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Abstract—The Internet of Things (IoT) is enabling smart
houses, where multiple users with complex social relationships
interact with smart devices. This requires sophisticated access
control specification and enforcement models, that are currently
lacking. In this paper, we introduce the extended generalized
role based access control (EGRBAC) model for smart home
IoT. We provide a formal definition for EGRBAC and illustrate
its features with a use case. A proof-of-concept demonstration
utilizing AWS-IoT Greengrass is discussed in the appendix.
EGRBAC is a first step in developing a comprehensive family
of access control models for smart home IoT.

Index Terms—Access Control, Smart home IoT, RBAC

I. INTRODUCTION AND MOTIVATION

The smart home is one of the most popular domains for
deploying the Internet of Things (IoT), envisioned as a global
network of machines and devices capable of interacting with
each other [1]. Nevertheless, surprisingly little attention has
been paid to access control policy specification and enforce-
ment in home IoT [2].

Authorization issues in home IoT are significantly different
from traditional domains in three main aspects. First, we have
many users who use the same device, for example a smart door
lock. Second, house occupants usually have complex social
relationships, which introduces a new threat model, such as an
annoying child trying to control the smart light in a sibling’s
room, or a current or ex-partner trying to abuse one or all
house residents [2], [3]. Another major characteristic of IoT
devices is that the majority lack a screen and keyboard making
them hands free for convenience while making access control
more challenging. These characteristics suggest the need for
a dynamic and fine-grained access control model for smart
home IoT, where users and resources are constrained [4].

In this paper we describe our first access control model
for smart home IoT. Why focus on the home rather than
general IoT? We believe that smart homes provide a rich yet

This work is partially supported by NSF CREST Grant HRD1736209.

scoped environment where we have a limited number of users
who want to access a limited number of shared constrained
smart things with different privileges. Such scoping is useful
to develop an initial set of models. In future these scoped
models can be adapted and evolved to address the access
control requirements of other IoT domains, such as a smart
office, a smart classroom or a smart city.

Our model is inspired by the early work of Covington et
al [5] who extended role-based access control (RBAC) to
the smart home environment in a model called Generalized
RBAC (GRBAC). We call our model the extended GRBAC
(EGRBAC) model. EGRBAC, like GRBAC, focuses on user
to device (U-D) interaction, leaving device to device (D-D)
for future work. One goal of EGRBAC is to investigate the
limitations of applying RBAC concepts in home IoT. In future
work we plan to develop models that incorporate concepts of
attribute-based access control (ABAC) and demonstrate their
benefits relative to EGRBAC.

The paper is organized as follows. Section II identifies
desirable criteria for smart home IoT access control models.
An analysis and review of related work is given in Section
III. Section IV provides an overview of GRBAC [5] and of
the architecture that we adopt to enforce EGRBAC. Section
V describes our threat model. In Section VI, we introduce
EGRBAC along with a use case scenario, analyze EGRBAC
against our proposed criteria and discuss the limitations of
EGRBAC. A proof-of-concept demonstration is discussed in
Section A. Section VIII concludes the paper.

II. CRITERIA FOR HOME IOT ACCESS CONTROL

We begin by proposing at least the following criteria for
home IoT access control models (whether U-D, D-D or both),
based in part on He et al [2] and Ouddah et al [4].

1) The model should be dynamic so as to capture environ-
ment and object contextual information.

2) The model should be fine-grained so that a subset of the



TABLE I: Characteristics of IoT Access Control Models
Model Type Model U-D or D-D Dynamic Fine

Grained
Suitable for
constrained
home
environment

Designed or
interpreted
for smart
home IoT

Implemented Provides
a formal
Access
Control
Model

RBAC
Model

EGRBAC,
this paper

U-D yes yes yes yes yes yes

RBAC
Model

GRBAC,
Covington
et al [5]

U-D yes no yes yes no no

RBAC
Model

Zhang et al
[6]

U-D and D-
D

yes yes yes no no yes

RBAC
Model

Barka et al
[7]

U-D and D-
D

no yes no no no utilizes
RBAC [8]

RBAC
Model

Jindou et al
[9]

U-D no yes no no yes yes

RBAC
Model

Kaiwen et al
[10]

U-D yes yes yes no no yes

RBAC
Model

Liu et al
[11]

