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Abstract. Although there are several efforts under-

way to build multilevel secure relational database man-

agement systems, there is no clear consensus regarding

what a multilevel secure relational data model exactly

is. In part this lack of consensus on fundamental issues

reflects the subtleties involved in extending the classical

(single-level) relational model to a multilevel environ-

ment. Our aim in this paper is to discuss the most

fundamental aspects of the multilevel secure relational

model. Specifically, we consider two requirements: en-

tit y integrity and update semantics. Our overall goal

is to preserve as much as possible the simplicity and

flexibility of the relational model without sacrificing se-

curity in the process.

1 INTRODUCTION

A large number of databases in the Department of

Defense, the intelligence community and civilian gov-

ernment agencies contain data that are classified to

have different security levels. All database users are

also assigned security clearances. It is the responsi-

bility of; multilevel secure database management sys-

tem (DBMS) to assure that each user gains access—

directly or indirectly—to only those data for which he

has proper clearance. Private corporations also use se-

curity levels and clearances to ensure secrecy of sensi-

tive information, although their procedures for aesign-

ing these are much less formal than in the government.

Most commercial DBMSS provide some form of data
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security by controlling modes of access privileges of

users to data [3, 12]. These so-called discretionary

access controls do not provide adequate mechanisms

for preventing unauthorized disclosure of information.

Therefore, commercial DBMSS are not suitable for

use in multilevel environments. Multilevel systems re-

quire additional mechanisms for enforcing mandatory

(or nondiscretionary) access controls [1].

As a result, there are several efforts underway to

build multilevel secure relational DBMSS. These efforts

are following the same path taken by object-oriented

databases. On one hand, several database vendors (e.g,

Oracle, Sybase, Trudata, to name a few) are busy build-

ing commercial products, and others (e.g, SRI [2, 10],

SCTC [4]) are building research prototypes. On the

other hand, there is no clear consensus regarding what a

multilevel secure relational data model exactly is. This

has led to continuing arguments about basic principles

such as integrity requirements and update semantics.

This lack of consensus on fundamental issues under-

scores the subtleties involved in extending the classi-

cal relational model to a multilevel environment. In

absence of a strong theoretical framework it is unfor-

tunate, but inevitable, that much of the argument on

basic issues is unduly influenced by implementation de-

tails of specific projects.

Our aim in this paper is to discuss the most funda-

mental aspects of the multilevel secure relational model.

It is our goal to be formal, analytical and objective—in

the sense of implementation independent—in this exer-
cise. %Ve specifically y consider two requirements.

● Entity Integrity. It is important to specify pre-

cisely all constraints that relations must satisfy

since these constraints ensure that all instances in

the database are meaningful. It is equally impor-

tant to require only the minimal necessary con-

st raints so as to allow as large a class of admissible

instances as possible. In classical relational the-

ory the essential constraints have been identified
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as entity integrity and referential integrity. In sec-

tion 4 we consider the multilevel analog of entity

integrity. We identify four core integrity properties

which should be required of all multilevel relations.

One of these is a generalisation of the usual entity

integrity requirement to a multilevel context, whale

the other three are new to multilevel relations. Our

focus in this paper is on single relations and we do

not consider multilevel referential integrity here.

● Relation Updates. Somewhat paradoxically, the

understanding of update operations is crucial to

achieving secrecy of information in multilevel sys-

tems. In section 5 we generalize the farnMar IN-

SERT, DELETE and UPDATE operations of SQL

to a multilevel context. The main difference, with

respect to the classical semantics of these opera-

tions, is that certain updates cannot be carried out

by overwriting the data in place because doing so

would result in leakage or destruction of secret in-

formation. This inescapable fact complicates the

semantics of multilevel relations. Our goal here has

been to preserve as much as possible the intuitive

simplicity of these operations in classical relations

without sacrificing security in the process.

The rest of this paper is organized as follows. The

next section gives an overview of basic concepts of mul-

tilevel security. Section 3 reviews basic definitions for

standard (single-level) relations followed by those for

multilevel relations. Sections 4 and 5 discuss entity in-

tegrity and relation updates in a multilevel context as

outlined above, The last section concludes the paper.

2 BASIC CONCEPTS

Below we give a brief description of the relevant multi-

level security concepts. For a more detailed dkcussion,

we refer the reader to [1] or [9].

