
Towards A UML Based Approach to Role Engineering 

Pete Epstein 
AT&T Laboratories 

6012 Lochanora Lane 
Manassas, VA 20111 

menstein @ tidalwave.net 

Abstract 

Role based access control (RBAC) is a promising 
technology for scalable access control. For RBAC to 
rise to its full potential, the roles must be properly 
constructed to reflect organizational access control 
policy and needs. This requires a discipline of Role 
Engineering to develop various components of RBAC 
such as role hierarchy, permissions (and permission- 
role assignment), and constraints. The importance of 
Role Engineering has been recognized but very little 
work has been done to date. In this paper we explore 
the possibility of using the Unified Modeling 
Language (UML) to support Role Engineering. We 
chose UML because it is a de facto standard and 
refIects a consensus in the modeling community. To 
investigate the capability of UML for Role 
Engineering, we represent an existing Role framework 
recently published by Thomsen, O’Brien, and Bogle. 
This framework can be modeled in UML, with the 
assistance of adding a new user defined UML 
vocabulary. 

Key Words 

Role Based Access Control, RBAC, Unified Modeling 
Language, UML, Role Engineering 

1. Introduction 

The continuing interest in RBAC is being addressed in 
the number of RBAC research papers and projects 
currently under way. RBAC will continue to grow if 
its fundamental entities, ‘kales,” can be administered; 
and permissions can be assigned in a systematic 
manner to these roles. This approach requires a 
thorough definition of a new discipline: Role 
Engineering. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that 

copies are not made or distributed for profit or commercial advan- 
tage and that copies bear this notice and the full citation on the first page. 

To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
RBAC ‘99 10199 Fairfax, VA, USA 
0 1999ACM l-58113.180-1/99/0010...$5.00 

Rati Sandhu 
ISE Department, 

MS 4A4, 
GMU, Fairfax, VA 22030 

sandhu @ Lmu.edu 

Coyne states [C95] that for Role Engineering to be 
performed on an RBAC3 model [SCFY96], the 
following components must be defined: 

l Roles, 
. Permissions (and permission-role 

assignment), 
l Constraints, and 
0 Hierarchies. 

These components must be engineered as part of 
deploying an RBAC system. One method of 
representing engineering results is by using a modeling 
language. 

In recent years UML has emerged as a de facto 
standard for object-oriented modeling of software- 
intensive systems. UML is “a graphical language for 
visualizing, specifying, constructing, and documenting 
the artifacts” of systems [BR.I99]. There are several 
companies that provide automated tools to support 
UML, Rational is one of these companies who offer 
the Rose product. UML products generate C* code 
for a program’s shell. The generated code can be used 
to envelop the more detailed logical code that can be 
written into the structure. 

In this paper we explore the possibility of using the 
UML to support Role Engineering. Documenting the 
Role Engineering Components of an RBAC model in 
UML syntax will show this possibility. The model 
chosen is the Role Based Access Control Framework 
for Network Enterprises (FNE), developed by 
Thomsen, O’Brien, and Bogle [TOB98]. Choosing an 
independently developed existing model for this 
exercise gives us an element of objectivity in assessing 
the modeling power of UML in this arena. 

Seven abstract layers represent the FNE model. Two 
different groups engineer me layers. The Application 

135 



Developers are responsible for the first four layers. 
The remaining three layers are maintained by the Local 
System Administrator. 

Within each of these groups, there is a need to create a 
role hierarchy. Layer 4 requires a role hierarchy of the 
Application Keys; and Layer 6 requires a role 
hierarchy in the organization of the key chains, The 
other five layers also support the implementation of the 
keys; as such, they also require their own engineering. 
Innate within the model is the need for Role 
Engineering of the model’s basic components as roles, 
permissions, constraints, and hierarchies. 
Programmers can use the resultant UML graphics to 
implement a solution. 

