
(1) Rationale for the RBAC96 Family
of Access Control Models

Ravi Sandhu

George Mason University and SETA Corporation
ISSE Department, MS 4A4, George Mason University, Fairfax, VA 22030. USA
E-mail: sandhu@isse.gmu.edu

Abstract

A family of role-based access control (RBAC) models, referred to here
as the RBAC96 models, was recently published by the author and his
colleagues. This paper gives our rationale for the major decisions in
developing these models and discusses alternatives that were considered.

1 .O Introduction

The RBAC96 family of RBAC models was recently defined by the
author and his colleagues [SAND96b]. The scope and nature of our
original paper did not accommodate detailed discussion of the issues and
alternatives that were considered while developing these models. The
objective of this paper is to describe the rationale for the major design
decisions and to discuss alternate approaches that could have been taken.

The paper begins with a brief review of the RBAC96 models in
Section 2.0. This review is intended as a refresher and readers should
be familiar with the original paper [SAND96b] to establish the
background and context. In Section 3.0, we discuss various issues that
arose in the process of defining these models. Section 4.0 concludes the
paper.

2.0 The RBAC Models

Copyright 1996 Association for Computing
Machinery. Permission to make digital/hard
copy of all or part of this work for personal or
classroom use is granted without fee pro-
vided that copies are not made or distributed
for profit or commercial advantage; the
copyright notice, the title of the publication,
and its date appear; and notice is given that
copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on
servers, or to redistribute to lists requires
prior specific permission and/or a fee.

ACM RBAC Workshop, MD, USA
0 1996 ACM O-89791-759-6/95/001 1 $3.50

The family of RBAC96 models is summarized in Figure 1- 1, The
RBAC96 Model. This figure actually shows the most general model in
this family. For simplicity, we overload the term RBAC96 to refer to
the family of models as well as its most general member.

The top half of the figure shows roles and permissions in the system that
regulate access to the data and resources. The bottom half shows
administrative roles and administrative permissions. RBAC96 is based
on five sets of entities called users (v), roles (R), and permissions (P),
and their administrative counterparts called administrative roles (AR) and
administrative permissions (AP). It is required that administrative roles
and administrative permissions be respectively disjoint from the regular
(i.e., non-administrative) roles and permissions. Moreover regular
permissions can only be assigned to regular roles and administrative
permissions can only be assigned to administrative roles.

II- 1

Figure l-l. The RBAC96 Model

Intuitively, a user is a human being or an autonomous agent, a role is a
job function or job title within the organization with some associated
semantics regarding the authority and responsibility conferred on a
member of the role, and a permission is an approval of a particular
mode of access to one or more objects in the system. Administrative
permissions control operations which modify the components of RBAC,
such as adding new users and roles and modifying the user assignment
and permission assignment relations. Regular permissions on the other
hand control operations on the data and resources and do not permit
administrative operations. We loosely use the term role to include both
regular and administrative roles while making this distinction precise
whenever appropriate. Similarly for the term permission.

The user assignment (UA) and permission assignment (PA and APA)
relations of Figure l-l are many-to-many. A user can be a member of
many roles, and a role can have many users. Similarly, a role can have
many permissions, and the same permission can be assigned to many
roles. There is a partially ordered role hierarchy RH, also written as 1,
where x t y signifies that role x inherits the permissions assigned to
role y. Inheritance along the role hierarchy is transitive and multiple
inheritance is allowed in partial orders. There is similarly a partially
ordered administrative role hierarchy ARH.

Each session in Figure l-l relates one user to possibly many roles.
Intuitively, a user establishes a session during which the user activates
some subset of roles that he or she is a member of (directly or indirectly
by means of the role hierarchy). The double-headed arrows from a
session to R and AR indicates that multiple roles and administrative roles
can be simultaneously activated. The permissions available to the user
are the union of permissions from all roles activated in that session.

II-2

Each session is associated with a single user, as indicated by the single-
headed arrow from the session to U. This association remains constant
for the life of a session. A user may have multiple sessions open at the
same time, each in a different window on the workstation screen for
instance. Each session may have a different combination of active roles.
The concept of a session equates to the traditional notion of a subject in
access control. A subject (or session) is a unit of access control, and a
user may have multiple subjects (or sessions) with different permissions
active at the same time.

