
Towards a task-based paradigm for flexible and adaptable access
control in distributed applications

R. K. Thomas and R. S. Sandhu*

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University
Fairfax, VA 22030-4444

Abstract

Historically, the access control problem has been
couched within the framework of subjects, object, and
rights. In this paper we argue for a newer paradigm for
distributed and multi-system applications, that tran-
scends the subject-object view of access control. This
new paradigm views access control and authorization
not in terms of individual subjects and object, but
rather in terms of long-lived tasks that need to be au-
thorized and managed in information systems.

1 Introduction

Historically, the access control problem has been
couched within the framework of subjects, objects,
and rights (access types). An access control request
thus essentially seeks an answer to a question posed
typically as: Is subject s allowed access a (or possess
the right a) to object o? A tuple (s, o, a), which we de-
fine as an authorization, can be input to a function f,
which returns true (or false), to indicate if the subject
s has the right a (or not) to object o. We can visualize
the implementation of such a function with an access
control matrix. This subject-object view can be traced
to the subject-object paradigm of access control that
was formulated in the early era of the development of
general multi-user computers and operating systems
[7, 51.

Over the last two decades we have seen considerable
advancements in the discipline of computer security.

*A preliminary version of this paper was presented at the
sixteenth National Computer Security Conference, Baltimore,
MD., and appears in the conference proceedings.

In particular, we have seen the evolution and devel-
opment of many access control models. The initial
proposals of Lampson [7] and Graham and Denning
[5] led to formulation of the HRU model by Harri-
son, RUZZO, and Ullman [6]. This was followed by the
development of the Take-Grant Model. A good sum-
mary of these early efforts (in the first decade) can
be found in [13]. More recent efforts have resulted in
the Schematic Protection Model (SPM) by Sandhu [8],
the Extended Schematic Protection Model (ESPM) by
Amman and Sandhu [l], and the Typed Access Matrix
Model (TAM) also by Sandhu [12].

In reviewing the above development in access con-
trol models, we note that the overriding concern was
the fine-grained protection of individual objects and
subjects in the system. However, with the advent of
databases, networking, and distributed computing, we
have witnessed a phenomenal increase in the automa-
tion of organizational tasks, as well as the computeri-
zation of information related services.

In light of this, is it not fitting that we shift our
focus on security issues from the protection of indi-
vidual objects and subjects in isolated computer sys-
tems, to the automation and provision of distributed
tasks and services? Such tasks may involve groups
of related activities that span multiple networks and
databases. Authorization (access control) may be re-
quired for groups of related activities at several de-
partments and may even organizational boundaries.
Thus, we believe it is timely and necessary to tran-
scend the above classical subject-object view of access
control, and work towards newer paradigms.

01993 ACM O-89791-635-2 $1.50
138

Petission to copy without fez all or part of this material is granted.
provided that the copies arc not made or distributed for direct commercial
advanlagc. the ACM copyright notice and the tide of the publication and
its dale appear. and notice is given that copying is by pamission of the
Association for Computing Machinery. To copy otherwise. or 10 republish.
requires a fee and/or specitic pemdssion.

2 Task-based Authorization

In this section we elaborate on the central point of
this paper. In a nutshell, authorizations in distributed
applications should be seen in terms of tasks or activ-
ities rather than individual subjects and objects. We
argue this, based on two emerging trends:

1. The integration of computing within organiza-
tions, and the subsequent increase in the automa-
tion of organizational functions and work-flows.

2. The shift from main-frame computer systems to
workstations and client-server technologies.

With the first trend, we are witnessing an increased
demand for the support of multisystem applications.
Such applications may even cross departmental and
organizational boundaries. A very good example of
this in the telecommunications industry is that of ser-
vice order provisioning [2]. This is the automated
process of providing telephone services to customers.
Upon receiving a service request, a service order is gen-
erated. The processing of the service order demands
coordination and data exchange between several busi-
ness units in the company, and eventually leads to the
assignment of lines and equipments, as well as the up-
date of billing information (among others). As another
illustration, consider the automation of a paper-based
sales order processing application (system). Sales or-
der processing begins with the receipt of-a customer
purchase order. The subsequent processing steps may
involve several documents such as sales orders, in-
voices, customer statements, and journal vouchers.
These documents may propagate through several de-
partments in the organization(s) such as SALES-
ORDER, CREDIT, FINISHED-GOODS, SHIPPING,
BILLING, and ACCOUNTS-RECEIVABLE, com-
pleting the many subtasks involved in processing the
sales order request.

