

A Hybrid Enforcement Model for Group-Centric Secure Information Sharing (g-SIS)

Ravi Sandhu

Executive Director and Endowed Professor Institute for Cyber Security University of Texas at San Antonio August 2009

> ravi.sandhu@utsa.edu www.profsandhu.com www.ics.utsa.edu

Co-authored with Ram Krishnan, PhD Candidate, George Mason University

© Ravi Sandhu

1

- Motivation for g-SIS
- g-SIS Enforcement Architecture
- Micro vs Super-distribution in g-SIS
- Hybrid g-SIS Architecture
- Comparison
- Conclusion

- SIS: Share *but* protect
- Traditional models capture important SIS aspects BUT have serious shortcomings
 - Discretionary Access Control (owner control)
 - Too fine-grained, lacks copy/usage control
 - Lattice-Based Access Control (information flow)
 - Too rigid, coarse-grained and binary
 - Role-Based Access Control (effective administration)
 - Attribute-Based Access Control (implicit/automated administration)

Usage Control (mutable attributes, continuous enforcement, obligations)

- Do not directly address information sharing
- Primary issues
 - Copy/usage control
 - Manageability
 - Purpose

- Extensive research in the last two decades – ORCON, DRM, ERM, XrML, ODRL, etc.
- Copy/usage control: major attention
- Manageability and purpose: hardly any attention

Dissemination Chain with Sticky Policies on Objects

Group-Centric Sharing (g-SIS)

- Brings users & objects together in a group
 - Focus on manageability and purpose
 - Co-exists with dissemination-centric
 - Two metaphors

INSTITUTE FOR CYBER SECU THE UNIVERSITY OF TEXAS AT SAN ANTONIO

- Secure Meeting Room (E.g. Program committee)
- Subscription Model (E.g. Secure multicast)
- Operational aspects
 - Group characteristics
 - E.g. What core properties are required of all groups?
 - Group operation semantics
 - E.g. What precisely is authorized by join, add, etc.?
 - Is there additional structure within the group
 - E.g. Security levels, roles, sub-groups?
- Administrative aspects
 - E.g. Who authorizes join, add, etc.?
- Multiple groups
 - Inter-group relationship

- Roles
 - Users get same set of privileges on role assignment
 - Temporal aspects of roles have been studied
 - E.g., when can a role can be activated, what pre-requisite roles need to be activated first
- Groups
 - Privileges may differ with time of join, leave, etc.
 - Groups are a unit of purpose-oriented sharing
 - Inter-group relationship differ from that of roles

g-SIS Architecture

Key Features: Trusted Clients Offline Access

User Attributes: {id, Join_TS, Leave_TS, ORL, gKey, usageCount} Object Attributes: {id, Add_TS} Policy: Authz(u, o, read) $\rightarrow o \notin ORL(u) \land Leave_TS(u) = NULL \land Join_TS(u) \le Add_TS(o)$

© Ravi Sandhu

Super vs Micro-distribution in g-SIS

Super-Distribution (SD)

Micro-Distribution (MD)

- Scalability/Performance
 - SD: Encrypt once, access where authorized
 - MD: Custom encrypt for each user on initial access
- Assurance/Recourse
 - SD: Compromise one client, compromise group key
 - MD: Compromise of one client contained to objects on that client

Hybrid Approach

- Split-key RSA
 - Decryption key split into two parts
 - Different split for each group user
 - One split held by CC, other split shared with user

$$e * d = 1 \mod \varphi(n)$$

$$d1 * d2 = d \mod \varphi(n)$$

$$C = M^e \mod n$$

$$(M)^{d1^{d2}} \mod n =$$

$$(M)^{d2^{d1}} \mod n =$$

$$(M)^{d1*d2} \mod n =$$

$$M^d \mod n$$

Aspect	SD	MD	Hybrid
Usability (with re- spect to users)	Very high (offline access, no CC partic- ipation).	Medium (To add object, need to en- crypt with the key shared with the CC. The CC in turn decrypts and custom encrypts for each user.).	High (Encryption is performed with a uniform encryption key).
Performance (with respect to CC)	Very high (CC never participates in encryption/decryption).	Medium (CC participates in decrypting and custom encrypting each object for each group user).	High (CC performs a one time split key decryption operation per document).
Assurance	Low (compromising one user's access machine exposes group key thereby po- tentially exposing all group objects).	High (Only objects in the compromised access machine are exposed)	High (Only objects in the compromised access machine exposed).

SD – Super-Distribution MD – Micro-Distribution

- Group-Centric vs Dissemination-Centric Sharing
- g-SIS Enforcement Architecture
 - Super-Distribution (SD) vs Micro-Distribution (MD)
 - Hybrid approach using public key cryptography with split private keys
- Hybrid approach offers a mix of
 - Usability and performance advantages of Super-Distribution
 - Better compromise containment of Micro-Distribution