U-D no yes yes no no no

ABAC
Model

Ye et al [12] U-D and D-
D

yes no no no no yes

ABAC
Model

Bandara et
al [13]

U-D no yes yes no yes utilizes
XACML
[14]

ABAC
Model

Mutsvangwa
et al [15]

U-D N/A N/A no no no no

ABAC
Model

Xie et al
[16]

U-D and D-
D

N/A N/A no no no no

UCON
Model

Martinelli et
al [17]

U-D yes yes yes no yes utilizes
U-XACML
[18], [19]

CapBAC
Model

A survey is
provided in
[4]

Not adequate for the constrained environment of smart homes as explained in Section III.

functionality of a device can be authorized rather than
all-or-nothing access to the device.

3) Smart things in homes are usually limited in term of
computational power, and storage. Furthermore, a generic
interoperability standard among IoT devices is still miss-
ing. Accordingly, the model should be suitable for con-
strained smart home devices. In other words, it should
not require extensive computation or communication by
those constrained devices.

4) The model should be constructed specifically for smart
home IoT, or otherwise be interpreted for the smart
home domain such as by appropriate use cases, to en-
sure that the model is suitable for smart home different
specifications such as, social relationships between house
members, cost effectiveness, usability, and so on.

5) The model should be demonstrated in a proof-of-concept
to be credible using commercially available technology
with necessary enhancements.

6) The model should have a formal definition, so that there
is a precise and rigorous specification of the intended
behavior.

We analyzed IoT access control models proposed in the
literature based on these six characteristics. A summary of
the analysis is provided in Table I. In this table we only
included access control models that govern user to device
access, since this is the scope of our model. From the table
we can notice that except for our model (summarized in
the first row), no model satisfies all desired characteristics.
Furthermore, surprisingly, except for EGRBAC and GRBAC,
no model was designed or interpreted explicitly for smart
home environment. In Section VI we justify the evaluation
of EGRBAC according to the characteristics in this table.

III. RELATED WORK

Smart home IoT has been extensively studied by security
experts. Many researchers have focused on identifying IoT
security and privacy vulnerabilities [20]–[27]. Moreover, to
analyze IoT security challenges and security design issues in
particular, many researchers have conducted studies of IoT

Fig. 1: EGRBAC Architecture (adapted from [42])

frameworks (e.g. [20], [24], [28]–[30]). One of the critical
security services in IoT that mostly all researchers agree
upon is access control. Ouaddah et al [4] have extensively
investigated access control in IoT environments. The IoT
access control models in Table I are based on RBAC [31]–
[33], ABAC [34], [35], UCON [36] or CapBAC [4]. Our
assessment of these models with respect to the above criteria
is summarized in the table. Going beyond the models in this
table, some approaches based on blockchain technology have
been proposed (e.g. [37]–[39]. However, as [38] described, the
blockchain technology has some technical characteristics that
could limit its applicability such as, cryptocurrency fees and
slow processing time. The authors in [4], [40], [41] provide
surveys on additional models beyond Table I such as focussed
on D-D only. However, none of them meet all the criteria of
the table.

IV. BACKGROUND

A. The GRBAC Model
Covington et al introduced the Generalized Role-Based

Access Control (GRBAC) model [5]. In addition to the usual
concept of User Roles, GRBAC incorporates the notion of
Object Roles and Environment Roles. A user role is analogous
to the traditional RBAC role. An object role is defined as
the properties of the resources in the system, such as images,
source code, streaming videos, devices. An environment role
is defined as the environment state during access. Covington et
al [43] subsequently described an architecture to support envi-
ronment roles activation according to the current environment
conditions. They also provided a high level but incomplete
formal definition of environment role based access control
model, building upon [8]. They did not formalize the object
role part of GRBAC. In this paper, we provide a more fine
grained model with a detailed formalization. However, we used
devices instead of objects since it is more appropriate to smart
homes.
B. IOT Based Smart Home Architecture

The smart home IoT architecture that we adopted for
EGRBAC enforcement was introduced by Geneiatakis et al
[42]. It is illustrated in Fig. 1. The IoT devices are connected
to a corresponding hub and are not directly accessed by other
devices or by users. The intermediate hub is responsible for



Fig. 2: EGRBAC Model Components

providing Internet connectivity, since the majority of commer-
cial sensors do not provide direct Internet connectivity. The
communication between the smart hub and the IoT devices is
usually wireless, through different protocols such as Zigbee,
Z-Wave and WiFi. In order to connect the smart IoT devices
optionally, to the outside world, the hub is connected to the
home’s routers via an Ethernet or a Wi-Fi interface. In general
there are two types of access. In local access users directly
interact with the IoT devices through the connectivity services
provided by the hub. In remote access users access IoT devices
via cloud services, which in turn communicate with the smart
hub via the Internet to access these devices.

