
An Access Control Language for a General

Provenance Model

Qun Ni1, Shouhuai Xu2, Elisa Bertino1, Ravi Sandhu3, and Weili Han4

1 Purdue University, Department of Computer Science, West Lafayette IN, USA.
Email:[ni,bertino]@cs.purdue.edu

2 UT San Antonio, Department of Computer Science, San Antonio TX, USA.
Email:shxu@cs.utsa.edu

3 UT San Antonio, Institute for Cyber Security, San Antonio TX, USA.
Email:ravi.sanhdu@utsa.edu

4 Fudan University, Software School, Shanghai, China. Email:wlhan@fudan.edu.cn

Abstract. Provenance access control has been recognized as one of the
most important components in an enterprise-level provenance system.
However, it has only received little attention in the context of data se-
curity research. One important challenge in provenance access control
is the lack of an access control language that supports its specific re-
quirements, e.g., the support of both fine-grained policies and personal
preferences, and decision aggregation from different applicable policies.
In this paper, we propose an access control language tailored to these
requirements.

1 Introduction

Provenance, a documented history of an object, has already been widely used
in the scientific and grid computing domains to properly document workflows,
data generation, and processing. Access control of provenance is of the highest
importance for many critical organizations [1] either because the fulfillment of
their duties relies on a secure provenance management or because the protection
of provenance is required by laws or regulations. In a national security agency,
the improper disclosure of the source or the ownership of a piece of classified
information may result in great and irreversible losses [2]. In a pharmaceuti-
cal company, the source of data and the processing executed on data may be
sensitive or valuable. In the absence of an access control mechanism for protect-
ing such information, malicious or faulty insiders could steal it [1]. Additionally,
many compliance regulations require proper archives and audit logs for electronic
records [1], e.g. HIPAA mandates to properly log accesses and updates to the
histories of medical records.

Therefore, provenance access control is considered to be the primary issue
in provenance security [3]. Unfortunately, despite the large number of research
efforts focusing on the management of provenance [4, 5, 6, 7, 8], only a few of
these efforts have investigated the problem of securing provenance [3, 2, 9, 10, 1].
Moreover, none of these proposals focuses on access control.

2

The problem of access control for provenance is complicated by the fact
that given a request to access some provenance information, different access
control policies, possibly from different sources, may apply (see Figure 1): orga-
nizational high-level security policies, departmental fine-grained access control
policies, privacy laws and regulations. Moreover, individuals who contributed
to the information, referred to as originators, may specify personal preferences
on the disclosure of such information. Given an access request, whether the re-
quest is allowed or not depends on the decisions from all of these policies. We
thus need a language able to support the specification of fine-grained policies,
privacy policies, and preferences, and equipped with a flexible access control
decision aggregation mechanism.

Organizational

High Level

Policies

Departmental

Fine-grained

Policies

Privacy Laws,

Regulations

e.g. HIPAA

Preferences from

Persons involved

in Provenance

Policy Evaluation

An Access

Request

Aggregation

Decision Decision Decision Decision

A Provenance Store

Permit

Access

Refused

Deny

Fig. 1: Different policies may be applicable

The goal of this paper is to propose such a comprehensive access control
language addressing those specific requirements of provenance access control, e.g.
fine-grained, privacy-aware, and originator control. Our contributions include:

– A novel provenance model that captures the characteristics of previously
proposed provenance models and is the base for analyzing the requirements
for provenance access control.

– A language tailored to fine-grained provenance access control and originator
preferences.

– A simple yet flexible evaluation mechanism for decision aggregation.

The rest of this paper is organized as follows: Section 2 introduces our general
provenance model and analyzes the requirements of provenance access control.
Based on such a provenance model, Section 3 develops the access control lan-
guage model. Section 4 discusses the flow of access control decision process.
Section 5 shows how originator preferences are taken into account in access con-
trol decisions. Section 6 illustrates our approach with several examples. Section
7 discusses related work. Section 8 outlines some conclusions and directions for
future work.

3

2 A Provenance Model

In order to develop an access control language for provenance, the first step is
to analyze the requirements for a provenance access control model. Our analysis
is based on the sensitivity of the different entities in a provenance model that
describes how provenance is represented.

2.1 The Model

Unfortunately, there is currently no standard for representing provenance in spite
of some initial attempts such as the Open Provenance Model [11] and the Archi-
tecture for Provenance Systems [3]. Some proposals [4, 5, 6, 7] focus on different
application domains (scientific data provenance vs electronic health record), have
different forms (relational vs XML), or purposes (storage vs query). Several sys-
tems for managing data lineage and provenance are being used in the context of
scientific processes, e.g. Chimera [12], myGRID [8], and ESSW [13]. Moreover,
some workflow systems [14] are also able to generate provenance information as
well.

Provenance is already well understood in the field of art history where it refers
to the trusted, documented history of some art objects [3]. Given a documented
history, the object attains an authority that allows scholars to understand and
appreciate its importance and context relative to other objects. Art objects that
do not have a trusted, proven history may be treated as faked items. This same
provenance concept may also be applied to data acquired, generated, manipu-
lated, and distributed by computer systems and applications. One of our primary
objectives is thus to define a provenance representation that is suitable for such
data. Hence, in this context, we give the following definition of the provenance
of data (see Fig. 2). Our provenance model can capture and describe provenance
models proposed by aforementioned approaches and research.

A General Provenance Model

DataOperation OutputOperation Message

Context Actor Preference

Data Input

Fig. 2: A provenance model

Definition 1 (Provenance). The provenance of a piece of data is the docu-

mentation of messages, operations, actors, preferences, and context that led to

that piece of data.

An operation is a manipulation performed on or caused by some data, re-
ferred to as input messages, and resulting in other data, referred to as out-
put messages. Messages represent data flows between operations. Applications,

4

database commands, and web services are typical examples of operations, while
copy and paste, emails, and inter-communication between UNIX processes are
typical messages. The piece of data with which the provenance is associated is
the output of the last operation in the provenance.

