig=(2Sig.Init, 2Sig.Sig, 2Sig.Ver) and multi-party variant
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TSig=(TSig.Init, TSig.Sig, TSig.Ver). Suppose (Y,X) is a user U ’s pair of
public and private keys in Sig. Let S1, · · · , Sn be the servers, and t be the
number of tolerated corrupt servers.
The initialization algorithm HTSig.Init has the following two steps.

1. U uses a 2-out-of-2 secret sharing to share her private key X , namely X
(2,2)←→

(XU , XS), where XU is U ’s share. This step corresponds to 2Sig.Init.

2. U using an appropriate secret sharing scheme to shareXS , namelyXS
(t+1,n)←→

(X(1)
S , · · · , X(n)

S ), where X(i)
S (1 ≤ i ≤ n) is Si’s share. This step corresponds

to TSig.Init.

The signing algorithm HTSig.Sig has the following steps that correspond
to the combination of 2Sig.Sig and TSig.Sig. Suppose m is the message that
needs to be signed.

1. U generates a partial signature σU = g′1(m,XU ), where g′1 is an appropriate
algorithm (which depends on the underlying signature scheme Sig).

2. Sij contributes its partial signature σ
(ij)
S = g1(m,X

(ij)
S ), where g1 is an

algorithm that depends on Sig, 1 ≤ ij ≤ n for 1 ≤ j ≤ w, and t+1 ≤ w ≤ n.
3. Given w valid partial signatures, anyone can compute σS =

g2(σ
(i1)
S , · · · , σ(iw)

S ), where 1 ≤ ij ≤ n for 1 ≤ j ≤ w, t + 1 ≤ w ≤ n,
and g2 is an appropriate algorithm that depends on Sig.

4. Given σU and σS , anyone can compute a signature σ = g′2(σU , σS), where
g′2 is an appropriate algorithm that depends on Sig.

The verification algorithm HTSig.Ver is the same as Sig.Ver.

Security of HTSig. Security of a hybrid threshold signature scheme HTSig is
captured by the following definition.

Definition 1. (Security of HTSig; Informal Statement.) A hybrid threshold sig-
nature scheme HTSig is secure, if it is unforgeable and robust. A HTSig is un-
forgeable if there exists a polynomial-time simulator that is able to emulate HTSig
while having access to a signing oracle corresponding to the underlying signature
scheme Sig. More specifically, we require the existence of such a simulator in
the following two cases.

1. XU is exposed (i.e., the user device is compromised) but at most t servers
are compromised (i.e., XS is still secret).

2. XS is exposed (i.e., at least t+1 servers are compromised) but XU is secret.

A HTSig is robust if it remains to function in the presence of t corrupt servers.

Instantiations of HTSig. We only investigate and sketch three HTSig schemes
based on RSA, DSS, and Schnorr, respectively. An efficient HTSig can be based
on RSA signature scheme [31, 5]. Suppose N = PQ is a RSA modulus, 〈e,N〉
and 〈d,N〉 are a pair of RSA public and private keys so that ed = 1 mod φ(N).
A HTSig can be obtained as follows: the user first splits the secret exponent d
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into two pieces dU and dS (as in [25]), then the user shares dS among the servers
as in [30]. A signature is generated in a natural way.1

A HTSig can be based on DSS [11] by combining the schemes in [26, 16],
although the resultant scheme is not very efficient. A much more efficient HTSig
based on Schnorr [33] can be obtained by combing the schemes in [38, 18].

3.2 The Construction

We present a TPAKE-HTSig based on any TPAKE that satisfies the specification in
Appendix A, and any HTSig that satisfies the specification in Section 3.1. The
glue or middleware for integrating them together is a natural use of the on-the-
fly session keys generated by the TPAKE, namely the keys are used as message
authentication keys.

The Initialization. This protocol consists of TPAKE.Init and HTSig.Init.

1. A user U and the servers {S1, · · · , Sn} execute TPAKE.Init. (The basic func-
tionality is that U sends certain transformed version of her password to the
servers.)

2. A user U and the servers {S1, · · · , Sn} execute HTSig.Init.
(a) U executes X

(2,2)←→ (XU , XS) and stores XU on her device.

(b) U executes XS
(t+1,n)←→ (X(1)

S , · · · , X(n)
S ), and Sj (1 ≤ j ≤ n) stores X(j)

S .

