
Proc. ACM SIGMOD International Conference on Management Data, Denver, Colarado, May 1991, pages 50-59.

TOWARD A MULTILEVEL SECURE RELATIONAL DATA

MODEL

Sushil Jajodia �and Ravi Sandhu�

Center for Secure Information Systems

and

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030-4444

Abstract

Although there are several e�orts underway to build
multilevel secure relational database management sys-
tems, there is no clear consensus regarding what a
multilevel secure relational data model exactly is. In
part this lack of consensus on fundamental issues re-
ects the subtleties involved in extending the classical
(single-level) relational model to a multilevel environ-
ment. Our aim in this paper is to discuss the most
fundamental aspects of the multilevel secure relational
model. Speci�cally, we consider two requirements: en-
tity integrity and update semantics. Our overall goal
is to preserve as much as possible the simplicity and
exibility of the relational model without sacri�cing
security in the process.

1 INTRODUCTION

A large number of databases in the Department of
Defense, the intelligence community and civilian gov-
ernment agencies contain data that are classi�ed to
have di�erent security levels. All database users are
also assigned security clearances. It is the responsi-
bility of a multilevel secure database management sys-
tem (DBMS) to assure that each user gains access|
directly or indirectly|to only those data for which he
has proper clearance. Private corporations also use
security levels and clearances to ensure secrecy of sen-
sitive information, although their procedures for as-
signing these are much less formal than in the govern-
ment.

Most commercial DBMSs provide some form of
data security by controlling modes of access privileges

�This work was partially supported by the U.S. Air Force,
Rome Air Development Center through subcontract #C/UB-
49;D.O.No.0042 of prime contract 5#F-30602-88-D-0026, Task
B-O-3610 with CALSPAN-UB Research Center.

of users to data [3, 12]. These so-called discretionary
access controls do not provide adequate mechanisms
for preventing unauthorized disclosure of information.
Therefore, commercial DBMSs are not suitable for
use in multilevel environments. Multilevel systems re-
quire additional mechanisms for enforcing mandatory
(or nondiscretionary) access controls [1].

As a result, there are several e�orts underway to
build multilevel secure relational DBMSs. These ef-
forts are following the same path taken by object-
oriented databases. On one hand, several database
vendors (e.g, Oracle, Sybase, Trudata, to name a few)
are busy building commercial products, and others
(e.g, SRI [2, 10], SCTC [4]) are building research pro-
totypes. On the other hand, there is no clear consen-
sus regarding what a multilevel secure relational data
model exactly is. This has led to continuing arguments
about basic principles such as integrity requirements
and update semantics. This lack of consensus on fun-
damental issues underscores the subtleties involved in
extending the classical relational model to a multi-
level environment. In absence of a strong theoretical
framework it is unfortunate, but inevitable, that much
of the argument on basic issues is unduly inuenced
by implementation details of speci�c projects.

Our aim in this paper is to discuss the most
fundamental aspects of the multilevel secure rela-
tional model. It is our goal to be formal, analyt-
ical and objective|in the sense of implementation
independent|in this exercise. We speci�cally con-
sider two requirements.

� Entity Integrity. It is important to specify pre-
cisely all constraints that relations must satisfy
since these constraints ensure that all instances in
the database are meaningful. It is equally impor-
tant to require only the minimal necessary con-
straints so as to allow as large a class of admis-
sible instances as possible. In classical relational

theory the essential constraints have been iden-
ti�ed as entity integrity and referential integrity.
In section 4 we consider the multilevel analog of
entity integrity. We identify four core integrity
properties which should be required of all multi-
level relations. One of these is a generalization of
the usual entity integrity requirement to a mul-
tilevel context, while the other three are new to
multilevel relations. Our focus in this paper is on
single relations and we do not consider multilevel
referential integrity here.

� Relation Updates. Somewhat paradoxically, the
understanding of update operations is crucial to
achieving secrecy of information in multilevel sys-
tems. In section 5 we generalize the familiar
INSERT, DELETE and UPDATE operations of
SQL to a multilevel context. The main di�erence,
with respect to the classical semantics of these op-
erations, is that certain updates cannot be carried
out by overwriting the data in place because do-
ing so would result in leakage or destruction of
secret information. This inescapable fact compli-
cates the semantics of multilevel relations. Our
goal here has been to preserve as much as possi-
ble the intuitive simplicity of these operations in
classical relations without sacri�cing security in
the process.

The rest of this paper is organized as follows. The
next section gives an overview of basic concepts of mul-
tilevel security. Section 3 reviews basic de�nitions for
standard (single-level) relations followed by those for
multilevel relations. Sections 4 and 5 discuss entity in-
tegrity and relation updates in a multilevel context as
outlined above. The last section concludes the paper.