V. THREAT MODEL

In smart houses we recognize two types of adversaries [2].
First, an outside hacker who is trying to get digital or phys-
ical access to the house by exploiting system vulnerabilities.
Second the household members themselves. These are insiders
who have legitimate digital and physical access to the house,
such as family members, guests, and workers. The motivation
for legitimate users to break down the access control system
of the smart home may vary from curiosity (e.g. a kid playing
with oven setting), disturbing other family members (e.g. a kid
locking his brothers outside the house), to disobedience (e.g.
a kid is watching TV and he is not allowed to), or robbery
(e.g. a worker trying to adjust the camera setting). Making
sure that those legitimate users get access only to what they
are authorized to by the house owner, is the central focus of
our paper. We emphasize that authorized insiders who try to
hack the access control system, or to break the IoT devices to
get an unauthorized access to the system are outside the scope
of our threat model.

VI. EGRBAC MODEL FOR SMART HOME IOT

In this section we define the EGRBAC (Extended General-
ized Role-Based Access Control) model.
A. EGRBAC Formal Definition

Fig. 2 depicts the components of EGRBAC, and Table II for-
mally defines these. Sets are shown as ovals in Fig. 2, while the
binary relations amongst them are shown as directed arrows
with the single arrow indicating “one” and the double arrow
“many.” An arrow ending in a dot indicates a subset rather a
single element of that set (as in one end of EA and RPEA). A
solid arrow represents assignment, a dashed arrow indicates an

TABLE II: EGRBAC Model Formalization

Users, Roles and Sessions
−U,R and S are sets of users, roles and sessions respectively
−UA ⊆ U ×R , many to many users to role assignment (home
owner specified)
−SU ⊆ S×U , many to one sessions to user relation that assigns
each session to a single user who controls the session
−SR ⊆ S×R, many to many session to roles relation that assigns
each session to a set of roles that can change under user control,
where (si, rj) ∈ SR ⇒ (∃uk ∈ U)[(si, uk) ∈ SU ∧ (uk, rj) ∈
UA]; by definition of SU , uk must be unique

Devices, Operations, Permissions and Device Roles
−D,OP, P and DR are sets of devices, operations, permissions
and device roles respectively
−P ⊆ D × OP , every permission is a device, operation pair
(device manufacturer specified)
− PDRA ⊆ P × DR, a many to many permissions to device
roles assignment (home owner specified)

Environment Roles and Environment Conditions
−ER and EC are sets of environment roles and environment
conditions respectively
−EA ⊆ 2EC ×ER, many to many subsets of environment con-
ditions to environment roles assignment (home owner specified)

Role Pairs
−RP ⊆ R × 2ER, a set of role pairs specifying all permissible
combinations of a user role and subsets of environment roles
(home owner specified);
for every rp = (ri, ERj) ∈ RP , let rp.r = ri and rp.ER =
ERj

−RPRA ⊆ RP ×R, many to one role pairs to role association
induced by RP , where RPRA = {(rpm, rn) | rpm ∈ RP ∧
rpm.r = rn}
−RPEA ⊆ RP × 2ER, many to one environment roles
to role pairs association induced by RP , where RPEA =
{(rpm, ERn) | rpm ∈ RP ∧ ERn = rpm.ER}

Role Pair Assignment
−RPDRA ⊆ RP × DR, many to many role pairs to device
roles assignment (home owner specified)

Constraints
Constraints are discussed in Section VI-C

Authorization Predicate
− The authorization predicate takes 4 inputs: session si, device
dj , operation opk and set of active environment conditions ECl; a
session si can access device dj with operation opk when the set of
environment conditions ECl is active iff the following predicate
is true:
(∃(rpm, drn) ∈ RPDRA)
[((dj , opk), drn) ∈ PDRA ∧
(si, rpm.r) ∈ SR ∧
rpm.ER ⊆ {er ∈ ER | (∃EC′

l ⊆ ECl)
[(EC′

l , er) ∈ EA]}]



association via mathematical definitions, for example, RPRA
and RPEA relations are determined by definition from RP and
hence are associations rather than independent assignments. A
dotted arrow represents constraints.