Operations and messages are operated by actors that could be application
logics, workflow templates, or human beings. In some situations, information
about actors, e.g., a physical therapist of a treatment of musculoskeletal disorders
in a patient, is also a necessary component of provenance. Such an observation
motivates the introduction of actor records in our provenance model.

Context refers to additional data which is independent of the input messages
of an operation but affects the content of the output messages of the operation,
e.g., operation states and operation parameters. Some operations are stateful
or rely on values from some external context variables. In some circumstances,
the internal states of a stateful operation and the values of external variables
may also be necessary in order to understand the functionality or performance
of the operation and therefore the nature of the result of the operation [3].
Moreover, in scientific computations, the parameters used in some operations
are crucial, like for example the parameters in a classification algorithm, for the
final output [6]; thus such information should also be included in the provenance
as context records.

Most existing provenance studies do not consider security and privacy re-
quirements concerning the utilization of provenance, especially the requirements
concerning actors. Security and privacy are however crucial when provenance
contains information of commercial value or of a legally sensitive nature (e.g., a
proprietary algorithm). Usually such sensitive information is very specific, and
its protection requirements may depend on the specific application domain and
can often only be determined by the involved actors. Thus there is a need for a
provenance model able to address such requirements in order to limit the access
to the operation or message content based on access restriction by the cor-
responding actor [9]. Such an observation motivates preference records. These
records are designed for actors to specify their personal preferences that control
whether and how other actors may utilize operation and message records.

If we consider connections resulting from actors, the context, and preferences
to be special messages, these records generally form a directed acyclic graph
(DAG) with messages as edges and other records as nodes. Such graphs may
have cycles when representing provenance for workflow; however, we can always
rewrite a graph with cycles into a DAG by replicating edges and nodes [7].

2.2 Provenance Records

Provenance is represented by a set of provenance records stored in a prove-

nance store. Such a store can be implemented by various systems, like relational
DBMS or XML document management systems. Based on the proposed prove-
nance data model (see Fig. 2), we have defined five kinds of provenance records,
that is: operation records, message records, actor records, preference records,
and context records. To be general, we leave out unspecified details about the

5

implementation of these records. However, to illustrate the usage of provenance
records and the access control requirements of a provenance store, it is necessary
to consider some of those details. In what follows, we discuss details about each
type of record that are relevant to the definition of provenance access control.
The schema of each record is shown in Fig. 3; in the graphical representation,
PK means “primary key” and FK means “foreign key”.

Operation

PK ID

FK1 Context ID

FK2 Actor ID

 Description

 Output

 Timestamp Message

PK ID

FK1 Source ID

FK2 Destination ID

FK3 Actor ID

 Description

 Content

 Carrier

 Timestamp

Preference

PK ID

FK3 Actor ID

FK1,FK2 Target

 Condition

 Effect

 Obligations

 Timestamp

Context

PK ID

 State

 Parameter

Actor

PK ID

 Name

 Role

 Timestamp

Fig. 3: Provenance record schemata

Each record consists of several attributes. Some attributes are optional in
that their value might be null. A basic assumption in the provenance model is
that each piece of data and each provenance record are uniquely identified by
one identification attribute, referred to as the ID attribute. Message, operation,
actor, and preference records have a timestamp attribute which is useful for
time-restricted provenance queries and preference evaluation (their use will be
discussed in Section 5).

Operation record attributes include ID, actor ID, context ID, description,
output, and timestamp. The detail of a description attribute depends on appli-
cations. The description attribute may clearly define a function by pseudo-code,
or even by source code, but it can also be only a function name. The output at-
tribute describes the output of the operation. The value of the output attribute
usually represents the connection between provenance records and data records.

Message record attributes include ID, actor ID, source ID, destination ID,
description, content, carrier, and timestamp. Specific details about the descrip-
tion attribute depend on applications. A message record is not a copy of a real

message between two operations; it is just the provenance of the real message.
For the purpose of provenance completeness, the message content attribute will
be expected to contain the full information transmitted by the real message.
However, other choices are possible. If intermediate data transferred in the real

6

message have been stored elsewhere, the reference ID of the intermediate data
can be stored in the content attribute instead those in the data. Moreover, if
the destination operation is reversible and such intermediate data may be repro-
duced, the data need not be stored in the content attribute either. The carrier
attribute indicates the message transferring channel, e.g. email, which may be
sensitive and useful in some cases, e.g. digital forensics [1].

Actor record attributes include ID, name, and role. Actors usually have
names and roles. A role, like the concept of role in role-based access control,
is a job function of the actor. Someone may argue why not use the actor in-
formation directly from human resource databases. A human being may have
different roles during his/her career time. Thus he/she may have different ver-
sions of actor records with different roles for different operation / message /
preference records. This is the crucial reason why we cannot rely only on the
information from the actor records stored in human resource databases. Such a
record usually only stores the latest actor information, but an actor record in a
provenance store needs to record complete historical actor information.

Context record attributes include ID, state, and parameter. The content of
a context record heavily depends on the application domain. Usually each op-
eration record has at most one context record. It seems preferable to include
the context record into the operation record. We choose to separate the context
record from the operation record because of two reasons. First, the schema and
size of context records vary with respect to different operation records. Some
operation records do not have a context record; however other operation records
may have a complex context record. Second, it is also possible that two different
operation records may share the same context record. Context records are the
only provenance records that do not need timestamps because their timestamps
are determined from their parent operation records.