The above documents would have to undergo a
sequence of authorization or approval phases. For
instance, a sales order may be routed through the
CREDIT department, and shipment authorized only
after a credit check on the customer succeeds. An or-
ganization may also incorporate various controls and
checks to minimize risks due to fraud. One way to
achieve this is through separation of duties. cus-
todial functions performed by FINISHED-GOODS
and SHIPPING departments are separated from the
recording functions of BILLING and ACCOUNT-
RECEIVABLE, and the authorization functions pei-
formed by the SALES-ORDER and CREDIT de-
partments. Separation of duties among individuals

can ensure that only goods intended for shipment to
customers are removed from the FINISHED-GOODS
storeroom, and that all such goods are shipped only
to authorized customers and are billed correctly.

The need for task-based authorizations arises even
within the world of a single user in an office, accom-
plishing a simple and routine task such as printing
from a workstation. Resources such as printers, files,
and applications, may be shared over a local area net-
work. The printing of a multimedia document, for
example, may require authorization and access to mul-
tiple servers, and data stored at several objects.

A task, as identified in the scenarios above, may
characterized as one that:

is long-lived;

may involve multiple subtasks, where a subtask
may need to be individually or collectively au-
thorized;

may involve multiple and often distinct principals
to carry out individual subtasks;

is distributed in space and time.

We believe, that the authorization of tasks that span
multiple systems over departmental and organiza-
tional boundaries, as well as those that involve individ-
ual workstations and servers, are conceptually similar
and can thus be addressed in a unified manner.

As an initial attempt, we introduce the abstraction
of an authorization-task as a unit for managing the
authorizations in distributed applications. A task is a
logical unit of work in such applications and may con-
sist of several individual subtasks. In the earlier men-
tioned sales order processing system, when an order
is taken, a corresponding authorization-task is begun.
Individual authorization actions, such as the credit ap-
proval for a customer, can be done by finer units of
authorization-tasks called authorization-subtasks.

3 Flexible and Adaptable Access Con-
trol

In the subject-object view of access control, ev-
ery authorization tuple represents a primitive unit
of access control information. Collectively, these tu-
ples are unrelated to each other. Contrast this with
the requirements of our application above, where the
sales order processing task involves several related
individual subtasks that need approvals (authoriza-
tions). Such a requirement calls for a higher level

139

control structuring facility. An analogy to the above
predicament can be seen in the realm of transac-
tions and databases. Classical transactions with the
ACID (Atomicity, Consistency, Isolation, and Dura-
bility) properties represent concurrent but unrelated
units of work. Consider a requirement (restated from
an example in [14]) for the sequencing of three trans-
actions such as:

Execute Tl, followed by T2 and T3 in parallel; If Tz
fails, then abort T3 as well.

With the transaction as the main control abstraction,
it is impossible to implement the above without ad-hoc
application programming. This has led researchers
to propose other abstractions, such as the so-called
ConTracts [14]. Authorizations in distributed applica-
tions similarly call for abstractions beyond individual
subject-object authorizations.

We list some of the obvious questions that need to
be answered on the road that could lead to a task-
baaed authorization approach.

1.

2.

3.

4.

5.

Abstraction and Modeling:
What are the proper abstractions to express and
manage the required authorizations for tasks?

Grouping Authorizations:
How can groups of related activities be collec-
tively authorized?

Flow Control and Dependencies:
How can we describe and manage the control flow
and dependencies between the authorizations of
the various steps in a task?

Incorporation of Integrity Mechanisms:
How can we incorporate controls such as those
based on separation of duties and multiple ap-
provals?