Users (U), Roles (R), and Sessions (S) are familiar sets in
RBAC systems. A user is a human being who interacts with
smart home devices as authorized. In context of smart homes,
a role specifically represents the relationship between the user
and the family, which encompasses parents, kids, neighbors
and such [2]. The many-to-many UA relation specifies the
assignment of users to roles. An example of a user with two
different roles is a neighbor who is assigned the neighbor role,
but also happens to be a plumber who needs temporary access
to repair an appliance and so should have different set of
privileges for that purpose in a worker role. Users establish
sessions during which they may activate a subset of the roles
they assigned to. A user might have multiple sessions active
simultaneously. SU is a many to one relation that maps each
session to its unique controlling user. SR is a many to many
relations that maps each session to the set of roles associated
with it.

A Device (D) is a smart home device such as a smart TV.
Operations (OP) represent actions on devices as specified by
device manufacturers. A permission is an approval to perform
an operation on one device, i.e. it is a device, operation pair.
The set of permissions P is a subset of D×OP . In EGRBAC,
Device Roles (DR) are means of categorizing permissions
of different devices (different from GRBAC where Device
Roles categorize devices including all their permissions). For
example, we can categorize the dangerous permissions of var-
ious smart devices by creating a device role called dangerous
devices and assign dangerous permissions (such as, turning
on the oven, turning on the mower, and opening and closing
the front door lock) to it. The many-to-many PDRA relation
specifies this assignment.

Environment Roles (ER) are a GRBAC innovation repre-
senting environmental contexts, such as daytime/nighttime,
and winter/summer. Environment roles are turned on/off (i.e.,
triggered) by Environment Conditions (EC) such as daylight,
or weather. EA maps each environment role to a subset of EC.
Suppose Entertainment T ime should be active on weekend
evenings. We can use weekends, active during weekends, and
evenings, active during evenings, and assign ({weekends,
evenings}, Entertainment T ime) to EA. Each role pair
is a combination of a role and currently active environment
roles. A role pair rp has a role part rp.r that is the single
role associated with rp, and an environment role part rp.ER
that is the subset of environment roles associated with rp.
The permissible role pairs RP are specified as a subset of
R × 2ER, since some ER subsets may not be meaningful.
RPRA associates each role to one or more role pairs. RPEA
associates each role pair to a subset of ER. RPDRA brings
all these components together by assigning device roles to
role pairs, and hence, for each role pair rp, the single role
associated to it through RPRA can get access to all device roles
assigned to it through RPDRA, when the set of environment

U = {alex, bob, susan, james, julia}
R = {kids, parents, babySitters, guests, neighbors}
UA = {(alex, kids), (bob, parents), (susan, babySitters),

(james, guests), (julia, neighbors)}

D = {TV,DV D,P layStation,DoorLock,Oven}
OP = {On,Off, PG,R,Lock, Unlock,Onoven, Offoven}
P1 = {TV,DV D,P layStation} × {On,Off, PG,R}
P2 = {TV,DV D,P laystation} × {On,Off, PG}
P3 = {DoorLock} × {Lock, Unlock}
P4 = {Oven} × {Onoven, Offoven}
P = P1 ∪ P2 ∪ P3 ∪ P4

DR = {Dangerous Devices, Entertainment Devices,
Kids Friendly Content}

PDRA = P1 × {Entertainment Devices}∪
P2 × {Kids Friendly Content}
(P3 ∪ P4)× {Dangerous Devices}

EC = {weekends, evenings, TRUE}
ER = {Entertainment T ime,Any T ime}
EA = {({weekends, evenings}, Entertainment T ime),

(TRUE,Any T ime)}

RP = {(kids, {Entertainment T ime}),
(parents, {Any T ime}),
(babySitters, {Any T ime}),
(guests, {Any T ime}),
(neighbors, {Any T ime})}

RPDRA = {((parents, {Any T ime}), Dangerous Devices),
((kids, {Entertainment T ime}),Kids Friendly Contents),
((parents, {Any T ime}), Entertainment Devices),
((babySitters, {Any T ime}), Entertainment Devices),
((guests, {Any T ime}), Entertainment Devices),
((neighbors, {Any T ime}), Entertainment Devices)}

Fig. 3: Use Case 1 Configuration in EGRBAC

roles which are associated to rp through RPEA are active.
The main idea in EGRBAC as a whole is that a user is

assigned a subset of roles and, according to the current active
roles in a session and active environment roles, some role
pairs will be active, whereby the user will get access to the
permissions (not devices as in GRBAC) assigned to the device
roles which are assigned to the current active role pairs.