2 BASIC CONCEPTS

Below we give a brief description of the relevant
multilevel security concepts. For a more detailed dis-
cussion, we refer the reader to [1] or [9].

The way in which a secure DBMS controls access
to data is known as the system's security policy. In
the context of multilevel databases, a secure DBMS
must enforce a suitable interpretation of the manda-
tory access controls employed in manual systems. In
the government and military sectors these controls
are literally mandated by law. In the commercial
world they are a matter of internal company policy.
A well-accepted interpretation of these access controls
for computerized systems was given by Bell and La-

Padula. The Bell-LaPadula model was originally de-
veloped by analogy to manual systems in the mili-
tary. An axiomatic derivation and generalization of
the model were subsequently given by Denning.

The Bell-LaPadula model is stated in terms of sub-
jects and objects. An object is a passive entity such
as a data �le, a record, or a �eld within a record. A
subject is an active process that can request access to
objects. Every object is assigned a classi�cation, and
every subject a clearance. Classi�cations and clear-
ances are collectively referred to as access classes (or
levels). An access class consists of two components:
a hierarchical component (usually, Top Secret (TS),
Secret (S), Con�dential (C), and Unclassi�ed (U), in
this order) together with a set of unordered categories
(e.g., NATO, Nuclear, Army, etc.). Access classes are
partially ordered in a lattice as follows: Given two
access classes c1 and c2, c1 � c2 i� the hierarchical
component of c1 is greater than or equal to that of c2
and the categories in c1 include those in c2.

Throughout this paper, we use the terms high and
low to refer to two access classes such that the former
is strictly higher than the latter in the partial order.
Also if a user is logged on at an access class c, we refer
to such a user as a c-user.

The Bell-LaPadula model imposes the following re-
strictions on all data accesses:

1. The Simple Security Property. A subject is al-
lowed a read access to an object only if the for-
mer's clearance is identical to or higher (in the
partial order) than the latter's classi�cation.

2. The ?-Property (pronounced \the star property").
A subject is allowed a write access to an object
only if the former's clearance is identical to or
lower than the latter's classi�cation.

It should be noted that these properties are necessary
but not su�cient to allow the corresponding access.
The su�cient conditions will include the usual discre-
tionary access controls of commercial DBMSs.

As a consequence of these two restrictions, sub-
jects having di�erent clearances see di�erent versions
of a multilevel relation: A user having a clearance
at an access class c sees only that data which lies at
class c or below. As an example, consider the relation
scheme SOD(Starship, Objective, Destination) where
Starship is the primary key and the security classi�-
cations are assigned at the granularity of individual
data elements. A user with Secret clearance will see
the entire multilevel relation SODS shown in �gure 1,
while a user having Unclassi�ed clearance will only see
the �ltered relation SODU shown in �gure 2.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager U Spying S Mars S S

Figure 1: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager U Null U Null U U

Figure 2: SODU

It turns out that the system may not be secure even
if it always enforces the two Bell-LaPadula restrictions
correctly. A secure system must additionally guard
against covert channels [8]. Covert channels provide
indirect means by which information by subjects at
high security classes can be passed down to subjects
at lower security classes. To illustrate, consider once
again the multilevel relation given in �gure 1. Sup-
pose that an U-user who sees the instance in �gure
2 wishes to replace the second tuple of SODU by the
tuple (Voyager, Exploration, Talos). From a purely
database perspective, this update by the U-user will
be rejected because the attribute Starship constitutes
the primary key of SODS. However, from the security
viewpoint, this update cannot be rejected since doing
so will be su�cient to compromise security. Since a Se-
cret process can send one bit of information by either
inserting or deleting a particular tuple at the Secret
level, both Secret and Unclassi�ed processes can coop-
erate to establish a covert channel. Thus, both tuples
(Voyager, Spying, Mars) and (Voyager, Exploration,
Talos) must somehow co-exist in SODS, as in �gure 3.
This is called polyinstantiation: there are two or more
tuples in a multilevel relation with the same primary
key.

Polyinstantiation illustrates the intrinsic di�culty
of extending the standard relational concepts to the
multilevel world. Even the basic relational notion
of a key does not have a straightforward extension
to multilevel relations. Although polyinstantiation is
inevitable in multilevel systems it must be carefully
controlled so as to avoid confusion and ambiguity in
the database. For instance the S-instance of �gure 4
should not be allowed because it gives ambiguous in-
formation about the Voyager's objective at the S level.
It is therefore most important to precisely identify the

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager U Exploration U Talos U U
Voyager U Spying S Mars S S

Figure 3: SODS

Starship Objective Destination TC

Voyager U Exploration S Mars S S
Voyager U Spying S Mars S S

Figure 4: An illegal S-instance

constraints required of all multilevel relations.