The Invocation. Let m be the message a user U wants to sign.

1. U initiates TPAKE.Login with a set of servers (Si1 , · · · , Siw ). As a result, U
holds w different on-the-fly session keys ski1 , · · · , skiw that are also known
to Si1 , · · · , Siw , respectively.

2. U and (Si1 , · · · , Siw ) execute as follows. (This step is a combination of
HTSig.Sig and the middleware – the application of the session keys.)
(a) U generates a partial signature σU = g′1(m,XU ).
(b) U sends (m, δ = fskij

(m)) to server Sij , where 1 ≤ j ≤ w and f is
a secure message authentication code.

(c) Sij , where 1 ≤ j ≤ w, verifies the integrity of the received (m, δ). If
δ �= fskij

(m), then it aborts; otherwise, it returns its partial signature

σ
(ij)
S = g1(m,X

ij

S ) back to the user.
(d) Given w valid partial signatures σ

(i1)
S , · · · , σ(iw)

S , U computes σS =
g2(σ

(i1)
S , · · · , σ(iw)

S ).
(e) Given σU and σS , U computes the signature σ = g′2(σU , σS).

1 For real-world deployment, we have to ensure that there are no honest server that
is unable to contribute its partial signatures in the signature generation process of
Rabin [30]. This is so because that [30] recovers the secret share held by a dishonest
server, which means that the share held by (for instance) a server that is under
denial-of-service attack or temporarily down will be recovered, in spite of the fact
that this server is never compromised. We are grateful to a reviewer for pointing out
that Shoup’s scheme [35] cannot be used in this setting.
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Discussion 1. Any TPAKE satisfying the specification in Appendix A, and any
HTSig satisfying the specification in Section 3.1, can be used to construct a secure
TPAKE-HTSig (namely plug-and-play).
2. If HTSig is instantiated with RSA [30] (i.e., all the servers need to be

involved in The Invocation) and TPAKE is instantiated with the scheme of [27],
then another layer of activation is needed (e.g., the t + 1 servers that have
authenticated a user activate the rest servers). We omit this issue in our security
analysis, which nonetheless can be extended to take it into account.

3.3 Security Analysis

We focus on the unforgeability of TPAKE-HTSig; it is relatively easy to see that
robustness of TPAKE-HTSig is ensured by the robustness of TPAKE and of HTSig.

Theorem. Assume the underlying HTSig and message authentication schemes
are secure. If TPAKE-HTSig is broken, then TPAKE is broken. (A formal treatment
is deferred to Appendix B.)

4 The Second Scheme: LW-TSig

Our second scheme LW-TSig, which stands for “Light-Weight server-assisted
Threshold Signatures,” is tailored for the following real-world scenario: A user,
who has a smart card (or a hard-token in general) with no cryptographic co-
processor, wants to enjoy threshold protection of her private signing function.
This scheme is a simple, but useful, combination of a threshold signature scheme
TSig and a message authentication mechanism.

4.1 The Construction

The Initialization. This process involves a user U (who has a pair of public
and private keys (Y,X)) and the servers {S1, · · · , Sn}, and is done in a secure
environment (e.g., on a secure computer). After the process is finished, U stores
(key1, · · · , keyn) on her smart card, and Sj (1 ≤ j ≤ n) holds (keyj, Xj).

1. U runs TSig.Init via executing X
(t+1,n)←→ (X1, · · · , Xn), where Xj (1 ≤ j ≤

n) is Sj ’s share.
2. U chooses and secretly sends a symmetric key keyj to Sj , where 1 ≤ j ≤ n.

The Invocation. This process involves a user U , a signature receiver, and the
set of servers. Suppose U needs to sign a message m for the receiver.
1. U generates {δj = fkeyj (m)}nj=1 and sends it to the signature receiver,
where f is a secure message authentication code.

2. The signature receiver forwards (m, δj) to server Sj , where 1 ≤ j ≤ n.
3. Server Sj (1 ≤ j ≤ n) checks whether the request (m, δj) is valid using
the key keyj. If the request passes the test, Sj participates in the thresh-
old signature generation protocol TSig.Sig (and perhaps sends its partial
signature back to the signature receiver).