This paper shows the feasibility of using UML to 
support Role Engineering of an RBAC model. This is 
accomplished by a sequential approach. In the first 
section, Role Engineering is introduced. Then, an 
overview of UML is presented. We discuss the UML 
syntax that can be used in representing the FNE model 
and introduce new UML stereotypes. The next section 
provides a review of the FNE model. Section five 
covers the representation of each of the seven abstract 
layers of the RBAC framework model in UML. In 
addition, we discuss Role Engineering of the model 
and focus on the role hierarchy presented in layers 4 
and 6. We give the UML graphics that can be used to 
engineer the model. The remainder of the paper 
summarizes the strengths and weaknesses of using 
UML to present an RBAC model. me Paper 
concludes with a summary and direction for future 
work. 

2. Role Engineering 

We assume basic familiarity with RBAC concepts such 
as those given in the RBAC96 model [SCFY96]. The 
roles of the RBAC model must be engineered in a 
structured manner so that the model will correctly 
express an organization’s policy. 

Role Engineering is concerned with designing an 
RBAC model’s components. The components we are 
concerned about in this paper are Roles, Permissions, 
Constraints, and Hierarchies. Sandhu defmes these 
terms as [S98]: 

Roles - a job function within the organization that 
describes the authority and responsibility conferred on 
a user assigned to the role; 

Permissions - a description of the type of authorized 
interactions a subject can have with an object; 

Constraints - A relationship between and among roles: 
and, 

Hierarchies - A partial order of permission-inheritance 
relationship established among roles. 

These RBAC model components that require Role 
Engineering can be represented graphically. We will 
use the UML language to document an RBAC model, 
namely the FNE model. 

There is some overlap between the terminology for 
FNE and UML (e.g., an object means something 
different for each concept). In spite of the differences, 
in Section 5 we will show how the concepts of FNE 
and UML interrelate and how they can be graphically 
depicted. 

3. Unified Modeling Language 

This section provides a general overview of UML 
concentrating on the syntax that is relevant to this 
paper. Figure 1 displays the different types of UML 
syntax used in this paper. In addition, we introduce 
new UML syntax (Vocabulary) in the form of 
stereotypes. For further information on UML the 
reader is referred to [BIU99]. UML has three main 
building blocks: Things, Relationships, and Diagrams. 

“Things” are the main components of the model. 
“Things” are connected by Relationships. Diagrams 
display the Things and Relationships in different active 
or passive contexts. For example, a diagram can 
document a dynamic process in which a student may 
register for a cIass or it can document a static data 
structure of an organization. 

There are four kinds of things: Structural, Behavior, 
Grouping, and Annotational. 

One of the seven structural “things” of interest is a 
class. A class can contain a name, attributes, and 
operations. Classes will be used with objects. 

Behavior “things” are the verbs of UML. They are the 
dynamic parts of the UML. Behavior “things” will not 
be discussed in this paper. 

A grouping “thing” as the name states, permits the 
combining of different parts under a similar category. 
We will use the grouping “thing” named ‘package.” 

The final “thing” is annotational (it cau also be called a 
note). Notes comment a model. Notes can be used to 
comment the enterprise constraints of a key chain. 

136 



Things Relationships 

Realization 

a- ------------ 

Dependency 

< 
<<iUlport>> ---------------- 

Generalization 

a 

cc stereotypes>> 

R 1 e.cEnt;se Key>> ! 

<<user>> <<Key Chain>> 

Figure 1: UML Syntax 

Interconnections between components are 
accomplished by relationships. There are four kinds of 
relationships: Dependency, Association, 
Generalization, and Realization. 

Dependency is a relationship between two structural 
things where the modification of one “thing” may 
affect the other “thing.” An association shows an n - n 
relationship between two “things.” For example, there 
can be several houses on a street, or a house can be on 
multiple streets (i.e., a corner house). 

Another type of relationship is a generalization. A 
generalization is “a specialized/generalized 
relationship, iu which objects of the specialized 
element (the child) are substitutable for objects of the 
generalized element (the parent).” This type of 
inheritance is similar to object-oriented inheritance; 
both are transitive. Generalization can be used 
between classes and between packages. 

The last relationship is a realization. It is “a semantic 
relationship between classifiers, in which one classitier 
specifies a contract that another classifier guarantees to 
carry out.” When we discuss the RBAC model, we 
will use a realization relationship between an interface 
of a handle and a class of an object. The handle will 
specify a contract for the object to carry out. 