3 MULTILEVEL RELATIONS

We �rst review the basic concepts for the standard
(single-level) relations, followed by those for multilevel
relations. In the next section we will state four core
integrity requirements that we feel must be satis�ed
by all multilevel relations.

The standard relational model is concerned with
data without security classi�cations. Data are stored
in relations which have well de�ned mathematical
properties. Each relation has two parts as follows.

1. A state-invariant relation
scheme R(A1; A2; : : : ; An), where each Ai is an
attribute over some domain Di which is a set of
values.

2. A state-dependent relation over R , which is a
set of distinct tuples of the form (a1; a2; : : : ; an)
where each element ai is a value in domain Di.

Not all possible relations are meaningful in an ap-
plication; only those that satisfy certain integrity con-
straints are considered valid.

Let X and Y denote sets of one or more of the
attributes Ai in a relation scheme. We say Y is func-
tionally dependent on X, written X ! Y , if and only
if it is not possible to have two tuples with the same
values for X but di�erent values for Y . A key of a
relation is a minimal set of attributes on which all
other attributes are functionally dependent. The pri-
mary key of a relation is one of its keys which has been
speci�cally designated as such.

Moving on to a multilevel world, a major issue is
how access classes are assigned to data stored in rela-
tions. The proposals have ranged from assigning ac-
cess class to relations, to individual tuples in a rela-
tion, to individual attributes of a relation, or to in-
dividual data elements of the tuples of a relation. In
this paper, we will consider the general case and assign
access class to individual data elements of a relation.

A multilevel relation consists of the following two
parts.

De�nition 1 [RELATION SCHEME] A state-
invariant multilevel relation scheme

R(A1; C1; A2; C2; : : : ; An; Cn; TC)

where each Ai is a data attribute over domainDi, each
Ci is a classi�cation attribute for Ai and TC is the
tuple-class attribute. The domain of Ci is speci�ed by
a range [Li;Hi] which de�nes a sub-lattice of access
classes ranging from Li up to Hi. The domain of TC
is [lubfLi : i = 1 : : :ng; lubfHi : i = 1 : : :ng] (where
lub denotes the least upper bound). 2

De�nition 2 [RELATION INSTANCES] A col-
lection of state-dependent relation instances

Rc(A1; C1; A2; C2; : : : ; An; Cn; TC)

one for each access class c in the given lattice.
Each instance is a set of distinct tuples of the form
(a1; c1; a2; c2; : : : ; an; cn; tc) where each ai 2 Di or
ai = null, c � ci and tc = lubfci : i = 1 : : :ng. More-
over, if ai is not null then ci 2 [Li;Hi]. We require
that ci be de�ned even if ai is null, i.e., a classi�cation
attribute cannot be null. 2

The multiple relation instances are, of course, re-
lated; each instance is intended to represent the
version of reality appropriate for each access class.
Roughly speaking, each element t[Ai] in a tuple t is
visible in instances at access class t[Ci] or higher; t[Ai]
is replaced by a null value in an instance at a lower
access class. We will give a more formal description
using the �lter function in the next section.

4 CORE INTEGRITY PROPERTIES

We next state four core integrity properties that
must be satis�ed by all multilevel relations.

Since a multilevel relation has di�erent instances at
di�erent access classes, it is inherently more complex
than a standard relation. In a standard relation the

de�nition of keys is based on functional dependencies.
In a multilevel setting the concept of functional depen-
dencies is itself clouded because a relation instance is
now a collection of sets of tuples rather than a single
set of tuples.

We assume that there is a user speci�ed primary
key AK consisting of a subset of the data attributes
Ai. This is called the apparent primary key of the
multilevel relation scheme. We will return to the issue
of what constitutes the primary key of a multilevel
relation after we de�ne the polyinstantiation integrity
property.

In general AK will consist of multiple attributes.
Entity integrity from the standard relational model
prohibits null values for any of the attributes in AK.
This property, taken from [2], extends to multilevel
relations as follows.

Property 1 [Entity Integrity] Let AK be the ap-
parent key of R. A multilevel relation R satis�es en-
tity integrity if and only if for all instance Rc of R and
t 2 Rc

1. Ai 2 AK) t[Ai] 6= null,

2. Ai; Aj 2 AK) t[Ci] = t[Cj], i.e., AK is uni-
formly classi�ed, and

3. Ai 62 AK) t[Ci] � t[CAK] (where CAK is de-
�ned to be the classi�cation of the apparent key).

2

The �rst requirement is an obvious carryover from the
standard relational model and ensures that no tuple
in Rc has a null value for any attribute in AK. The
second requirement says that all AK attributes have
the same classi�cation in a tuple, i.e., they are either
all U or all S and so on. This will ensure that AK is
either entirely visible or entirely null at a speci�c ac-
cess class c. The �nal requirement states that in any
tuple the class of the non-AK attributes must domi-
nate CAK . This rules out the possibility of associating
non-null attributes with a null primary key.