The way in which a secure DBMS controls access to

data is known as the system’s security policy. In the

context of multilevel databases, a secure DBMS must

enforce a suitable interpretation of the mandatory ac-

cess controls employed in manual systems. In the gov-

ernment and military sectors these controls are literally

mandated by law. In the commercial world they are

a matter of internal company policy. A well-accepted

interpretation of these access controls for computerized
systems was given by Bell and LaPadula. The Bell-

LaPadula model was originally developed by analogy to

manual systems in the mtiltary. An axiomatic deriva-

tion and generahation of the model were subsequently

given by Denning.

The Bell-LaPadula model is stated in terms of aub-

jecti and objects. An object is a passive entity such as

a data file, a record, or a field within a record. A sub-

ject is an active process that can request access to ob-

jects. Every object is assigned a classification, and ev-

ery subject a clearance. Classifications and clearances

are collectively referred to as access ckasses (or levels).

An access class consists of two components: a hierar-

chical component (usually, Top Secret (TS), Secret (S),

Confidential (C), and Unclassified (U), in this order) t-

gether with a set of unordered categories (e.g., NATO,

Nuclear, Army, etc.). Access classes are partially or-

dered in a lattice as follows: Given two access classes

c1 and cl, c1 > cl iff the hierarchical component of c1

is greater than or equal to that of C2 and the categories

in c1 include those in C2.

Throughout this paper, we use the terms high and

low to refer to two access classes such that the former

is strictly higher than the latter in the partial order.

Also if a user is logged on at an access class c, we refer

to such a user as a c-user.

The Bell-LaPadula model imposes the following re-

strictions on all data accesses:

1. The Simpk Security Property. A subject is allowed

a read access to an object only if the former’s clear-

ance is identical to or higher (in the partial order)

than the latter’s classification.

2. The *-Property (pronounced “the star propert y“),

A subject is allowed a write access to an object

only if the former’s clearance is identical to or lower

than the latter’s classification.

It should be noted that these properties are necessary

but not sufficient to allow the corresponding access.

The sufficient conditions will include the usual discre-

tionary access controls of commercial DBMSS.

As a consequence of these two restrictions, subjects

having different clearances see different versions of a

multilevel relation: A user having a clearance at an ac-

cess class c sees only that data which lies at class c or

below. As an example, consider the relation scheme

SOD(Starship, Objective, Destination) where Starship

is the primary key and the security classifications are

assigned at the granularity of individual data elements.

A user with Secret clearance will see the entire mul-

tilevel relation SODS shown in figure 1, whale a user

having Unclassified clearance will only see the filtered

relation SODu shown in figure 2.

It turns out that the system may not be secure even
if it always enforces the two Bell-LaPadula restrictions

correctly. A secure system must additionally guard

against covert channels [8]. Covert channels provide in-

dhect means by which information by subjects at high
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Starship Objective Destination TC Starship Objective Destination TC

Enterprise U Exploration U Tales U u Enterprise U Exploration U Tales U u

Voyager u Spying s Mars S s Voyager u Exploration U Tales U u
Voyager u Spying s Mars S s

Figure 1: SODS

Starship Objective Destination TC

Enterprise U Exploration U Tales U u
Voyager u Null u Null U u

Figure 2: SODU

security classes can be passed down to subjects at lower

security classes. To illustrate, consider once again the

multilevel relation given in figure 1. Suppose that an

U-user who sees the instance in figure 2 wishes to re-

place the second tuple of SODU by the tuple (Voyager,

Exploration, Tales). From a purely database perspec-

tive, this update by the U-user will be rejected because

the attribute Starship constitutes the primary key of

SODS. However, from the security viewpoint, this up-

date cannot be rejected since doing so will be sutlicient

to compromise security. Since a Secret process can send

one bit of information by either inserting or deleting a

particular tuple at the Secret level, both Secret and Un-

classified processes can cooperate to establish a covert

channel. Thus, both tuples (Voyager, Spying, Mars)

and (Voyager, Exploration, Tales) must somehow co-

exist in SODS, as in figure 3. This is called pol@wtan-

tiation there are two or more tuples in a multilevel

relation with the same primary key.

Polyinstantiation illustrat es the intrinsic difficult y of

extending the standard relational concepts to the mul-

tilevel world. Even the basic relational notion of a key

does not have a straightforward extension to multilevel

relations. Although polyinstantiation is inevitable in

multilevel systems it must be carefully controlled so as

to avoid confusion and ambiguity in the database. For

instance the S-instance of figure 4 should not be allowed

because it gives ambiguous information about the Voy-
ager’s objective at the S level. It is therefore most im-

portant to precisely identify the constraints required of

all multilevel relations.