Finally, Figure l-l shows a collection of constraints. Constraints can
apply to any of the preceding components. An example of constraints is
mutually disjoint roles, such as purchasing manager and accounts
payable manager, where the same user is not permitted to be a member
of both roles.

The following definition formalizes the above discussion.

Definition 1. The RBAC96 model has the following components:

0 U is a set of users;

l R and AR are disjoint sets of roles and administrative roles
respectively;

0 P and AP are disjoint sets of permissions and administrative
permissions;

l UA c U x (R u AR), is a many-to-many user to role, and
administrative role, assignment relation;

0 PA E P x R and APA E AP x AR, are respectively many-to-many
permission to role assignment and administrative permission to
administrative role assignment relations;

l RH E R x R and ARH E AR x AR, are respectively partially
ordered role and administrative role hierarchies (written as 2 in
infix notation);

0 S is a set of sessions;

0 user : S - U, is a function mapping each session S, to the single user
user@,) and is constant for the session’s lifetime;

0 roles : S - 2R*R is a function mapping each session S, to a set of
roles roles@) s {r 1 (3’ 2 r)[(user(s,), r-‘) E (IA]} (which can
change with time) so that session si has the permissions u rcm,cSes,Si,@ 1
(3r” s r)[@, r”) E PA u APA]}; and

l There is a collection of constraints stipulating which values of
various components of the RBAC model are allowed or forbidden.

II-3

3.0 IRationale for the RBAC96 Models

This section describes our rationale for resolving various issues that
arose during development of the RBAC96 models. We also discuss
alternatives that were considered.

3.1 A Family of Models

The decision to develop a family of models rather than a single all-
encompassing model was made early in the project. It is evident that the
RE3AC96 model described in the previous section is complex and has
multiple facets. The end result shown in Figure 1-l was actually
developed incrementally and would be difficult to construct in one single
step. Our initial efforts at characterizing the multidimensional aspects of
RBAC are discussed in [SAND94b].

The RBAC96 family shown in Figure l-2, The RBAC96 Family, consists
of RBAC with respect to regular roles and permissions on the left and
RBAC with respect to administrative roles and permissions on the right.
The left and right components of Figure l-2 respectively relate to the
top and bottom halves of Figure l-l, and are similarly mirror images of
each other. Looking at the left half of Figure l-2, we have RBAC,, the
base model, at the bottom, indicating that it is the minimum requirement
for RBAC. RBAC, and RBAC, both include RBAC,, but add
independent features to it. RBAC, adds the concept of role hierarchies
(situations where roles can inherit permissions from other roles).
RBAC, adds constraints (which impose restrictions on acceptable
configurations of the different components of RBAC). RBAC, and
RBAC, are incomparable to one another. The consolidated model,
RBAC3, includes RBAC, and RBAC, and, by transitivity, RBA&.

RBAC,
Role Hierarchies
and Constraints

ARBAC,
Role Hierarchies
and Constraints

/ \
RBAC, . WAC,

Role Hierarchies constraints

\ /
RBAC,

Base Model

/. \
ARBAC,

Role Hierarchies
ARBAC,

constraints

\ /
A-AC,

Base Model

Figure 1-2. The RBAC96 Family

While developing RBAC96, we were driven by the fact that the main
motivation for RBAC, and its main advantage, is to facilitate
administration of permissions. This led us to ask how RBAC can be
used to manage RBAC itself. We feel that the use of RBAC for
managing RBAC will be an important factor in the success of RBAC. It
seemed natural to us to structure the administrative RBAC models in the
same way as the regular RBAC models. The top half of Figure l-l can

II-4

range in sophistication across RBAC,, RBAC,, RBAC,, and RBAC,.
The bottom half can similarly range in sophistication across ARBAC,,
ARBAC,, ARBAC,, and ARBAC,, as shown in the right-hand side of
Figure l-2 (the A denotes administrative). In general, we would expect
the administrative model to be simpler than the RBAC model itself.
Thus, ARBAC, can be used to manage RBAC,, but there seems to be no
point in using ARBAC, to manage RBAC,.