The bottom part of Table II formalizes the authorization
function of EGRBAC. Consider a session si which attempts
to perform operation opk on device dj when the subset of
environment conditions ECl is active. This operation will
succeed if and only if there is a role pair rpm and device role
drn assigned to each other in RPDRA such that the following
conditions are true. (i) drn is assigned the permission (dj , opk)
in PDRA. (ii) rpm.r is one of the active roles of si (as
given in SR). (iii) Each environment role er ∈ rpm.ER is
active because it is activated by a subset of the currently active
environment conditions ECl.
B. EGRBAC Use Case

We present a use case to illustrate the components and
configurations of EGRBAC. The objective is as follows. (a)
Allow kids access to a subset of capabilities (On, Off, PG, but
not R) in entertainment devices (TV, DVD, and PlayStation)
during weekend evenings only. (b) Authorize parents to use
dangerous capabilities of dangerous devices (i.e lock and
unlock the door lock, switch on and off the oven) at any time.
(c) Authorize parents, babysitter, guests, and neighbors to use
entertainment devices any time unconditionally.

EGRBAC can be configured as shown in Fig. 3 to achieve



this objective. The five users alex, bob, susan, james,
and julia, are respectively assigned to roles kids, parents,
babysitters, guests and neighbors. The devices comprise
DoorLock, Oven, TV , DVD and PlayStation. Each device
has different permissions as indicated in P1, P3 and P4. Also
P2 is a subset of P1, restricted to PG content.

We have three device roles with PDRA assigning
P1 permissions to Entertainment Devices, P2

to Kids Friendly Content, and P3 and P4 to
Dangerous Devices. Three environment conditions,
weekends, evenings and TRUE are defined to be
respectively active on weekends, evenings and always. EA
specifies that the environment role Entertainment T ime
is active when both environment conditions weekends and
evenings are active while Any Time is always active.

RPDRA has the following assignments. The role pair
(parents, {Any Time}) is assigned to the device role
Dangerous Devices, whereby parents can use permissions
P3 and P4 without environmental restrictions. The role
pair (kids, {Entertainment T ime}) is assigned to the
device role Kids Friendly Content, so that kids are
restricted to P2 permissions and only when the environment
role Entertainment T ime is active. The role pairs
(parents, {Any Time}), (babySitters, {Any Time}),
(guests, {Any Time}), (neighbors, {Any Time}) are
assigned to the device role Entertainment Devices so
that users with these roles can use all permissions on
Entertainment Devices at any time.
C. EGRBAC Constraints

An important component in EGRBAC is Constraints. A
constraint is an invariant that must be maintained at all
times. Constraints are an integral part of RBAC and ABAC
models [8], [31], [44]. in EGRBAC, we define three types of
constraints, as follows.
Permission-role constraint. These constraints prevent specific
roles from access to specific permissions. In the use case
above, the permissions embodied in the Dangerous Devices
role are assigned to the (parents, {Any Time}) role pair
in RPDRA. However, this does not prevent assignment of
Dangerous Devices to other role pairs, perhaps even to
(kids, {Any Time}). The latter assignment could happen in-
advertently or maliciously. Permission-role constraints prevent
such situations.

Formally, PRConstraints ⊆ 2P ×2R constitute a many to
many subset of permissions to subset of roles relation. Each
prc = (Pi, Rj) ∈ PRConstraints specifies the following
invariant for every pm ∈ Pi and every rn ∈ Rj :

(∀(rpp, drq) ∈ RPDRA)
[(pm, drq) /∈ PDRA ∨ rpp.r 6= rn]

Thus, it is forbidden to assign any device role that pm is
assigned to, to any role pair with rn as the role part. Use
case 1 can be augmented with the constraint shown below.