4. The signature receiver obtains a signature that can be verified using TSig.
Ver.



362 Shouhuai Xu and Ravi Sandhu

4.2 Security Analysis

Theorem (Informal Statement). If both the message authentication scheme and
the threshold signature scheme TSig are secure, then LW-TSig is secure.

5 A Taxonomy of Systems Protecting Signing Functions

5.1 The Terms

User storage-media. This specifies the type(s) of media a user used to store her
secrets, and typically reflects the user’s budget.

1. Human-memory. Human memory is used to remember passwords.
2. Soft-token. A soft-token is a data structure that is stored on a networked
device – typically a computer that can efficiently compute cryptographic op-
erations like modular exponentiations. A soft-token may be further protected
by a password.

3. Hard-token. A hard-token is a special-purpose hardware like smart card,
to which an adversary may not have access. It may have a cryptographic
co-processor, be tamper-resistant, and be protected with a password.

4. Soft- & Hard-token. A user holds a soft-token (stored on a networked
device) as well as a hard-token. One or both of them may be protected using
a password.

Number of runtime key-shares. When the private signing function is active, the
private key may exist in its entirety or be shared among multiple parties. A pri-
vate key may exist in the form of shares before it is applied, as per [34]. Suppose
at runtime a private key is of n-piece, then we consider three cases: n = 1 (i.e.,
One), n = 2 (i.e., Two), and n > 2 (i.e., Multiple).

5.2 The Taxonomy

We classify systems protecting private signing functions based on two factors:
User storage-media – the x-axis, and Number of runtime key-shares – the y-axis. Let
a coordinate (x, y) denote the corresponding system where x∈{Human-memory,
Soft-token, Hard-token, Soft- & Hard-token}, and y ∈ {One, Two,
Multiple}. Now we discuss the features of each of the 12 types of systems.
1. (Human-memory, One). In such a system, a user remembers a password
which help her download her private key from a remote server [29] or re-
mote servers [14, 22, 27]. Typically, in the transmission process the private
key is protected using an on-the-fly session key generated using a secure
password-authenticated key exchange protocol [7, 4, 23, 14, 27]. Note that
such a system has a single point of failure.

2. (Human-memory, Two). There are further two types of systems. First,
a user remembers a password from which a piece of her private key is de-
rived, whereas the other piece of her private key is stored on a remote server.
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A typical scenario has been mentioned in [15, 6], and it has also been men-
tioned that such a system is subject to off-line dictionary attack. Second,
a user remembers a password whereby he can activate two remote servers to
collaboratively sign messages on her behalf. This is indeed a downsized (i.e.,
there are 2 remote servers) version of (Human-memory, Multiple) below.

3. (Human-memory, Multiple). There are also two types of systems. First,
a user remembers a password from which a piece of her private key is de-
rived, the other pieces of the private key are stored on remote servers. Typ-
ically, such a system is subject to off-line dictionary attack. Second, a user
remembers a password whereby he can activate multiple remote servers to
collaboratively sign messages on her behalf. Such a scheme is indeed a special
case of our scheme TPAKE-HTSig.

4. (Soft-token, One). There are two types of systems. First, a user stores
a password-protected private key on a device. Such a system is subject to
off-line dictionary attack once the device is compromised. (Note that the
variant introduced in [19] can prevent an off-line dictionary attack, but at the
price of keeping the corresponding public key secret.) Second, a user deploys
a mechanism called forward security, which guarantees that compromise of
a private key at time t will not expose the private keys used at any past
time t′ < t. This notion was introduced in [1], and formalized in [3] which is
followed by numerous papers (e.g., [24, 20]).

5. (Soft-token, Two). In such a system, a private key is split into two pieces
such that one is stored on the user device as a soft-token, and the other is
stored on a remote server. The authentication of a user to the remote server
may be based on a password. The tailored constructions [9, 25, 8] fall into
this category.

6. (Soft-token, Multiple). Our scheme TPAKE-HTSig is such a system,
where a user splits her private key X into two pieces: XU and XS . The
user stores her piece XU on her networked device, and shares XS among the
remote servers.

7. (Hard-token, One). This is the traditional solution where a private key is
stored on a (tamper-resistant) smart card with a cryptographic co-processor.
Clearly, forward security can be incorporated.

