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ABSTRACT Polyinstantiation has generated a great deal of controversy lately. Some have argued
that polyinstantiation and integrity are fundamentally incompatible, and have proposed alternatives
to polyinstantiation. Others have argued about the correct de�nition of polyinstantiation and its
operational semantics. In this paper we provide a fresh analysis of the basic problem that we are
trying to solve, i.e., how can a honest database keep secrets? Our analysis leads us to the concept
of restricted polyinstantiation wherein we show how to solve this problem without compromising
on any of the following requirements: secrecy, integrity, availability-of-service, element-level labeling
and high assurance. This is the �rst solution to meet all these requirements simultaneously.

1 INTRODUCTION

What distinguishes a multilevel database from ordinary single level ones? In a multilevel world as
we raise a user's clearance new facts emerge; conversely as we lower a user's clearance some facts
get hidden. Therefore users with di�erent clearances see di�erent versions of reality. Moreover,
these di�erent versions must be kept coherent and consistent|both individually and relative to
each other|without introducing any downward signaling channels.y

The caveat of \no downward signaling channels" poses a major new problem in building multilevel
secure database management systems (DBMSs) as compared to ordinary single-level DBMSs. This
caveat is inescapable and absolute. We must reject outright \solutions" which tolerate downward
signaling channels. Solutions with such channels, e.g., as proposed in [1, 9], may well be acceptable as
an engineering compromise in particular situations. But they are clearly not acceptable as general-
purpose solutions. This point needs to be emphasized because security is usually the one to take the
�rst hit in engineering trade-o�s. It behooves us as security researchers to present solutions which
avoid taking this hit while at the same time providing

� no downward signaling channels,

� consistency and integrity of the database both within and across levels,

� 
exibility for application semantics,

�The work of both authors was partially supported by the U.S. Air Force, Rome Air Development Center through
subcontract #C/UB-49;D.O.No.0042 of prime contract #F-30602-88-D-0026, Task B-O-3610 with CALSPAN-UB
Research Center.

yWe deliberately use the term downward signaling channel rather than covert channel. A downward signaling
channel is a means of downward information 
ow which is inherent in the data model and will therefore occur in every

implementation of the model. A covert channel on the other hand is a property of a speci�c implementation and not
a property of the data model. In other words, even if the data model is free of downward signaling channels, a speci�c
implementation may well contain covert channels due to implementation quirks.
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� �ne-grained classi�cation of data (i.e. element-level labeling), and

� high assurance with minimal trusted code.

The central point of this paper is to demonstrate how these diverse goals can be met in a multilevel
relational DBMS without compromising security as part of the bargain. Our solution is simple in
concept and almost obvious in retrospect. For the most part it uses standard concepts from the
database arena. A key new idea is to introduce a special value called \restricted" distinct from the
normal data values of an attribute (or column) as well as distinct from \null." The value \restricted"
denotes that the particular �eld cannot be updated at the speci�ed level. So long as the value of
a �eld is not \restricted" our multilevel relations behave much as ordinary single-level relations do.
Particular attention is required when a �eld is changed from unrestricted to restricted and vice versa.
A notable property of our solution is that it can be implemented entirely by untrusted subjects, i.e.,
subjects which are not exempted from the simple security or ?-properties.z

The rest of this paper is organized as follows. Section 2 reviews the concept of polyinstantiation
from an intuitive point of view, with the objective of identifying the sources of polyinstantiation
and alternatives to it. Section 3 informally introduces our solution of restricted polyinstantiation
and illustrates it by examples. Section 4 formalizes and precisely de�nes our solution. It also
provides additional examples. Section 5 discusses how our solution can provide the highest degree
of assurance. Section 6 concludes the paper.

2 POLYINSTANTIATION

The concept of polyinstantiation was explicitly introduced by Denning et al [3] in connection with
the SeaView project. Since then much has been written about this topic [1, 3, 4, 5, 6, 7, 9, for
instance]. In this paper we will set aside all this previous theory, formalism and debate. Instead
we go back to �rst principles and consider by means of examples how polyinstantiation arises and
therefore how it might be controlled. We assume the reader is familiar with basic relational notions
and terminology.