Preference record attributes include ID, actor ID, target, condition, effect,
obligations, and timestamps. Preference is used to record the access preferences
of the actor of the operation or message. Sometimes it is also useful to record
the preferences expressed by the subject of the operation/message, for example
a patient in the case of healthcare applications. The actor ID attribute is used to
record the author of the preference record. Authors are usually actors. A patient
may specify his/her preference, but the preference is usually recorded by a nurse
or a doctor. The target attribute is used to specify the subject and the exact
record at which the preference aims. Each target of a preference record only
references an operation record or a message record. Details of the target and
other attributes, e.g. conditions, are elaborated in Section 3.

Because provenance is a documented history of a piece of data, it has been
pointed out [10] that a provenance store is immutable. However, it is reasonable
to allow some actors to rationally change their preferences on their own records.
There are two approaches to support such selective updates. One is to allow those
changes to overwrite previous values. The other approach is to use versioning
and associating with each preference record a timestamp. Given a query, if two
preferences from a same actor evaluate to one permit and one deny, the result

7

from the latest preference record takes precedence. We adopt the latter solution
because

– previous preference records are a part of data provenance and have a value
as well;

– the immutable property reduces the complexity of access control on prove-
nance because we only need to focus on querying and do no need to worry
about changes, such as updates and deletions, to existing provenance records.
Such a property also makes it possible to store provenance in “Write Once,
Read Many” (WORM) devices that may greatly help in protecting prove-
nance integrity.

As shown in Fig. 3, there are relations between the records that compose a
provenance DAG. The actor ID in an operation, message or preference record
references the primary key of an actor record. The source ID and destination ID
in a message record reference two primary keys in operation records. The context
ID in an operation record references the primary key of a context record. The
record field together with the restriction field (Section 3) in the target of a
preference record references the primary key of either an operation record or a
reference record.

Another basic assumption in our provenance model is that, at each time
instant, a piece of data is at most manipulated by one operation. The piece of
data can be manipulated several times by the same or different operations, and
such an operation history builds the provenance of the piece of data.

2.3 Provenance Records for Medical Data

We now discuss the application of the proposed provenance model to represent
the provenance of medical records generated from the Diabetes Quality Improve-
ment Program workflow shown in Fig. 4, where CDC refers to Comprehensive
Diabetes Care. Medical records and relevant provenance records generated from
the workflow in Fig. 4 are shown in Fig. 5. The first column shows medical
records, e.g. register, eye exam etc., except for actors. Other provenance records
are shown on the right side. For simplicity, we do not show some attributes, e.g.
the timestamps in actor records, and some records, e.g. context records.

Diabetic adult patient - first visit in calendar year

HBA1c lab result Eye exam Blood pressure measurement Kidney function monitoring

Patient in CDC quality measure compliant

Fig. 4: Diabetes QI Program workflow

Based on the records reported in Fig. 5, we have the following observations:

8
Medical records Provenance records

Register Operation Actor

ID Name ID Actor ID Context ID Description Output.record Output.id Timestamp ID Name Role

1 Alice 1 1 null registration Register 1 1/23/2009 6:00 1 Jame Nurse

2 Bob 2 1 null registration Register 2 1/24/2009 6:14 2 Katty Practitioner

Eye_exam 3 2 null eye examination Eye_exam 3 1/25/2009 6:28 3 John Doctor

ID Patient ID Retinopathy 4 2 null eye examination Eye_exam 4 1/26/2009 6:43 4 David Nurse

3 1 Yes 5 5 null HBA1c test HBA1c 7 1/27/2009 6:57 5 Tom Practitioner

4 2 No 6 5 null HBA1c test HBA1c 8 1/28/2009 7:12 6 Betty Doctor

HBA1c 7 4 null Blood pressure Blood_pressure 2 1/29/2009 7:26

ID Patient ID Result 8 4 null Blood pressure Blood_pressure 3 1/30/2009 7:40

7 1 6.50% 9 3 null Kidney function Kidney_Function 5 1/31/2009 7:55

8 2 8.30% 10 3 null Kidney function Kidney_Function 6 2/1/2009 8:09

Blood_Pressure 11 6 null CDC CDC 8 2/2/2009 8:24

ID Patient ID Result 12 6 null CDC CDC 9 2/3/2009 8:38

2 1 125-85

3 2 144-95 Message

Kidney_Function ID Actor ID Carrier Description Content.record Content.id Timestamp Src ID Des ID

ID Patient ID Compliant 1 1 paper Eye exam req null null 1/23/2009 8:24 1 3

5 1 Yes 2 1 paper Eye exam req null null 1/24/2009 8:52 2 4

6 2 No 3 1 paper HBA1c test req null null 1/25/2009 9:21 1 5

CDC 4 1 paper HBA1c test req null null 1/26/2009 9:50 2 6

ID Patient ID Status 5 1 paper Blood pressure req null null 1/27/2009 10:19 1 7

8 1 Good 6 1 paper Blood pressure req null null 1/28/2009 10:48 2 8

9 2 Bad 7 1 paper Kidney function req null null 1/29/2009 11:16 1 9

8 1 paper Kidney function req null null 1/30/2009 11:45 2 10

9 2 email Eye exam result Eye_exam 3 1/31/2009 12:14 3 11

10 5 email HBA1c test result HBA1c 7 2/1/2009 12:43 5 11

11 4 email Blood pressure Blood_Pressure 2 2/2/2009 13:12 7 11

12 2 email Eye exam result Eye_exam 4 2/3/2009 13:40 4 12

13 5 email HBA1c test result HBA1c 8 2/4/2009 14:09 6 12

14 4 email Blood pressure Blood_Pressure 3 2/5/2009 14:38 8 12

15 3 email Kidney function Kidney_Function 6 2/6/2009 15:07 10 12

16 3 email Kidney function Kidney_Function 5 2/7/2009 15:36 9 11

Preference

ID Actor ID

Target.

Subject

Target.