8. (hard-token, two). There are further two systems. First, a user stores
one share of her private key on her smart card, and the other on a remote
server. The smart card or the share on it may be protected by a password. In
such a system, the smart card is typically equipped with a cryptographic co-
processor, which we want to avoid. Second, a user stores certain symmetric
keys on her smart card, and shares her private key among two remote servers
that collaborate in generating signatures. This is indeed a down-sized version
of our scheme LW-TSig.

9. (Hard-token, Multiple). Our scheme LW-TSig is such a system, where
a user’s private key is shared among a set of servers and a smart card is used
to store some symmetric keys. The authentication of the user to the servers
are based on symmetric key cryptography, so that the smart card does not
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need any cryptographic co-processor. Note that a password may be further
deployed to protected a smart card.

10. (Soft- & Hard-token, One). The most recently introduced system [12,
21] fall into this category. The basic idea underlying key insulation [12] is
that the system life time is divided into time periods, and a smart card
is used only for updating private keys corresponding to a fixed public key.
As a consequence, compromise of the user device, even at the runtime of
the user software, will not compromise the private key corresponding to
any past or future time period. An adversary compromising the smart card
alone is still unable to generate any signatures that are valid with respect
to the user’s public key. The enhanced notion of intrusion resilience [21]
assures forward security even if both the user device and smart card are
compromised simultaneously. Note that a password may be used to protect
the smart card.

11. (Soft- & Hard-token, Two). In such a system, a user device and smart
card collaborate via a two-party signature scheme [6, 26, 38].

12. (Soft- & Hard-token, Multiple). Such a system could be seen as an
extension of our schemes TPAKE-HTSig or LW-TSig, because the soft-token
can hold a share of her private key (as per TPAKE-HTSig) and the smart
card can hold key1, · · · , keyn (as per LW-TSig). There are some interesting
variants. For example, the smart card keeps the XU in TPAKE-HTSig and
the key1, · · · , keyn in LW-TSig. Whenever the user needs to sign messages,
she takes advantage of any (perhaps public) terminal to compute the partial
signature with respect to XU (which is of course given to the terminal and
erased by the terminal after the session is finished), but the invocation of
the remote servers are authenticated by the smart card (i.e., key1, · · · , keyn

never depart the smart card).

6 Conclusion

We presented two efficient and provably secure schemes for server-assisted thresh-
old signatures, where the signing function is activated by a user (but using some
enhanced authentication). The first one is tailored for the setting where the user
device is able to efficiently compute modular exponentiations, and the second
one is tailored for the setting where a user has a smart card without a cryp-
tographic co-processor. We also presented a taxonomy of systems protecting
private signing functions.
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A A Specification of TPAKE

Instead of pinning down on any concrete construction, we give a specification of
TPAKE so that any concrete construction satisfying this specification can be seam-
lessly embedded into our TPAKE-HTSig, namely plug-and-play. This specification
is extended from the model of [27], which in turn builds on [4, 23].

Participants. There are two types of protocol participants: users and servers.
Let ID = Users∪Servers be a non-empty set of protocol participants (i.e., prin-
cipals), where Servers = {S1, · · ·, Sn}. Each user U ∈ Users has a secret pass-
word pwdU , and each server S ∈ Servers has a vector pwdS = [pwdS(U)]U∈Users,
where entry pwdS(U) is a password record. Let Password be the dictionary from
which the users’ passwords are uniformly chosen (but the results can be easily ex-
tended to other password distributions). Let D = |Password|, which is typically
small in the real world.

Execution of the Protocol. A protocol TPAKE (i.e., TPAKE.Login) is an al-
gorithm that determines how principals behave in response to their environment.
In the real world, each principal P ∈ ID (modeled as a probabilistic polynomial-
time algorithm) is able to execute TPAKE multiple times with different partners,
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and we model this by allowing unlimited number of instances of each principal.
Instance i of principal P is denoted by Πi

P .
To capture the security of TPAKE, we assume there is an adversary A that

has complete control over the environment (mainly, the network), and thus pro-
vides the inputs to instances of principals. Since A controls the network and
can deny service at any time, we do not consider any denial-of-service attack (as
long as it has no security implication). We further assume the network (i.e., A)
performs aggregation and broadcast functions. In practice, on a point-to-point
network, the protocol implementer would most likely have to implement these
functionalities in some way, perhaps using a single intermediate (untrusted) node
to aggregate and broadcast messages. Formally, the adversary is a probabilistic
algorithm with a distinguished query tape. We assume that A may compromise
up to t servers, and that the choice of these servers is static. In particular, we
may assume that the choice is made before the initialization of TPAKE, and we
may simply assume that the adversary has access to the secrets of the compro-
mised servers. Queries written to the query tape are responded to by principals
according to TPAKE. The adversary A can request the following queries.
1. Compromise(P ). This results in that the secrets on P ∈ ID are returned
to A. Note that (1) if A requests Compromise(U) then U ’s password is not
returned to A, and (2) at most t servers are compromised.