2.1 The Source of Polyinstantiation

Polyinstantiation can occur in basically two di�erent ways which we call polyhigh and polylow re-
spectively for mnemonic convenience.

1. Polyhigh occurs when a high userx attempts to insert data in a �eld which already contains low
data. Overwriting the low data in place will result in a downward signaling channel. Therefore
the high data can be inserted only by creating a new instance of the �eld to store the high
data. We also have the option of rejecting the update altogether with the attendant possibility
of denial-of-service to the high user.

2. Polylow occurs in the opposite situation where a low user attempts to insert data in a �eld
which already contains high data. In this case rejecting the update is not a viable option
because it establishes a downward signaling channel. That leaves us two alternatives. We can
overwrite the high data in place which violates the integrity of the high data. Or we can create
a new instance of the �eld to store the low data.

zThe protocols of section 4 can be simpli�ed if trusted subjects which are exempted from these properties are
allowed in selected situations.

xStrictly speaking we should be saying subject rather than user. For the most part we will loosely use these terms
interchangeably. Where the distinction is important we will be appropriately precise.



In both cases note that we have identi�ed \secure" alternatives to polyinstantiation. These
alternatives are secure in the sense of secrecy and information 
ow. Unfortunately the alternatives
have denial-of-service and integrity problems reiterated below.

1. The alternative to polyhigh entails denial-of-service to high users by low users (i.e., once a low
value has been entered in a �eld a high value cannot be entered until the low value has been
nulli�ed by a low subject{).

2. The alternative to polylow entails destruction of high data by low users which presents a serious
integrity problem (i.e., the high data is overwritten in place by low data.)

A naive implementation of these alternatives will create more real security problems than it solves.
Our main contribution in this paper is to show how these alternatives to polyhigh and polylow can
be employed in a careful, disciplined manner to achieve secrecy, availability-of-service and integrity
with high assurance.

It should be noted that there is an important di�erence between polyhigh and polylow. Polyhigh
can be completely prevented by reactive mechanisms at the cost of denial-of-service to entry of high
data. This is likely to be a tolerable cost in many applications. On the other hand polylow cannot be
completely prevented by reactive mechanisms. At the moment of enforcement a reactive mechanism
has only the alternative of overwriting high data by low data. This is likely to be intolerable in
most applications. Therefore polylow must|for all practical purposes|be prevented by a proactive
mechanism, i.e., steps must be taken in advance of the problem's occurrence to ensure that it cannot
occur.

2.2 Polyhigh Example

Let us now consider a concrete example to make polyhigh and polylow clearer. Consider the following
relation SOD where Starship is the apparent primary key.

Starship Objective Destination TC

Enterprise U Exploration U null U U

Here, as in all our examples, each attribute in a tuple not only has a value but also a classi�cation.
In addition there is a tuple-class or TC attribute. This attribute is computed to be the least upper
bound of the classi�cations of the individual data elements in the tuple.

Now consider the following scenario.

1. A U user updates the destination of the Enterprise to be Talos. The relation is therefore
modi�ed as follows.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

2. Next a S user attempts to modify the destination of the Enterprise to be Rigel. We cannot
overwrite the destination in place because that would create a downward signaling channel.
We can reject the update at the risk of denying entry of legitimate secret data. Or we can
polyinstantiate and modify the relation to appear as follows, respectively for U and S users.
Note that U users see no change.

{This protocol|of nullifying low data prior to entry of high data|does not guarantee protection against denial-
of-service. If a low value is nulli�ed to enable entry of a high value there remains the risk that a low Trojan Horse
can enter another low data value before the high subject has the opportunity to enter its high value. The solution
described in this paper (see Section 3) eliminates this vulnerability.



Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

What are we to make of this last relation given above. There are at least two reasonable interpre-
tations.

� Cover Story. The destination of Talos may be a cover story for the real destination of Rigel.
In this case the database is accurately mimicking the duplicity of the real world. There are,
however, other ways of incorporating cover stories besides polyinstantiation. For example we
may have two attributes, one for cover-story destination and one for the real destination.
Debate on the relative merits and demerits of these techniques is outside the scope of this
paper. For purpose of this paper we assume that polyinstantiation is not to be used for cover

stories. We therefore reject this alternative as a valid interpretation.