Record Target.!Restriction Condition Timestamp Effect Obligs

1 3 actor operation

actor.role = doctor and

operation.id = 10

purpose

= research 1/23/2009 6:00

necessary

permit null

2 5 actor operation.body

operation.id = 5 and

actor.name = David null 1/27/2009 6:57 deny null

3 3 actor message.body message.id = 16

purpose=

marketing 2/7/2009 15:36 deny null

Fig. 5: Medical records and Provenance records

– Each medical record is generated by one operation at a specific time, and
can be uniquely identified by the output attribute (with two fields) in the
operation’s record.

– Some message records have values in their content attributes that reference
medical records, and others do not.

– Message records and operation records connected by these message records
form two independent DAGs whose structure is exactly the same as that of
the workflow of interest (Fig. 4).

– Actor records are referenced from operation, message, and preference records.
– Each preference record references exact one message record or operation
record.

All records other than preference records are easily understood. The meaning
of preference records will be more clear in Section 5. One important design choice
in our provenance model is that we do not need a provenance pointer to be
included in the original data item to indicate the location of relevant provenance
records. Given an item ID, we can directly retrieve its provenance from the
provenance store based on our model. An advantage of our model is that it does
not need the adjustment of the schemata of existing datasets. It is well known
that database administrators usually “hate” such adjustments.

2.4 Desiderata for a Provenance Access Control Model

Based on previous work on securing provenance [10, 3, 1] and query examples in
provenance management [6, 5, 15], we identify some important requirements of
an access control mechanism for provenance that are discussed in what follows.

First, provenance access control must be fine-grained. Because of the sensi-
tivity of different provenance records, it is usually the case that an organization

9

may want to ensure that certain portions of the provenance records be only ac-
cessible to certain parties, e.g. a few treatments in privacy sensitive electronic
healthcare records [9], sources of information in a classified document by the
Central Intelligence Agency [2], or a proprietary algorithm applied to some seg-
ments of scientific data [1]. Such a requirement asks for the ability to confine a
query to a very limited scope with respect to subjects and/or objects in terms
of access control. Moreover, it may also be useful to ensure that certain subjects
are authorized to access only the subset of the provenance records that are nec-
essary for a specific purpose or more generally, any type of context 5 in which
provenance representations can be useful [3]. This would require the ability to
express authorizations with context restrictions.

Second, provenance access control may have to constrain data accesses in or-
der to address both security and privacy. One typical example is in the context of
the electronic heathcare records that essentially contain both original data and
their provenance. If we consider the final medical results about the treatment
of a patient to be a piece of data, its provenance usually contains observations,
procedures, tests, prescriptions, and information flows between patients, doc-
tors, practitioners, and nurses. Therefore accesses to electronic heathcare records
should not only comply with organizational security policies based on well-known
principles such as “need to know” and “least privilege”, but also comply with
privacy regulations, such as HIPAA.

Third, provenance access control may need both originator control [16, 17]
(ORGCON) and usage control [18, 19] (UCON). ORGCON is an access con-
trol proposal that requires recipients to gain originator’s approval for a re-
dissemination of an originally disseminated digital object or a new digital ob-
ject that includes the originally distributed digital objects. Motivated by digital
rights management, UCON is an access control model that confines the usage of
re-disseminated digital objects. As mentioned in Section 2.1, a provenance access
control must be able to take into account preferences by actors about how to
utilize relevant records, which is indeed similar to an originator (actor) control
in usage control (record usage). One challenge from such requirement is that
provenance access control should provide a meaningful and usable method to
integrate decisions from both organizational policies and actor preferences, for
which multiple versions may exist. Another challenge is the need of a mechanism
that ensures regulations, e.g. HIPAA, always take precedence over preferences
when there is a conflict.

3 An Access Control Language for Provenance Stores

In this section we propose an access control language, based on our provenance
model, for addressing the requirements discussed in the previous section. The
language supports the specification of both actor preferences and organizational
access control policies.

5 Here the meaning of the term “context” is different from that of the term “context”
in which an actor performs some operation.

10

3.1 The Language

The proposed language is graphically represented in Fig. 6. Its main components
are target, condition, effect, and obligations, which are discussed in what follows.

Subject

Record

Restriction

Target

1

1..*

1

1..*

1

0..1

Policy

Condition

Effect

Obligations

1

0..1

1 0..1

1

1

1 1

Scope

0..1

1

Fig. 6: An Access Control Language

3.2 Target

Since a provenance store is immutable, only two operations can be supported:
append and read. We believe that in a provenance-aware system, the append

operation should be automatically performed by applications and not by users,
like log operations in database systems. The privilege to stop or start an append

operation by an application is not controlled by regular users but by admin-
istrators. Therefore, our access control language only focuses on query (read)
operation on provenance records.

The target specifies the set of subjects and records, to which the policy is
intended to apply. Because the provenance store is immutable and the access
on which we focus is query (read), the type of access, e.g. read or append,
is intentionally omitted in the target. The subject element can be the name
of any collection of users, e.g. actor or professor, or a special user collection
anyuser which represents all users. The record element can be the name of any
collection of provenance records, e.g. operation, some attributes in records, e.g.
operation.body, or a special record collection anyrecord. The following example
shows a policy target that applies to access requests from any user and to all
information contained in the attribute description in the operation records.

1 <target>

2 <subject>anyuser</subject>

3 <record>operation.description</record>
4 </target>

The (optional) restriction element can further refine the applicability estab-
lished by the target through the specification of predicates on subject attributes

11

(combined with anyuser) and/or record attributes (Section 2.4). The following
target example applies to users with a doctor role and to the description of
operation records before year 2009.

1 <target>

2 <subject>anyuser</subject>

3 <record>operation.description</record>
4 <restriction>anyuser.role == doctor AND operation.timestamp <=1.1.2009</restriction>
5 </target>

Provenance represents the lineage of a piece of data; thus when we define a
provenance access control policy we often want the ability to specify one policy
for all provenance records related to a piece of data. Such a requirement is cap-
tured by an optional element scope. Two predefined values, “transferable” and
“non-transferable” (default) can be specified in the element, where “transfer-
able” means that the target not only contains the set of records defined by other
elements in a target, but also includes all ancestors of these records. By con-
trast, “non-transferable” means that the target only contains the set of records
defined by other elements. If the scope element is absent from a target, the
“non-transferable” semantics is adopted for the target. The target of the fol-
lowing example shows a provenance record set for an operation record and its
antecedent records that resulted in the CDC record of patient Alice (See Fig. 5).