Unlike classes, packages are more limited; there are 
only two types of relationships: generalization and 
dependency. A package uses a special type of 

dependency called import and access. A dependent 
package can have access to an imported package if its 
contents are available to be exported (i.e., the package 
contents are marked with a “+“). Imported packages 
are not transitive. Dependencies are used to assign 
application keys to enterprise keys. 

There are nine types of diagrams that can document the 
system: Class, Object, Use Case, Sequence, 
Collaboration, Statechart, Activity, Component, and 
Deployment. We are concerned with the 
documentation of Classes. 

There are a few more items to note with regard to 
UML syntax: UML distinguishes between operations 
and methods. Operations can be considered as the 
name of a service being performed. A method is the 
implementation (i.e., the logic behind the service) of 
the operation. This is an importaut concept to 
remember when we represent methods. 

UML defines an extensive syntax; however, it is not 
adequate for our purpose. Fortunately, UhE permits 
us to define additional vocabulary by using 
stereotypes. Uh4L uses stereotypes to define an actor, 
which is of a type class. We will use an actor to 
represent a user. Another stereotype is an interface. 
An interface is also a type class but it does not define 
an implementation of operations. Instead the 
operations in an interface are realized by other classes. 

137 



We will define four additional stereotypes. They will 
be italicized. 

The first stereotype is a Handle. It is of type class. It 
will be used as an interface for an object. The 
remaining three stereotypes are type package. The 
second stereotype is used for Application Keys and the 
third is used for Enterprise Keys. The last stereotype is 
a Key Ctin. The Key Chain is a collection of 
Enterprise Keys of a type package. Objects, handles, 
application keys, enterprise keys, and key chains are 
defined in more detail in the next section. 

Commercial UML products check for some syntax 
errors. However, these products do not check for 
inconsistent logic. It is the responsibility of the 
engineer to ensure that the UML syntax is logically 
and semantically correct. 

4. The RBAC Framework for 
Network Enterprises (FNE) 

The FNE model is used in this paper as a 
representative RBAC model with a Role Engineering 
orientation. FNE is based on the divide-and-conquer 
principle. No one person is responsible for the security 
management of the entire system. 

In fact, two different groups, Application Developers 
and Local System Administrators, are responsible for 
administering the seven abstract layers of the FNE 
Model. These two groups are responsible for Role 
Engineering of their respective layers. The seven 
layers of FNE are divided into two categories. 

The Application Developer is responsible for 
designing the first four layers: 

1. Objects, 
2. Object Handles, 
3. Application Constraints, and 
4. Application Keys. 

The Local System Administrator is responsible for 
managing the upper three layers: 

5. Enterprise Keys, 
6. Key Chains, and 
7. Enterprise Constraints. 

The first four layers are the basic building blocks of 
the model. The main component is an object. An 
object has a name and a set of public methods that can 
be used to access the object. The methods can be 
considered the permissions necessary to perform the 
actions on the object. The attributes can be used as a 
condition for constraints. For example, an attribute 

may contain information about a patient’s doctor. If 
the doctor is not treating a specific patient, then the 
doctor will not be able to view that patient’s record. 

These basic building blocks can be grouped into an 
object handie set. The object handle is a collection of 
named objects and the methods that can access the 
objects. Using grouping, the number of disparate 
methods is reduced. For example, one group can be a 
handle for all “get” methods. 

The next layer is the Application Constraint Layer. An 
application constraint must be satisfied before access 
can be granted to the methods in a handle set. 

The last layer of the first group is for application keys. 
Application keys can be considered as an application 
specific role for health roles (see figure 2). An 
application key associates a role with objects, data 
records, and methods. These methods must be 
created by the application programmer to ensure that at 
least cme role has the ability to perform any required 
operation within the organization. Each key within the 
hierarchy is considered a role. The keys can be placed 
in a hierarchy, similar to a role hierarchy. Controlling 
the hierarchy allows the application developer to 
satisfy an organization’s security policy. 