� Temporary Inconsistency. We have a temporary inconsistency in the database which needs to
be resolved. For instance the inconsistency may be resolved as follows: the S user who inserted
the Rigel destination latter logs in at the U level and nulli�es the Talos value, so thereafter
the relation appears respectively as follows to U and S users.

Starship Objective Destination TC

Enterprise U Exploration U null U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

It is most important to understand that this scheme does not create a downward signaling
channel from one subject to another. The nulli�cation of the destination at the U level is
being done by a U subject. One might argue that there is a downward signaling channel with
a human in the loop. The human is however trusted not to let the channel be exercised without
good cause. Finally note that the U user who executed step 1 of the scenario may again try
to enter Talos as the destination, which brings us within the scope of polylow.

2.3 Polylow Example

Our example for polylow is similar to the polyhigh example with the di�erence that the two update
operations occur in the opposite order. So again consider the following relation SOD where Starship
is the apparent primary key.

Starship Objective Destination TC

Enterprise U Exploration U null U U

This time consider the following scenario.

1. A S user modi�es the destination of the Enterprise to be Rigel. The relation is modi�ed to
appear respectively as follows to U and S users. Note that U users see no change in the relation.



Starship Objective Destination TC

Enterprise U Exploration U null U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

2. A U user updates the destination of the Enterprise to be Talos. We cannot reject this update
on the grounds that a secret destination for the Enterprise already exists, because that amounts
to establishing a downward signaling channel. We can overwrite the destination �eld in place
at the cost of destroying secret data. This would give us the following relation for both U and
S users.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

For obvious reasons this alternative has not been seriously considered by most researchers.
That leaves us the option of polyinstantiation which will modify the relation at the end of step
1 to the following for U and S users respectively.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

This is exactly the same relation as obtained at the end of step 2 in our polyhigh example. The
possible interpretations are therefore similar, i.e., we either have a temporary inconsistency or a
cover story (the latter alternative has already been rejected for our database). The temporary
inconsistency can be corrected by having a U subject (possibly created by a S user logged in at the
U level) nullify the Talos destination. But the inconsistency may recur again and again.

3 RESTRICTED POLYINSTANTIATION

In the previous section we have examined the source of polyinstantiation and identi�ed polyhigh
and polylow as the two di�erent ways in which polyinstantiation arises. In this section we consider
applications which have the following requirements.

1. Downward signaling channels cannot be tolerated.

2. The simple security and ?-properties must be enforced for all subjects, i.e., no trusted code
can be used.

3. Temporary inconsistencies cannot be tolerated.

4. Denial of data entry service to high users cannot be tolerated.

Moreover each of these requirements has equal importance and one cannot be sacri�ced for another.
The scenarios of the polyhigh and polylow examples of the previous section show that polyinstanti-
ation by itself cannot meet these requirements simultaneously. One requirement or the other must
give in some way.



In this section we show how all four requirements identi�ed above can be simultaneously met.
We describe our solution as restricted polyinstantiation. The basic idea is to introduce a special
symbol denoted by \restricted" as the possible value of a data element. The value \restricted" is
distinct from any other value for that element and is also di�erent from \null." In other words the
domain of a data element is its natural domain extended with \restricted" and \null." We de�ne
the semantics of \restricted" in such a way that we are able to eliminate both polyhigh and polylow.
\Null" has exactly the same semantics as any other data value and needs no special treatment.

Let us now play out the polyhigh and polylow scenarios of the previous section to intuitively
motivate our solution. A formal description of the update protocols is given in the next section.

3.1 Polyhigh Example Revisited

Consider again the following relation SOD where Starship is the apparent primary key.

Starship Objective Destination TC

Enterprise U Exploration U null U U

Now consider the following scenario.

1. A U user updates the destination of the Enterprise to be Talos. The relation is therefore
modi�ed as follows.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

2. Next a S user attempts to modify the destination of the Enterprise to be Rigel. We cannot
polyinstantiate even temporarily, so we must reject this update. Do we have denial-of-service
to the S user? No, because the S user can obtain service as follows.