1 <target>

2 <subject>anyuser</subject>

3 <record>operation</record>
4 <restriction>operation.id == 11</restriction> <!−operation 11 generates CDC status−>

5 <scope>transferable</scope>

6 </target>

3.3 Condition

A condition represents a boolean expression that describes the optional context
requirements (Section 2.4) that confine the applicable access requests, e.g. access
purpose, limitation on access time and location, and verification of the record
originator’s license. System or context variables usually appear in the condition
expression. The following condition restricts an applicable access to be executed
only from a machine, e.g. obelix, and with an access purpose, e.g. research.

1 <condition>system.machineid == obelix AND purpose == research</condition>

Restrictions and conditions are both boolean expressions, and are crucial in
order to achieve fine-grained access control. The reason why they are mapped
onto different components is not only because they focus on different policy
aspects, i.e. the target scope and the context requirements, but also because they
have a different impact on the aggregation of decisions by different applicable
policies. We will elaborate more on this issue in Section 4.

3.4 Effect

The effect of a policy indicates the policy author’s intended consequence of a
“true” evaluation for policy. In the current version of the language, the effect can

12

take one of the following values: Absolute Permit, Deny, Necessary Permit, and
Finalizing Permit. The motivation and semantics of these four different effects
will be discussed in Section 4.

The following example shows a policy without obligations. The policy re-
quires that any doctor who accesses the description field of operation records
before year 2009 can only do so from machine obelix and that the access purpose
must be research only.

1 <policy ID=1>
2 <target>

3 <subject>anyuser</subject>

4 <record>operation.description</record>
5 <restriction>anyuser.role == doctor AND operation.timestamp <1.1.2009</restriction>
6 </target>
7 <condition>system.machineid == obelix AND purpose == research</condition>
8 <effect>necessary permit</effect>

9 </policy>

3.5 Obligations

An obligation is an operation, specified in a policy, that should be executed before
the condition in the policy is evaluated, in conjunction with the enforcement of
an authorization decision, or after the execution of the access. There are at least
two cases in which we may need obligations in an access control language for
provenance stores. An actor may require any user of his/her records to obtain
his/her agreement before access to these records, or to inform him/her after the
access. He/she may do so by adding a pre-obligation or a post-obligation [20]
in his/her preference. Another case is when one has to comply with regulations
that include obligations, e.g. HIPAA; organizational policies may also require
obligations. Due to space limitations, we do not elaborate on the obligations
component and we only provide an example. We refer the interested readers to
our previous work [20]. The following example shows an obligation specifying
that the actor of the record has to be informed about each data access within
10 days from the date of the access. Commonly used obligations are “inform
actors or originators of an access” and “obtain (either advance or later) approval
from actors or originators”. Operations in an obligation may have their specific
parameters and we adopt a simplified representation of operations.

1 <obligations>

2 <obligation>

3 <operation>inform the actor of the record</operation>

4 <temporal constraint>10 days</temporal constraint>

5 <fulfill on>access</fulfill on>

6 </obligation>
7 </obligations>

4 Policy Evaluation

Abstractly, we may consider a two-dimensional space defined by a provenance
store query, referred to as a query space, to be a tuple of a singleton of user

13

and a set of records, represented by the pair (userq, recordsq). If we consider the
tuple of the sets of subjects and records defined by a target to be a target space,
represented by (subjectst, recordst), then we have the following definition.

Definition 2 (Applicable Policy). A policy is applicable to a query if and

only if the component-wise intersection of the target space of the policy and the

query space generates neither an empty user set nor an empty records set.

In other words, a policy is applicable to a query if and only if its target
space contains both the query user and a subset of query records. Given a query,
only the conditions, effects, and obligations in applicable policies are evaluated
in its final authorization decision. The evaluation of an applicable policy is its
condition evaluation result, either true or false. The evaluation sequence depends
on the effects of applicable policies, as shown in Fig. 7. The final decision depends
on both the effects and the condition evaluation results of applicable policies.

Does an applicable

absolute permit policy

exist?

A Query

Yes
The policy condition

evaluation result
True Permit

Does an applicable deny

policy exist?

No

False

The policy condition

evaluation result
True DenyYes

Does an applicable

necessary permit policy

exist?

The policy condition

evaluation result
False DenyYes

No

Does an applicable

finalizing permit policy

exist?

The policy condition

evaluation result
Yes

No

PermitTrue

Deny

No

Remove the policy

FalseRemove the policy

TrueRemove the policy

FalseRemove the policy

Fig. 7: Policy Evaluation Flow

An applicable policy with an absolute permit effect has the highest prior-
ity. Given a query, if at least one applicable absolute policy evaluates to true,
the query is permitted regardless of the effects of other applicable policies. The
motivation for the absolute permit is that provenance queries required by law en-
forcement institutions or national security agencies should be able to circumvent
the limitation specified by actor preferences and organizational policies.

A policy with a deny effect has the second priority. Given a query, if no appli-
cable absolute permit policies evaluate to true and at least one applicable deny

14

policy evaluates to true, the query is denied regardless of the effects of other
applicable policies. The motivation is that negative policies may significantly
reduce the total number of policies required in practice, which may in turn re-
duce the administration costs for policies. The popular “deny takes precedence”
principle is adopted in the language.