The application keys are either at a leaf node (e.g., 
Consulting Physician, Primary Physician, and Nurse) 
or at a non-leaf node (e.g., Doctor, Health Care 
Provider). Any key at the non-leaf node is considered 
to be an abstract role. The importance of this is that an 
abstract role can not later be mapped to an enterprise 
key; consequently, a user can not be assigned an 
abstract role. 

The FNE model resolves multiple inheritance 
ambiguities that plague object-oriented hierarchies. 
There is no problem in determining the origination of a 
method nor a problem in determining which method 
should be used. If a key inherits methods Erom more 
than one key, then in the worse case scenario, the keys 
contain the same method with different constraints, 
The FNE policy is that constraints are logically 
‘Yhxl.” The user needs only to satisfy either constraint 
to gain access to the method. 

The next three levels, the enterprise layers, are 
maintained by the local system administrator. The first 
of these layers is the fifth layer of the model and it is 
used for the creation of enterprise keys. Each 
application key that is a non-abstract role is mapped 
one-to-one to an enterprise key. Users can either be 
assigned to an enterprise key at this layer or to a key 
chain at the next higher layer. 

138 



Consultant Report: Edit 
Patient Record: setDiagnosis - . 

1 Consultant Report: Edit 

Patient Record: getF%maryPhysician 
Nurse Report: view 

Patient Read getDiagnosis 
Patient Record: getBloodPressure 
Patient Record: setBloodRessure 

Figure 2: A sample Application key hierarchy 

The enterprise key permits the user to access the 
methods of the object listed in the key only if the 
application constraints are satisfied. A user can be 
assigned enterprise keys that are part of different 
application key hierarchies. 

The Enterprise keys can be added to a key chain in 
layer 6. A key chain can be assigned to a user. Similar 
to the application developers engineering the role 
hierarchies at layer 4, the local administrators have the 
ability to conform to a security policy by structuring 
the key chains and assigning users to those key chains. 
Multiple inheritance for key chains is resolved in the 
same manner as multiple inheritance for the 
application key hierarchy. 

The final layer, layer 7, is used to specify enterprise 
constraints. Enterprise constraints are applied to key 
chalus to restrict the user from unauthorized access to 
applications throughout the enterprise, or system. 

5. Applying UML to the FNE Model 

UML can be used for documenting active and passive 
flows. F?rocess flows of roles can be shown; but for 
this paper, only the static data structure of an RBAC 
model will be presented, 

Y Nurse Report: Edit 

The challenge is to depict the FNE model by using 
UML syntax. We meet this challenge by presenting 
each of the FNE model’s layers by UML syntax. 

5.1 Layer 1: Object 

The first UML layer shows the basic building block of 
an object. The object must have public methods that 
can access the object. Attributes and private methods 
are hidden. Under UML, the class contains the name 
of the object (see figure 3); the operations can be in 
fulf view of other classes (i.e., public) or just viewable 
by the specific class (i.e., private). Attributes and 
operations can also be listed within the class. 

There is an inconsistency between the operation and 
method terminology defined by UML and FNE. UML 
defines a method as an implementation of an operation. 
The FNE paper defines a method as a means of 
accessing an object. For the purpose of this paper, the 
methods will be defined within a class. 

B 

Attributes 
atlous 

Figure 3: Object and Methods (Layer 1) 

139 



5.2 Layer 2: Object Handle 

The next layer is the Object Haudle Layer. Methods 
cm be grouped into a Handk. Hurdle has similar 
characteristics to an interface. To create an object 
Handle, we establish a realization relationship between 
a class and a Handle (see figure 4). The methods for 
the “set dig” operation in the “set” handle is defined 
in the “Patient Record” class under “set diag.” 

Figure 4: Object Handle (Layer 2) 

5.3 Layer 3: Application Constraint 

The layer following the Object Handle Layer is the 
Application Constraint Layer. Constraint restriction on 
an operation can be documented as a precondition. The 
precondition must be satisfied prior to executing the 
operations. The preconditions are entered when the 
operations are defined in the class specification. There 
is not a graphic depiction of the precondition; however, 
when the class and its operations are printed, then the 
information in figure 5 will also be displayed. Figure 5 
shows a precondition for a GetPrhmuyPhysican 
operation of a Patient Record Class. 