In the RBAC96, family we treat role hierarchies and constraints as being
two independent extensions to RBAC,. Strictly speaking, a role
hierarchy can be considered as a constraint. The constraint is that a
permission assigned to a junior role must also be assigned to all senior
roles. Or equivalently, the constraint is that a user assigned to a senior
role must also be assigned to all junior roles. So in some sense, RBAC,
is redundant and is subsumed by RBAC,. However, we felt it is
appropriate to recognize the existence of role hierarchies in their own
right. The concept of role hierarchies occurs very frequently in the
literature and is natural to simplifying administration.

3.2 Users and Sessions

The distinction between a user and a session is a fundamental aspect of
RBAC and consequently arises in RBAC,. A user is a human being, or
other intelligent agent, capable of autonomous activity in the system.
To support the principle of least privilege a user should be allowed to
login to a system with only those roles appropriate for a given occasion.

Many systems will turn on all permissions of a user irrespective of what
the user wishes to accomplish in a particular session. Thus, a user who
has powerful permissions (or roles) that are used only rarely when
needed finds that these permissions are turned on all the time. It is
possible to set up separate accounts, one in which the usual permissions
are turned on and another in which the powerful permissions are turned
on. Assigning multiple accounts to the same user introduces problems
with respect to auditing, accountability, and constraints such as
separation of duties. It is not a desirable general-purpose solution but
can be used in the short term to simulate RBAC on existing platforms.

In RBAC,, the distinction between users and sessions is useful only if
users exercise discipline regarding the roles they normally invoke. With
constraints, it may not be possible for a user to activate all their roles
simultaneously. Consider a constraint that stipulates two roles which
can be assigned to the same user but cannot be simultaneously activated
in a session. For instance, a user may be qualified to be a pilot and a
navigator but at any time can activate at most one of these roles. In
presence of such constraints, a user cannot establish a single session
with all the user’s roles activated. Changing the roles activated in a
session is a security-sensitive act and should be acknowledged to the
security system via a so-called trusted path which guarantees that the
user is making the request rather than some program acting on the user’s
behalf. Such changes can be regulated by constraints in RBAC,. For
instance, certain roles may not be dynamically added but can only be
acquired when a session is created. RBAC, allows dynamic changing of
roles in a session because of two reasons. From a conceptual viewpoint,

II-5

constraints belong in RBAC, and higher, and should not be present in
RBAC,. We could still define RBAC, to disallow all changes in a
session’s roles. We felt this is impractical and too restrictive for a base
model.

An important property of a session is that the user associated with a
session cannot change. In many applications, there are long-lived
sessions where one user hands over to another without a logout and
login. This preserves the integrity of the computing activity being
performed in the session. We feel this problem is an artifact of existing
system architectures. Continuity of activity across multiple security
sessions should be possible in properly engineered systems. Also our
models are conceptual models seeking to capture what needs to be
achieved. In implementations on specific platforms, we will need to
simulate the requirements with the mechanisms available.

The RBAC96 models do not address the issues of idle session
termination and lockout. In practice, this is an important issue. In our
conceptual framework, termination and lockout is most easily model.ed
as a constraint and belongs in RBAC,. As a practical matter, it would
be hard to effectively do RBAC, without bringing in at least a small
number of constraints of this nature.

Although we did not anticipate this in our construction of RBAC96, the
distinction between users and sessions and the ability to constrain roles
that can be simultaneously activated in a single session turns out to be
critical for simulating lattice-based access controls by means of roles
[SAND96b].

3.3 Permissions

It is difficult to identify the nature of permissions precisely in an abstract
general purpose model such as RBAC96. Permissions tend to be
implementation dependent. In lattice-based access control models
[SAND93], it is possible to abstract the essential operations into read
and write. This is because these models are focussed on one-directional
information flow in a lattice of security labels.

RBAC models are policy neutral. Hence, the nature of permissions has
to be open ended. In applying RBAC to a particular system, the
interpretation of permissions is among the most important steps to be
performed.