3 MULTILEVEL RELATIONS

We first review the basic concepts for the standard

(single-level) relations, followed by those for multilevel

relations. In the next section we will state four core

Figure 3: SODS

Starship Objective Destination TC

Voyager U Exploration S Mars S s
Voyager U Spying s Mars S s

Figure 4: An illegal S-instance

integrity requirements that we feel must be satisfied by

all multilevel relations.

The standard relational model is concerned with data

without security classifications. Data are stored in rela-

tions which have well defined mathematical properties.

Each relation has two parts as follows.

1.

2.

A state-invariant relation scheme

R(A1, A2,..., An), where each Ai is an attribute

over some domain Di which is a set of values.

A state-dependent relation over R , which is a set

of distinct tuples of the form (al, aa, ..., ~) where

each element G is a value in domain Di.

Not all possible relations are meaningful in an ap-

plication; only those that satisfy certain integrity con-

straints are considered valid.

Let X and Y denote sets of one or more of the at-

tributes Ai in a relation scheme. We say Y is fict-

ionally dependent on X, written X + Y, if and only

if it is not possible to have two tuples with the same

values for X but different values for Y. A key of a re-

lation is a minimal set of attributes on which all other

attributes are functionally dependent. The pm”mary key

ofa relation is one of its keys which has been specifically

designated as such.

Moving on to a multilevel world, a major issue is how

access classes are assigned to data stored in relations.

The proposals have ranged from assigning access class

to relations, to individual t uples in a relation, to in-

dividual attributes of a relation, or to individual data

elements of the tuples of a relation. In this paper, we

will consider the general case and assign access class to

individual data elements of a relation.

A multilevel relation consists of the following two

parts.
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Definition 1 [RELATION SCHEME] A state-

invariant multilevel relation scheme

R(A1, CI, A2, C2,.. .%,(Z,2W)W)

where each Ai is a dataattribute over domain Di, each

Ci is a classification attribute for Ai and TC is the

tuple-cla.w attribute. The domain of Ci is specified by

a range [Li, Hi] which defines a sub-lattice of access

classes ranging from Li up to Hi. The domain of TC is

[lub{L~ : i = 1.. n}, lub{Hi : i = 1... ~}] (where lub

den~tes the least upper bound).

Definition 2 [RELATION INSTANCES]
lection of state-dependent relation instances

Rc(Al, cl, A2, c2, . . .. An. cn, Tc)

one for each access class c in the given

❑

A COl-

lattice.

Each instance is a set of distinct tuple~ of the form

(al,cl, az, cz,..., %, c., tc) where each ai c Di or ai =
null, c z ci and tc = lub{ci : i = 1 . . . n}. Moreoverj if

ai is not null then ci c [Lit Hi]. we rewire that Ci be

defined even if ai is null, i.e., a classification attribute

cannot be null. •1

The multiple relation instances are, of course, related;

each instance is intended to represent the version of re-

alit y appropriate for each access class. Roughly speak-

ing, each element t[Ai] in a tuple t is visible in instances

at access class t[Ci] or higher; t[Ai] is replaced by a null

value in an instance at a lower access class. We will

give a more formal description using the filter function

in the next section.

4 CORE INTEGRITY PROPERTIES

We next state four core integrity properties that must

be satisfied by all multilevel relations.

Since a multilevel relation has different instances at

different access classes, it is inherently more complex
than a standard relation. In a standard relation the

definition of keys is based on functional dependencies.

In a multilevel setting the concept of functional depen-

dencies is itself clouded because a relation instance is

now a collection of sets of tuples rather than a single

set of tuples.

We assume that there is a user specified primary key

AK consisting of a subset of the data attributes Ai.

This is called the apparent primary key of the multilevel

relation scheme. We will return to the issue of what

constitutes the primary key of a multilevel relation after

we define the polyinstantiation integrity property.

In general AK will consist of multiple attributes. En-

tity integrity from the standard relational model pro-

hibits null values for any of the attributes in AK. This

property, taken from [2], extends to multilevel relations

as follows.