PRConstraints = {(P3 ∪ P4), R \ {parents})}

This will prevent the assignment of any permissions in P3 or

P4 to role pairs with the role part being any role except for
parents.
Static Separation of Duty (SSD). This is the familiar SSD
in RBAC. It enforces constraints on the assignment of users
to roles. In other words, if a user is authorized as a member
of one role, the user is prohibited from being a member of a
second conflicting role [45].

Formally, SSDConstraints ⊆ R×2R constitute a many to
many role to a subset of mutually exclusive roles relation. Each
ssdc = (ri, Rj) ∈ SSDConstraints specifies the following
invariant:

(∀um ∈ U)(∀rn ∈ Rj)[(um, rn) ∈ UA⇒ (um, ri) /∈ UA]

Thus, it is forbidden to assign any role that is in Rj to any
user to whom ri is assigned.
Dynamic Separation of Duty (DSD). This is the familiar DSD
in RBAC. With DSD it is permissible for a user to be autho-
rized as a member of a set of roles which do not constitute a
conflict of interest when acted in independently, but produce
policy concerns when allowed to be acted simultaneously [45]
in the same session.

Formally, DSDConstraints ⊆ R × 2R constitute a many
to many role to a subset of active mutually exclusive roles
relation. Each dsdc = (ri, Rj) ∈ DSDConstraints specifies
the following invariant:

(∀s ∈ S)(∀rn ∈ Rj)[(s, rn) ∈ SR⇒ (s, ri) /∈ SR]

Thus, it is forbidden for any session that has role ri active to
also have any role rn ∈ Rj active.
D. EGRBAC Assessment

We now show that EGRBAC meets our criteria for smart
home IoT which proposed in Section II. Our model is dynamic
since it can capture different environment conditions through
environment roles. Moreover, through device roles EGRBAC
enables users to give access to subsets permissions of different
devices instead of giving them access to the entire devices.
Thereby, EGRBAC is a fine grained model. EGRBAC is suit-
able for constrained home environment, since it doesn’t require
smart devices to implement a computational heavy logic. The
enforcement architecture that we adopt (see Section IV) in-
cludes the component smart hub, which facilitates transferring
the policy decision engine to a more capable local device.
This enables devices to collect and analyze data externally,
but closer to the source of information, react autonomously
to local events, and communicate securely with each other
on local networks. Moreover, mediating each request through
smart hub solves the heterogeneity problem of IoT devices.
EGRBAC is designed to fit smart home IoT access control
challenges. EGRBAC is demonstrated with one illustrative use
case, and an AWS implementation that captures local, and
remote access for smart home devices as described in Section
A, with accompanying performance analysis.

Limitations Except for relationships, our model doesn’t
capture other user attributes. It does not handle device to
device communication. Finally, it doesn’t consider continuous



verification for access control authorized policies, where the
authorization predicate is only examined at the time of request.

Policy Conflicts Conflicting policies may occur when you
have negative policies, where you prevent specific roles from
accessing specific permissions. In EGRBAC model our poli-
cies are positive policies where you give roles access to
specific permissions. Instead of negative policies, EGRBAC
uses constraints to prevent a specific role rn from accessing a
specific permission pm.

VII. PROOF-OF-CONCEPT IMPLEMENTATION

In this section we describe a proof-of-concept implemen-
tation of EGRBAC. We simulated the use case provided in
Fig. 3 using AWS (Amazon Web Services) IoT service [46].
The simulation illustrates how the access control model and
policies can be configured to establish the applicability of our
model utilizing commercially available systems. Moreover, we
executed multiple test cases to measure the processing time in
different scenarios. The details of this section are provided
in the appendix which can be accessed in the following url:
https://profsandhu.com/conference papers.htm

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we propose EGRBAC access control model
for smart home IoT. Our model fills the gap in the area of
access control model for smart home IoT. It is a dynamic,
fine-grained model that grants access based on the specific
permission required rather than at device granularity. We
demonstrated our model with a use case scenario and a
proof-of-concept implementation in AWS. We also conducted
a performance test to depict how our system responds in
different scenarios with different loads, the results show that
our model is functional, and applicable. Our model still needs
some further work as discussed in Section VI. In the future
we are planning, to develop a family (or series) of models
ranging from relatively simple and complete to incorporating
increasingly sophisticated and comprehensive features.
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APPENDIX

