# BlueSky: Activity Control: A Vision for "Active" Security Models for Smart Collaborative Systems

#### Tanjila Mawla

Department of Computer Science Tennessee Tech University

## Ravi Sandhu

Institute for Cyber Security (ICS) and NSF C-SPECC Center, University of Texas at San Antonio

> ACM Symposium on Access Control Models and Technologies

> > June 8 - 10th, 2022

#### Maanak Gupta

Department of Computer Science Tennessee Tech University



# **Activity - Centric Access Control**

- The notion of Activity
- Authorization (A)
- Obligations (B)
- Conditions (C)
- Dependencies among Activities (D)



# **Comparison Overview of Features Proposed in ACAC** Model

Table 1: Comparison Overview of Features Proposed in ACAC Model with other related models.

| Models | Notion of | Multiple   | Activities | Activity   | Activities | Incompatible | Conditional | Activities | Run-time   | Obligations |
|--------|-----------|------------|------------|------------|------------|--------------|-------------|------------|------------|-------------|
|        | Activity  | Object     | Concur-    | Precedence | Depen-     | Activities   | Constraints | Mutability | Authoriza- |             |
|        |           | Activities | rency      |            | dency      |              |             |            | tion       |             |
| TBAC   | Yes       | No         | Yes        | No         | No         | No           | No          | No         | Yes        | No          |
| UCON   | No        | No         | No         | No         | No         | No           | Yes         | No         | Yes        | Yes         |
| ACON   | Yes       | No         | No         | No         | No         | No           | Yes         | No         | No         | No          |
| ABAC   | No        | No         | No         | No         | No         | No           | Yes         | No         | No         | No          |
| ACAC   | YES       | YES        | YES        | YES        | YES        | YES          | YES         | YES        | YES        | YES         |



### FOUNDATIONS OF ACTIVITYCENTRIC MODEL FOR COLLABORATIVE ECOSYSTEM



#### Figure 1: ACAC Model Components.



### FOUNDATIONS OF ACTIVITYCENTRIC MODEL FOR COLLABORATIVE ECOSYSTEM (Cont.)



#### Figure 2: A Framework for a Hierarchy of ACAC models



### FOUNDATIONS OF ACTIVITYCENTRIC MODEL FOR COLLABORATIVE ECOSYSTEM (Cont.)



Figure 3: States of an Activity



### FOUNDATIONS OF ACTIVITYCENTRIC MODEL FOR COLLABORATIVE ECOSYSTEM (Cont.)

Table 2: Mutability of Dependent Activities in terms of the invocation time related to a requested activity.  $\sqrt{}$  and  $\times$  respectively denote the presence (mandatory or optional) and absence of the corresponding field to support the relationships in the first column

| Activities<br>Relation-<br>ship | Immutable    | Pre-<br>invocation | Parallel<br>invoca-<br>tion | Post-<br>invocation |
|---------------------------------|--------------|--------------------|-----------------------------|---------------------|
| Independent                     | $\checkmark$ | $\checkmark$       | $\checkmark$                | $\checkmark$        |
| Ordered                         | ×            | $\checkmark$       | ×                           | V                   |
| Concurrent                      | ×            | ×                  | $\checkmark$                | ×                   |
| Temporary                       | ×            | $\checkmark$       | √                           | √                   |
| Precedence                      | ×            | ×                  | ×                           | $\checkmark$        |
| Conditional                     | ×            | $\checkmark$       | $\checkmark$                | √                   |
| Incompatible                    | ×            | ×                  | ×                           | ×                   |



- All data sources and computing services are considered resources.
- All communication is secured regardless of network location.
- Access to individual enterprise resources is granted on a per-session basis.
- Access to resources is determined by dynamic policy —including the observable state of client identity, application/service, and the requesting asset—and may include other behavioral and environmental attributes.
- The enterprise collects as much information as possible about the current state of assets, network infrastructure and communications and uses it to improve its security posture



- Operational and administrative formal model.
- Policy language and enforcement architecture.
- Risk adaptive ACAC incorporating zero-trust tenets.
- Self-adaptive and AI-driven ACAC Deployment



# Selected References

- Thomas, R.K. and Sandhu, R.S., 1998. Task-based authorization controls (TBAC): A family of models for active and enterprise-oriented authorization management. In *Database security XI* (pp. 166-181). Springer, Boston, MA.
- Park, J. and Sandhu, R., 2004. The UCONABC usage control model. *ACM* transactions on information and system security (TISSEC,)7(1), pp.128-174.
- Park, J., Sandhu, R. and Cheng, Y., 2011, August. Acon: Activity-centric access control for social computing. In *2011 Sixth International Conference on Availability, Reliability and Security*(pp. 242-247). IEEE.
- Jin, X., Krishnan, R. and Sandhu, R., 2012, July. A unified attribute-based access control model covering DAC, MAC and RBAC. In *IFIP Annual Conference on Data and Applications Security and Privacy* (pp. 41-55). Springer, Berlin, Heidelberg.
- Gupta, M. and Sandhu, R., 2021, June. Towards activity-centric access control for smart collaborative ecosystems. In *Proceedings of the 26th ACM Symposium on Access Control Models and Technologies*(pp. 155-164).
- Rose, S., Borchert, O., Mitchell, S. and Connelly, S., 2020. Zero trust architecture (No. NIST Special Publication (SP) 800-207). National Institute of Standards and Technology.



Thank You! Questions?