Property 1 [Entity Integrity] Let AK be the ap-

parent key of R. A multilevel relation R satisfies entity

integrity if and only if for all instance R= of R and

tCRc

1. Ai c AK + t[Ai] # null,

2. Ai, Aj G AK * t[Ci] = t[Cj]j i.e., AK is uniformly
classified, and

3. Ai @AK + t[Ci] > t[CA~:l (where CAK is defined

to be the classification of the apparent key). H

The first requirement is an obvious carryover from the

standard relational model and (ensures that no tuple in

R= has a null value for any attribute in AK. The second

requirement says that all AK attributes have the same

classification in a tuple, i.e., they are either all U or all

S and so on. This will ensure that AK is either entirely

visible or entirely null at a specific access class c. The

final requirement states that in any tuple the class of the

non-AK attributes must dominate CAK. This rules out

the possibility of associating ncm-null attributes with a

null primary key.

At this point it is important to clarify the semantics

of null values. There are two major issues: (i) the clas-

sification of null values, and (ii) the subsumption Of null

values by non-null ones. Our requirements are respec-

tively that null values be classified at the level of the

key in the tuple, and that a null value is subsumed by a

non-null value independent of the latter’s classification.

These two requirements are formally stated as follows.

Property 2 [Null Integrit yjl A multilevel relation R

satisfies null integrity if and only if for each instance RC

of R both of the following conditions are true.

1.

2.

For all t E R., t[Ai] = nulll + ~[ci] c t[cAK], i.e.,

nulls are classified at the level of the key.

Let us say that tuple t subsumes tuple s if for every

attribute Ai, either (a) ~[.Ai t Ci] G s[Ai, Ci] or (b)

t[~] # null and s[Ai] = null. Our second require-

ment is that R= is subsumption free in the sense

that it does not contain two distinct tuples such

that one subsumes the otlher. •1

We will henceforth assume that all computed relations

are made subsumption free b:y exhaustive elimination

of subsumed tuples. The null integrity requirement was

first identified in [5].

Consider the relation instance for SOD given in fig-

ure 5. The motivation behhdl the null integrity prop-

erty is that if a S-user updates the destination of Enter-

prise to be Rigel, he or she willl see the instance given in
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Starship I Objective I Destination I TC ~

Entermise U I Exdoration U I null U I U 1

Figure 5: SODU

I Starship I Objective Destination TC

I EnterPrise U I Exrdoration U R&el S s

Figure 6: SODS

Starship Objective Destination TC “

Enterprise U Exploration U null U u
Enterprise U Exdoration U R.kel S s

Figure 7: Violation of Null Integrity

figure 6 rather than the one given in figure 7; since the

first tuple in figure 7 is subsumed by the second tuple.

The multiple relation instances at different access

classes are of course related. Each instance at an access

class c is intended to represent the version of reality

appropriate for the access class c. The next property is

concerned with consistency between the different rela-

tion inst antes. The need for such a property was iden-

tified in [2]. However the formulations of [2] were incor-

rect. The correct formulation was first given in [5] and

adopted by SeaView researchers in [10].

Property 3 [Inter-Instance Integrity] R satisfies

inter-instance integrity if and only if for all c’ ~ c we

have R=, = CT(RC,c’) where the jilter funciwn u pro-

duces the c’-instance RC, from R= as follows:

1. For every tuple tG R. such that i![CAx] ~ c’ there
is a tuple t’G RC, with t’[AK, CAK] = t[AK, CAK]

and for & @AK

{

t[Aij Ci]
t’[A~ , Ci] =

if ‘t[Ci] ~ C’

< null, t[CAK] > otherwise

2. There are no tuples in R.) other than those derived

by the above rule.

3. The end result is made subsumption free by ex-

haustive elimination of subsumed tuples. •1

The filter function maps a multilevel relation to dif-

ferent instances, one for each descending access class

in the security lattice. Filtering limits each user to

that portion of the multilevel relation for which he

or she is cleared. Thus, for example, a S-user will

see the entire relation given in figure 6 while a U-

user will see the filtered instance given in figure 5. It

is evident that O(RC, c) = R., and a(cr(Rc, C’), C“) =

C(RC, c“) for c > c’ > c“; as one would expect from the

intuitive notion of filtering.

We are now ready to state our fourth and final re-

quirement. In a standard relation there cannot be two

tuples with the same primary key. In a multilevel rela-

tion we will similarly expect that there cannot be two

tuples with the same apparent primary key. However,

as we observed in section 2, secrecy considerations com-

pel us to allow multiple tuples with the same apparent

primary key.