Operation name: 

GetPrimaryPhysician 

Public member of: Patient Record 
Preconditions: 
The person is a patient of the primary physician. 

5.4 Layer 4: Application Key 

Application keys are presented in layer 4. Layer 4 is 
the first of the two layers that uses a role hierarchy. 
The Handles are grouped within the Application Key 
(see figure 6). The hierarchical diagram, similar to 
figure 2, uses a generalization relationship to represent 
role inheritance. The arrows for the generalization 
relationship are oriented in the opposite direction than 
in figure 2. The Applicufion Key can inherit operations 
from a lower layer Application Key. 

Abstract packages can not be represented as easily as 
abstract classes. Instead, a note can be used to indicate 
that the local administrator can not assign the non-leaf 
node to an enterprise key. 

<cApplicetion Key>> 

Figure 6: Application Keys (Layer 4) 

5.5 Layer 5: Enterprise Key 

The next layer is where the enterprise keys are defined. 
Each Application Key, other than an abstract key, is 
mapped one-to-one to an Enterprise Key (see figure 7). 
The Enterprise Keys can be assigned to a user. 

Figure 5: Object and Methods (Layer 3) 

140 



Figure 7: Enterprise Key (Layer 5) 

5.6 Layer 6: Key Chain 

The keys can be combined onto a key chain. The Key 
Chain contains a collection of one or more Enterprise 
Keys. The Key Chain can be assigned to users (see 
Figure 8). The enterprise keys are labeled El, E2, and 
E3. If the application constraints are satisfied, then the 
user has the ability to use all of the Enterprise Keys. 

5.7 Layer 7: Enterprise Constraint 

constraint conditions will be describe within the note 
(see figure 9). 

5.8 UML Approach 

We now have a representation of the RBAC 
Framework for the Network Enterprises Model using 
UML. 

Role Engineering of the FNE model is summarized in 
Table 1. 

Layer 7 is the Enterprise Constraint Layer. A note can 
be attached to each key chain. The enterprise 

I <<Key Chain>> 
I 

Figure 8: Key Chain (Layer 6) 

141 



<<Key Chain>> 

<<E2 Key>> 
<<user>> 

Figure 9: Enterprise Constraints (Layer 7) 

An “X” marks each component of the FNE model that An “X” marks each component of the FNE model that 
can he Role Engineered. can he Role Engineered. We have added User We have added User 
Assigmnent (UA) to show where users are assigned to Assigmnent (UA) to show where users are assigned to 
f0k.S. roles. 

6 x x 
7 X 

Table 1 : Role Engineering of the Seven Layers 

We have shown that the FIVE Model can be 
documented using UML. Furthermore, by 
representing the FNE model, we are supporting Role 
Engineering by documenting the components of the 
FNE model. In essence, the UlvlL produced graphics 
are providing a UML based approach to Role 
Engineering. 

6. Improving the UML ability to 
model RBAC 

In most cases, UML is able to represent an RBAC 
model cleanly; however, with some modification to the 
syntax and the FNE model, the representation cau he 
more precise. This section identifies weaknesses in 
using UML to document the FNE model. 

The fust distinction is termiuology. The FNE model 
defines an Object as “an abstract description of some 

kind of data in the system,” and UML defines an 
Object as “a concrete manifestation of an abstraction.” 
There is also an inconsistency between the operation 
and method definitions between UML and the FNE 
Paper. 

An additional area of distinction is that the UML 
model has a concept of abstract classes but not of 
abstract packages. Another small difference is that the 
arrows for UML’s generalization relationship points in 
a different direction than the arrows in the FNE 
model’s application key hierarchy. 

Although there is a check on the UML syntax, there is 
no logic or semantic check. We have to trust the 
designer to accurately depict the model. 

Further benefits can be obtained if the UML C* 
generator creates more detailed code rather than use 
just the shell of a program. This can also save 
programming time. 