Failures, Exceptions, and Recovery:
How can we handle failures in the authorization
of individual steps of tasks? If a certain autho-
rization/approval for a certain step in a task is
not forthcoming, we may wish to specify alter-
nate paths to be taken. For example, if the credit
worthiness of a customer cannot be immediately
established, the organization may have a policy
that allows the sales order to go through, so long
as the value of the items ordered does not ex-
ceed a certain amount. Or perhaps, in another
scenario, we may wish to express that a certain
authorization/approval step may be selectively ig-
nored, under some conditions.

4 An Illustrative Example

To illustrate the intuition, flexibility, as well as gen-
erality, of task-based authorizations, let us take a con-
crete example that requires separation of duties. Sup-
pose there already exists some predefined mechanisms
and formalisms for expressing separation of duties.
For example, Sandhu in [lo, 111 has proposed transac-
tion control expressions as an approach to implement
separation of duties in computerized systems. It is
based on a database activity model that utilizes the
notions of transient and persistent objects. Transient
objects include documents such as vouchers, purchase
orders, sales slips, to name a few. These objects are
transient in nature in the sense that they issue a fi-
nite set of operations and then leave the system (in
a paper world this happens when a form is archived).
These operations eventually affect persistent objects
such as inventory databases, and bank accounts. The
fundamental idea is to enforce controls primarily on
the transient objects, and for transactions to be ex-
ecuted on persistent objects only as a side effect of
executing transactions on transient objects.

Consider a check processing application where a
clerk has to prepare a check and assign an account,
followed by three (separate) supervisors who have to
approve the check and account, and finally the check
to be issued by a different clerk (in the paper world,
this would be accomplished trough a voucher). This
can be represented by the following transaction con-
trol expressions:

prepare l clerk;
3: approve 0 supervisor;
issue l clerk;

The colon is a voting constraint specifying 3 votes from
3 different supervisors. Each expression consists of a
transaction and a role. Separation of duties is achieved
by requiring the users who execute different transac-
tions in the transaction control expression be all dis-
tinct.

Now consider a certain application that requires the
use of two vouchers (transient objects). Now suppose
the first voucher needs to be completely processed be-
fore the second one can be started. Further, we require
separation of duties across these vouchers. We would
proceed by defining an authorization-task that con-
sists of two authorization-subtasks. Each subtask is
assigned to a single transient object (a voucher in this
example) and executes the transaction control expres-
sions of the transient object. A subtask may specify
the failure semantics within a transient object. If for

140

t11 t12 t13 11 12
t41 t42 t43

(a) nested @) split (c) split-join-nested

Figure 1: Models of authorization-tasks

example, the same clerk attempts to issue the check af-
ter preparing the voucher, the separation of duties re-
quirement is violated. The authorization-subtask may
then pursue some alternate action. A violation in the
separation of duties across the two vouchers will be
detected by the parent authorization-task. The au-
thorization task may have to maintain global history
and context information for this purpose.

5 Models of Authorization-tasks

In the last section, we discussed an exam-
ple of an authorization-task that consisted of two
authorization-subtasks. In general, authorization-
tasks may form much more complicated structures
due to the application semantics and dependencies be-
tween individual subtasks. It may be possible to ana-
lyze these dependencies and classify them as belonging
to one or predefined categories. For each category we
may generate a model of authorization-tasks to man-
age such dependencies.

Figure 1 illustrates some basic models that could be
enumerated. In l(a), we have an authorization-task T
that is modeled as subtasks tl, tz, and ts. The sub-
task tl in turn consists of subtasks tl,l, tl,~, and tl,s,
and hence the nested tree-like structure. A depth-first
traversal of the tree would give the order in which
the subtasks need to be completed. In addition to
the relative order between the subtasks, we may also
associate deadlines for the completion of individual

subtasks. Figure l(b) shows a split-model for an au-
thorization task. This could be used to model the
scenario where an individual requisition form has gen-
erated (split into) multiple forms, and where autho-
rizations (signatures) can be granted independently
on each of these forms. Finally, figure l(c) illustrates
a split-join-nested composite structure. In this case,
after a split, the multiple requisitions are approved
independently and later consolidated into one requi-
sition. The consolidated task (requisition form) then
has a nested structure of subtransactions.