Property 4 [Polyinstantiat ion Integrity] R satis-

fies polyinstantiation integrity (PI) if and only if for

every R= we have for all Ai : AK, CAK, Ci + Ai. •1

This property stipulates that the user-specified ap-

parent key AK, in conjunction with the classification

attributes CAK and Ci, functionally determines the

value of the Ai attribute. Thus, PI allows the instance

in figure 3 while ruling out the S-instance of figure 4.

Property 4 implicitly defines what is meant by the

primary key in a multilevel relation. The primary key

of a multilevel relation is AK U CAK U CR (where AK

is the set of data attributes constituting the user spec-

ified primary key, CAK is the classification attribute

for data attributes in AK and CR is the set of clas-

sification attributes for data attributes not in AK),

since from PI it follows that the functional dependency

AK U CAK U CR + AR holds (where AR denotes the

set of all attributes that are not in AK). Note that

for single-level relations CAK and CR will be equal to

the same constant value in all tuples. Therefore, in this

case, PI amounts to saying that AK + AR, which is

precisely the definition of the primary key in relational
theory.

Property 4 was originally proposed in [2]. However

it was coupled with an additional multivalued depen-

dency requirement AK, CAK ~+ Ai, Ci to be satisfied

by every instance. There are unpleasant consequences

of this multivalued dependency, aa pointed out in [5].

Thereafter our position has been that polyinstantiation

integrity should only require the functional dependency

stated in property 4.

5 UPDATE OPERATIONS

In this section, we discuss in detail the three update

(insert, update, and delete) operations. We keep the

syntax for these operations identical to the standard

SQL.
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Let R(AI, HI,..., ~, Cm, K’) be a multilevel rela-

tion scheme. In order to simplify the notation, we use

Al instead of AK to denote the apparent primary key.

Consider a user logged on at access class c. Now a

c-user directly sees and interacts with the c-instance

R.. From the viewpoint of thh user the remaining in-

stances of R can be categorized into three cases: those

strictly dominated by c, those that strictly dominate c

and those incomparable with c. The following notation

is useful for ease of reference to these three cases.

R.I < c = Ret, such that c’ < c

R=I>= z R.,, such that d > c

Rctwc E R=,, such that c? incomparable with c

Security considerations, and in particular the +

property, dictate that a c-user cannot insert, update,

or delete a tuple, directly or indirectly (as a side-
.

effect) m any Rct<c or R=8NC. Since actions of a c-user

cannot impact any Ret <c, the effect of insertion, up-

date or deletion must be confined to those tuples in

R= with tuple class equal to c. Because of the inter-

instance property these changes must be properly re-

flected in the instances Ret >C. The latter effect is only

partly determined by the core integrity properties of

section 4 leaving room for different interpretations (see

[4, 5,7,11, 13]).

Strictly speaking in all cases we should speak of op-

erations being performed by a c-subject (or c-process)

rather than a c-user. It is however easier to intuitively

consider the semantics by visualizing a human being

interactively carrying out these operations. The se-

mantics do apply equally well to processes operating

on behalf of a user, whether interactive or not.

5.1 The INSERT Statement

The INSERT statement executed by a c-user has the

following general form, where the c is implicitly deter-

mined by the the user’s login class.

INSERT

INTO .&[(A~[, Aj] . . .)]

VALUES (~[, ~j] . . .)

In this notation the rectangular parenthesis denote op-

tional items and the ‘... n signifies repetition. If the list

of attributes is omitted, it is assumed that all the data

attributes in R= are specified. Only data attributes Ai

can be explicitly given values. The classification at-

tributes Ci are all implicitly given the value c.

Let t be the tuple such that t[Jik]= ak if Ah is in-
cluded in the attributes list in the insert statement,

t[&] = nu~ if Ak is not in the list, and t[cl] = c for

1<2< n. The insertion is permitted if and only if

Starship Objective Destination TC ‘

Enterprise U Exploration U Tales U u

Figure 8: SODU = SODs

Starship Objective Destination TC -

Enterprise U Exploration U Tales U u
Voyager u Exploration U Mars U u

Figure 9: SODU

1. t[A1] does not contain any nulls,

2. For all u c R. : UIA1] # i![A1].

If so, the tuple t is inserted into R= and by side effect

into all R=l>C. This is moreover the only side effect

visible in any RC,> ~.

To illustrate, suppose a U-user wishes to insert a sec-

ond tuple to the SOD instance given in figure 8. He or

she does so by executing the following insert statement.

INSERT

INTO SOD

VALUES (’Voyager’, ‘Exploration’, ‘Mars’)

As a result of the above insert statement, the U-instance

of SOD will become as shown in figure 9. This inser-

tion is straightforward and identical to what happens

in single-level relations.