Step 2a. The S user �rst logs in as a U-subject and marks the destination of the Enterprise as
restricted giving us the following relation.k

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

The meaning of restricted is that this �eld can no longer be updated by a U user. U users
can therefore infer that the true value of Enterprise's destination is classi�ed at some level not
dominated by U.

Step 2b. The S user then logs in as a S-subject and enters the destination of the Enterprise as
Rigel giving us the following relations at the U and S levels respectively.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

kAlternately the S user logs in at the U-level and requests some properly authorized U user to carry out this step.
Communication of this request from the S user to the U user may also occur outside of the computer system, by say
direct personal communication or a secure telephone call.



How does this di�er from the scenario of section 2.2 (where the end result after cleaning up the
temporary inconsistency was as above except that we have null instead of restricted)? The main
di�erence is that, after step 2a, U users are no longer able to update the destination of the Enterprise.
In particular, attempts by U users to reenter Talos as the destination of Enterprise will be rejected
on the grounds that the �eld is restricted. Therefore the relation is guaranteed to be consistent till
such time as the restricted value is eliminated. Consideration of who should be allowed to enter and
remove the restricted value is deferred for now.

Does step 2a introduce a signaling channel? Yes, but this signaling channel is very similar to
the one resulting from the nulli�cation of Talos at the U-level in the example of section 2.2. Both
involve a trusted S user in the loop who presumably will ensure that the channel is not exercised
wantonly, but rather that this inference is permitted only when the real world situation is actually
so. Such a channel with trusted humans in the loop can be exercised only by Trojan Horses that are
capable of manipulating the real world. This entails the manipulation of real trusted people making
real decisions and not merely the manipulation of bits in a database.

3.2 Polylow Example Revisited

Now consider the two update operations in the opposite order. So again we begin with the following
relation SOD where Starship is the apparent primary key.

Starship Objective Destination TC

Enterprise U Exploration U null U U

This time consider the following scenario.

1. A S user modi�es the destination of the Enterprise to be Rigel. This update is rejected! Instead
the S user is asked to go through steps 2a and 2b of section 3.1 giving us the following relations
at the U and S levels respectively.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

2. A U user updates the destination of the Enterprise to be Talos. The update is rejected on the
grounds that the �eld is restricted.

Note that there is no denial-of-service to the S user. What is happening is a denial of improper
service, i.e., there is a protocol for entering high data which all S users are required to follow. Failure
to follow the protocol results in denial-of-service but this can hardly be considered a security breach.
The denial-of-service to the U user is, of course, only appropriate in this situation.

There is a crucial di�erence between this protocol and the one discussed in section 2.1. In both
cases entry of high data is enabled by an action of a low subject. Our protocol requires the low
subject to enter the \restricted" value in the data element. In section 2.1 the suggestion was for the
low subject to enter a \null" value. The key di�erence in the two cases is that a null value can be
made non-null by a low Trojan Horse, whereas the restricted value cannot be made unrestricted by
a low Trojan Horse. The latter operation requires a special privilege whose distribution is carefully
controlled by non-discretionary means. This privilege is available only to selected low subjects who
are trusted to exercise its use properly.



4 THE PREVENT PROTOCOLS

In this section we precisely de�ne the collection of update protocols illustrated by example in the
previous section. We collectively call this collection the prevent protocols because they prevent
polyinstantiation due to either polyhigh or polylow from occurring. These protocols can be imple-
mented entirely by untrusted subjects, i.e., subjects which are not exempted from the simple security
or ?-properties.

4.1 Multilevel Relations

We begin by reviewing some basic concepts and notation for multilevel relations. Let A1, C1, A2, C2,
: : :, An, Cn denote the attributes (columns) of a multilevel relation R with element level labeling.
Each Ai is a data attribute and each Ci is the classi�cation attribute for Ai. A data attribute can
take on values from its natural domainDi extended with two special values, \null" and \restricted,"
whose meaning will be de�ned shortly. We assume that each Ci can take on any value c in the
security lattice.�� We require that Ci cannot be null. Finally R has a collection of relation instances

Rc one for each access class c in the given lattice.