6 Conclusions

In this paper, we have argued for a new paradigm
for flexible and adaptable access control in distributed
applications. We have motivated a task-based ap-
proach that represents a departure (and a paradigm
shift) from the subject-object view of access control.
Unlike the subject-object paradigm where the focus is
on the doer, our paradigm focuses on what needs to be
done. Our approach naturally leads to a transaction-
based view of modeling and managing authorizations.
We have presented authorization-tasks as a central ab-
straction for this purpose.

We believe that many of the ideas in the recent
advances of transaction models are useful [4]. For ex-
ample, one may specify dependencies and failure se-
mantics between transactions, in a flexible way and
often user-defined fashion. The insights here could

141

be used to give more internal structure and semantics
to authorization tasks. A long-term vision should be
the development of a comprehensive framework (such
as ACTA, for database transactions [3]) for specify-
ing and reasoning about authorizations in distributed
applications.

Acknowledgements

The work of both authors is partially supported by
a grant from the National Security Agency, contract
No: MDA904-92-C-5140. We are grateful to Pete Sell,
Howard Stainer, and Mike Ware for their support and
encouragement.

References

[l] Ammann, P.E. and Sandhu, R.S. “The Extended
Schematic Protection Model.” Journal of Com-
puter Security, Volume 1, Numbers 3 and 4, 1992,
pages 335-383.

[2] M. Ansari, L. Ness, M. Rusinkiewicz, and A.
Sheth. Using flexible transactions to sup-
port Multi-system telecommunications applica-
tions. Proc. of the 18th VLDB Conference, British
Columbia, Canada, 1992.

[3] P. K. Chrysanthis and K. Ramamritham. ACTA:
A Framework for specifying and reasoning about
transaction structure and behavior, Proc. of the
ACM SIGMOD conference, pages 194-203, 1990.

[4] Database Transaction Models for Advanced Appli-
cations, A.K. Elmagarmid (Editor), Morgan Kauf-
mann Publishers, San Mateo, California, 1992.

[5] Graham, G.S. and Denning, P.J. “Protection -
Principles and Practice.” AFIPS Spring Joint
Computer Conference 40:417-429 (1972).

[S] M.H. Harrison, W.L. Ruzzo, and J .D. Ulln-ian.
Protection in operating systems. Communications
of the ACM, 19(8), pages 461-471, 1976.

[7] Lampson, B.W. “Protection.” 5th Princeton Sym-
posium on Information Science and Systems, 437-
443 (1971). Reprinted in ACM Operating Systems
Review 8(1):18-24 (1974).

[8] Sandhu, R.S. “The Schematic Protection Model:
Its Definition and Analysis for Acyclic Attenuating
Schemes.” Journal of ACM 35(2):404-432 (1988).

[9] Sandhu, R.S. “Separation of Duties in Comput- _ _
erized Information Systems.” In Database Secu-
rity IV: Status and Prospects, (Jajodia, S. and
Landwehr, C.E., editors), North-Holland 1991,
179-189.

[lo] R.S. Sandhu. Transaction control expressions for
separation of duties. Proc. of the Fourth Com-
puter Security Applications Conference, pp. 282-
286, 1988.

111 R.S. Sandhu. Separation of duties in comput-
erized information systems. Database Security
IV, Status and Prospects, S. Jajodia and C.E
Landwehr (Editors), Elsevier Science Publishers
B.V. (North-Holland)

121 Sandhu, R.S. “The Typed Access Matrix Model.”
Proc. IEEE Symposium on Research in Security
and Privacy, Oakland, California, May 1992, pages
122-136.

[13] Snyder, L. “Formal Models of Capability-Based
Protection Systems.” IEEE Transactions on Com-
puters C-30(3):172-181 (1981).

[14] H. Wachter and A. Reuter. The ConTract Model.
In Database Transaction Models for Advanced Ap-
plications, A.K. Elmagarmid (Editor), Morgan
Kaufman Publishers, San Mateo, California, 1992.

142