Here, we describe a proof-of-concept implementation of
EGRBAC. We simulated the use case provided in Fig. 3
using AWS (Amazon Web Services) IoT service [46]. The
simulation illustrates how the access control model and poli-
cies can be configured to establish the applicability of our
model utilizing commercially available systems. Moreover, we
executed multiple test cases to measure the processing time in
different scenarios. The details of this section are provided
in the appendix which can be accessed in the following url:
https://profsandhu.com/conference papers.htm

An AWS account is required to configure and deploy the
AWS IoT service known as Greengrass. The Greengrass SDK
(Software Development Kit) extends cloud capabilities to the
edge, which in our case is the smart home. This enables
devices to collect and analyze data closer to the source of
information, react autonomously to local events, and commu-
nicate securely on local networks [47].

In our system Greengrass serves as a smart hub and a policy
engine. It runs on a dedicated virtual machine with 1 virtual
CPU and 2 GB of RAM running ubuntu server 16.04.5 LTS.
Through AWS IoT management console, one virtual object
(aka digital shadow) is created for each physical device and
the two are cryptographically linked via digital certificates
with attached authorization policies. Each simulated device is
run on a separate virtual machine. These devices use MQTT
protocol to communicate to the AWS IoT service with TLS
security. Since the environment conditions in our use case are
time based, they are directly sensed by Greengrass.

To enforce EGRBAC, we utilized two Json files User-
RoleAssignment.json and policy.json, where UserRoleAssign-
ment.json defines the assignments of users to their corre-
sponding roles while policy.json defines all other EGRBAC
components relevant to the use case. We also utilized the
lambda function service in AWS IoT platform [48] to receive
the operation requests of users to access the smart devices in
the house, analyze each request according to the content of
the policy.json and UserRoleAssignment.json files, and finally
trigger the desired actions on the corresponding simulated
devices. Code was in Python 2.7 and running on a long-lived
lambda function with 128 MB Memory Limit, 30 second time-
out. The lambda function, the UserRoleAssignment.json file,
and the policy.json file are all configured in the Greengrass.
We should mention that our system is a default deny system.

Fig. 4, illustrates how the communication is handled in
our implementation when the user tries to send operation
request to turn on a smart TV through his mobile phone
while he is inside the house. In this case, a request is sent
via MQTT protocol to the virtual object (or local shadow)
corresponding to his phone in Greengrass. There is a pub-
lish/subscribe relation between the user’s phone, and the local
shadow through the user’s private topic User/Shadow/Update.
The user’s phone publishes to the topic User/Shadow/Update,
and the local shadow gets notified with the request. After
that, the local shadow publishes to the user’s private topic

Fig. 4: Local Request Processing

Fig. 5: Remote Request Handling in Our System

User/Shadow/Update, and then since the lambda function is
subscribed to this topic it analyzes the request according to
the policy.json and UserRoleAssignment.json files and makes
a decision wether to allow the user to turn on the TV or
not. At this point, there are two cases, either permission is
granted or denied. If permission is denied, the lambda function
publishes to the user’s public topic User/Status/Update, the
local shadow gets notified and updates the user’s phone that
the permission was denied. The smart TV in this case does
not get an indication that a user attempted to access it. If
permission is granted, the smart TV local shadow is notified
through the device’s private topic Device/Shadow/Update and
updates the smart TV with the turn on command. After the
smart TV is turned on, it publishes to the device’s private topic
Device/Shadow/Update and the TV local shadow is notified
which further notifies the lambda function by publishing to
the device’s public topic Device/Status/Update. The lambda



TABLE III: One User Sending Requests to Multiple Devices
Number of Users Number of devices Lambda Processing Time in ms. Total Number of requests

1 1 1.029138 1000
1 3 1.236029 3000 (1000 per request)
1 5 1.202856 5000 (1000 per request)

TABLE IV: Multiple Concurrent Instances of One User Send-
ing Request to One Device.

Number of Users Number of devices Lambda Processing Time in ms. Total Number of requests

1 1 1.029138 1000
3 3 1.796938 3000 (1000 per request)
5 5 2.833097 5000 (1000 per request)

TABLE V: Multiple Users Sending Requests to One Device
Number of Users Number of devices Lambda Processing Time in ms. Total Number of requests

1 1 1.029138 1000
3 1 0.955529 3000 (1000 per request)
5 1 0.956221 5000 (1000 per request)

function then notifies the user phone’s local shadow which
in turn updates the user’s phone that the TV was turned on
successfully.