At this point it is important to clarify the seman-
tics of null values. There are two major issues: (i) the
classi�cation of null values, and (ii) the subsumption
of null values by non-null ones. Our requirements are
respectively that null values be classi�ed at the level of
the key in the tuple, and that a null value is subsumed
by a non-null value independent of the latter's classi-
�cation. These two requirements are formally stated
as follows.

Property 2 [Null Integrity] A multilevel relation
R satis�es null integrity if and only if for each instance
Rc of R both of the following conditions are true.

Starship Objective Destination TC

Enterprise U Exploration U null U U

Figure 5: SODU

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

Figure 6: SODS

Starship Objective Destination TC

Enterprise U Exploration U null U U
Enterprise U Exploration U Rigel S S

Figure 7: Violation of Null Integrity

1. For all t 2 Rc, t[Ai] = null) t[Ci] = t[CAK], i.e.,
nulls are classi�ed at the level of the key.

2. Let us say that tuple t subsumes tuple s if for
every attribute Ai, either (a) t[Ai; Ci] = s[Ai; Ci]
or (b) t[Ai] 6= null and s[Ai] = null. Our second
requirement is that Rc is subsumption free in the
sense that it does not contain two distinct tuples
such that one subsumes the other. 2

We will henceforth assume that all computed relations
are made subsumption free by exhaustive elimination
of subsumed tuples. The null integrity requirement
was �rst identi�ed in [5].

Consider the relation instance for SOD given in �g-
ure 5. The motivation behind the null integrity prop-
erty is that if a S-user updates the destination of En-
terprise to be Rigel, he or she will see the instance
given in �gure 6 rather than the one given in �gure 7;
since the �rst tuple in �gure 7 is subsumed by the
second tuple.

The multiple relation instances at di�erent access
classes are of course related. Each instance at an ac-
cess class c is intended to represent the version of real-
ity appropriate for the access class c. The next prop-
erty is concerned with consistency between the di�er-
ent relation instances. The need for such a property
was identi�ed in [2]. However the formulations of [2]
were incorrect. The correct formulationwas �rst given
in [5] and adopted by SeaView researchers in [10].

Property 3 [Inter-Instance Integrity] R satis�es
inter-instance integrity if and only if for all c0 � c

we have Rc0 = �(Rc; c
0) where the �lter function �

produces the c0-instance Rc0 from Rc as follows:

1. For every tuple t 2 Rc such that t[CAK] � c0

there is a tuple t0 2 Rc0 with t0[AK;CAK] =
t[AK;CAK] and for Ai 62 AK

t0[Ai; Ci] =

�
t[Ai; Ci] if t[Ci] � c0

<null; t[CAK]> otherwise

2. There are no tuples in Rc0 other than those de-
rived by the above rule.

3. The end result is made subsumption free by ex-
haustive elimination of subsumed tuples. 2

The �lter function maps a multilevel relation to dif-
ferent instances, one for each descending access class
in the security lattice. Filtering limits each user to
that portion of the multilevel relation for which he
or she is cleared. Thus, for example, a S-user will
see the entire relation given in �gure 6 while a U-
user will see the �ltered instance given in �gure 5. It
is evident that �(Rc; c) = Rc, and �(�(Rc; c

0); c00) =
�(Rc; c

00) for c > c0 > c00; as one would expect from the
intuitive notion of �ltering.

We are now ready to state our fourth and �nal re-
quirement. In a standard relation there cannot be two
tuples with the same primary key. In a multilevel re-
lation we will similarly expect that there cannot be
two tuples with the same apparent primary key. How-
ever, as we observed in section 2, secrecy considera-
tions compel us to allow multiple tuples with the same
apparent primary key.

Property 4 [Polyinstantiation Integrity] R sat-
is�es polyinstantiation integrity (PI) if and only if for
every Rc we have for all Ai : AK;CAK; Ci ! Ai. 2

This property stipulates that the user-speci�ed ap-
parent key AK, in conjunction with the classi�cation
attributes CAK and Ci, functionally determines the
value of the Ai attribute. Thus, PI allows the instance
in �gure 3 while ruling out the S-instance of �gure 4.

Property 4 implicitly de�nes what is meant by the
primary key in a multilevel relation. The primary key
of a multilevel relation is AK [CAK [CR (where AK
is the set of data attributes constituting the user spec-
i�ed primary key, CAK is the classi�cation attribute
for data attributes in AK and CR is the set of clas-
si�cation attributes for data attributes not in AK),
since fromPI it follows that the functional dependency
AK [CAK [CR ! AR holds (where AR denotes the
set of all attributes that are not in AK). Note that for
single-level relations CAK and CR will be equal to the

same constant value in all tuples. Therefore, in this
case, PI amounts to saying that AK ! AR, which is
precisely the de�nition of the primary key in relational
theory.