Assume there is a user-speci�ed primary key AK consisting of a subset of the data attributes
Ai. We call AK the apparent primary key of the multilevel relation scheme. In general AK will
consist of multiple attributes. We have the following requirement in analogy to entity integrity in
the standard relation model. (The notation t[Ai] denotes the value of the Ai attribute in tuple t,
and similarly for t[Ci].)

Property 1 [Entity Integrity] Instance Rc of R satis�es entity integrity i� for all t 2 Rc: (i) AK
is uniformly classi�ed in each tuple, i.e., Ai; Aj 2 AK ) t[Ci] = t[Cj], and (ii) the classi�cation
of each non-key data attribute dominates the classi�cation of the apparent key, i.e., Ai 62 AK )
t[Ci] � t[CAK] where CAK is the classi�cation of AK. 2

The notions introduced thus far are standard ones �rst introduced in the SeaView model [7].
Our next requirement severely limits polyinstantiation and distinguishes the approach of this paper
from previous work on element-level labeling (such as [3, 4, 5, 6, 7]).

Property 2 [Key Integrity]R satis�es key integrity i� for every Rc we have for all i : AK;CAK !
Ai; Ci. 2

This property stipulates that the user-speci�ed apparent keyAK, in conjunction with key-classi�cation
CAK , functionally determines all other attributes. In other words Rc cannot have more than one
tuple for a given combination of values for AK and CAK . That is, the real primary key of the
relation is AK;CAK. The e�ect of key integrity is to rule out instances such as the following.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

The reason for rejecting this instance is its inconsistency in specifying two di�erent destinations|one
secret and one unclassi�ed|for the Enterprise. Recall our assumption that cover stories are not to
be incorporated by polyinstantiation, so interpretations such as discussed in [5] do not apply in this
situation. Key integrity does allow instances such as the following where there is polyinstantiation
of the key.

��In practice of course it is desirable to place appropriate upper and lower bounds on each Ci. This will only require
minor changes to the following discussion.



Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

In this case we interpret the two tuples as describing two distinct Starships which happen to have
the same name.

The next property is concerned with consistency between relation instances at di�erent access
classes. Here again we depart from the analogous property de�ned in [5, 6, 7].yy

Property 3 [Inter-Instance Integrity] R satis�es inter-instance integrity i� for all c0 � c we
have Rc0 = �(Rc; c

0) where the �lter function � produces the c0-instance Rc0 from Rc as follows:

1. For every tuple t 2 Rc such that t[CAK] � c0 there is a tuple t0 2 Rc0 with t0[AK;CAK] =
t[AK;CAK] and for Ai 62 AK

t0[Ai; Ci] =

�
t[Ai; Ci] if t[Ci] � c0

< restricted; c0> otherwise

2. There are no tuples in Rc0 other than those derived by the above rule. 2

The �lter function maps a multilevel relation to di�erent instances, one for each descending access
class in the security lattice. Filtering limits each user to that portion of the multilevel relation for
which he or she is cleared. For instance �ltering the following S-instance of SOD

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

gives us the following U-instance

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

4.2 Update Protocols

In section 4.1 we have identi�ed integrity properties for multilevel relations considered at some
instant in time as static objects. We now consider the dynamic behavior of these relations by
considering their update semantics. We emphasize that our protocols do not require any exception
from the simple security or ?-properties.zz There are three subcases to consider as follows.

4.2.1 Data Value Update

By the term data value we mean any value other than \restricted." Our �rst protocol addresses
the case where the value of attribute t[Ai] is changed from its previous data value to a new data
value, i.e., neither the previous value nor the new one can be \restricted." \Null" does not need any
special treatment in our protocols and is viewed as just another data value. We have the following
update protocol.

yyThe de�nition of the �lter function given in [5, 6, 7] di�ers from the one given here in that <restricted,c0> is
replaced by <null,t[CAK]>.

zzNote that the protocols can be simpli�ed if trusted subjects which are exempted from these properties are allowed
in selected situations. In particular the protocol to change a restricted value to unrestricted (see section 4.2.3) would
be considerably simpli�ed by using a trusted subject which is exempted from the ?-property.