On the other hand suppose a S-user wishes to insert

the following tuple into the SOD instance of figure 8.

INSERT

INTO SOD

VALUES (’Enterprise’, ‘Spying’, ‘Rigel’)

In this case we can either reject the insert or accept

it and allow two tuples with the same apparent key

Enterprise to coexist as shown in figure 10. The two

tuples in in figure 10 are regarded as pertaining to two

distinct entities. We call such situations aa optional

polyindantiations. Insertion of the secret tuple is not

required for closing signaling channels. It is secure to

reject such insertions.

Finally, we illustrate the situation where polyinstan-

tiation is required to close signaling channels. Consider

the SODS instance given in figure 11. U-users see an

empty instance SODU. Suppose a U-user executes the

following INSERT statement.

INSERT

INTO SOD

VALUES (’Enterprise’, ‘Exploration’, ‘Tales’)



Starship Objective Destination TC Starship Objective Destination TC

Enterprise U Exploration U Tales U u Enterprise U Exploration U null U u
Enterprise S Spying s Rigel S s

Figure 12: SODU

Figure lO: SODS

Starship Objective Destination TC

Enterprise S Spying s Rigel S s

Figurell: SODS

This insertion cannot be rejected on the grounds that a

tuple with apparent key Enterprise has previously been

inserted by a S-user. Doing so would establish a sig-

naling channel from S to U. Therefore by security con-

siderations we are compelled to allow insertion of this

tuple. In such cases we say we have required polyin-

stantiation. The effect of this insertion by a U-user is

to change SODS from figure 11 to figure 10.

5.2 The UPDATE statement

Our interpretation of the semantics of an update com-

mand is close to the one in the standard relational

model: An update command is used to change values in

tuples that are already present in a relation. UPDATE

is a set level operator; i.e., all tuples in the relation

which satisfy the predicate in the update statement are

to be updated (provided the resulting relation satis-

fies polyinstantiation integrity). Since we are dealing

with multilevel relations, we may have to polyinstan-

tiate some tuples. However, addition of tuples due to

polyinstantiation is to be minimized to the extent pos-

sible.

The UPDATE statement executed by a c-user has

the following general form.

UPDATE R=

SET Ai=Si[, Aj=Sj] . . .

[WHERE p]

Here, sk is a scalar expression, and p is a predicate

expression which identifies those tuples in & that are

to be modified. The predicate p may include condi-

tions involving the classification attributes, in addition

to the usual case of data attributes. The assignments

in the SET clause, however, can only involve the data

attributes. The corresponding classification attributes

are implicitly determined to be c.

The intent of the UPDATE operation is to modify

t[.4k] to sk in those tuples t in R= that satisfy the given

Starship Objective Destination TC

Enterprise U Exploration U Rigel S s

Figure 13: SOD5

I Starship I Obiective I Destination I TC ]
L , , 1 J

I Enterprise U I Exploration U I Tales U I U 1

Figure 14: SODU

Starship Objective Destination TC

Enterprise U Exploration U Tales U u
Enterprise U Exploration U R&el S s

Figure 15: SODS

predicate p. In multilevel relations, however, we have

to implement the intent slightly differently in order to

prevent illegal information flows.

5.2.1 Examples of UPDATE Operations

Consider the SOD instances given in figures 12 and 13.

Suppose the U-user makes the following update to

SODU shown in figure 12.

UPDATE SOD

SET Destination = Tales

WHERE Starship = ‘Enterprise’

The changes to SODU in figure 12 and SODS in figure 13

are shown in figures 14 and 15 respectively. Note that

in SODS the Destination attribute for the Enterprise is

now polyinstantiated. This is an example of required
polyinstantiation which cannot be completely elimi-

nated without introducing covert channels or severely

limiting the expressive capability of the database.

Next, suppose starting with the instance SODs of

figure 15 a S-user invokes the following update.

UPDATE SOD

SET Objective = Spying

WHERE Starship = ‘Enterprise’ ANN

Destination = %igel’
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Starship Objective Destination TC

Enterprise U Exploration U Tales U u
Enterprise U Spying s Rigel S s

Figure 16: SODS

Starship Objective Destination TC

Enterprise U Exploration U Tales U u
Enterprise U Spying s Tales U s
Enterprise U Spying s Rigel S s

Figure 17: SODS

In this case, SODS will change to the instance given in

figure 16, not to the instance given in figure 17. That

is the UPDATE is interpreted as applying only to the

second tuple in figure 15 but not to the first tuple. The

S-user can go from figure 15 to figure 17 by issuing the

following update.