Property 4 was originally proposed in [2]. However
it was coupled with an additional multivalued depen-
dency requirement AK;CAK !! Ai; Ci to be satis-
�ed by every instance. There are unpleasant conse-
quences of this multivalued dependency, as pointed
out in [5]. Thereafter our position has been that
polyinstantiation integrity should only require the
functional dependency stated in property 4.

5 THE UPDATE OPERATIONS

In this section, we discuss in detail the three update
(insert, update, and delete) operations. We keep the
syntax for these operations identical to the standard
SQL.

Let R(A1; C1; : : : ; An; Cn; TC) be a multilevel rela-
tion scheme. In order to simplify the notation, we use
A1 instead of AK to denote the apparent primary key.

Consider a user logged on at access class c. Now a
c-user directly sees and interacts with the c-instance
Rc. From the viewpoint of this user the remaining in-
stances of R can be categorized into three cases: those
strictly dominated by c, those that strictly dominate
c and those incomparable with c. The following nota-
tion is useful for ease of reference to these three cases.

Rc0<c � Rc0 , such that c0 < c

Rc0>c � Rc0 , such that c0 > c

Rc0�c � Rc0 , such that c0 incomparable with c

Security considerations, and in particular the ?-
property, dictate that a c-user cannot insert, update,
or delete a tuple, directly or indirectly (as a side-e�ect)
in any Rc0<c or Rc0�c. Since actions of a c-user can-
not impact any Rc0<c, the e�ect of insertion, update or
deletion must be con�ned to those tuples in Rc with
tuple class equal to c. Because of the inter-instance
property these changes must be properly reected in
the instances Rc0>c. The latter e�ect is only partly
determined by the core integrity properties of sec-
tion 4 leaving room for di�erent interpretations (see
[4, 5, 7, 11, 13]).

Strictly speaking in all cases we should speak of op-
erations being performed by a c-subject (or c-process)
rather than a c-user. It is however easier to intuitively
consider the semantics by visualizing a human being
interactively carrying out these operations. The se-
mantics do apply equally well to processes operating
on behalf of a user, whether interactive or not.

5.1 The INSERT Statement

The INSERT statement executed by a c-user has
the following general form, where the c is implicitly
determined by the the user's login class.

INSERT
INTO Rc[(Ai[; Aj] : : :)]
VALUES (ai[; aj] : : :)

In this notation the rectangular parenthesis denote
optional items and the \: : :" signi�es repetition. If
the list of attributes is omitted, it is assumed that all
the data attributes in Rc are speci�ed. Only data at-
tributes Ai can be explicitly given values. The classi-
�cation attributes Ci are all implicitly given the value
c.

Let t be the tuple such that t[Ak] = ak if Ak is
included in the attributes list in the insert statement,
t[Ak] = null if Ak is not in the list, and t[Cl] = c for
1 � l � n. The insertion is permitted if and only if:

1. t[A1] does not contain any nulls.

2. For all u 2 Rc : u[A1] 6= t[A1].

If so, the tuple t is inserted into Rc and by side e�ect
into all Rc0>c. This is moreover the only side e�ect
visible in any Rc0>c.

To illustrate, suppose a U-user wishes to insert a
second tuple to the SOD instance given in �gure 8.
He or she does so by executing the following insert
statement.

INSERT
INTO SOD
VALUES (`Voyager', `Exploration', `Mars')

As a result of the above insert statement, the U-
instance of SOD will become as shown in �gure 9.
This insertion is straightforward and identical to what
happens in single-level relations.

On the other hand suppose a S-user wishes to insert
the following tuple into the SOD instance of �gure 8.

INSERT
INTO SOD
VALUES (`Enterprise', `Spying', `Rigel')

In this case we can either reject the insert or accept
it and allow two tuples with the same apparent key
Enterprise to coexist as shown in �gure 10. The two
tuples in in �gure 10 are regarded as pertaining to two
distinct entities. We call such situations as optional
polyinstantiations. Insertion of the secret tuple is not
required for closing signaling channels. It is secure to
reject such insertions.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 8: SODU = SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager U Exploration U Mars U U

Figure 9: SODU

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

Figure 10: SODS

Starship Objective Destination TC

Enterprise S Spying S Rigel S S

Figure 11: SODS

Finally, we illustrate the situation where polyin-
stantiation is required to close signaling channels.
Consider the SODS instance given in �gure 11. U-
users see an empty instance SODU. Suppose a U-user
executes the following INSERT statement.