Protocol 1 t[Ai] can be changed from its previous data value to a new data value by a c-user only
if t[Ci] = c.

The e�ect of this update operation is de�ned as follows.

1. The value of t[Ai] is changed to its new value in all relation instances Rc0, c0 � c. The value
of t[Ci] remains unchanged as c in all Rc0, c

0 � c.

2. All other instances of R remain unchanged. 2

Note that the precondition for this protocol is stated as a necessary condition (\only if"). It is thus
a mandatory requirement. In addition to this mandatory pre-condition we may as usual impose
further mandatory and/or discretionary controls.

To illustrate the protocol consider the following U and S instances of SOD respectively.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

An update by a U user to change the Objective from \Exploration" to \Mining" has the following
e�ect.

Starship Objective Destination TC

Enterprise U Mining U restricted U U

Starship Objective Destination TC

Enterprise U Mining U Rigel S S

That is the update takes e�ect at both the U and S levels. An attempt by a S user to change the
Objective attribute would be rejected. So would an attempt by a U user to change the Destination
attribute. A S user may change the Destination attribute to say \Talos" giving us the following U
and S instances of SOD respectively.

Starship Objective Destination TC

Enterprise U Mining U restricted U U

Starship Objective Destination TC

Enterprise U Mining U Talos S S

To appreciate how \null" is treated just like any other data value consider what happens if a S user
nulli�es the Destination attribute. We get the following U and S instances of SOD respectively.

Starship Objective Destination TC

Enterprise U Mining U restricted U U

Starship Objective Destination TC

Enterprise U Mining U null S S

The Destination attribute remains restricted for U users and the null value is shown only to S users.
The classi�cation of the null at S signi�es that data in this �eld can only be entered by S users. If



the Destination attribute has a null value at the U level then both U and S instances of SOD must
be as follows.

Starship Objective Destination TC

Enterprise U Mining U null U U

In this case U users are allowed to enter data for the Destination attribute whereas S users are not
permitted to do so. In order to enable S users to change the Destination of the Enterprise we must
�rst restrict this �eld at the U level. This brings us to our next protocol.

4.2.2 Update from Unrestricted to Restricted

Let us �rst consider the case where the security lattice is totally ordered (i.e., there are no com-
partments). An update of attribute Ai in tuple t from some existing data value to \restricted" is
performed as follows.

Protocol 2 t[Ai] can be changed from its previous data value to \restricted" by a c-user only if
t[Ci] = c.

The e�ect of this update operation is de�ned as follows.

1. The value of t[Ai; Ci] is changed to < restricted; c> in the instance Rc.

2. Let �(c) be the immediate predecessor of c (i.e., �(c) > c and there is no c0 such that �(c) >
c0 > c). The value of t[Ai; Ci] is changed to <null; �(c)> in all instances Rc0 ; c

0 > c.

3. All other instances of R remain unchanged. 2

It su�ces to have the pre-condition t[Ci] = c for this operation because, in conjunction with the
inter-instance integrity property, t[Ci] = c implies

(8c0 : t[CAK] � c0 < c) t[Ai; Ci] = < restricted; c0> in Rc0

In other words a data element can be made restricted at level c only if its data value is currently
classi�ed at level c, which in turn implies that the data element is restricted at all relevant levels
below c.

To illustrate the e�ect of such updates consider the following U instance of SOD (which is
identical to the S instance).

Starship Objective Destination TC

Enterprise U Exploration U Rigel U U

A U user can change the destination of the Enterprise to be \restricted" giving us the following U
and S instances.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U null S S

Now let us consider the general case of a partially ordered security lattice. The problem with
partially ordered labels lies in step 2 in de�ning the e�ect of protocol 2. In a partial ordering there



may be multiple immediate predecessors of c so �(c) is no longer uniquely de�ned. As part of the
update operation we have to designate one of c's immediate predecessors as the distinguished one
which will remain unrestricted. All other immediate predecessors become restricted. Let �(c) denote
the distinguished immediate predecessor. Step 2 of protocol 2 needs to be restated as follows.