The FIVE model permits users to be assigned at layers 
5 and 6. To reduce complexity, users should be 
assigned at layer 6. If only one key is used, then the 
user can be assigned to a key chain that contains that 
one key. 

Documenting constraints is awkward. A forma.I 
language has not been defined to state UML 
preconditions. Once accomplished, we can revisit the 
creation of vocabulary extensions to implement 
constraints. 

Finally, we did not document the process flow of the 
two role hierarchies in layers 4 and 6. By documenting 
the process, we have the ability to identify all the 

142 



permissions that may be necessary for the role to 
perform the required task. The process flow can 
mirror the organization’s workfIow. 

7. Conclusion - Future Research 

In this paper, we presented a UML approach to Role 
Engineering. Initially, we defined what we meant by 
Role Engineering. Next, we identified the key syntax 
of UML that can be used in documenting an RBAC 
model. The model chosen is the Role Based Access 
Control Framework for Network Enterprises by 
Thornsen, O’Brien, and Bogle. 

We proceeded to document each layer of the model by 
UML syntax. By doing so, we also realized the 
components documented are the same ones that can be 
created and structured by Role Engineering. The final 
product of Role Engineering can be the UML 
generated graphical documentation. We were able to 
use a UML based approach to assist in the Role 
Engineering of an RBAC model. 

There are several areas that require future research. 
We have only documented one RBAC model. Another 
exercise would be to document another model by the 
UML. Furthermore, this paper does not delve into the 
process side of Role Engineering. In addition, it does 
not provide a Role Engineering framework or a 
methodology to implement that framework. It also 
does not show a methodical approach for defining 
constraints for UML or for an RBAC model. Finally, 
the FNE model does not include all RBAC concepts as 
separation of duties or least privileges. These concepts 
need to be introduced and modeled. 

With the continued expansion of the Internet, there will 
be an even greater need for access control. For strong 
acceptance to continue, RBAC must be integrated into 
the framework of the Internet. Two of the areas in 
which this can be accomplished are: 

1. Using Role Engineering to generate the personnel 
or computer organization that can be easily 
implemented by Internet access control tools. 

2. Incorporating RBAC within the soon-t&e 
released Directory Enabled Network (DEN) 
standard. The DEN’s specification will be part of 
the Desktop Management Task Force’s (DMTF) 
Common Information Model for enterprise 
management. 

The UML approach to Role Engineering will be able to 
assist in documenting both of these endeavors. 

References 

[TOB98] 

EC951 

[SCFY96] 

[BRJ99] 

ES983 

CR961 

[B95] 

IT911 

Dan Thomsen, Dick O’Brien, Jessica 
Bogle. Role Based Access Control 
Framework for Network Enterprises, In 
Proceedings of 14* Annual Computer 
Security Application Conference, pages 
50-58, Phoenix, AZ, December 7-11, 
1998. 

Edward Coyne. Role Engineering, In 
Proceedings of First ACM Workshop on 
Role-Based Access Control, pages I-15 - 
I-16, Gaithersburg, MD, November 30- 
December 1,1995. 

Ravi sandhu, Edward Coyne, Hal 
Feinstein, CharlesYouman, Role-Based 
Access Control Models, In IEEE 
Computer, Volume 29, Number 2, 
February 1996, pages 38-47. 

Grady Booth, James Rumbaugh, Ivar 
Jacobson, Th.e Unified Modeling Language 
User Guide. Addison Wesley Longman, 
Massachusetts, 1999 

Ravi Sandhu, Role-Based Access Control, 
In Advances in Computers, Vol. 46, 
Academic Press , 1998. 

Rational Rose/C”, Rational Rose 
Software Corporation, Summit Software, 
Santa Clara, CA, www.rational.com, 
Copyright 1996 

John Barkley. Implementing Role-Based 
Access Control Using Object Technology, 
In Proceedings of First ACM Workshop 
on Role-Based Access Control, pages II- 
93 - 11-98, Gaithersburg, MD, November 
30-December 1,1995. 

Robert LaFore, Object-Oriented 
Programming in Turbo C”, Waite Group 
Press, 1991 

143 