Fig. 5, illustrates how the communication is handled in
our implementation in case of remote access. If a user Bob
is trying to turn on the oven using his smart phone from
a remote place. First, a request is sent through the HTTP
send protocol to the cloud’s synchronized shadow state of the
user device, in this case the user’s phone. Once the user’s
phone state is changed on the cloud, the cloud forwards
the message to the local Greengrass lambda by publishing
to the user’s private topic User/Shadow/Update, the lambda
receives the request, analyzes it according to the access control
policies defined in the policy.json file and the UserRoleAs-
signment.json file and makes a decision to allow the user
to turn on the oven or no. If the access is granted, the
lambda function will send the request to the smart device
Greengrass’s local shadow by publishing to the device’s private
topic Device/Shadow/Update, the local shadow will get the
request and will automatically update the smart device (smart
oven in this case) to turn on. When the smart device perform
the operation, it notifies its local shadow by publishing to
the device’s private topic Device/Shadow/Update, the local
shadow then notifies the lambda by publishing to the device’s
public topic Device/Status/Update, the lambda then updates
the user’s phone local shadow by publishing to the user’s pub-
lic topic User/Status/Update. The user’s phone local shadow
automatically synchronizes this state to the cloud shadow
which in turn notifies the user’s phone that the request has
been served. On the other hand, if the decision was not to
allow this operation to be performed, the lambda function
would publish to the user’s public topic User/Status/Update,
the local shadow would get notified and would automatically
synchronize this state to the cloud’s synchronized shadow state
of the device. The cloud’s shadow would then update the user’s
phone through the http send protocol that the permission was
denied and the user has no right to turn on the oven. The smart
oven, in this case, would never get an indication that a user
attempted to access it.
A. Performance results

We executed multiple test cases to measure the processing
time in different scenarios. In our performance testing, we

implemented the configuration of Fig. 3. In the following test
cases, we measure the average lambda function execution time
under different conditions. Table III shows the average lambda
function execution time when we send multiple requests from
one user to multiple devices. The first, second, and third rows
show the average time when the parent Bob requests to unlock
the door lock, the average time when Bob requests to turn on
the oven, the TV, and the DVD at the same time, and the
average time when Bob requests to unlock the door lock, turn
on the oven, the TV, the DVD, and the playStation at the same
time respectively. All the requests were approved as they were
supposed to according to our configured policies. Table IV
shows the average lambda function execution time when we
send multiple requests from multiple users to multiple devices
(one user per device) at the same time. The first, second,
and third row show the average time when the parent Bob
requests to unlock the door lock, the average time when Bob
requests to unlock the door lock, the kid Alex requests to turn
on the oven, and the babysitter Susan requests to turn on the
TV at the same time, the average time when the three access
requests tested in the second row are carried again in addition
to, the guest James requests to turn on the DVD, and the
neighbor Julia requests to turn on the playStation. The system
responded correctly where all the requests were approved
except for when the kid Alex requests to turn on the oven. We
can conclude that when the number of requests for different
users and different devices (one user per device) increases,
the lambda processing time also increase. Finally, Table V
shows the average lambda function execution time when we
send multiple requests from multiple users to one device at
the same time. The first, second, and third rows show the
average time when the parent (1 user), the parent, the kid, and
the babysitter (3 users), or the parent, the kid, the babysitter,
the guest, and the neighbor (5 users) respectively all request
to unlock the door at the same time. The system responded
correctly where all the requests were denied except for when
the parent Bob requests to unlock the door lock. Here, we can
see that the average of the lambda processing time decreases
when we have more denies. This result is expected since in
order to approve a request, our policy checking engine (the
lambda function) implemented to check for the authorization
predicate explained in Table II need to verify each condition in
the authorization predicate. On the other hand, if only one of
the authorization predicate conditions is violated the lambda
function will deny the request without the need to check the
rest of the authorization predicate. To conclude, our system
takes more time when approving a request than when denying
it. Overall, our model is functional, and can be easily applied.
Moreover, we can notice that the execution time is generally
low.