UPDATE SOD

SET Objective = Spying

WHERE Starship = ‘Enterprise’

This UPDATE is interpreted as applying to both tuples

of figure 15. The first two tuples of figure 17 result

due to polyintantiation of the first tuple of figure 15.

The third tuple of figure 17 results due to the normal

replacement update of the second tuple of figure 15.

Next, suppose a U-user makes the following update

to the relation shown in figure 14. (Assume S-users see

the instance given in figure 15.)

UPDATE SOD

SET Objective = Spying

WHERE Starship = ‘Enterprise’

As a consequence of the above update, not only SODu

will change from the relation in figure 14 to the one in

figure 18, but SODS will also change from the relation

in figure 15 to the one in figure 19. Thus, polyinstan-

tiation integrity is preserved in instances at different

security levels. Note in particular how the secret tuple

in figure 15 has changed to the secret tuple in figure 19

due to an update by a U-user.

5.2.2 Effect at the User’s Access Class

We now forma&e and further develop the ideas
sketched out above. First consider the effect of an up

date operation by a c-user on R.. Let

S = {tE R= : t satisfies the predicate p}

Starship I Objective I Destination ] TC I

Entermise U I Smrin~ U I Tales U I U I

Figure 18: SODU

Starship Objective Destination TC

Enterprise U Spying U Tales U u
1 Enterprise U I Spying U I Rigel S I S

Figure 19: SODs

We describe the effect of the UPDATE operation by

considering each tuple t G S in turn. The net effect is

obtained as the cumulative effect of updating each tuple

in turn. The UPDATE operation will succeed if and

only if at every step in this process polyinstantiation

integrity is maintained. Otherwise the entire UPDATE

operation is rejected and no tuples are changed. In

other words UPDATE has an all-or-nothing integrity

failure semantics.

It remains to consider the effect of UPDATE on each

tuple t G S. There are two components to this effect.

Firstly, tuple t isreplaced by tuple t’which is identi-

cal to t except for those data attributes which are as-

signed new values in the SET clause. This is the famil-

iar replacement semantics of UPDATE in a single-level

wodd. In terms of our earlier examples the update of

SODU from figure 12 to figure 14 and then to figure 18

illustrates this semantics. The formal definition of the

tuple t’obtained by replacement semantics is straight-

forward as follows.

it’[Ak, Ck] =
{

t[Ak, Ck] Ak @ SET clause

< Sk, c> Ak G SET clause

Secondly to avoid covert channels, we may need to

introduce an additional tuple t“ to hide the effects of

the replacement of t by t’from users at levels below

c (c is the level of the user executing the UPDATE).

This will occur whenever there is some attribute Ak

in the SET clause with t[ck] < c. The idea is that

the original value of t[Ak]with classification t[ck] is

preserved in t“. At the same time the core integrity

properties of section 3 must also be preserved. To be

concrete consider our earlier example of the update of

SODS from figure 15 to figure 16. The WHERE clause

of the UPDATE statement picks up the second tuple in

figure 15 which by replacement semantics gives us the

second tuple in figure 16. In this case the unclassified

Exploration value of the Objective attribute continues

to be available in the first tuple of figure 16 and we need
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integrity properties do not uniquely determine how an

Starship Objective Destination TC update by a c-user to R= should be reflected in updates

Enterprise U Spying s Rigel S s to Rc,>c. Several different options have been proposed

Enterprise U Exploration U null U u [4, 7, 10, 11]. In this paper we will adopt the minimal

propagation ruk [7] which introduces exactly those tu-

Figure 20: SODs
pies in R=,>= that are needed to preserve inter-inst ante

property, i.e., put i?and t’t(if tllexists and survives

subsumption) in each R=, > ~ and nothing else,

Starship Objective I Destination I TC I Formally, the effect of the update operation is again

Enterprise U Spying

~

best explained by focusing on a particular tuple t in S.

Enterprise U Exploration U Ihgel
Let Ak be an attribute in the SET clause such that: (i)

t[ckl = c and (ii) t[Akl = z where z is non-null. That

Figure 21: SODS

not introduce an additional tuple to hide the effect of

this update from U-users. On the other hand suppose

the same UPDATE statement, viz.,

UPDATE SOD

SET Objective = Spying

WHERE Starship = ‘Enterprise’ AND

Destination = ‘Rigel’

was executed by a S-user in cent ext of figure 13. Prior

to the update U-users see the instance in figure 12 and

therefore must continue to do so after the update. To

achieve this SODs changes from figure 13 to figure 20.