2. Send(P, i,M). This results in that messageM is sent to instance Πi
P , which

then executes according to TPAKE (including the update of its internal state)
and returns the result to A. If this query causes Πi

P to accept or terminate,
this will also be shown to A.

3. Execute(U, i, ((Sj1 , lj1), · · · , (Sjw , ljw ))), where 1 ≤ jz ≤ n and ljz ∈ N for
1 ≤ z ≤ w, t + 1 ≤ w ≤ n. This results in the execution of TPAKE between
Πi

U (U ∈ Users) and (Π lj1
Sj1
, · · · , Π ljw

Sjw
). The transcript is returned to A.

4. Reveal(U, i, Sj). This results in that the session key held by Πi
U corre-

sponding to server Sj (i.e., skΠi
U ,Sj

) is returned to A.
5. Reveal(Sj , i). This results in that the session key held by Πi

Sj
(i.e., skΠi

Sj

)
is returned to A.

6. Test(U, i, Sj). To response to this query, Πi
U flips a coin b, and returns

skΠi
U ,Sj

if b = 0, and a string that is drawn uniformly from the same space
otherwise. A Test query (of either type) may be asked at any time during
the execution of TPAKE, but may be asked only once.

7. Test(Sj , i). To response to this query, Πi
Sj
flips a coin, and returns skΠi

Sj
if

b = 0, and a string that is drawn uniformly from the same space otherwise.
A Test query (of either type) may be asked at any time during the execution
of TPAKE, but may be asked only once.

Partnering using SIDs. Let sid be the concatenation of all messages sent
and received by the user instance in its communication with the set of
servers. (Note that this excludes the messages that are sent only between the
servers, but not to the user.) A server instance that accepts holds a partner-
id pid, session-id sid, and a session key sk. A user instance that accepts
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holds a session-id sid, a partner-id pid = (pid1, · · · , pidw) and the corre-
sponding session keys (sk1, · · · , skw). The instance Πi

U (U ∈ Users) hold-
ing (sid, (pid1, · · · , pidw), (sk1, · · · , skw)) and Π

lj
Sj
(Sj ∈ Servers) holding

(sid′, pid′, sk) are said to be partnered if there exists a unique 1 ≤ z ≤ w
such that pidz = Sj , pid′ = U , sid = sid′, and skz = sk.

Freshness. A user instance/server pair (Πi
U , Sj) is fresh if: (1) there has been

no Compromise(Sj) query, (2) there has been no Reveal(U, i, Sj) query, and
(3) if Π l

Sj
is a partner of Πi

U , there has been no Reveal(Sj , l) query. A server
instance Πi

Sj
is fresh if (1) there has been no Compromise(Sj) query, (2) there

has been no Reveal(Sj , i) query, and (3) if Π l
U is the partner to Πi

Sj
, there has

been no Reveal(U, l, Sj) query.

Advantage of an Adversary A in TPAKE. The goal of the adversary A is to
guess the bit b. To formalize its advantage, let SuccTPAKE(A) be the event that
A makes a single Test query directed to some instance Πi

P (P ∈ ID) that has
terminated and is fresh, and eventually outputs a bit b′ = b. The advantage of
A attacking TPAKE is defined to be

AdvTPAKE(A) = 2 · Pr[SuccTPAKE(A)]− 1.
We say that A breaks TPAKE, if AdvTPAKE(A) is non-negligibly more than qsend

D ,
where qsend is the number of Send(P, i,M) queries. Security and robustness
requirements of a TPAKE is captured by the following definition.

Definition 2. (Security and robustness of TPAKE) A TPAKE is said to be secure
if for any probabilistic polynomial-time algorithm A, AdvTPAKE(A) = qsend

D +ε(κ∗),
where κ∗ is a security parameter, qsend is the number of Send(P, i,M) queries, D
is the size of the dictionary from which the users choose their individual pass-
words, and ε(·) is a negligible function. A TPAKE is said to be robust if com-
promise of t servers doesn’t prevent it from functioning (i.e., outputting session
keys).