We deliberately decided to exclude so-called negative permissions from
RBAC96. Negative permissions deny rather than confer access. They
are used in some discretionary access control models to disallow a user
from obtaining a permission from some alternate source. The use of
constraints in RBAC is a much more useful mechanism to achieve the
same result. The literature on negative permissions is fraught with
problems concerning their interaction and relative strength with respect
to positive permissions. In the presence of role hierarchies, this could
become very complicated and arcane. We would be very reluctant to
add negative permissions into a complex model such as RBAC96.

II-6

The scope of RBAC is also consciously limited to classical permissions.
Sequencing or temporal dependencies between permissions are important
in emerging applications such as workflow [THOM94]. We decided to
limit the scope of RBAC to exclude these for two reasons. Firstly, these
are not yet well understood and much further basic research is required
for this purpose. Secondly, RBAC must have a well-delineated scope
otherwise it will be an amorphous concept which can be taken to include
all kinds of security and authorization issues.

3.4 Administrative Model

In large systems, the number of roles can be in the hundreds or
thousands. Managing these roles and their interrelationships is a
formidable task that often is highly centralized and delegated to a small
team of security administrators. Because the main advantage of RBAC
is to facilitate administration of permissions, it is natural to ask how
RBAC can be used to manage RBAC itself. We believe that the use of
RBAC for managing RBAC will be an important factor in the success of
RBAC.

RBAC96 makes a clear distinction between permissions and
administrative permissions and likewise between roles and administrative
roles. In the philosophy of RBAC, the administrative model itself is
policy neutral but does facilitate formulation and articulation of
administrative policy. This is an important area for research and for the
future of RBAC. Effective decentralized management of permissions
within parameters established by central authority will be required to
implement enterprise-wide information systems.

3.5 Model Conformance

What does it mean for a system to conform to RBAC96? RBAC96 is
best viewed as a family of reference models which play a dual role. On
one hand, RBAC96 provides a framework for analyzing the capabilities
of existing systems to assess how well and how extensively they can
support RBAC. RBAC96 also provides guidance to vendors and
developers regarding access controls to be implemented in future
systems. It is not necessary for a system to completely conform to
RBAC, before it includes features of RBAC, or RBAC,. Many existing
systems do not distinguish between users and sessions. We would say
these systems have aspects of RBAC,, RBAC,, and RBAC,, but are also
missing other aspects of RBAC,. Other systems have hard-wired
constraints, such as a session can only have one role at a time. Such
systems cannot accommodate RBAC,, because they do too much without
any choice in the matter.

4.0 Conclusion

In this paper we have discussed design decisions made by the author and
his colleagues in developing the RBAC96 models. Additional discussion
is contained in the original paper [SAND96a] and we have focussed on
issues which were not adequately discussed there. We feel that other
access control modeling efforts can benefit from our approach of

II-7

developing a family of models. We found it very useful to think about
RBAC, without the complications of constraints and hierarchies.
Similarly, it was useful to think about hierarchies without considering
constraints and vice versa. Finally, there is need to perform further
research within the framework of RBAC96 to refine and develop this
family of models, but we do not expect the framework itself to change
very much.

Acknowledgments

This research is partly supported by contract 50-DKNB-500188 from
the National Institute of Standards and Technology at SETA Corporation
and by grant CCR-9503560 from the National Science Foundation at
George Mason University.

References

[SAND931 Ravi S. Sandhu, “Lattice-based access
control models,” IEEE Computer 26(11):9-19,
November 1993.

[SAND94b] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman, “Role-based access
control: A multi-dimensional view,” In Tenth Annual
Computer Security Application Conference,
pages 54-62, Orlando, FL, 5-9 December 1994.

[SAND96a] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman, “Role-based access
control models,” IEEE Computer, 29(2):38-47,
February 1996.

[SAND96b] Ravi S. Sandhu, “Role hierarchies and
constraints for lattice-based access controls,” In Elisa
Bertino, editor, Proc. European Symposium on
Research in Computer Security, Springer-Verlag,
Rome, Italy, 1996. To appear as Lecture Notes in
Computer Science, Computer Security - ESORICS96.

[THOM94] Roshan Thomas and Ravi S. Sandhu,
“Conceptual foundations for a model of task-based
authorizations, ” In IEEE Computer Security
Foundations Workshop 7, pages 66-79, Franconia, NH,
June 1994.

II-8