The first tuple in figure 20 is the tuple t’dictated by

the usual replacement semantics. The second tuple is

the i?ltuple introduced to hide the effect of the update

from U-users and maintain inter-instance integrity. It

should be noted that figure 21 also achieves these two

goals. However it does so at the cost of a spurious asso-

ciation between Rigel and Exploration which is avoided

in figure 20.

VVe now give a formal definition of the ttttuple in-

troduced to close the covert channel, It is defined as

follows.

tt’[Ak, Ck]=
{

t[Ak,Ck] t[ck]< C

<rid} t[J&] > t[ck] = C

To summarize each tuple t E S is replaced by t’ and
possibly in addition by t“ (if t“ exists). The update is

successful if the resulting relation satisfies polyinstan-

tiation integrity. Otherwise the update is rejected and

the original relation is left unchanged.

5.2.3 Effect Above the User’s Access Class

Next consider the effect of the update operation on

RCI>.. This of course assumes that the update oper-

ation on R= was successful. Unfortunately, the core

. . ,,-.
is the c-user is actually changing a non-null value of

t [Ak] at his own level to sk. Now consider RCI>=. Due

to polyinstantiation there may be several tuples u in

%>. which have the same apparent primary key as t
(i.e., UIA1, Cl] = t[A1, Cl]) and match t in the Ak and

Ck attributes (i.e., ‘u[Ak, Ck] = t [Ak, Ck]). To m~ntain

polyinstantiation integrity (i.e., propert y 4 of section 3)

we must therefore change the value of u[Ak] horn z to

sk. This requirement is forma~y stated as follows.

1. For every Ak E SET clause with t[Ak] # null let

U = {u E Rct>c :
UIA1, Cl] = t[A1, Cl] A

}I@k , Ck] = t[Ak,Ck]

Polyinstantiation integrity dictates that we replace

every u c U by Ut identical to u except for

U’[Ak,Ck] = <sk, c>

This rule applies cumulatively for different Ak’s in

the SET clause.

This requirement is an absolut e one and must be ripjdly

enforced by the DBMS. The next requirement is im-

posed by the inter-instance integrity property of sec-

tion 4.

2. To maintain inter-instance integrity we insert i!

and t’1(if it exists and survives subsumption) in

R.,>c.

This second requirement is a weaker one than the first,

in that inter-instance integrity only stipulates what

minimum action is required. We can insert a number of

additional tuples v in R=, >C with u [Al, Cl] = t’[Al, Cl]

so long as the core integrity properties are not violated.

In particular if t’subsumes the tuple in a({v}, c) inter-

instance integrity is still maintained. Minimal propa-
gation makes the simplest assumption in this case, i.e.,

only ttand i?!are inserted in R=,>= and nothing else is

done.
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5.3 The DELETE statement

The DELETE statement has the following general form:

DELETE

FROM R=

[WHERE ~]

Here, p is a predicate expression which helps identify

those tuples in RC that are to be deleted. The intent

of the DELETE operation is to delete those tuples t in

R. that satisfy the given predicate. But in view of the

k-property only those tuples t that additionally satisfy

t[Z’C] = c are deleted from RC. In order to maintain

inter-instance integrity polyinstantiated tuples are also

deleted from R=, >=.

In particular, if t[C1] = c, then any polyinstanti-

ated tuples in R=,>= will be deleted from Rct>c, and

so the entity that t represents will completely disap-

pear from the multilevel relation. On the other hand

with t[C1] < c the entity will continue to exist in &[cll

and in RCJ>:[cl].

6 FUTURE WORK

In this paper, we have examined the entity integrity

requirement and the semantics of various update op-

erations in the context of multilevel relations. These

concepts were suitably generalized to deal with polyin-

st antiation.

This paper is part of an effort to develop better un-

derstanding of the interactions between multilevel se-

curity and the relational model. This paper points out

clearly how subtle this interaction can be.

We believe that there is much more interesting work

that remains to be done in this area (see, for example,

[6]). In particular we would like to give a complete and

formal set of principles that can help with design and

implementation of multilevel secure relational DBMSS.

Initial steps have been taken in this direction in the

present paper, but more remains to be done.
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