B Security Analysis of TPAKE-HTSig

B.1 Security Definition of TPAKE-HTSig

In order to capture the security (including unforgeability and robustness) of
TPAKE-HTSig, we extend the above specification of TPAKE to capture the capa-
bility of an adversary F that intends to forge signatures in TPAKE-HTSig.

Participants. This is the same as in the specification of TPAKE, except for that
each user U ∈ Users has a pair of public and private keys (Y,X) corresponding
to an appropriate signature scheme Sig.

Execution of the Protocol. A protocol TPAKE-HTSig is an algorithm that
determines how principals behave in response to their environment. In the real
world, each principal P ∈ ID (modeled as a probabilistic polynomial-time al-
gorithm) is able to execute TPAKE-HTSig multiple times with different partners,
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and we model this by allowing unlimited number of instances of each principal.
Instance i of principal P is denoted by Πi

P .
The adversary F in TPAKE-HTSig is similar to the adversary A in TPAKE,

except for that F can only request the following queries.
1. Compromise(P ). This results in that the secrets on P ∈ ID are returned
to F . Note that (1) if F requests Compromise(U) then U ’s password is not
returned to F , and (2) at most t servers are compromised.

2. Send(P, i,M). This results in that messageM is sent to instance Πi
P , which

then executes according to TPAKE-HTSig (including the update of its internal
state) and returns the result to F .

3. Execute(U, i, ((Sj1 , lj1), · · · , (Sjw , ljw ),m)), where 1 ≤ jz ≤ n and ljz ∈ N

for 1 ≤ z ≤ w, t+ 1 ≤ w ≤ n. This results in the execution of TPAKE-HTSig
between Πi

U (U ∈ Users) and (Π lj1
Sj1
, · · · , Π ljw

Sjw
). The runtime transcript is

returned to F .
4. Reveal(U, i, Sj). This results in that the session key held by Πi

U corre-
sponding to server Sj (i.e., skΠi

U ,Sj
) is returned to F .

5. Reveal(Sj , i). This results in that the session key held by Πi
Sj
(i.e., skΠi

Sj

)
is returned to F .

Partnering using SIDs. This is the same as in the specification of TPAKE.

Freshness. This is the same as in the specification of TPAKE.

The Success Probability of the Adversary F in TPAKE-HTSig. Let
SuccTPAKE-HTSig(F) be the event F outputs a valid (with respect to U ’s public
key Y ) signature σ on message m, while the following hold simultaneously:

1. there was no Execute(U, i, ((Sj1 , lj1), · · · , (Sjw , ljw),m) query;
2. if there is an un-compromised server S that ever outputs a partial signature
on m, which means that an instance Π l

S had received a message authentica-
tion tag fsk(m) that is valid with respect to the session key sk generated in
a session of sid, then the following constraints apply:
(a) (Πi

U , S) is fresh, where Π l
S and Πi

U are partners in session sid;
(b) There was no oracle query to either Π l

S or Πi
U for generating message

authentication tag on message m. (Note that our security analysis re-
mains sound even though we allow this type of oracle query that may
not be available in real-world systems.)

Denote Pr[F Succ] the probability that SuccTPAKE-HTSig(F) happens. We say that
F breaks TPAKE-HTSig, if Pr[F Succ] is non-negligibly more than qsend

D , where
qsend is the number of Send(P, i,M) queries.
We say that a TPAKE-HTSig is robust if compromise of t servers doesn’t

prevent it from functioning (i.e., outputting signatures).

B.2 The Theorems

Theorem 1. Assume the underlying hybrid threshold signature scheme HTSig
and message authentication scheme are secure. If there exists a probabilistic
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polynomial-time adversary F that breaks TPAKE-HTSig with probability
Pr[F Succ] that is non-negligibly more than qsend

D , then there exists a probabilistic
polynomial-time algorithm A such that AdvTPAKE(A) is non-negligibly more than
qsend

D .