20. The value of t[Ai; Ci] is changed as follows for all instances Rc0 ; c
0 > c.

t[Ai; Ci] =

�
<null; �(c)> if c0 � �(c)
< restricted; c0> if c0 6� �(c)

As an example consider a lattice with four labels, S, U, M1 and M2; where M1 and M2 are both
dominated by S and both dominate U, but M1 and M2 are themselves incomparable. Suppose we
have the following instance of SOD at all four levels.

Starship Objective Destination TC

Enterprise U Exploration U Rigel U U

Let a U user make the Destination �eld of the Enterprise \restricted" while designating M1 to be
�(U) for this update. The U, M1, M2 and S instances of SOD will respectively become as follows.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U null M1 M1

Starship Objective Destination TC

Enterprise U Exploration U restricted M2 M2

Starship Objective Destination TC

Enterprise U Exploration U null M1 M1

4.2.3 Update from Restricted to Unrestricted

Again for simplicity let us �rst consider the case where the lattice is totally ordered. We have the
following protocol for making a �eld unrestricted.

Protocol 3 t[Ai] can be changed from its current value of \restricted" to a data value dv only by
a c-user.

The e�ect of this update operation is de�ned as follows.

1. The value of t[Ai; Ci] is changed to <dv; c> in all instances Rc0, c0 � c.

2. All other instances of R remain unchanged. 2

The pre-condition for this update, that t[Ai; Ci] = < restricted; c> in Rc, is su�cient to ensure that
t[Ai; Ci] = < restricted; c0> in all R0

c, c
0 � c (due to inter-instance integrity).

The protocol will overwrite any existing data value for t[Ai] in instances R0
c, c

0 > c. This
operation therefore has the potential for creating integrity problems by overwriting existing higher
level data. We have rejected this approach as a general solution in section 2. Here we are proposing



to employ it for the speci�c purpose of converting a �eld from restricted to unrestricted. We require
that this be a specially privileged operation so that we can be sure it is executed only when the real
world conditions warrant it. We will return to this point in the next section.

To illustrate this operation consider the following U and S instances of SOD.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U null S S

A suitably privileged U user can change the value of the Destination attribute in this tuple to be
say \Talos" giving us the following (identical) U and S instances of SOD.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Next let us consider the case of a partially ordered security lattice. The pre-condition of protocol 3
is no longer su�cient. Before a c user is allowed to change a restricted �eld to non-restricted we
must ensure that �eld is restricted at all levels which do not dominate c. This includes levels which
are dominated by c as well as levels incomparable with c. The latter requirement cannot be checked
by a c user without violating simple-security. We circumvent this problem by requiring the update
of protocol 3 to occur in two phases as follows.

1. Preparatory Phase. Login at level t[CAK] and set

t[Ai; Ci] = < restricted; c0> in all instances R0
c, c

0 � t[CAK ]

i.e., set t[Ai] to \restricted" at all levels where tuple t is visible.

2. Update Phase. Login at level c and set t[Ai; Ci] = <dv; c>.

The net e�ect of this modi�ed protocol is to set

t[Ai; Ci] =

�
<dv; c> in all instances Rc0, c0 � c

< restricted; c0> in all instances Rc0, c0 6� c

For example consider the following U, M1, M2 and S instances of SOD respectively taken from the
end of section 4.2.2.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U null M1 M1

Starship Objective Destination TC

Enterprise U Exploration U restricted M2 M2

Starship Objective Destination TC

Enterprise U Exploration U null M1 M1



The preparatory phase will give us the following U, M1, M2 and S instances of SOD respectively.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U restricted M1 M1

Starship Objective Destination TC

Enterprise U Exploration U restricted M2 M2

Starship Objective Destination TC

Enterprise U Exploration U restricted M2 M2

In other words the preparatory phase restricts the Destination attribute of this tuple at all levels
above U (which is the key class of the tuple). Subsequently, the update phase results in (say) the
following U, M1, M2 and S instances of SOD respectively.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U restricted M1 M1

Starship Objective Destination TC

Enterprise U Exploration U Rigel M2 M2

Starship Objective Destination TC

Enterprise U Exploration U Rigel M2 M2

5 ASSURANCE

In this section we brie
y consider how the prevent protocols can be enforced.