INSERT
INTO SOD
VALUES (`Enterprise', `Exploration', `Talos')

This insertion cannot be rejected on the grounds that
a tuple with apparent key Enterprise has previously
been inserted by a S-user. Doing so would establish
a signaling channel from S to U. Therefore by secu-
rity considerations we are compelled to allow insertion
of this tuple. In such cases we say we have required
polyinstantiation. The e�ect of this insertion by a U-
user is to change SODS from �gure 11 to �gure 10.

5.2 The UPDATE statement

Our interpretation of the semantics of an update
command is close to the one in the standard relational
model: An update command is used to change val-
ues in tuples that are already present in a relation.

Starship Objective Destination TC

Enterprise U Exploration U null U U

Figure 12: SODU

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

Figure 13: SODS

UPDATE is a set level operator; i.e., all tuples in
the relation which satisfy the predicate in the update
statement are to be updated (provided the resulting
relation satis�es polyinstantiation integrity). Since we
are dealing with multilevel relations, we may have to
polyinstantiate some tuples. However, addition of tu-
ples due to polyinstantiation is to be minimized to the
extent possible.

The UPDATE statement executed by a c-user has
the following general form.

UPDATE Rc

SET Ai = si[; Aj = sj] : : :
[WHERE p]

Here, sk is a scalar expression, and p is a predicate ex-
pression which identi�es those tuples in Rc that are to
be modi�ed. The predicate p may include conditions
involving the classi�cation attributes, in addition to
the usual case of data attributes. The assignments
in the SET clause, however, can only involve the data
attributes. The corresponding classi�cation attributes
are implicitly determined to be c.

The intent of the UPDATE operation is to modify
t[Ak] to sk in those tuples t in Rc that satisfy the given
predicate p. In multilevel relations, however, we have
to implement the intent slightly di�erently in order to
prevent illegal information ows.

5.2.1 Examples of UPDATE Operations

Consider the SOD instances given in �gures 12 and 13.
Suppose the U-user makes the following update to
SODU shown in �gure 12.

UPDATE SOD
SET Destination = Talos
WHERE Starship = `Enterprise'

The changes to SODU in �gure 12 and SODS in �g-
ure 13 are shown in �gures 14 and 15 respectively.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 14: SODU

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

Figure 15: SODS

Note that in SODS the Destination attribute for the
Enterprise is now polyinstantiated. This is an exam-
ple of required polyinstantiation which cannot be com-
pletely eliminated without introducing covert channels
or severely limiting the expressive capability of the
database.

Next, suppose starting with the instance SODS of
�gure 15 a S-user invokes the following update.

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise' AND

Destination = `Rigel'

In this case, SODS will change to the instance given
in �gure 16, not to the instance given in �gure 17.
That is the UPDATE is interpreted as applying only
to the second tuple in �gure 15 but not to the �rst
tuple. The S-user can go from �gure 15 to �gure 17
by issuing the following update.

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise'

This UPDATE is interpreted as applying to both tu-
ples of �gure 15. The �rst two tuples of �gure 17 result
due to polyintantiation of the �rst tuple of �gure 15.
The third tuple of �gure 17 results due to the normal
replacement update of the second tuple of �gure 15.

Next, suppose a U-user makes the following update
to the relation shown in �gure 14. (Assume S-users
see the instance given in �gure 15.)

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise'

As a consequence of the above update, not only SODU

will change from the relation in �gure 14 to the one in

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

Figure 16: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Talos U S
Enterprise U Spying S Rigel S S

Figure 17: SODS

�gure 18, but SODS will also change from the relation
in �gure 15 to the one in �gure 19. Thus, polyinstan-
tiation integrity is preserved in instances at di�erent
security levels. Note in particular how the secret tuple
in �gure 15 has changed to the secret tuple in �gure 19
due to an update by a U-user.

5.2.2 E�ect at the User's Access Class

We now formalize and further develop the ideas
sketched out above. First consider the e�ect of an
update operation by a c-user on Rc. Let

S = ft 2 Rc : t satis�es the predicate pg

We describe the e�ect of the UPDATE operation by
considering each tuple t 2 S in turn. The net ef-
fect is obtained as the cumulative e�ect of updat-
ing each tuple in turn. The UPDATE operation will
succeed if and only if at every step in this process
polyinstantiation integrity is maintained. Otherwise
the entire UPDATE operation is rejected and no tu-
ples are changed. In other words UPDATE has an
all-or-nothing integrity failure semantics.