Proof. We assume that F is static and compromises servers S1, · · · , St at the
system initialization. We stress that either XU or pwdU , but not both, can be
compromised.
There are two ways for F to forge signatures. First, it forges a message au-

thentication tag fsk(m) with respect to some secret session key skj that is gen-
erated on-the-fly and held by an un-compromised server Sj , where t+1 ≤ j ≤ n.
(This happens, for instance, when F succeeds in hitting U ’s password and there-
fore knows the on-the-fly message authentication key.) As a consequence, F that
already knew XU is able to get a signature by requesting the un-compromised
server Sj to contribute a partial signature. Denote by “F Succ-AU” the event
that F succeeds in forging a message authentication tag that is accepted by
an un-compromised server Sj , and by Pr[F Succ-AU] the probability that this
event happens. Second, it forges a signature without forging any message au-
thentication tag. This implies that F is able to output a signature by having
access to: (1) X(1)

S , · · · , X(t)
S , and perhaps XU , or (2) XS which is obtained by

compromising a quorum number of servers.
Note that

Pr[F Succ] = Pr[F Succ|F Succ-AU] · Pr[F Succ-AU] +
Pr[F Succ|¬F Succ-AU] · Pr[¬F Succ-AU]

= Pr[F Succ-AU] + Pr[F Succ|¬F Succ-AU] · Pr[¬F Succ-AU].

In order to prove the theorem, we prove two lemmas. By Lemma 1 we show
Pr[F Succ|¬F Succ-AU] is negligible, which means the probability that F suc-
ceeds in forging a signature without forging a message authentication tag is
negligible. According to the assumption that Pr[F Succ] is non-negligibly more
than qsend

D , we know that Pr[F Succ-AU] is non-negligibly more than qsend

D . By
Lemma 2 we show that if Pr[F Succ-AU] is non-negligibly more than qsend

D , then
there is a probabilistic polynomial-time algorithm A that is able to break TPAKE
with probability non-negligibly more than qsend

D . Therefore, the theorem holds.

Lemma 1. If HTSig is secure, then Pr[F Succ|¬F Succ-AU] is negligible.

Proof. Suppose Pr[F Succ|¬F Succ-AU] is non-negligible, then we show that
there is a probabilistic polynomial-time algorithm F ′ that is able to break HTSig
with non-negligible probability. According to Definition 1, we know that there
is a simulator that is able to emulate HTSig by having access to a centralized
signing oracle in the underlying signature scheme Sig. The basic idea underly-
ing the proof of this lemma is that F ′ maintains a TPAKE-HTSig environment
by establishing a TPAKE sub-environment that is beyond the scope of HTSig.
Specifically, F ′ executes as follows.
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1. F ′ emulates The Initialization of TPAKE-HTSig as follows.
(a) F ′ executes the first step of The Initialization in TPAKE-HTSig;

namely, TPAKE.Init. As a consequence, F ′ knows all the configurations
of the servers’ and the passwords of the users’.

(b) F ′ emulates the second step of The Initialization in TPAKE-HTSig;
namely, HTSig.Init. The simulation in the case thatXU is compromised
typically differs from the simulation in the case that XS is compromised,
but the existence of such simulators is guaranteed.

2. F ′ emulates The Invocation of TAPKE-HTSig as follows.
(a) Suppose XU has been compromised.

i. F ′ executes TPAKE.Login on behalf of the servers. If an authentica-
tion session is successfully finished, then F ′ holds the corresponding
message authentication keys.

ii. The user sends a signing request to F ′.
iii. If the signing request is valid, F ′ returns the simulated partial signa-
tures corresponding to the servers chosen by the user. This is done
as if F ′ is simulating a multi-party signature scheme TSig by having
oracle access to a signing oracle.

iv. The user computes the signature after obtaining w valid partial sig-
natures from F ′, where t+ 1 ≤ w ≤ n.

(b) Suppose XS has been compromised. In this case, F ′ is indeed the simu-
lator that emulates the two-party signature scheme 2Sig corresponding
to the underlying signature scheme Sig.

Since F does not forge any message authentication tag, all of the signatures
that F ′ has obtained are also available to the adversary F . As a consequence,
any forgery by F in the simulated TPAKE-HTSig is a forgery by F ′ in HTSig.

Lemma 2. Suppose the message authentication code is secure. If Pr[F Succ-AU]
is non-negligibly more than qsend

D , then there exists a probabilistic polynomial-
time algorithm A that breaks TPAKE with probability non-negligible more than
qsend

D .