A policy with a necessary permit effect has the third priority. Given a query,
if no applicable absolute permit policies evaluate to true, no applicable deny
policies evaluate to true, and at least one applicable necessary permit policy
evaluates to false, the query is denied regardless of the effects of any other appli-
cable policies. The motivation for the necessary permit is the requirements from
actor preferences and regulation compliance in organizational policies. When
an actor specifies his/her preferences on some operation or message records,
he/she, like donors who regulate the usage of their funds, usually only specifies
some necessary conditions that should be satisfied by future usage of relevant
records. To comply with regulations, e.g. HIPAA, an organization has to specify
corresponding access control policies that are usually not sufficiently fine-grained
but necessary for all relevant queries. A necessary permit is useful in these cases.

It should be noted that we can write a deny policy which is semantically
equivalent to another necessary permit policy by negating the condition and
changing the effect; thus for any query, the final decisions are the same. However,
since some regulations are more naturally expressed by a deny policy and other
preferences are more naturally expressed by a necessary permit, we intentionally
do not merge these two effects into one.

A policy with a finalizing permit effect has the lowest priority. Given a query,
if no applicable absolute permit policies evaluate to true, no applicable deny
policies evaluate to true, no applicable necessary policies evaluate to false, and
at least one applicable finalizing permit policy evaluate to true, then the query
is permitted. Otherwise, the query is denied.

One goal in classifying positive authorization policies into necessary permit
policies and finalizing permit policies is to achieve flexibility and convenience
for the administration of policies at different granularity levels. For instance,
the Chief Security and Privacy Officer (CSPO) of an organization may specify a
binding set of basic regulations for all departments with respect to the access to
provenance information within the organization. These regulations can in turn be
refined by the various departments [21]. One way to address this requirement is to
let the CSPO define some applicable necessary permit policies with which all the
departments have to comply. However, these necessary permit policies cannot
authorize access requests because they are not sufficiently fine-grained. Each
department can then define its own fine-grained finalizing policies. The decision
for a query is then obtained by composing the decisions from all applicable
policies with at least one decision from the finalizing permit policies in one
department. In other words, if all applicable necessary permit policies allow the
access request and at least one finalizing policy allows the request, the query is
authorized. Positive norms and negative norms are based on a similar idea [22].

15

5 Originator Preferences

Our access control language can be applied to specify originator preferences,
that is, to support originator control. Compared to organizational policies, orig-
inator preferences are usually very specific to a particular record and its fields.
The following originator preference specifies that the description information of
operation record 12345678 cannot be accessed for either reverse engineering or
reselling purpose. Fig. 5 shows other preference record examples.

1 <preference ID=1>
2 <target>

3 <subject>anyuser</subject>

4 <record>operation.description</record>
5 <restriction>operation.ID == 12345678</restriction>
6 </target>
7 <condition> purpose == reverse engineering OR purpose == reselling</condition>
8 <effect>deny</effect>

9 <timestamp>1.29.2009</timestamp>

10 </preference>

The timestamp plays a key role in the evaluation of the originator preferences.
When multiple preferences exist, the evaluation criterion is that only the latest
applicable preference is evaluated. The final authorization decision depends on
the latest applicable preference and all applicable organizational policies.

Given a query, the applicable organizational policies and applicable prefer-
ences are evaluated together. The semantics of different effects in user preferences
is the same as that of policies. Given a record to be queried, if only necessary
permit preferences are specified on this record and there are no corresponding
organizational finalizing permit policies, according to the evaluation flow intro-
duced in Section 4 the record cannot be disclosed. This behavior is reasonable
and meets our expectation.

6 Additional Examples

In this section, we show how our access control language can specify access
control policies from some recently published papers and thus meet access control
requirements identified there.

As mentioned in Section 2.4, electronic health records are a hybrid represen-
tation of data and relevant provenance, and thus need to be protected to assure
privacy. Three crucial components in privacy regulations are the access or usage
purpose, obligations, and conditions [23]. The proposed access control language
directly supports conditions and obligations. Purpose requirements can be spec-
ified as predicates in conditions (as a matter of fact, we have already used them
in previous examples). Someone may argue that the language cannot prevent
policy authors from specifying invalid purposes. We, however, believe that spec-
ifying valid purposes in conditions is the duty of the policy authors and thus it
is reasonable that the language itself is only capable of specifying purposes in
policies. Perhaps by policy analysis we may be able to identify invalid purposes
in policies that is left for our future work.

16

In conjunction with effects, purpose predicates can directly model the follow-
ing common cases of purpose requirements in privacy regulations.

– case 1: some records can only be used for some specific purposes;
– case 2: some records can be used for some specific purposes;
– case 3: some records should not be used for some purposes.

These cases can be represented by the following three policy fragments.

1 <policy ID=1> <!−− case 1 −−>

2 ...
3 <condition>purpose == research OR purpose == development</condition>
4 <effect>necessary permit</effect>

5 ...
6 </policy>

7 <policy ID=2> <!−− case 2 −−>

8 ...
9 <condition>purpose == research OR purpose == development </condition>

10 <effect>finalizing permit</effect>

11 ...
12 </policy>

13 <policy ID=3> <!−− case 3 −−>

14 ...
15 <condition>purpose == marketing</condition>
16 <effect>deny</effect>

17 ...
18 </policy>

The evaluation flow introduced in Section 4 can be directly applied to the
integration of decisions from privacy policies.

An employee’s performance review [10] is an example where the provenance
is more sensitive than the data. Generally employees are permitted - and usually
encouraged - to read their performance review. However, the employee is not
told who had input in writing the review. Thus the employee can see the data
but not the provenance of that data. The following policy forbids any subject to
access the message that leads to the review document about him/her; thus no
source can be disclosed.