It remains to consider the e�ect of UPDATE on
each tuple t 2 S. There are two components to this
e�ect. Firstly, tuple t is replaced by tuple t0 which is
identical to t except for those data attributes which
are assigned new values in the SET clause. This is
the familiar replacement semantics of UPDATE in a
single-level world. In terms of our earlier examples
the update of SODU from �gure 12 to �gure 14 and
then to �gure 18 illustrates this semantics. The for-
mal de�nition of the tuple t0 obtained by replacement
semantics is straightforward as follows.

t0[Ak; Ck] =

�
t[Ak; Ck] Ak 62 SET clause
<sk; c> Ak 2 SET clause

Starship Objective Destination TC

Enterprise U Spying U Talos U U

Figure 18: SODU

Starship Objective Destination TC

Enterprise U Spying U Talos U U
Enterprise U Spying U Rigel S S

Figure 19: SODS

Secondly to avoid covert channels, we may need to
introduce an additional tuple t00 to hide the e�ects of
the replacement of t by t0 from users at levels below
c (c is the level of the user executing the UPDATE).
This will occur whenever there is some attribute Ak

in the SET clause with t[Ck] < c. The idea is that
the original value of t[Ak] with classi�cation t[Ck] is
preserved in t00. At the same time the core integrity
properties of section 3 must also be preserved. To be
concrete consider our earlier example of the update of
SODS from �gure 15 to �gure 16. The WHERE clause
of the UPDATE statement picks up the second tuple
in �gure 15 which by replacement semantics gives us
the second tuple in �gure 16. In this case the un-
classi�ed Exploration value of the Objective attribute
continues to be available in the �rst tuple of �gure 16
and we need not introduce an additional tuple to hide
the e�ect of this update from U-users. On the other
hand suppose the same UPDATE statement, viz.,

UPDATE SOD
SET Objective = Spying
WHERE Starship = `Enterprise' AND

Destination = `Rigel'

was executed by a S-user in context of �gure 13. Prior
to the update U-users see the instance in �gure 12 and
therefore must continue to do so after the update. To
achieve this SODS changes from �gure 13 to �gure 20.
The �rst tuple in �gure 20 is the tuple t0 dictated by
the usual replacement semantics. The second tuple is
the t00 tuple introduced to hide the e�ect of the update
from U-users and maintain inter-instance integrity. It
should be noted that �gure 21 also achieves these two
goals. However it does so at the cost of a spurious
association between Rigel and Exploration which is
avoided in �gure 20.

We now give a formal de�nition of the t00 tuple in-
troduced to close the covert channel. It is de�ned as

Starship Objective Destination TC

Enterprise U Spying S Rigel S S
Enterprise U Exploration U null U U

Figure 20: SODS

Starship Objective Destination TC

Enterprise U Spying S Rigel S S
Enterprise U Exploration U Rigel S S

Figure 21: SODS

follows.

t00[Ak; Ck] =

�
t[Ak; Ck] t[Ck] < c

<null; t[A1]> t[Ck] = c

To summarize each tuple t 2 S is replaced by t0 and
possibly in addition by t00 (if t00 exists). The update is
successful if the resulting relation satis�es polyinstan-
tiation integrity. Otherwise the update is rejected and
the original relation is left unchanged.

5.2.3 E�ect Above the User's Access Class

Next consider the e�ect of the update operation on
Rc0>c. This of course assumes that the update op-
eration on Rc was successful. Unfortunately, the core
integrity properties do not uniquely determine how an
update by a c-user to Rc should be reected in updates
to Rc0>c. Several di�erent options have been proposed
[4, 7, 10, 11]. In this paper we will adopt the minimal
propagation rule [7] which introduces exactly those tu-
ples in Rc0>c that are needed to preserve inter-instance
property, i.e., put t0 and t00 (if t00 exists and survives
subsumption) in each Rc0>c and nothing else.

Formally, the e�ect of the update operation is again
best explained by focusing on a particular tuple t in S.
Let Ak be an attribute in the SET clause such that:
(i) t[Ck] = c and (ii) t[Ak] = x where x is non-null.
That is the c-user is actually changing a non-null value
of t[Ak] at his own level to sk. Now consider Rc0>c.
Due to polyinstantiation there may be several tuples
u in Rc0>c which have the same apparent primary key
as t (i.e., u[A1; C1] = t[A1; C1]) and match t in the
Ak and Ck attributes (i.e., u[Ak; Ck] = t[Ak; Ck]). To
maintain polyinstantiation integrity (i.e., property 4 of
section 3) we must therefore change the value of u[Ak]
from x to sk. This requirement is formally stated as
follows.

1. For every Ak 2 SET clause with t[Ak] 6= null let

U = fu 2 Rc0>c :
u[A1; C1] = t[A1; C1] ^
u[Ak; Ck] = t[Ak; Ck]

g

Polyinstantiation integrity dictates that we re-
place every u 2 U by u0 identical to u except
for

u0[Ak; Ck] = <sk; c>

This rule applies cumulatively for di�erent Ak's
in the SET clause.

This requirement is an absolute one and must be
rigidly enforced by the DBMS. The next requirement
is imposed by the inter-instance integrity property of
section 4.

