

Tennessee TECH

Cyber Attacks on Smart Farming Infrastructure

Authors: Sina Sontowski, Maanak Gupta, Sai Sree Laya Chukkapalli, Mahmoud Abdelsalam, Sudip Mittal, Anupam Joshi, Ravi Sandhu

Presenter: Sina Sontowski ssontowsk42@tntech.edu

Outline

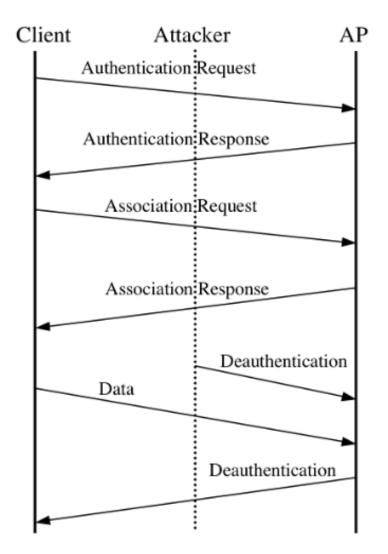
- Background
- Network Attacks
- Deauthentication Attack
- Implications of Deauthentication Attack

Background

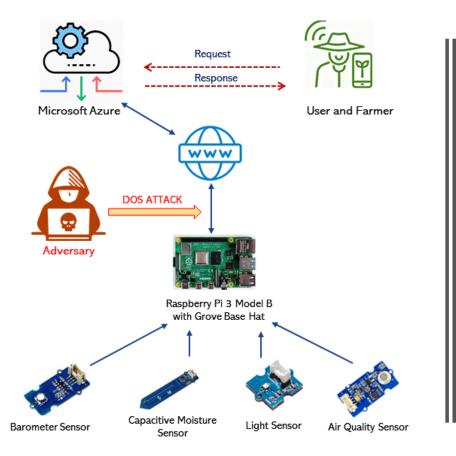
- Smart-Farming
 - Fulfill global food demand and supply
 - Boost productivity and maintain product quality
- A Smart-Farm, an attack vector
 - Target for foreign competitors
 - Limited investment in cybersecurity
 - Lack of resources

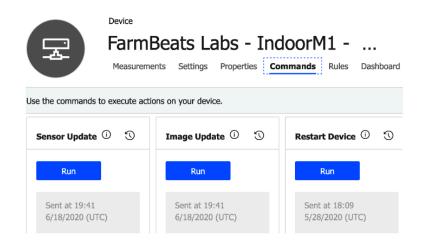
Research Objectives

- Explore different Cyberattacks
- Demonstrate a Cyberattack on a Smart Farming Architecture
- Analyze the attack and why it was possible so that it can be fixed

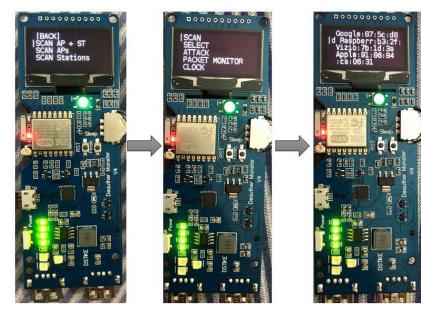


Network Attacks

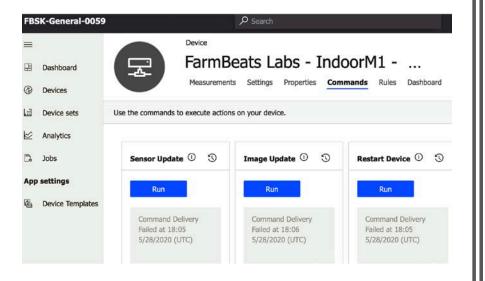

- Possible due to use of 802.11 protocol, not limited to Smart-Farm domain:
 - Password Cracking
 - Evil Twin Access Point
 - Key Reinstallation Attack
 - Kr00k CVE-2019-15126
 - ARP Spoofing Attack
 - DNS Spoofing Attack



Deauthentic ation Attack


Set-up of the Architecture

Steps of the Attack



a). Scanning for Access Point and Stations

b). Main Menu

c). Select Raspberry Pi

Completion of the Attack

Apply a display filter <೫/>									
No.	Time	Source	Destination	Protocol	Length	Info			
1967	4.893734	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=476,	FN=0,	Fla
2179	5.443789	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=478,	FN=0,	Fla
2190	5.493192	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=490,	FN=0,	Fla
2205	5.543376	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=492,	FN=0,	Fla
2230	5.593361	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=495,	FN=0,	Fla
2252	5.646374	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=497,	FN=0,	Fla
2278	5.693111	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=500,	FN=0,	Fla
2303	5.743159	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=502,	FN=0,	Fla
2321	5.793045	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=505,	FN=0,	Fla
2341	5.843801	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=507,	FN=0,	Fla
2369	5.893045	ARRISGro_01:71:60	Broadcast	802.11	55	Deauthentication,	SN=510,	FN=0,	Fla

▶ Frame 1: 45 bytes on wire (360 bits), 45 bytes captured (360 bits)

▶ Radiotap Header v0, Length 25

▶ 802.11 radio information

▶ IEEE 802.11 Request-to-send, Flags:C

Implications of Deauthentication Attacks

- Sensor Data Obstruction
 - Obstruct real-time communication
 - Disrupt irrigation system's decision
 - Damage crops, negatively affecting harvest
- Controlling Connected Devices
 - Gains access to entire smart-farm through evil twin access point or password cracking
 - Controlling agricultural drones to spray excessive fertilizers over the plants

Defense against Deauthentication Attacks

- Enabling IEEE 802.11w by encrypting management frames
- Reasonable priced 802.11w routers common in big companies
- Production cost: encryption capability issues
- 802.11w requires vendor to update code/firmware on both Aps and client side
- Raspberry Pi 3 Model B's network interface card does not support encryption protocol required for protected management frames; however, Model B+ does

Conclusion

- Smart Farming has become popular and widely adopted
- Exposes new attack surfaces
- DoS attack on Smart-Farming Infrastructure
 - Deauthentication Attack
- Weakness of IEEE 802.11 protocol
- Successful attack has serious implications
- Future work, expand on other attacks and use other protocols