1 <policy ID=1>
2 <target>

3 <subject>anyuser</subject>

4 <record>operation</record>
5 <restriction>operation.output.record == review AND
6 anyuser.name == review.objectname</restriction>
7 </target>
8 <effect>deny</effect>

9 </policy>

Braun et al. [10] argued that provenance is poorly served by traditional data
security models because these models focus on individual (provenance) data
items, whereas provenance focuses on the relationships between those items.
These relationships and data items form a DAG, and both nodes and edges need
to be protected. In addition, Braun et al. also suggested that one may need to
hide the participation of an operation. We agree with these requirements but
do not agree that traditional data security models cannot secure provenance.
With an appropriate provenance model, like the one proposed in this paper,
the relationships between data items (message records) and the participation of

17

an operation (actor records) may be secured by traditional style access control
policies, as shown by examples in this paper.

As indicated by Hasan [1], the ownership history of documents (e.g., the chain
to associate a user or users with a document) may also be sensitive. A query for
the source of a piece of data may be recursively executed on provenance records
to generate the chain. By appropriate access control policies on message records,
we can easily achieve protection with different granularity on the chain based on
the specific protection requirements:

– If we need to disclose the original sources without disclosing details in the
chain, e.g. operations and actors, to a specific subject, we can address this
requirement by only allowing the subject to access the Source ID and Des-

tination ID of relevant message records.
– If we need to hide the actor information in the chain from a specific subject,
we can deny the subject access to the Actor ID in the records in the chain.

7 Related Work

The proposed access control language has been influenced by the XACML lan-
guage [24]. One distinct feature of our provenance access control is the need for
the aggregation of authorization decisions from different policies with different
purposes, e.g. organizational policies, user preferences with different versions,
and privacy regulations. Because XACML does not distinguish between condi-
tions and restrictions, XACML is not suitable for dealing with the aggregation
required by the management of provenance. In addition its rule evaluation truth
table and policy combining algorithms have several shortcomings [25]. The pur-
pose handling has been inspired by the Privacy-aware Role-based Access Control
model [23], however, it is more flexible than that in this earlier approach.

Security issues in the context of provenance management have been only
briefly discussed in a few prior papers [3, 2, 9, 10, 1]. Groth et al. [3, 9] dis-
cussed security requirements for Service Oriented Architectures and proposed
some abstract frameworks providing security mechanisms, including access con-
trol, for provenance stores. Braun and Shinnar [2], in the context of the PASS
(Provenance-aware Storage Systems) project [26], discussed a security model
for provenance, which consists of two separate models: one for protecting the
structure or workflow (i.e., which ancestors and descendants are accessible to
which users) and the other for specifying which node attributes are accessible
to which users. Braun et al. [10] later argued the need for new security mod-
els for provenance management. In particular, they highlighted two properties,
“DAG-nature” and “Immutability”, of provenance information which distinguish
provenance information from traditional data items and from tree-structured
data. Hasan et al. [1] discussed research challenges to secure a provenance chain,
and proposed a lifecycle model for provenance. They also analyzed possible ap-
plications of secure provenance. Compared to such work, our work is the only
one focusing on the analysis of requirements for provenance access control and
providing a comprehensive access control language to meet these requirements.

18

Very recently, the problem of secure provenance management has also been
investigated in the broader context of information networks which abstract dis-
tributed information sharing [27, 28]. With respect to the domains that have
been investigated and mentioned above (e.g., scientific database, grid comput-
ing, workflow, health care applications), this new problem domain introduces
new challenges. For example, provenance in scientific databases keeps the mod-
ifications that have been applied to a specific data item, whereas workflow sys-
tems operate within the boundary of a single enterprise. In contract, information
networks capture the movement/processing of data beyond any single database
or enterprise, which means that each node can maintain a provenance store for
all the data messages that have been received and that the provenance store
is maintained by all the nodes in an information network that can cross many
enterprises. The access control language presented in this paper can serve as a
useful mechanism in this framework.

8 Conclusion and Future Work

Our proposal for provenance access control is still at its first stage, and many
interesting problems are left open.

In the evaluation of provenance access control policies, decisions with un-
certainties about the result of target evaluation or condition evaluation may
arise. There are at least two cases in which a policy evaluation may generate
uncertainties. First, because the predicates in a policy may refer to the content
of other data or other provenance store or system variables, it might not be
able to evaluate them due to the lack of privileges. There are several different
design choices to address the issue of which privilege is needed for policy eval-
uation: the administrative privilege, the query issuer privilege, and the policy
author privilege. Obviously the administrative privilege, which may give exces-
sive power to all table owners (they are policy authors), may result in severe
security breaches. Rosenthal et al. [29] suggest that policies should be evalu-
ated under the privilege of the query issuers rather than the policy authors. In
contrast, Olson et al. [30] suggest that policies should be evaluated under the
privilege of the policy authors rather than the query issuers. In either approach,
it is possible that predicates in policies cannot be successfully evaluated due to
the lack of privileges. Second, external factors, such as software vulnerabilities
or hardware failures, may prevent predicates from being evaluated correctly as
well. In both situations, uncertain decisions (neither permit or deny), in which
we do not know the exact decision, are inevitable. The D-algebra [25] can be
applied to deal with policy evaluation in the presence of uncertainty.

Delegation of access control rights, which is one important requirement for
provenance access control [3, 10], has not been addressed in this paper. We
prefer policy-based delegation management and consider delegation management
policies to be meta-policies on access control policies and will investigate this
issue in our future work.

19

Because of the semantics of different effects and predicates used in condi-
tions and restrictions, inappropriate policy specifications may generate conflict-
ing policies or redundant policies [31]. Detecting these abnormal policies is essen-
tially a SAT problem. Fortunately, the problem size is usually very small regard-
less of the number of policies. Only policies with overlapping target spaces and
sharing variables in predicates need to be checked. Various heuristic techniques
have already been developed [31]; we need a tailored version for provenance
access control policies as well.

Acknowledgement. This work is supported in part by AFOSR MURI award
FA9550-08-1-0265.