Proof. The basic idea underlying the proof of this lemma is that A maintains
a TPAKE-HTSig environment while having access to a TPAKE sub-environment.
In particular, A maintains a HTSig sub-environment that is beyond the TPAKE.
For notational reason, let SID be the set of the sid’s that correspond to

those sessions whereby a non-null session key is defined in each of them. We can
then define a total order on the elements of SID. Denote by N = |SID|, then
we assume that each element in SID can be identified by i ∈ {1, · · · , N}.
Now we present the algorithm A.

1. A chooses a pair of public and private keys (Y,X) and executes the second
step of The Initialization in TPAKE-HTSig (to share X among the user
and the servers).
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2. A chooses a random z ∈ {1, · · · , N} corresponding to a session between Πi
U ′

and {Sj1 , · · · , Sjw}, where 1 ≤ jz ≤ n for 1 ≤ z ≤ w, t + 1 ≤ w ≤ n. A
uniformly chooses j ∈ {j1, · · · , jw} \ {1, · · · , t} and executes Test(U, i, Sj)
in the TPAKE sub-environment. The environment flips a coin b, and returns
sk = skΠi

U ,Sj
if b = 0, and a random string otherwise. For each of the other

session keys,A requests a Reveal to get it. Moreover,A answers F ’s queries
in the emulated TPAKE-HTSig as follows.
(a) For a query Compromise(P ), A returns the corresponding secrets to F .
(b) For a query Send(P, i,M ′), there are two cases.

i. If the query is for TPAKE,A forwards Send(P, i,M) to the TPAKE sub-
environment and returns its response to F , where M is well-defined
due to the modular composition of TPAKE-HTSig.

ii. If the query is for HTSig, A executes according to the specification
of TPAKE-HTSig and returns the result back to F .

(c) For a query Execute(U, i, ((Sj1 , lj1), · · · , (Sjw , ljw ),m), where 1 ≤ jz ≤
n and ljz ∈ N for 1 ≤ z ≤ w, A forwards Execute(U, i, ((Sj1 , lj1), · · · ,
(Sjw , ljw ))) to the TPAKE sub-environment, and emulates the runtime
beyond TPAKE. A returns the response from the TPAKE sub-environment
and the emulated transcript that is beyond the TPAKE back to F .

(d) For a query Reveal(U, i, Sj), A can answer it with probability at least
1− 1

(n−t)N since it has obtained the corresponding session key.
(e) For a query Reveal(Sj , i), A can answer it with probability at least

1− 1
(n−t)N since it has obtained the corresponding session key.

Now, if F succeeds in forging a message authentication tag that is valid
with respect to the key sk returned by the Test(·, ·, ·) oracle in the TPAKE sub-
environment, then A returns 0 (meaning that it bets sk = skΠi

U ,Sj
or b = 0);

otherwise, A returns a random bit.
We claim that if b = 1, which means that the sk obtained from theTest(·, ·, ·)

oracle is a random string, then F has negligible probability in forging a valid
message authentication tag with respect to fsk(·). Otherwise, the message au-
thentication scheme is broken. Therefore, Pr[F Succ-AU|b = 1] is negligible.
Now we compute the probability that A successfully hits the bit b when F

succeeds in forging a message authentication tag; namely,

Pr[A Succ|F Succ-AU] = Pr[b = 0|F Succ-AU]

=
Pr[b = 0] · Pr[F Succ-AU|b = 0]

Pr[F Succ-AU]
.

Therefore, we have

Pr[A Succ] = Pr[A Succ|F Succ-AU] · Pr[F Succ-AU] +
Pr[A Succ|¬F Succ-AU] · Pr[¬F Succ-AU]

= Pr[b = 0] · Pr[F Succ-AU|b = 0] + 0.5(1− Pr[F Succ-AU])
= Pr[F Succ-AU]− Pr[b = 1] · Pr[F Succ-AU|b = 1] +

0.5(1− Pr[F Succ-AU])
= 0.5(1 + Pr[F Succ-AU]− Pr[F Succ-AU|b = 1])
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and

AdvTPAKE(A) = 2 · Pr[A Succ]− 1
= Pr[F Succ-AU]− Pr[F Succ-AU|b = 1],

which is non-negligibly more than qsend

D .
As a final comment, we note that the tight reduction in security comes from

the fact that the simulator is of expected polynomial-time (with an expected
slowdown factor no greater than (n− t)N).
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