Our �rst observation is that all our protocols adhere to both simple security and the ?-property.
They can therefore be enforced by a DBMS trusted computing base (TCB) to the highest assurance
standards without the use of subjects which are exempt from simple-security or the ?-property.

Secondly, our protocols are designed to achieve integrity and availability-of-service in addition
to secrecy. The secrecy objective can be enforced to A1 standards by strict enforcement of simple
security and the ?-properties. In order to achieve the integrity and availability of service requirements
we need controls beyond the traditional simple security and ?-property. Let us consider each of the
following three cases in turn.

5.1 Data Value Update

This is the simplest case where our multilevel relations behave much as conventional single-level
relations do. It is obvious that in a high integrity system updates must be carefully controlled
even within a single security level. Conventional databases use mechanisms such as well-formed
transactions and least privilege for this purpose [2, 8]. The DBMS TCB must provide high assurance



support for such mechanisms. We do not need any additional mechanisms for multilevel DBMSs.
The required mechanisms should anyway be available in high-quality single-level DBMSs as discussed
in [8].

5.2 Update from Unrestricted to Restricted

Assigning a restricted value to a �eld with classi�cation c requires a check that this �eld is already
restricted at levels below c. This is feasible within the scope of simple security. In high assurance
systems this application-independent pre-condition should be checked by the DBMS TCB. At lower
levels of assurance the pre-condition may be tested by individual transactions rather than the DBMS.

The e�ect of restricting a �eld at the c level is dangerous in that it can cause denial-of-service to
c users. So when the destinations of all our 
ights are made restricted, when they should not be, we
might end up grounding the entire 
eet! Therefore the ability to mark a �eld as restricted should
be a carefully controlled privilege. This privilege should be assigned to a few subjects who need to
do this operation. We can ensure that this privilege cannot be acquired except by some very special
non-discretionary means such as involving intervention by a security o�cer.

The general problem of incorrect data essentially exists whether or not we recognize restricted
as a special value. For suppose a malicious program running at the U level, and obeying simple
security and ?-property, sets the destination of all 
ights to be Dayton, Ohio. Does the entire 
eet
converge on Wright Patterson Air Force Base? Presumably a high integrity system has corrective
measures to detect and recover from such errors. In principle, incorrectly restricted �elds present a
similar problem except that recovery may be slightly more cumbersome.

5.3 Update from Restricted to Unrestricted

An update from restricted to unrestricted is di�erent from the previous two cases because we cannot
test the pre-conditions for this action within the con�nes of simple security. If we wish to prevent
overwriting of high data by this operation we have to check that no high data exists (i.e., no non-null
high data exists). In view of simple security this is not feasible. Therefore we de�ne the operation
as potentially overwriting high data. It follows that we must strictly control the ability to make a
restricted value unrestricted. The control in this case should be even stricter than in the case of
update from unrestricted to restricted. Alternately, we can use a trusted subject for this operation.

6 CONCLUSION

In this paper we have shown how both the polyhigh and polylow variations of polyinstantiation
can be eliminated by our solution of restricted polyinstantiation. This allows us to avoid downward
signaling channels, inconsistencies, denial of data entry to high users and the overwriting of high
data by low subjects while providing element-level labeling. This is the �rst solution to meet all
these requirements simultaneously.

In conclusion we wish to note that restricted polyinstantiationmakes a particular trade-o� among
con
icting objectives. It may be eminently suitable to most applications. Yet we would advise
against having this as the only option. Databases are long lived and develop a great deal of inertia
over their life. Moreover di�erent applications may call for di�erent trade-o�s. For example tem-
porary inconsistencies may be preferred to inconvenience in data entry. General-purpose multilevel
secure DBMSs must cater to such applications too. Therefore our recommendation is that restricted
polyinstantiation be available as one of several options that a multilevel secure DBMS supports.
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