References

[1] Hasan, R., Sion, R., Winslett, M.: Introducing secure provenance: problems and
challenges. In: Proceedings of the 2007 ACM Workshop On Storage Security And
Survivability (StorageSS). (2007) 13–18

[2] Braun, U., Shinnar, A.: A security model for provenance. Technical Report TR-
04-06, Harvard University Computer Science (Jan 2006)

[3] Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An
architecture for provenance systems. Technical report, University of Southampton
(Nov. 2006)

[4] Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.: Databases
with uncertainty and lineage. VLDB J. 17(2) (2008) 243–264

[5] Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated
databases. In: SIGMOD’06. (2006) 539–550

[6] Chapman, A., Jagadish, H.V., Ramanan, P.: Efficient provenance storage. [32]
993–1006

[7] Heinis, T., Alonso, G.: Efficient lineage tracking for scientific workflows. [32]
1007–1018

[8] Moreau, L., Groth, P.T., Miles, S., Vázquez-Salceda, J., Ibbotson, J., Jiang, S.,
Munroe, S., Rana, O.F., Schreiber, A., Tan, V., Varga, L.Z.: The provenance of
electronic data. Commun. ACM 51(4) (2008) 52–58

[9] Tan, V., Groth, P., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., Moreau, L.:
Security issues in a soa-based provenance system. In: International Provenance
and Annotation Workshop (IPAW’06). (2006) 203–211

[10] Braun, U., Shinnar, A., Seltzer, M.: Securing provenance. In: HotSec’08. (2008)
[11] Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y.,

Futrelle, J., McGrath, R., Myers, J., Paulson, P., Bowers, S., Ludaescher, B.,
Kwasnikowska, N., den Bussche, J.V., Ellkvist, T., Freire, J., Groth, P.: The open
provenance model (v1.01). Technical report, University of Southampton (2008)

[12] Foster, I.T., Vöckler, J.S., Wilde, M., Zhao, Y.: Chimera: Avirtual data system
for representing, querying, and automating data derivation. In: SSDBM, IEEE
Computer Society (2002) 37–46

[13] Janee, G., Mathena, J., Frew, J.: A data model and architecture for long-term
preservation. In Larsen, R.L., Paepcke, A., Borbinha, J.L., Naaman, M., eds.:
JCDL, ACM (2008) 134–144

[14] Callahan, S.P., Freire, J., Scheidegger, C.E., Silva, C.T., Vo, H.T.: Towards
provenance-enabling paraview. In Freire, J., Koop, D., Moreau, L., eds.: IPAW.
Volume 5272 of Lecture Notes in Computer Science., Springer (2008) 120–127

20

[15] Buneman, P., Khanna, S., Tan, W.: Why and where: A characterization of data
provenance. In: Proceedings of the 8th International Conference on Database
Theory (ICDT’01). (2001) 316–330

[16] Abrams, M.D., Smith, G.W.: A generalized framework for database access con-
trols. In: DBSec. (1990) 171–178

[17] McCollum, C.D., Messing, J.R., Notargiacomo, L.: Beyond the pale of mac and
dac-defining new forms of access control. In: IEEE Symposium on Security and
Privacy. (1990) 190–200

[18] Park, J., Sandhu, R.S.: Towards usage control models: beyond traditional access
control. In: SACMAT. (2002) 57–64

[19] Park, J., Sandhu, R.S.: Originator control in usage control. In: POLICY, IEEE
Computer Society (2002) 60–66

[20] Ni, Q., Bertino, E., Lobo, J.: An obligation model bridging access control policies
and privacy policies. In Ray, I., Li, N., eds.: SACMAT, ACM (2008) 133–142

[21] Raub, D., Steinwandt, R.: An algebra for enterprise privacy policies closed under
composition and conjunction. In: ETRICS. (2006) 130–144

[22] Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual
integrity: Framework and applications. In: IEEE Symposium on Security and
Privacy, IEEE Computer Society (2006) 184–198

[23] Ni, Q., Trombetta, A., Bertino, E., Lobo, J.: Privacy-aware role based access
control. In Lotz, V., Thuraisingham, B.M., eds.: SACMAT, ACM (2007) 41–50

[24] Moses, T., ed.: eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Open (Feb 2005)

[25] Ni, Q., Bertino, E., Lobo, J.: D-algebra for composing access control policy deci-
sions. In: ASIACCS. (2009)

[26] Muniswamy-Reddy, K., Holland, D., Braun, U., Seltzer, M.: Provenance-aware
storage systems. In: Proceedings of the 2006 USENIX Annual Technical Confer-
ence. (2006) 43–56

[27] Xu, S., Ni, Q., Bertino, E., Sandhu, R.: A characterization of the problem of
secure provenance management. In: Workshop on Assured Information Sharing
(Affiliated with the 2009 IEEE Intelligence and Security Informatics (ISI’09)).
(2009)

[28] Xu, S., Sandhu, R., Bertino, E.: Tiupam: A framework for trustworthiness-centric
information sharing. In: Third IFIP WG 11.11 International Conference on Trust
Management (TM’09). (2009)

[29] Rosenthal, A., Sciore, E.: Abstracting and refining authorization in sql. In Jonker,
W., Petkovic, M., eds.: Secure Data Management. Volume 3178 of Lecture Notes
in Computer Science., Springer (2004) 148–162

[30] Olson, L.E., Gunter, C.A., Madhusudan, P.: A formal framework for reflective
database access control policies. In Ning, P., Syverson, P.F., Jha, S., eds.: ACM
Conference on Computer and Communications Security, ACM (2008) 289–298

[31] Ni, Q., Lin, D., Bertino, E., Lobo, J.: Conditional privacy-aware role based access
control. In Biskup, J., Lopez, J., eds.: ESORICS. Volume 4734 of Lecture Notes
in Computer Science., Springer (2007) 72–89

[32] Wang, J.T.L., ed.: Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12,
2008. In Wang, J.T.L., ed.: SIGMOD Conference, ACM (2008)