2. To maintain inter-instance integrity we insert t0

and t00 (if it exists and survives subsumption) in
Rc0>c.

This second requirement is a weaker one than the �rst,
in that inter-instance integrity only stipulates what
minimum action is required. We can insert a num-
ber of additional tuples v in Rc0>c with v[A1; C1] =
t0[A1; C1] so long as the core integrity properties are
not violated. In particular if t0 subsumes the tuple
in �(fvg; c) inter-instance integrity is still maintained.
Minimal propagation makes the simplest assumption
in this case, i.e., only t0 and t00 are inserted in Rc0>c

and nothing else is done.

5.3 The DELETE statement

The DELETE statement has the following general
form:

DELETE
FROM Rc

[WHERE p]

Here, p is a predicate expression which helps identify
those tuples in Rc that are to be deleted. The intent
of the DELETE operation is to delete those tuples t
in Rc that satisfy the given predicate. But in view
of the ?-property only those tuples t that additionally
satisfy t[TC] = c are deleted from Rc. In order to
maintain inter-instance integrity polyinstantiated tu-
ples are also deleted from Rc0>c.

In particular, if t[C1] = c, then any polyinstanti-
ated tuples in Rc0>c will be deleted from Rc0>c, and
so the entity that t represents will completely disap-
pear from the multilevel relation. On the other hand
with t[C1] < c the entity will continue to exist inRt[C1]

and in Rc0>t[C1].

6 FUTURE WORK

In this paper, we have examined the entity integrity
requirement and the semantics of various update op-
erations in the context of multilevel relations. These
concepts were suitably generalized to deal with polyin-
stantiation.

This paper is part of an e�ort to develop better
understanding of the interactions between multilevel
security and the relational model. This paper points
out clearly how subtle this interaction can be.

We believe that there is muchmore interesting work
that remains to be done in this area (see, for exam-
ple, [6]). In particular we would like to give a com-
plete and formal set of principles that can help with
design and implementation of multilevel secure rela-
tional DBMSs. Initial steps have been taken in this
direction in the present paper, but more remains to
be done.

References

[1] Dorothy E. Denning, Cryptography and Data Se-
curity. Addison-Wesley, Reading, Mass., (1982).

[2] Dorothy E. Denning, Teresa F. Lunt, Roger R.
Schell, Mark Heckman, and William R. Shock-
ley, \A multilevel relational data model." Proc.
IEEE Symposium on Security and Privacy, 220-
234 (1987).

[3] Patricia P. Gri�ths and Bradford W. Wade,
\An authorization mechanism for a relational
database system." ACM Trans. on Database Sys-
tems, (1)3:242-255, (September 1976).

[4] J. T. Haigh, R. C. O'Brien, and D. J. Thom-
sen, \The LDV Secure Relational DBMS Model."
Database Security IV: Status and Prospects, Ja-
jodia, S. and Landwehr, C. (editors), North-
Holland, 1991, to appear.

[5] Sushil Jajodia and Ravi Sandhu, \Polyinstan-
tiation integrity in multilevel relations." Proc.
IEEE Symposium on Security and Privacy, 104-
115 (May 1990).

[6] Sushil Jajodia and Ravi Sandhu, \Database secu-
rity: Current status and key issues," ACM SIG-
MOD Record, (19)4:123-126 (December 1990).

[7] Sushil Jajodia, Ravi Sandhu, and Edgar Sib-
ley, \Update semantics of multilevel relations."

Proc. 6th Annual Computer Security Applications
Conf., December 1990, pages 103-112.

[8] B. W. Lampson, \A note on the con�ne-
ment problem." CACM, (16)10:613-615, (Octo-
ber 1973).

[9] Carl E. Landwehr, \Formal models for computer
security." ACM Computing Surveys, (13)3:247-
278 (September 1981).

[10] Teresa F. Lunt, Dorothy E. Denning, Roger R.
Schell, Mark Heckman, and William R. Shock-
ley, \The SeaView security model." IEEE Trans-
actions on Software Engineering, 16(6):593-607
(1990).

[11] Teresa F. Lunt and Donovan Hsieh, \Update
semantics for a multilevel relational database."
Database Security IV: Status and Prospects, Ja-
jodia, S. and Landwehr, C. (editors), North-
Holland, 1991, to appear.

[12] Fausto Rabitti, Darrell Woelk, and Won Kim, \A
model of authorization for object-oriented and
semantic databases." Proc Conf. on Extending
Database Technology, 231-250, (March 1988).

[13] Ravi Sandhu, Sushil Jajodia, and Teresa Lunt,
\A new polyinstantiation integrity constraint for
multilevel relations." Proc. IEEE Workshop on
Computer Security Foundations, 159-165 (June
1990).

